1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19/*
20	Module: rt2400pci
21	Abstract: rt2400pci device specific routines.
22	Supported chipsets: RT2460.
23 */
24
25#include <linux/delay.h>
26#include <linux/etherdevice.h>
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/pci.h>
30#include <linux/eeprom_93cx6.h>
31#include <linux/slab.h>
32
33#include "rt2x00.h"
34#include "rt2x00mmio.h"
35#include "rt2x00pci.h"
36#include "rt2400pci.h"
37
38/*
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attempt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 */
51#define WAIT_FOR_BBP(__dev, __reg) \
52	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53#define WAIT_FOR_RF(__dev, __reg) \
54	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55
56static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57				const unsigned int word, const u8 value)
58{
59	u32 reg;
60
61	mutex_lock(&rt2x00dev->csr_mutex);
62
63	/*
64	 * Wait until the BBP becomes available, afterwards we
65	 * can safely write the new data into the register.
66	 */
67	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68		reg = 0;
69		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73
74		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75	}
76
77	mutex_unlock(&rt2x00dev->csr_mutex);
78}
79
80static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81			       const unsigned int word, u8 *value)
82{
83	u32 reg;
84
85	mutex_lock(&rt2x00dev->csr_mutex);
86
87	/*
88	 * Wait until the BBP becomes available, afterwards we
89	 * can safely write the read request into the register.
90	 * After the data has been written, we wait until hardware
91	 * returns the correct value, if at any time the register
92	 * doesn't become available in time, reg will be 0xffffffff
93	 * which means we return 0xff to the caller.
94	 */
95	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96		reg = 0;
97		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100
101		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102
103		WAIT_FOR_BBP(rt2x00dev, &reg);
104	}
105
106	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107
108	mutex_unlock(&rt2x00dev->csr_mutex);
109}
110
111static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
112			       const unsigned int word, const u32 value)
113{
114	u32 reg;
115
116	mutex_lock(&rt2x00dev->csr_mutex);
117
118	/*
119	 * Wait until the RF becomes available, afterwards we
120	 * can safely write the new data into the register.
121	 */
122	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123		reg = 0;
124		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128
129		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130		rt2x00_rf_write(rt2x00dev, word, value);
131	}
132
133	mutex_unlock(&rt2x00dev->csr_mutex);
134}
135
136static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137{
138	struct rt2x00_dev *rt2x00dev = eeprom->data;
139	u32 reg;
140
141	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142
143	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145	eeprom->reg_data_clock =
146	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147	eeprom->reg_chip_select =
148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149}
150
151static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152{
153	struct rt2x00_dev *rt2x00dev = eeprom->data;
154	u32 reg = 0;
155
156	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159			   !!eeprom->reg_data_clock);
160	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161			   !!eeprom->reg_chip_select);
162
163	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164}
165
166#ifdef CONFIG_RT2X00_LIB_DEBUGFS
167static const struct rt2x00debug rt2400pci_rt2x00debug = {
168	.owner	= THIS_MODULE,
169	.csr	= {
170		.read		= rt2x00mmio_register_read,
171		.write		= rt2x00mmio_register_write,
172		.flags		= RT2X00DEBUGFS_OFFSET,
173		.word_base	= CSR_REG_BASE,
174		.word_size	= sizeof(u32),
175		.word_count	= CSR_REG_SIZE / sizeof(u32),
176	},
177	.eeprom	= {
178		.read		= rt2x00_eeprom_read,
179		.write		= rt2x00_eeprom_write,
180		.word_base	= EEPROM_BASE,
181		.word_size	= sizeof(u16),
182		.word_count	= EEPROM_SIZE / sizeof(u16),
183	},
184	.bbp	= {
185		.read		= rt2400pci_bbp_read,
186		.write		= rt2400pci_bbp_write,
187		.word_base	= BBP_BASE,
188		.word_size	= sizeof(u8),
189		.word_count	= BBP_SIZE / sizeof(u8),
190	},
191	.rf	= {
192		.read		= rt2x00_rf_read,
193		.write		= rt2400pci_rf_write,
194		.word_base	= RF_BASE,
195		.word_size	= sizeof(u32),
196		.word_count	= RF_SIZE / sizeof(u32),
197	},
198};
199#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200
201static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202{
203	u32 reg;
204
205	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207}
208
209#ifdef CONFIG_RT2X00_LIB_LEDS
210static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
211				     enum led_brightness brightness)
212{
213	struct rt2x00_led *led =
214	    container_of(led_cdev, struct rt2x00_led, led_dev);
215	unsigned int enabled = brightness != LED_OFF;
216	u32 reg;
217
218	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219
220	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222	else if (led->type == LED_TYPE_ACTIVITY)
223		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224
225	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226}
227
228static int rt2400pci_blink_set(struct led_classdev *led_cdev,
229			       unsigned long *delay_on,
230			       unsigned long *delay_off)
231{
232	struct rt2x00_led *led =
233	    container_of(led_cdev, struct rt2x00_led, led_dev);
234	u32 reg;
235
236	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240
241	return 0;
242}
243
244static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
245			       struct rt2x00_led *led,
246			       enum led_type type)
247{
248	led->rt2x00dev = rt2x00dev;
249	led->type = type;
250	led->led_dev.brightness_set = rt2400pci_brightness_set;
251	led->led_dev.blink_set = rt2400pci_blink_set;
252	led->flags = LED_INITIALIZED;
253}
254#endif /* CONFIG_RT2X00_LIB_LEDS */
255
256/*
257 * Configuration handlers.
258 */
259static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
260				    const unsigned int filter_flags)
261{
262	u32 reg;
263
264	/*
265	 * Start configuration steps.
266	 * Note that the version error will always be dropped
267	 * since there is no filter for it at this time.
268	 */
269	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
270	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
271			   !(filter_flags & FIF_FCSFAIL));
272	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
273			   !(filter_flags & FIF_PLCPFAIL));
274	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
275			   !(filter_flags & FIF_CONTROL));
276	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
277			   !(filter_flags & FIF_PROMISC_IN_BSS));
278	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
279			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
280			   !rt2x00dev->intf_ap_count);
281	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
282	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
283}
284
285static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
286				  struct rt2x00_intf *intf,
287				  struct rt2x00intf_conf *conf,
288				  const unsigned int flags)
289{
290	unsigned int bcn_preload;
291	u32 reg;
292
293	if (flags & CONFIG_UPDATE_TYPE) {
294		/*
295		 * Enable beacon config
296		 */
297		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
298		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
299		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
300		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
301
302		/*
303		 * Enable synchronisation.
304		 */
305		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
306		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
307		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
308	}
309
310	if (flags & CONFIG_UPDATE_MAC)
311		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
312					       conf->mac, sizeof(conf->mac));
313
314	if (flags & CONFIG_UPDATE_BSSID)
315		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
316					       conf->bssid,
317					       sizeof(conf->bssid));
318}
319
320static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
321				 struct rt2x00lib_erp *erp,
322				 u32 changed)
323{
324	int preamble_mask;
325	u32 reg;
326
327	/*
328	 * When short preamble is enabled, we should set bit 0x08
329	 */
330	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
331		preamble_mask = erp->short_preamble << 3;
332
333		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
334		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
335		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
336		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
337		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
338		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
339
340		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
341		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
342		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
343		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
344				   GET_DURATION(ACK_SIZE, 10));
345		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
346
347		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
348		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
351				   GET_DURATION(ACK_SIZE, 20));
352		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
353
354		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
355		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
356		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
357		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
358				   GET_DURATION(ACK_SIZE, 55));
359		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
360
361		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
362		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
363		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
364		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
365				   GET_DURATION(ACK_SIZE, 110));
366		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
367	}
368
369	if (changed & BSS_CHANGED_BASIC_RATES)
370		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
371
372	if (changed & BSS_CHANGED_ERP_SLOT) {
373		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
374		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
375		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
376
377		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
378		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
379		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
380		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
381
382		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
383		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
384		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
385		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
386	}
387
388	if (changed & BSS_CHANGED_BEACON_INT) {
389		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
390		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
391				   erp->beacon_int * 16);
392		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
393				   erp->beacon_int * 16);
394		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
395	}
396}
397
398static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
399				 struct antenna_setup *ant)
400{
401	u8 r1;
402	u8 r4;
403
404	/*
405	 * We should never come here because rt2x00lib is supposed
406	 * to catch this and send us the correct antenna explicitely.
407	 */
408	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
409	       ant->tx == ANTENNA_SW_DIVERSITY);
410
411	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
412	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
413
414	/*
415	 * Configure the TX antenna.
416	 */
417	switch (ant->tx) {
418	case ANTENNA_HW_DIVERSITY:
419		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
420		break;
421	case ANTENNA_A:
422		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
423		break;
424	case ANTENNA_B:
425	default:
426		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
427		break;
428	}
429
430	/*
431	 * Configure the RX antenna.
432	 */
433	switch (ant->rx) {
434	case ANTENNA_HW_DIVERSITY:
435		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
436		break;
437	case ANTENNA_A:
438		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
439		break;
440	case ANTENNA_B:
441	default:
442		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
443		break;
444	}
445
446	rt2400pci_bbp_write(rt2x00dev, 4, r4);
447	rt2400pci_bbp_write(rt2x00dev, 1, r1);
448}
449
450static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
451				     struct rf_channel *rf)
452{
453	/*
454	 * Switch on tuning bits.
455	 */
456	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
457	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
458
459	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
460	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
461	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
462
463	/*
464	 * RF2420 chipset don't need any additional actions.
465	 */
466	if (rt2x00_rf(rt2x00dev, RF2420))
467		return;
468
469	/*
470	 * For the RT2421 chipsets we need to write an invalid
471	 * reference clock rate to activate auto_tune.
472	 * After that we set the value back to the correct channel.
473	 */
474	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
475	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
476	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
477
478	msleep(1);
479
480	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
481	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
482	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483
484	msleep(1);
485
486	/*
487	 * Switch off tuning bits.
488	 */
489	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
490	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
491
492	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
493	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
494
495	/*
496	 * Clear false CRC during channel switch.
497	 */
498	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
499}
500
501static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
502{
503	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
504}
505
506static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
507					 struct rt2x00lib_conf *libconf)
508{
509	u32 reg;
510
511	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
512	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
513			   libconf->conf->long_frame_max_tx_count);
514	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
515			   libconf->conf->short_frame_max_tx_count);
516	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
517}
518
519static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
520				struct rt2x00lib_conf *libconf)
521{
522	enum dev_state state =
523	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
524		STATE_SLEEP : STATE_AWAKE;
525	u32 reg;
526
527	if (state == STATE_SLEEP) {
528		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
529		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
530				   (rt2x00dev->beacon_int - 20) * 16);
531		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
532				   libconf->conf->listen_interval - 1);
533
534		/* We must first disable autowake before it can be enabled */
535		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
536		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
537
538		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
539		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
540	} else {
541		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
542		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
543		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
544	}
545
546	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
547}
548
549static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
550			     struct rt2x00lib_conf *libconf,
551			     const unsigned int flags)
552{
553	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
554		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
555	if (flags & IEEE80211_CONF_CHANGE_POWER)
556		rt2400pci_config_txpower(rt2x00dev,
557					 libconf->conf->power_level);
558	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
559		rt2400pci_config_retry_limit(rt2x00dev, libconf);
560	if (flags & IEEE80211_CONF_CHANGE_PS)
561		rt2400pci_config_ps(rt2x00dev, libconf);
562}
563
564static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
565				const int cw_min, const int cw_max)
566{
567	u32 reg;
568
569	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
570	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
571	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
572	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
573}
574
575/*
576 * Link tuning
577 */
578static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
579				 struct link_qual *qual)
580{
581	u32 reg;
582	u8 bbp;
583
584	/*
585	 * Update FCS error count from register.
586	 */
587	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
588	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
589
590	/*
591	 * Update False CCA count from register.
592	 */
593	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
594	qual->false_cca = bbp;
595}
596
597static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
598				     struct link_qual *qual, u8 vgc_level)
599{
600	if (qual->vgc_level_reg != vgc_level) {
601		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
602		qual->vgc_level = vgc_level;
603		qual->vgc_level_reg = vgc_level;
604	}
605}
606
607static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
608				  struct link_qual *qual)
609{
610	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
611}
612
613static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
614				 struct link_qual *qual, const u32 count)
615{
616	/*
617	 * The link tuner should not run longer then 60 seconds,
618	 * and should run once every 2 seconds.
619	 */
620	if (count > 60 || !(count & 1))
621		return;
622
623	/*
624	 * Base r13 link tuning on the false cca count.
625	 */
626	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
627		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
628	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
629		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
630}
631
632/*
633 * Queue handlers.
634 */
635static void rt2400pci_start_queue(struct data_queue *queue)
636{
637	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
638	u32 reg;
639
640	switch (queue->qid) {
641	case QID_RX:
642		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
643		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
644		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
645		break;
646	case QID_BEACON:
647		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
648		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
649		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
650		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
651		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
652		break;
653	default:
654		break;
655	}
656}
657
658static void rt2400pci_kick_queue(struct data_queue *queue)
659{
660	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
661	u32 reg;
662
663	switch (queue->qid) {
664	case QID_AC_VO:
665		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
666		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
667		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
668		break;
669	case QID_AC_VI:
670		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
671		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
672		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
673		break;
674	case QID_ATIM:
675		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
676		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
677		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
678		break;
679	default:
680		break;
681	}
682}
683
684static void rt2400pci_stop_queue(struct data_queue *queue)
685{
686	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
687	u32 reg;
688
689	switch (queue->qid) {
690	case QID_AC_VO:
691	case QID_AC_VI:
692	case QID_ATIM:
693		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
694		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
695		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
696		break;
697	case QID_RX:
698		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
699		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
700		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
701		break;
702	case QID_BEACON:
703		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
704		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
705		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
706		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
707		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
708
709		/*
710		 * Wait for possibly running tbtt tasklets.
711		 */
712		tasklet_kill(&rt2x00dev->tbtt_tasklet);
713		break;
714	default:
715		break;
716	}
717}
718
719/*
720 * Initialization functions.
721 */
722static bool rt2400pci_get_entry_state(struct queue_entry *entry)
723{
724	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
725	u32 word;
726
727	if (entry->queue->qid == QID_RX) {
728		rt2x00_desc_read(entry_priv->desc, 0, &word);
729
730		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
731	} else {
732		rt2x00_desc_read(entry_priv->desc, 0, &word);
733
734		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
735		        rt2x00_get_field32(word, TXD_W0_VALID));
736	}
737}
738
739static void rt2400pci_clear_entry(struct queue_entry *entry)
740{
741	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
742	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
743	u32 word;
744
745	if (entry->queue->qid == QID_RX) {
746		rt2x00_desc_read(entry_priv->desc, 2, &word);
747		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
748		rt2x00_desc_write(entry_priv->desc, 2, word);
749
750		rt2x00_desc_read(entry_priv->desc, 1, &word);
751		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
752		rt2x00_desc_write(entry_priv->desc, 1, word);
753
754		rt2x00_desc_read(entry_priv->desc, 0, &word);
755		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
756		rt2x00_desc_write(entry_priv->desc, 0, word);
757	} else {
758		rt2x00_desc_read(entry_priv->desc, 0, &word);
759		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
760		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
761		rt2x00_desc_write(entry_priv->desc, 0, word);
762	}
763}
764
765static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
766{
767	struct queue_entry_priv_mmio *entry_priv;
768	u32 reg;
769
770	/*
771	 * Initialize registers.
772	 */
773	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
774	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
775	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
776	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
777	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
778	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
779
780	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
781	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
782	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
783			   entry_priv->desc_dma);
784	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
785
786	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
787	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
788	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
789			   entry_priv->desc_dma);
790	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
791
792	entry_priv = rt2x00dev->atim->entries[0].priv_data;
793	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
794	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
795			   entry_priv->desc_dma);
796	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
797
798	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
799	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
800	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
801			   entry_priv->desc_dma);
802	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
803
804	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
805	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
806	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
807	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
808
809	entry_priv = rt2x00dev->rx->entries[0].priv_data;
810	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
811	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
812			   entry_priv->desc_dma);
813	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
814
815	return 0;
816}
817
818static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
819{
820	u32 reg;
821
822	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
823	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
824	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
825	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
826
827	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
828	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
829	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
830	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
831	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
832
833	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
834	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
835			   (rt2x00dev->rx->data_size / 128));
836	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
837
838	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
839	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
840	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
841	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
842	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
843	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
844	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
845	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
846	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
847	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
848
849	rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
850
851	rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
852	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
853	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
854	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
855	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
856	rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
857
858	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
859	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
860	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
861	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
862	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
863	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
864	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
865	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
866
867	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
868
869	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
870		return -EBUSY;
871
872	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
873	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
874
875	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
876	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
877	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
878
879	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
880	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
881	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
882	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
883	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
884	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
885
886	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
887	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
888	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
889	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
890	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
891
892	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
893	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
894	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
895	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
896
897	/*
898	 * We must clear the FCS and FIFO error count.
899	 * These registers are cleared on read,
900	 * so we may pass a useless variable to store the value.
901	 */
902	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
903	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
904
905	return 0;
906}
907
908static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
909{
910	unsigned int i;
911	u8 value;
912
913	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
914		rt2400pci_bbp_read(rt2x00dev, 0, &value);
915		if ((value != 0xff) && (value != 0x00))
916			return 0;
917		udelay(REGISTER_BUSY_DELAY);
918	}
919
920	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
921	return -EACCES;
922}
923
924static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
925{
926	unsigned int i;
927	u16 eeprom;
928	u8 reg_id;
929	u8 value;
930
931	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
932		return -EACCES;
933
934	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
935	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
936	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
937	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
938	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
939	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
940	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
941	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
942	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
943	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
944	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
945	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
946	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
947	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
948
949	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
950		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
951
952		if (eeprom != 0xffff && eeprom != 0x0000) {
953			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
954			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
955			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
956		}
957	}
958
959	return 0;
960}
961
962/*
963 * Device state switch handlers.
964 */
965static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
966				 enum dev_state state)
967{
968	int mask = (state == STATE_RADIO_IRQ_OFF);
969	u32 reg;
970	unsigned long flags;
971
972	/*
973	 * When interrupts are being enabled, the interrupt registers
974	 * should clear the register to assure a clean state.
975	 */
976	if (state == STATE_RADIO_IRQ_ON) {
977		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
978		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
979	}
980
981	/*
982	 * Only toggle the interrupts bits we are going to use.
983	 * Non-checked interrupt bits are disabled by default.
984	 */
985	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
986
987	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
988	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
989	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
990	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
991	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
992	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
993	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
994
995	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
996
997	if (state == STATE_RADIO_IRQ_OFF) {
998		/*
999		 * Ensure that all tasklets are finished before
1000		 * disabling the interrupts.
1001		 */
1002		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1003		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1004		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1005	}
1006}
1007
1008static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1009{
1010	/*
1011	 * Initialize all registers.
1012	 */
1013	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1014		     rt2400pci_init_registers(rt2x00dev) ||
1015		     rt2400pci_init_bbp(rt2x00dev)))
1016		return -EIO;
1017
1018	return 0;
1019}
1020
1021static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1022{
1023	/*
1024	 * Disable power
1025	 */
1026	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1027}
1028
1029static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1030			       enum dev_state state)
1031{
1032	u32 reg, reg2;
1033	unsigned int i;
1034	char put_to_sleep;
1035	char bbp_state;
1036	char rf_state;
1037
1038	put_to_sleep = (state != STATE_AWAKE);
1039
1040	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1041	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1042	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1043	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1044	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1045	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1046
1047	/*
1048	 * Device is not guaranteed to be in the requested state yet.
1049	 * We must wait until the register indicates that the
1050	 * device has entered the correct state.
1051	 */
1052	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1053		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1054		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1055		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1056		if (bbp_state == state && rf_state == state)
1057			return 0;
1058		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1059		msleep(10);
1060	}
1061
1062	return -EBUSY;
1063}
1064
1065static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1066				      enum dev_state state)
1067{
1068	int retval = 0;
1069
1070	switch (state) {
1071	case STATE_RADIO_ON:
1072		retval = rt2400pci_enable_radio(rt2x00dev);
1073		break;
1074	case STATE_RADIO_OFF:
1075		rt2400pci_disable_radio(rt2x00dev);
1076		break;
1077	case STATE_RADIO_IRQ_ON:
1078	case STATE_RADIO_IRQ_OFF:
1079		rt2400pci_toggle_irq(rt2x00dev, state);
1080		break;
1081	case STATE_DEEP_SLEEP:
1082	case STATE_SLEEP:
1083	case STATE_STANDBY:
1084	case STATE_AWAKE:
1085		retval = rt2400pci_set_state(rt2x00dev, state);
1086		break;
1087	default:
1088		retval = -ENOTSUPP;
1089		break;
1090	}
1091
1092	if (unlikely(retval))
1093		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1094			   state, retval);
1095
1096	return retval;
1097}
1098
1099/*
1100 * TX descriptor initialization
1101 */
1102static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1103				    struct txentry_desc *txdesc)
1104{
1105	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1106	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1107	__le32 *txd = entry_priv->desc;
1108	u32 word;
1109
1110	/*
1111	 * Start writing the descriptor words.
1112	 */
1113	rt2x00_desc_read(txd, 1, &word);
1114	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1115	rt2x00_desc_write(txd, 1, word);
1116
1117	rt2x00_desc_read(txd, 2, &word);
1118	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1119	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1120	rt2x00_desc_write(txd, 2, word);
1121
1122	rt2x00_desc_read(txd, 3, &word);
1123	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1124	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1125	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1126	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1127	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1128	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1129	rt2x00_desc_write(txd, 3, word);
1130
1131	rt2x00_desc_read(txd, 4, &word);
1132	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1133			   txdesc->u.plcp.length_low);
1134	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1135	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1136	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1137			   txdesc->u.plcp.length_high);
1138	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1139	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1140	rt2x00_desc_write(txd, 4, word);
1141
1142	/*
1143	 * Writing TXD word 0 must the last to prevent a race condition with
1144	 * the device, whereby the device may take hold of the TXD before we
1145	 * finished updating it.
1146	 */
1147	rt2x00_desc_read(txd, 0, &word);
1148	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1149	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1150	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1151			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1152	rt2x00_set_field32(&word, TXD_W0_ACK,
1153			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1154	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1155			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1156	rt2x00_set_field32(&word, TXD_W0_RTS,
1157			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1158	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1159	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1160			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1161	rt2x00_desc_write(txd, 0, word);
1162
1163	/*
1164	 * Register descriptor details in skb frame descriptor.
1165	 */
1166	skbdesc->desc = txd;
1167	skbdesc->desc_len = TXD_DESC_SIZE;
1168}
1169
1170/*
1171 * TX data initialization
1172 */
1173static void rt2400pci_write_beacon(struct queue_entry *entry,
1174				   struct txentry_desc *txdesc)
1175{
1176	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1177	u32 reg;
1178
1179	/*
1180	 * Disable beaconing while we are reloading the beacon data,
1181	 * otherwise we might be sending out invalid data.
1182	 */
1183	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1184	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1185	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1186
1187	if (rt2x00queue_map_txskb(entry)) {
1188		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1189		goto out;
1190	}
1191	/*
1192	 * Enable beaconing again.
1193	 */
1194	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1195	/*
1196	 * Write the TX descriptor for the beacon.
1197	 */
1198	rt2400pci_write_tx_desc(entry, txdesc);
1199
1200	/*
1201	 * Dump beacon to userspace through debugfs.
1202	 */
1203	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1204out:
1205	/*
1206	 * Enable beaconing again.
1207	 */
1208	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1209	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1210}
1211
1212/*
1213 * RX control handlers
1214 */
1215static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1216				  struct rxdone_entry_desc *rxdesc)
1217{
1218	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1219	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1220	u32 word0;
1221	u32 word2;
1222	u32 word3;
1223	u32 word4;
1224	u64 tsf;
1225	u32 rx_low;
1226	u32 rx_high;
1227
1228	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1229	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1230	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1231	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1232
1233	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1234		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1235	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1236		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1237
1238	/*
1239	 * We only get the lower 32bits from the timestamp,
1240	 * to get the full 64bits we must complement it with
1241	 * the timestamp from get_tsf().
1242	 * Note that when a wraparound of the lower 32bits
1243	 * has occurred between the frame arrival and the get_tsf()
1244	 * call, we must decrease the higher 32bits with 1 to get
1245	 * to correct value.
1246	 */
1247	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1248	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1249	rx_high = upper_32_bits(tsf);
1250
1251	if ((u32)tsf <= rx_low)
1252		rx_high--;
1253
1254	/*
1255	 * Obtain the status about this packet.
1256	 * The signal is the PLCP value, and needs to be stripped
1257	 * of the preamble bit (0x08).
1258	 */
1259	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1260	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1261	rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1262	    entry->queue->rt2x00dev->rssi_offset;
1263	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1264
1265	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1266	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1267		rxdesc->dev_flags |= RXDONE_MY_BSS;
1268}
1269
1270/*
1271 * Interrupt functions.
1272 */
1273static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1274			     const enum data_queue_qid queue_idx)
1275{
1276	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1277	struct queue_entry_priv_mmio *entry_priv;
1278	struct queue_entry *entry;
1279	struct txdone_entry_desc txdesc;
1280	u32 word;
1281
1282	while (!rt2x00queue_empty(queue)) {
1283		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1284		entry_priv = entry->priv_data;
1285		rt2x00_desc_read(entry_priv->desc, 0, &word);
1286
1287		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1288		    !rt2x00_get_field32(word, TXD_W0_VALID))
1289			break;
1290
1291		/*
1292		 * Obtain the status about this packet.
1293		 */
1294		txdesc.flags = 0;
1295		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1296		case 0: /* Success */
1297		case 1: /* Success with retry */
1298			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1299			break;
1300		case 2: /* Failure, excessive retries */
1301			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1302			/* Don't break, this is a failed frame! */
1303		default: /* Failure */
1304			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1305		}
1306		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1307
1308		rt2x00lib_txdone(entry, &txdesc);
1309	}
1310}
1311
1312static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1313					      struct rt2x00_field32 irq_field)
1314{
1315	u32 reg;
1316
1317	/*
1318	 * Enable a single interrupt. The interrupt mask register
1319	 * access needs locking.
1320	 */
1321	spin_lock_irq(&rt2x00dev->irqmask_lock);
1322
1323	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1324	rt2x00_set_field32(&reg, irq_field, 0);
1325	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1326
1327	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1328}
1329
1330static void rt2400pci_txstatus_tasklet(unsigned long data)
1331{
1332	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1333	u32 reg;
1334
1335	/*
1336	 * Handle all tx queues.
1337	 */
1338	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1339	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1340	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1341
1342	/*
1343	 * Enable all TXDONE interrupts again.
1344	 */
1345	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1346		spin_lock_irq(&rt2x00dev->irqmask_lock);
1347
1348		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1349		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1350		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1351		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1352		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1353
1354		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1355	}
1356}
1357
1358static void rt2400pci_tbtt_tasklet(unsigned long data)
1359{
1360	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1361	rt2x00lib_beacondone(rt2x00dev);
1362	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1363		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1364}
1365
1366static void rt2400pci_rxdone_tasklet(unsigned long data)
1367{
1368	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1369	if (rt2x00mmio_rxdone(rt2x00dev))
1370		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1371	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1372		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1373}
1374
1375static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1376{
1377	struct rt2x00_dev *rt2x00dev = dev_instance;
1378	u32 reg, mask;
1379
1380	/*
1381	 * Get the interrupt sources & saved to local variable.
1382	 * Write register value back to clear pending interrupts.
1383	 */
1384	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1385	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1386
1387	if (!reg)
1388		return IRQ_NONE;
1389
1390	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1391		return IRQ_HANDLED;
1392
1393	mask = reg;
1394
1395	/*
1396	 * Schedule tasklets for interrupt handling.
1397	 */
1398	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1399		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1400
1401	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1402		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1403
1404	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1405	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1406	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1407		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1408		/*
1409		 * Mask out all txdone interrupts.
1410		 */
1411		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1412		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1413		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1414	}
1415
1416	/*
1417	 * Disable all interrupts for which a tasklet was scheduled right now,
1418	 * the tasklet will reenable the appropriate interrupts.
1419	 */
1420	spin_lock(&rt2x00dev->irqmask_lock);
1421
1422	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1423	reg |= mask;
1424	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1425
1426	spin_unlock(&rt2x00dev->irqmask_lock);
1427
1428
1429
1430	return IRQ_HANDLED;
1431}
1432
1433/*
1434 * Device probe functions.
1435 */
1436static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1437{
1438	struct eeprom_93cx6 eeprom;
1439	u32 reg;
1440	u16 word;
1441	u8 *mac;
1442
1443	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1444
1445	eeprom.data = rt2x00dev;
1446	eeprom.register_read = rt2400pci_eepromregister_read;
1447	eeprom.register_write = rt2400pci_eepromregister_write;
1448	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1449	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1450	eeprom.reg_data_in = 0;
1451	eeprom.reg_data_out = 0;
1452	eeprom.reg_data_clock = 0;
1453	eeprom.reg_chip_select = 0;
1454
1455	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1456			       EEPROM_SIZE / sizeof(u16));
1457
1458	/*
1459	 * Start validation of the data that has been read.
1460	 */
1461	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1462	if (!is_valid_ether_addr(mac)) {
1463		eth_random_addr(mac);
1464		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1465	}
1466
1467	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1468	if (word == 0xffff) {
1469		rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1470		return -EINVAL;
1471	}
1472
1473	return 0;
1474}
1475
1476static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1477{
1478	u32 reg;
1479	u16 value;
1480	u16 eeprom;
1481
1482	/*
1483	 * Read EEPROM word for configuration.
1484	 */
1485	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1486
1487	/*
1488	 * Identify RF chipset.
1489	 */
1490	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1491	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1492	rt2x00_set_chip(rt2x00dev, RT2460, value,
1493			rt2x00_get_field32(reg, CSR0_REVISION));
1494
1495	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1496		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1497		return -ENODEV;
1498	}
1499
1500	/*
1501	 * Identify default antenna configuration.
1502	 */
1503	rt2x00dev->default_ant.tx =
1504	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1505	rt2x00dev->default_ant.rx =
1506	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1507
1508	/*
1509	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1510	 * I am not 100% sure about this, but the legacy drivers do not
1511	 * indicate antenna swapping in software is required when
1512	 * diversity is enabled.
1513	 */
1514	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1515		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1516	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1517		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1518
1519	/*
1520	 * Store led mode, for correct led behaviour.
1521	 */
1522#ifdef CONFIG_RT2X00_LIB_LEDS
1523	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1524
1525	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1526	if (value == LED_MODE_TXRX_ACTIVITY ||
1527	    value == LED_MODE_DEFAULT ||
1528	    value == LED_MODE_ASUS)
1529		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1530				   LED_TYPE_ACTIVITY);
1531#endif /* CONFIG_RT2X00_LIB_LEDS */
1532
1533	/*
1534	 * Detect if this device has an hardware controlled radio.
1535	 */
1536	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1537		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1538
1539	/*
1540	 * Check if the BBP tuning should be enabled.
1541	 */
1542	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1543		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1544
1545	return 0;
1546}
1547
1548/*
1549 * RF value list for RF2420 & RF2421
1550 * Supports: 2.4 GHz
1551 */
1552static const struct rf_channel rf_vals_b[] = {
1553	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1554	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1555	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1556	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1557	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1558	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1559	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1560	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1561	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1562	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1563	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1564	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1565	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1566	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1567};
1568
1569static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1570{
1571	struct hw_mode_spec *spec = &rt2x00dev->spec;
1572	struct channel_info *info;
1573	char *tx_power;
1574	unsigned int i;
1575
1576	/*
1577	 * Initialize all hw fields.
1578	 */
1579	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1580			       IEEE80211_HW_SIGNAL_DBM |
1581			       IEEE80211_HW_SUPPORTS_PS |
1582			       IEEE80211_HW_PS_NULLFUNC_STACK;
1583
1584	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1585	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1586				rt2x00_eeprom_addr(rt2x00dev,
1587						   EEPROM_MAC_ADDR_0));
1588
1589	/*
1590	 * Initialize hw_mode information.
1591	 */
1592	spec->supported_bands = SUPPORT_BAND_2GHZ;
1593	spec->supported_rates = SUPPORT_RATE_CCK;
1594
1595	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1596	spec->channels = rf_vals_b;
1597
1598	/*
1599	 * Create channel information array
1600	 */
1601	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1602	if (!info)
1603		return -ENOMEM;
1604
1605	spec->channels_info = info;
1606
1607	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1608	for (i = 0; i < 14; i++) {
1609		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1610		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1611	}
1612
1613	return 0;
1614}
1615
1616static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1617{
1618	int retval;
1619	u32 reg;
1620
1621	/*
1622	 * Allocate eeprom data.
1623	 */
1624	retval = rt2400pci_validate_eeprom(rt2x00dev);
1625	if (retval)
1626		return retval;
1627
1628	retval = rt2400pci_init_eeprom(rt2x00dev);
1629	if (retval)
1630		return retval;
1631
1632	/*
1633	 * Enable rfkill polling by setting GPIO direction of the
1634	 * rfkill switch GPIO pin correctly.
1635	 */
1636	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1637	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1638	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1639
1640	/*
1641	 * Initialize hw specifications.
1642	 */
1643	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1644	if (retval)
1645		return retval;
1646
1647	/*
1648	 * This device requires the atim queue and DMA-mapped skbs.
1649	 */
1650	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1651	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1652	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1653
1654	/*
1655	 * Set the rssi offset.
1656	 */
1657	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1658
1659	return 0;
1660}
1661
1662/*
1663 * IEEE80211 stack callback functions.
1664 */
1665static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1666			     struct ieee80211_vif *vif, u16 queue,
1667			     const struct ieee80211_tx_queue_params *params)
1668{
1669	struct rt2x00_dev *rt2x00dev = hw->priv;
1670
1671	/*
1672	 * We don't support variating cw_min and cw_max variables
1673	 * per queue. So by default we only configure the TX queue,
1674	 * and ignore all other configurations.
1675	 */
1676	if (queue != 0)
1677		return -EINVAL;
1678
1679	if (rt2x00mac_conf_tx(hw, vif, queue, params))
1680		return -EINVAL;
1681
1682	/*
1683	 * Write configuration to register.
1684	 */
1685	rt2400pci_config_cw(rt2x00dev,
1686			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1687
1688	return 0;
1689}
1690
1691static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1692			     struct ieee80211_vif *vif)
1693{
1694	struct rt2x00_dev *rt2x00dev = hw->priv;
1695	u64 tsf;
1696	u32 reg;
1697
1698	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1699	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1700	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1701	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1702
1703	return tsf;
1704}
1705
1706static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1707{
1708	struct rt2x00_dev *rt2x00dev = hw->priv;
1709	u32 reg;
1710
1711	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
1712	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1713}
1714
1715static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1716	.tx			= rt2x00mac_tx,
1717	.start			= rt2x00mac_start,
1718	.stop			= rt2x00mac_stop,
1719	.add_interface		= rt2x00mac_add_interface,
1720	.remove_interface	= rt2x00mac_remove_interface,
1721	.config			= rt2x00mac_config,
1722	.configure_filter	= rt2x00mac_configure_filter,
1723	.sw_scan_start		= rt2x00mac_sw_scan_start,
1724	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1725	.get_stats		= rt2x00mac_get_stats,
1726	.bss_info_changed	= rt2x00mac_bss_info_changed,
1727	.conf_tx		= rt2400pci_conf_tx,
1728	.get_tsf		= rt2400pci_get_tsf,
1729	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1730	.rfkill_poll		= rt2x00mac_rfkill_poll,
1731	.flush			= rt2x00mac_flush,
1732	.set_antenna		= rt2x00mac_set_antenna,
1733	.get_antenna		= rt2x00mac_get_antenna,
1734	.get_ringparam		= rt2x00mac_get_ringparam,
1735	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1736};
1737
1738static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1739	.irq_handler		= rt2400pci_interrupt,
1740	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1741	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1742	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1743	.probe_hw		= rt2400pci_probe_hw,
1744	.initialize		= rt2x00mmio_initialize,
1745	.uninitialize		= rt2x00mmio_uninitialize,
1746	.get_entry_state	= rt2400pci_get_entry_state,
1747	.clear_entry		= rt2400pci_clear_entry,
1748	.set_device_state	= rt2400pci_set_device_state,
1749	.rfkill_poll		= rt2400pci_rfkill_poll,
1750	.link_stats		= rt2400pci_link_stats,
1751	.reset_tuner		= rt2400pci_reset_tuner,
1752	.link_tuner		= rt2400pci_link_tuner,
1753	.start_queue		= rt2400pci_start_queue,
1754	.kick_queue		= rt2400pci_kick_queue,
1755	.stop_queue		= rt2400pci_stop_queue,
1756	.flush_queue		= rt2x00mmio_flush_queue,
1757	.write_tx_desc		= rt2400pci_write_tx_desc,
1758	.write_beacon		= rt2400pci_write_beacon,
1759	.fill_rxdone		= rt2400pci_fill_rxdone,
1760	.config_filter		= rt2400pci_config_filter,
1761	.config_intf		= rt2400pci_config_intf,
1762	.config_erp		= rt2400pci_config_erp,
1763	.config_ant		= rt2400pci_config_ant,
1764	.config			= rt2400pci_config,
1765};
1766
1767static void rt2400pci_queue_init(struct data_queue *queue)
1768{
1769	switch (queue->qid) {
1770	case QID_RX:
1771		queue->limit = 24;
1772		queue->data_size = DATA_FRAME_SIZE;
1773		queue->desc_size = RXD_DESC_SIZE;
1774		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1775		break;
1776
1777	case QID_AC_VO:
1778	case QID_AC_VI:
1779	case QID_AC_BE:
1780	case QID_AC_BK:
1781		queue->limit = 24;
1782		queue->data_size = DATA_FRAME_SIZE;
1783		queue->desc_size = TXD_DESC_SIZE;
1784		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1785		break;
1786
1787	case QID_BEACON:
1788		queue->limit = 1;
1789		queue->data_size = MGMT_FRAME_SIZE;
1790		queue->desc_size = TXD_DESC_SIZE;
1791		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1792		break;
1793
1794	case QID_ATIM:
1795		queue->limit = 8;
1796		queue->data_size = DATA_FRAME_SIZE;
1797		queue->desc_size = TXD_DESC_SIZE;
1798		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1799		break;
1800
1801	default:
1802		BUG();
1803		break;
1804	}
1805}
1806
1807static const struct rt2x00_ops rt2400pci_ops = {
1808	.name			= KBUILD_MODNAME,
1809	.max_ap_intf		= 1,
1810	.eeprom_size		= EEPROM_SIZE,
1811	.rf_size		= RF_SIZE,
1812	.tx_queues		= NUM_TX_QUEUES,
1813	.queue_init		= rt2400pci_queue_init,
1814	.lib			= &rt2400pci_rt2x00_ops,
1815	.hw			= &rt2400pci_mac80211_ops,
1816#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1817	.debugfs		= &rt2400pci_rt2x00debug,
1818#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1819};
1820
1821/*
1822 * RT2400pci module information.
1823 */
1824static const struct pci_device_id rt2400pci_device_table[] = {
1825	{ PCI_DEVICE(0x1814, 0x0101) },
1826	{ 0, }
1827};
1828
1829
1830MODULE_AUTHOR(DRV_PROJECT);
1831MODULE_VERSION(DRV_VERSION);
1832MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1833MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1834MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1835MODULE_LICENSE("GPL");
1836
1837static int rt2400pci_probe(struct pci_dev *pci_dev,
1838			   const struct pci_device_id *id)
1839{
1840	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1841}
1842
1843static struct pci_driver rt2400pci_driver = {
1844	.name		= KBUILD_MODNAME,
1845	.id_table	= rt2400pci_device_table,
1846	.probe		= rt2400pci_probe,
1847	.remove		= rt2x00pci_remove,
1848	.suspend	= rt2x00pci_suspend,
1849	.resume		= rt2x00pci_resume,
1850};
1851
1852module_pci_driver(rt2400pci_driver);
1853