1/* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20/* This file implements all the hardware specific functions for the ZD1211
21 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
22 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
23 */
24
25#include <linux/kernel.h>
26#include <linux/errno.h>
27#include <linux/slab.h>
28
29#include "zd_def.h"
30#include "zd_chip.h"
31#include "zd_mac.h"
32#include "zd_rf.h"
33
34void zd_chip_init(struct zd_chip *chip,
35	         struct ieee80211_hw *hw,
36		 struct usb_interface *intf)
37{
38	memset(chip, 0, sizeof(*chip));
39	mutex_init(&chip->mutex);
40	zd_usb_init(&chip->usb, hw, intf);
41	zd_rf_init(&chip->rf);
42}
43
44void zd_chip_clear(struct zd_chip *chip)
45{
46	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
47	zd_usb_clear(&chip->usb);
48	zd_rf_clear(&chip->rf);
49	mutex_destroy(&chip->mutex);
50	ZD_MEMCLEAR(chip, sizeof(*chip));
51}
52
53static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
54{
55	u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
56	return scnprintf(buffer, size, "%02x-%02x-%02x",
57		         addr[0], addr[1], addr[2]);
58}
59
60/* Prints an identifier line, which will support debugging. */
61static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
62{
63	int i = 0;
64
65	i = scnprintf(buffer, size, "zd1211%s chip ",
66		      zd_chip_is_zd1211b(chip) ? "b" : "");
67	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
68	i += scnprintf(buffer+i, size-i, " ");
69	i += scnprint_mac_oui(chip, buffer+i, size-i);
70	i += scnprintf(buffer+i, size-i, " ");
71	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
72	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
73		chip->patch_cck_gain ? 'g' : '-',
74		chip->patch_cr157 ? '7' : '-',
75		chip->patch_6m_band_edge ? '6' : '-',
76		chip->new_phy_layout ? 'N' : '-',
77		chip->al2230s_bit ? 'S' : '-');
78	return i;
79}
80
81static void print_id(struct zd_chip *chip)
82{
83	char buffer[80];
84
85	scnprint_id(chip, buffer, sizeof(buffer));
86	buffer[sizeof(buffer)-1] = 0;
87	dev_info(zd_chip_dev(chip), "%s\n", buffer);
88}
89
90static zd_addr_t inc_addr(zd_addr_t addr)
91{
92	u16 a = (u16)addr;
93	/* Control registers use byte addressing, but everything else uses word
94	 * addressing. */
95	if ((a & 0xf000) == CR_START)
96		a += 2;
97	else
98		a += 1;
99	return (zd_addr_t)a;
100}
101
102/* Read a variable number of 32-bit values. Parameter count is not allowed to
103 * exceed USB_MAX_IOREAD32_COUNT.
104 */
105int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
106		 unsigned int count)
107{
108	int r;
109	int i;
110	zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
111	u16 v16[USB_MAX_IOREAD32_COUNT * 2];
112	unsigned int count16;
113
114	if (count > USB_MAX_IOREAD32_COUNT)
115		return -EINVAL;
116
117	/* Use stack for values and addresses. */
118	count16 = 2 * count;
119	BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
120	BUG_ON(count16 * sizeof(u16) > sizeof(v16));
121
122	for (i = 0; i < count; i++) {
123		int j = 2*i;
124		/* We read the high word always first. */
125		a16[j] = inc_addr(addr[i]);
126		a16[j+1] = addr[i];
127	}
128
129	r = zd_ioread16v_locked(chip, v16, a16, count16);
130	if (r) {
131		dev_dbg_f(zd_chip_dev(chip),
132			  "error: %s. Error number %d\n", __func__, r);
133		return r;
134	}
135
136	for (i = 0; i < count; i++) {
137		int j = 2*i;
138		values[i] = (v16[j] << 16) | v16[j+1];
139	}
140
141	return 0;
142}
143
144static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
145				       const struct zd_ioreq32 *ioreqs,
146				       unsigned int count)
147{
148	int i, j, r;
149	struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
150	unsigned int count16;
151
152	/* Use stack for values and addresses. */
153
154	ZD_ASSERT(mutex_is_locked(&chip->mutex));
155
156	if (count == 0)
157		return 0;
158	if (count > USB_MAX_IOWRITE32_COUNT)
159		return -EINVAL;
160
161	count16 = 2 * count;
162	BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
163
164	for (i = 0; i < count; i++) {
165		j = 2*i;
166		/* We write the high word always first. */
167		ioreqs16[j].value   = ioreqs[i].value >> 16;
168		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
169		ioreqs16[j+1].value = ioreqs[i].value;
170		ioreqs16[j+1].addr  = ioreqs[i].addr;
171	}
172
173	r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
174#ifdef DEBUG
175	if (r) {
176		dev_dbg_f(zd_chip_dev(chip),
177			  "error %d in zd_usb_write16v\n", r);
178	}
179#endif /* DEBUG */
180	return r;
181}
182
183int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
184			  unsigned int count)
185{
186	int r;
187
188	zd_usb_iowrite16v_async_start(&chip->usb);
189	r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
190	if (r) {
191		zd_usb_iowrite16v_async_end(&chip->usb, 0);
192		return r;
193	}
194	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
195}
196
197int zd_iowrite16a_locked(struct zd_chip *chip,
198                  const struct zd_ioreq16 *ioreqs, unsigned int count)
199{
200	int r;
201	unsigned int i, j, t, max;
202
203	ZD_ASSERT(mutex_is_locked(&chip->mutex));
204	zd_usb_iowrite16v_async_start(&chip->usb);
205
206	for (i = 0; i < count; i += j + t) {
207		t = 0;
208		max = count-i;
209		if (max > USB_MAX_IOWRITE16_COUNT)
210			max = USB_MAX_IOWRITE16_COUNT;
211		for (j = 0; j < max; j++) {
212			if (!ioreqs[i+j].addr) {
213				t = 1;
214				break;
215			}
216		}
217
218		r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
219		if (r) {
220			zd_usb_iowrite16v_async_end(&chip->usb, 0);
221			dev_dbg_f(zd_chip_dev(chip),
222				  "error zd_usb_iowrite16v. Error number %d\n",
223				  r);
224			return r;
225		}
226	}
227
228	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
229}
230
231/* Writes a variable number of 32 bit registers. The functions will split
232 * that in several USB requests. A split can be forced by inserting an IO
233 * request with an zero address field.
234 */
235int zd_iowrite32a_locked(struct zd_chip *chip,
236	          const struct zd_ioreq32 *ioreqs, unsigned int count)
237{
238	int r;
239	unsigned int i, j, t, max;
240
241	zd_usb_iowrite16v_async_start(&chip->usb);
242
243	for (i = 0; i < count; i += j + t) {
244		t = 0;
245		max = count-i;
246		if (max > USB_MAX_IOWRITE32_COUNT)
247			max = USB_MAX_IOWRITE32_COUNT;
248		for (j = 0; j < max; j++) {
249			if (!ioreqs[i+j].addr) {
250				t = 1;
251				break;
252			}
253		}
254
255		r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
256		if (r) {
257			zd_usb_iowrite16v_async_end(&chip->usb, 0);
258			dev_dbg_f(zd_chip_dev(chip),
259				"error _%s. Error number %d\n", __func__,
260				r);
261			return r;
262		}
263	}
264
265	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
266}
267
268int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
269{
270	int r;
271
272	mutex_lock(&chip->mutex);
273	r = zd_ioread16_locked(chip, value, addr);
274	mutex_unlock(&chip->mutex);
275	return r;
276}
277
278int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
279{
280	int r;
281
282	mutex_lock(&chip->mutex);
283	r = zd_ioread32_locked(chip, value, addr);
284	mutex_unlock(&chip->mutex);
285	return r;
286}
287
288int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
289{
290	int r;
291
292	mutex_lock(&chip->mutex);
293	r = zd_iowrite16_locked(chip, value, addr);
294	mutex_unlock(&chip->mutex);
295	return r;
296}
297
298int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
299{
300	int r;
301
302	mutex_lock(&chip->mutex);
303	r = zd_iowrite32_locked(chip, value, addr);
304	mutex_unlock(&chip->mutex);
305	return r;
306}
307
308int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
309	          u32 *values, unsigned int count)
310{
311	int r;
312
313	mutex_lock(&chip->mutex);
314	r = zd_ioread32v_locked(chip, values, addresses, count);
315	mutex_unlock(&chip->mutex);
316	return r;
317}
318
319int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
320	          unsigned int count)
321{
322	int r;
323
324	mutex_lock(&chip->mutex);
325	r = zd_iowrite32a_locked(chip, ioreqs, count);
326	mutex_unlock(&chip->mutex);
327	return r;
328}
329
330static int read_pod(struct zd_chip *chip, u8 *rf_type)
331{
332	int r;
333	u32 value;
334
335	ZD_ASSERT(mutex_is_locked(&chip->mutex));
336	r = zd_ioread32_locked(chip, &value, E2P_POD);
337	if (r)
338		goto error;
339	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
340
341	/* FIXME: AL2230 handling (Bit 7 in POD) */
342	*rf_type = value & 0x0f;
343	chip->pa_type = (value >> 16) & 0x0f;
344	chip->patch_cck_gain = (value >> 8) & 0x1;
345	chip->patch_cr157 = (value >> 13) & 0x1;
346	chip->patch_6m_band_edge = (value >> 21) & 0x1;
347	chip->new_phy_layout = (value >> 31) & 0x1;
348	chip->al2230s_bit = (value >> 7) & 0x1;
349	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
350	chip->supports_tx_led = 1;
351	if (value & (1 << 24)) { /* LED scenario */
352		if (value & (1 << 29))
353			chip->supports_tx_led = 0;
354	}
355
356	dev_dbg_f(zd_chip_dev(chip),
357		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
358		"patch 6M %d new PHY %d link LED%d tx led %d\n",
359		zd_rf_name(*rf_type), *rf_type,
360		chip->pa_type, chip->patch_cck_gain,
361		chip->patch_cr157, chip->patch_6m_band_edge,
362		chip->new_phy_layout,
363		chip->link_led == LED1 ? 1 : 2,
364		chip->supports_tx_led);
365	return 0;
366error:
367	*rf_type = 0;
368	chip->pa_type = 0;
369	chip->patch_cck_gain = 0;
370	chip->patch_cr157 = 0;
371	chip->patch_6m_band_edge = 0;
372	chip->new_phy_layout = 0;
373	return r;
374}
375
376static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
377				    const struct zd_ioreq32 *in_reqs,
378				    const char *type)
379{
380	int r;
381	struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
382
383	if (mac_addr) {
384		reqs[0].value = (mac_addr[3] << 24)
385			      | (mac_addr[2] << 16)
386			      | (mac_addr[1] <<  8)
387			      |  mac_addr[0];
388		reqs[1].value = (mac_addr[5] <<  8)
389			      |  mac_addr[4];
390		dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
391	} else {
392		dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
393	}
394
395	mutex_lock(&chip->mutex);
396	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
397	mutex_unlock(&chip->mutex);
398	return r;
399}
400
401/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
402 *              CR_MAC_ADDR_P2 must be overwritten
403 */
404int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
405{
406	static const struct zd_ioreq32 reqs[2] = {
407		[0] = { .addr = CR_MAC_ADDR_P1 },
408		[1] = { .addr = CR_MAC_ADDR_P2 },
409	};
410
411	return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
412}
413
414int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
415{
416	static const struct zd_ioreq32 reqs[2] = {
417		[0] = { .addr = CR_BSSID_P1 },
418		[1] = { .addr = CR_BSSID_P2 },
419	};
420
421	return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
422}
423
424int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
425{
426	int r;
427	u32 value;
428
429	mutex_lock(&chip->mutex);
430	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
431	mutex_unlock(&chip->mutex);
432	if (r)
433		return r;
434
435	*regdomain = value >> 16;
436	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
437
438	return 0;
439}
440
441static int read_values(struct zd_chip *chip, u8 *values, size_t count,
442	               zd_addr_t e2p_addr, u32 guard)
443{
444	int r;
445	int i;
446	u32 v;
447
448	ZD_ASSERT(mutex_is_locked(&chip->mutex));
449	for (i = 0;;) {
450		r = zd_ioread32_locked(chip, &v,
451			               (zd_addr_t)((u16)e2p_addr+i/2));
452		if (r)
453			return r;
454		v -= guard;
455		if (i+4 < count) {
456			values[i++] = v;
457			values[i++] = v >>  8;
458			values[i++] = v >> 16;
459			values[i++] = v >> 24;
460			continue;
461		}
462		for (;i < count; i++)
463			values[i] = v >> (8*(i%3));
464		return 0;
465	}
466}
467
468static int read_pwr_cal_values(struct zd_chip *chip)
469{
470	return read_values(chip, chip->pwr_cal_values,
471		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
472			0);
473}
474
475static int read_pwr_int_values(struct zd_chip *chip)
476{
477	return read_values(chip, chip->pwr_int_values,
478		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
479			E2P_PWR_INT_GUARD);
480}
481
482static int read_ofdm_cal_values(struct zd_chip *chip)
483{
484	int r;
485	int i;
486	static const zd_addr_t addresses[] = {
487		E2P_36M_CAL_VALUE1,
488		E2P_48M_CAL_VALUE1,
489		E2P_54M_CAL_VALUE1,
490	};
491
492	for (i = 0; i < 3; i++) {
493		r = read_values(chip, chip->ofdm_cal_values[i],
494				E2P_CHANNEL_COUNT, addresses[i], 0);
495		if (r)
496			return r;
497	}
498	return 0;
499}
500
501static int read_cal_int_tables(struct zd_chip *chip)
502{
503	int r;
504
505	r = read_pwr_cal_values(chip);
506	if (r)
507		return r;
508	r = read_pwr_int_values(chip);
509	if (r)
510		return r;
511	r = read_ofdm_cal_values(chip);
512	if (r)
513		return r;
514	return 0;
515}
516
517/* phy means physical registers */
518int zd_chip_lock_phy_regs(struct zd_chip *chip)
519{
520	int r;
521	u32 tmp;
522
523	ZD_ASSERT(mutex_is_locked(&chip->mutex));
524	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
525	if (r) {
526		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
527		return r;
528	}
529
530	tmp &= ~UNLOCK_PHY_REGS;
531
532	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
533	if (r)
534		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
535	return r;
536}
537
538int zd_chip_unlock_phy_regs(struct zd_chip *chip)
539{
540	int r;
541	u32 tmp;
542
543	ZD_ASSERT(mutex_is_locked(&chip->mutex));
544	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
545	if (r) {
546		dev_err(zd_chip_dev(chip),
547			"error ioread32(CR_REG1): %d\n", r);
548		return r;
549	}
550
551	tmp |= UNLOCK_PHY_REGS;
552
553	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
554	if (r)
555		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
556	return r;
557}
558
559/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
560static int patch_cr157(struct zd_chip *chip)
561{
562	int r;
563	u16 value;
564
565	if (!chip->patch_cr157)
566		return 0;
567
568	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
569	if (r)
570		return r;
571
572	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
573	return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
574}
575
576/*
577 * 6M band edge can be optionally overwritten for certain RF's
578 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
579 * bit (for AL2230, AL2230S)
580 */
581static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
582{
583	ZD_ASSERT(mutex_is_locked(&chip->mutex));
584	if (!chip->patch_6m_band_edge)
585		return 0;
586
587	return zd_rf_patch_6m_band_edge(&chip->rf, channel);
588}
589
590/* Generic implementation of 6M band edge patching, used by most RFs via
591 * zd_rf_generic_patch_6m() */
592int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
593{
594	struct zd_ioreq16 ioreqs[] = {
595		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
596		{ ZD_CR47,  0x1e },
597	};
598
599	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
600	if (channel == 1 || channel == 11)
601		ioreqs[0].value = 0x12;
602
603	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
604	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
605}
606
607static int zd1211_hw_reset_phy(struct zd_chip *chip)
608{
609	static const struct zd_ioreq16 ioreqs[] = {
610		{ ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
611		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
612		{ ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
613		{ ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
614		{ ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
615		{ ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
616		{ ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
617		{ ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
618		{ ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
619		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
620		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
621		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
622		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
623		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
624		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
625		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
626		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
627		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
628		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
629		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
630		{ ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
631		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
632		{ ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
633		{ ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
634		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
635		{ ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
636		{ ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
637		{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
638		{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
639		{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
640		{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
641		{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
642		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
643		{ },
644		{ ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
645		{ ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
646		{ ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
647		{ ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
648		{ ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
649		{ ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
650		{ ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
651		{ ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
652		{ ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
653		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
654		{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
655		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
656		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
657		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
658		{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
659		{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
660		{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
661		{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
662		{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
663		{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
664		{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
665		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
666		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
667		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
668		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
669		/* Note: ZD_CR204 must lead the ZD_CR203 */
670		{ ZD_CR204, 0x7d },
671		{ },
672		{ ZD_CR203, 0x30 },
673	};
674
675	int r, t;
676
677	dev_dbg_f(zd_chip_dev(chip), "\n");
678
679	r = zd_chip_lock_phy_regs(chip);
680	if (r)
681		goto out;
682
683	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
684	if (r)
685		goto unlock;
686
687	r = patch_cr157(chip);
688unlock:
689	t = zd_chip_unlock_phy_regs(chip);
690	if (t && !r)
691		r = t;
692out:
693	return r;
694}
695
696static int zd1211b_hw_reset_phy(struct zd_chip *chip)
697{
698	static const struct zd_ioreq16 ioreqs[] = {
699		{ ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
700		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
701		{ ZD_CR10,  0x81 },
702		/* power control { { ZD_CR11,  1 << 6 }, */
703		{ ZD_CR11,  0x00 },
704		{ ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
705		{ ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
706		{ ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
707		{ ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
708		{ ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
709		{ ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
710		{ ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
711		{ ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
712		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
713		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
714		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
715		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
716		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
717		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
718		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
719		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
720		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
721		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
722		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
723		{ ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
724		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
725		{ ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
726		{ ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
727		{ ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
728		{ ZD_CR94,  0x01 },
729		{ ZD_CR95,  0x20 }, /* ZD1211B */
730		{ ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
731		{ ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
732		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
733		{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
734		{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
735		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
736		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
737		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
738		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
739		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
740		{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
741		{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
742		{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
743		{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
744		{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
745		{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
746		{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
747		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
748		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
749		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
750		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
751		/* Note: ZD_CR204 must lead the ZD_CR203 */
752		{ ZD_CR204, 0x7d },
753		{},
754		{ ZD_CR203, 0x30 },
755	};
756
757	int r, t;
758
759	dev_dbg_f(zd_chip_dev(chip), "\n");
760
761	r = zd_chip_lock_phy_regs(chip);
762	if (r)
763		goto out;
764
765	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
766	t = zd_chip_unlock_phy_regs(chip);
767	if (t && !r)
768		r = t;
769out:
770	return r;
771}
772
773static int hw_reset_phy(struct zd_chip *chip)
774{
775	return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
776		                  zd1211_hw_reset_phy(chip);
777}
778
779static int zd1211_hw_init_hmac(struct zd_chip *chip)
780{
781	static const struct zd_ioreq32 ioreqs[] = {
782		{ CR_ZD1211_RETRY_MAX,		ZD1211_RETRY_COUNT },
783		{ CR_RX_THRESHOLD,		0x000c0640 },
784	};
785
786	dev_dbg_f(zd_chip_dev(chip), "\n");
787	ZD_ASSERT(mutex_is_locked(&chip->mutex));
788	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
789}
790
791static int zd1211b_hw_init_hmac(struct zd_chip *chip)
792{
793	static const struct zd_ioreq32 ioreqs[] = {
794		{ CR_ZD1211B_RETRY_MAX,		ZD1211B_RETRY_COUNT },
795		{ CR_ZD1211B_CWIN_MAX_MIN_AC0,	0x007f003f },
796		{ CR_ZD1211B_CWIN_MAX_MIN_AC1,	0x007f003f },
797		{ CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
798		{ CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
799		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
800		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
801		{ CR_ZD1211B_TXOP,		0x01800824 },
802		{ CR_RX_THRESHOLD,		0x000c0eff, },
803	};
804
805	dev_dbg_f(zd_chip_dev(chip), "\n");
806	ZD_ASSERT(mutex_is_locked(&chip->mutex));
807	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
808}
809
810static int hw_init_hmac(struct zd_chip *chip)
811{
812	int r;
813	static const struct zd_ioreq32 ioreqs[] = {
814		{ CR_ACK_TIMEOUT_EXT,		0x20 },
815		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
816		{ CR_SNIFFER_ON,		0 },
817		{ CR_RX_FILTER,			STA_RX_FILTER },
818		{ CR_GROUP_HASH_P1,		0x00 },
819		{ CR_GROUP_HASH_P2,		0x80000000 },
820		{ CR_REG1,			0xa4 },
821		{ CR_ADDA_PWR_DWN,		0x7f },
822		{ CR_BCN_PLCP_CFG,		0x00f00401 },
823		{ CR_PHY_DELAY,			0x00 },
824		{ CR_ACK_TIMEOUT_EXT,		0x80 },
825		{ CR_ADDA_PWR_DWN,		0x00 },
826		{ CR_ACK_TIME_80211,		0x100 },
827		{ CR_RX_PE_DELAY,		0x70 },
828		{ CR_PS_CTRL,			0x10000000 },
829		{ CR_RTS_CTS_RATE,		0x02030203 },
830		{ CR_AFTER_PNP,			0x1 },
831		{ CR_WEP_PROTECT,		0x114 },
832		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
833		{ CR_CAM_MODE,			MODE_AP_WDS},
834	};
835
836	ZD_ASSERT(mutex_is_locked(&chip->mutex));
837	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
838	if (r)
839		return r;
840
841	return zd_chip_is_zd1211b(chip) ?
842		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
843}
844
845struct aw_pt_bi {
846	u32 atim_wnd_period;
847	u32 pre_tbtt;
848	u32 beacon_interval;
849};
850
851static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
852{
853	int r;
854	static const zd_addr_t aw_pt_bi_addr[] =
855		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
856	u32 values[3];
857
858	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
859		         ARRAY_SIZE(aw_pt_bi_addr));
860	if (r) {
861		memset(s, 0, sizeof(*s));
862		return r;
863	}
864
865	s->atim_wnd_period = values[0];
866	s->pre_tbtt = values[1];
867	s->beacon_interval = values[2];
868	return 0;
869}
870
871static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
872{
873	struct zd_ioreq32 reqs[3];
874	u16 b_interval = s->beacon_interval & 0xffff;
875
876	if (b_interval <= 5)
877		b_interval = 5;
878	if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
879		s->pre_tbtt = b_interval - 1;
880	if (s->atim_wnd_period >= s->pre_tbtt)
881		s->atim_wnd_period = s->pre_tbtt - 1;
882
883	reqs[0].addr = CR_ATIM_WND_PERIOD;
884	reqs[0].value = s->atim_wnd_period;
885	reqs[1].addr = CR_PRE_TBTT;
886	reqs[1].value = s->pre_tbtt;
887	reqs[2].addr = CR_BCN_INTERVAL;
888	reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
889
890	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
891}
892
893
894static int set_beacon_interval(struct zd_chip *chip, u16 interval,
895			       u8 dtim_period, int type)
896{
897	int r;
898	struct aw_pt_bi s;
899	u32 b_interval, mode_flag;
900
901	ZD_ASSERT(mutex_is_locked(&chip->mutex));
902
903	if (interval > 0) {
904		switch (type) {
905		case NL80211_IFTYPE_ADHOC:
906		case NL80211_IFTYPE_MESH_POINT:
907			mode_flag = BCN_MODE_IBSS;
908			break;
909		case NL80211_IFTYPE_AP:
910			mode_flag = BCN_MODE_AP;
911			break;
912		default:
913			mode_flag = 0;
914			break;
915		}
916	} else {
917		dtim_period = 0;
918		mode_flag = 0;
919	}
920
921	b_interval = mode_flag | (dtim_period << 16) | interval;
922
923	r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
924	if (r)
925		return r;
926	r = get_aw_pt_bi(chip, &s);
927	if (r)
928		return r;
929	return set_aw_pt_bi(chip, &s);
930}
931
932int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
933			   int type)
934{
935	int r;
936
937	mutex_lock(&chip->mutex);
938	r = set_beacon_interval(chip, interval, dtim_period, type);
939	mutex_unlock(&chip->mutex);
940	return r;
941}
942
943static int hw_init(struct zd_chip *chip)
944{
945	int r;
946
947	dev_dbg_f(zd_chip_dev(chip), "\n");
948	ZD_ASSERT(mutex_is_locked(&chip->mutex));
949	r = hw_reset_phy(chip);
950	if (r)
951		return r;
952
953	r = hw_init_hmac(chip);
954	if (r)
955		return r;
956
957	return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
958}
959
960static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
961{
962	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
963}
964
965#ifdef DEBUG
966static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
967	           const char *addr_string)
968{
969	int r;
970	u32 value;
971
972	r = zd_ioread32_locked(chip, &value, addr);
973	if (r) {
974		dev_dbg_f(zd_chip_dev(chip),
975			"error reading %s. Error number %d\n", addr_string, r);
976		return r;
977	}
978
979	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
980		addr_string, (unsigned int)value);
981	return 0;
982}
983
984static int test_init(struct zd_chip *chip)
985{
986	int r;
987
988	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
989	if (r)
990		return r;
991	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
992	if (r)
993		return r;
994	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
995}
996
997static void dump_fw_registers(struct zd_chip *chip)
998{
999	const zd_addr_t addr[4] = {
1000		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1001		fw_reg_addr(chip, FW_REG_USB_SPEED),
1002		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1003		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1004	};
1005
1006	int r;
1007	u16 values[4];
1008
1009	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1010		         ARRAY_SIZE(addr));
1011	if (r) {
1012		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1013			 r);
1014		return;
1015	}
1016
1017	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1018	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1019	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1020	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1021}
1022#endif /* DEBUG */
1023
1024static int print_fw_version(struct zd_chip *chip)
1025{
1026	struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1027	int r;
1028	u16 version;
1029
1030	r = zd_ioread16_locked(chip, &version,
1031		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1032	if (r)
1033		return r;
1034
1035	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1036
1037	snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1038			"%04hx", version);
1039
1040	return 0;
1041}
1042
1043static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1044{
1045	u32 rates;
1046	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1047	/* This sets the mandatory rates, which only depend from the standard
1048	 * that the device is supporting. Until further notice we should try
1049	 * to support 802.11g also for full speed USB.
1050	 */
1051	if (!gmode)
1052		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1053	else
1054		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1055			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1056
1057	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1058}
1059
1060int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1061				    int preamble)
1062{
1063	u32 value = 0;
1064
1065	dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1066	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1067	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1068
1069	/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1070	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1071	value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1072	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1073	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1074
1075	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1076}
1077
1078int zd_chip_enable_hwint(struct zd_chip *chip)
1079{
1080	int r;
1081
1082	mutex_lock(&chip->mutex);
1083	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1084	mutex_unlock(&chip->mutex);
1085	return r;
1086}
1087
1088static int disable_hwint(struct zd_chip *chip)
1089{
1090	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1091}
1092
1093int zd_chip_disable_hwint(struct zd_chip *chip)
1094{
1095	int r;
1096
1097	mutex_lock(&chip->mutex);
1098	r = disable_hwint(chip);
1099	mutex_unlock(&chip->mutex);
1100	return r;
1101}
1102
1103static int read_fw_regs_offset(struct zd_chip *chip)
1104{
1105	int r;
1106
1107	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1108	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1109		               FWRAW_REGS_ADDR);
1110	if (r)
1111		return r;
1112	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1113		  (u16)chip->fw_regs_base);
1114
1115	return 0;
1116}
1117
1118/* Read mac address using pre-firmware interface */
1119int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1120{
1121	dev_dbg_f(zd_chip_dev(chip), "\n");
1122	return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1123		ETH_ALEN);
1124}
1125
1126int zd_chip_init_hw(struct zd_chip *chip)
1127{
1128	int r;
1129	u8 rf_type;
1130
1131	dev_dbg_f(zd_chip_dev(chip), "\n");
1132
1133	mutex_lock(&chip->mutex);
1134
1135#ifdef DEBUG
1136	r = test_init(chip);
1137	if (r)
1138		goto out;
1139#endif
1140	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1141	if (r)
1142		goto out;
1143
1144	r = read_fw_regs_offset(chip);
1145	if (r)
1146		goto out;
1147
1148	/* GPI is always disabled, also in the other driver.
1149	 */
1150	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1151	if (r)
1152		goto out;
1153	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1154	if (r)
1155		goto out;
1156	/* Currently we support IEEE 802.11g for full and high speed USB.
1157	 * It might be discussed, whether we should support pure b mode for
1158	 * full speed USB.
1159	 */
1160	r = set_mandatory_rates(chip, 1);
1161	if (r)
1162		goto out;
1163	/* Disabling interrupts is certainly a smart thing here.
1164	 */
1165	r = disable_hwint(chip);
1166	if (r)
1167		goto out;
1168	r = read_pod(chip, &rf_type);
1169	if (r)
1170		goto out;
1171	r = hw_init(chip);
1172	if (r)
1173		goto out;
1174	r = zd_rf_init_hw(&chip->rf, rf_type);
1175	if (r)
1176		goto out;
1177
1178	r = print_fw_version(chip);
1179	if (r)
1180		goto out;
1181
1182#ifdef DEBUG
1183	dump_fw_registers(chip);
1184	r = test_init(chip);
1185	if (r)
1186		goto out;
1187#endif /* DEBUG */
1188
1189	r = read_cal_int_tables(chip);
1190	if (r)
1191		goto out;
1192
1193	print_id(chip);
1194out:
1195	mutex_unlock(&chip->mutex);
1196	return r;
1197}
1198
1199static int update_pwr_int(struct zd_chip *chip, u8 channel)
1200{
1201	u8 value = chip->pwr_int_values[channel - 1];
1202	return zd_iowrite16_locked(chip, value, ZD_CR31);
1203}
1204
1205static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1206{
1207	u8 value = chip->pwr_cal_values[channel-1];
1208	return zd_iowrite16_locked(chip, value, ZD_CR68);
1209}
1210
1211static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1212{
1213	struct zd_ioreq16 ioreqs[3];
1214
1215	ioreqs[0].addr = ZD_CR67;
1216	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1217	ioreqs[1].addr = ZD_CR66;
1218	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1219	ioreqs[2].addr = ZD_CR65;
1220	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1221
1222	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1223}
1224
1225static int update_channel_integration_and_calibration(struct zd_chip *chip,
1226	                                              u8 channel)
1227{
1228	int r;
1229
1230	if (!zd_rf_should_update_pwr_int(&chip->rf))
1231		return 0;
1232
1233	r = update_pwr_int(chip, channel);
1234	if (r)
1235		return r;
1236	if (zd_chip_is_zd1211b(chip)) {
1237		static const struct zd_ioreq16 ioreqs[] = {
1238			{ ZD_CR69, 0x28 },
1239			{},
1240			{ ZD_CR69, 0x2a },
1241		};
1242
1243		r = update_ofdm_cal(chip, channel);
1244		if (r)
1245			return r;
1246		r = update_pwr_cal(chip, channel);
1247		if (r)
1248			return r;
1249		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1250		if (r)
1251			return r;
1252	}
1253
1254	return 0;
1255}
1256
1257/* The CCK baseband gain can be optionally patched by the EEPROM */
1258static int patch_cck_gain(struct zd_chip *chip)
1259{
1260	int r;
1261	u32 value;
1262
1263	if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1264		return 0;
1265
1266	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1267	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1268	if (r)
1269		return r;
1270	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1271	return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1272}
1273
1274int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1275{
1276	int r, t;
1277
1278	mutex_lock(&chip->mutex);
1279	r = zd_chip_lock_phy_regs(chip);
1280	if (r)
1281		goto out;
1282	r = zd_rf_set_channel(&chip->rf, channel);
1283	if (r)
1284		goto unlock;
1285	r = update_channel_integration_and_calibration(chip, channel);
1286	if (r)
1287		goto unlock;
1288	r = patch_cck_gain(chip);
1289	if (r)
1290		goto unlock;
1291	r = patch_6m_band_edge(chip, channel);
1292	if (r)
1293		goto unlock;
1294	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1295unlock:
1296	t = zd_chip_unlock_phy_regs(chip);
1297	if (t && !r)
1298		r = t;
1299out:
1300	mutex_unlock(&chip->mutex);
1301	return r;
1302}
1303
1304u8 zd_chip_get_channel(struct zd_chip *chip)
1305{
1306	u8 channel;
1307
1308	mutex_lock(&chip->mutex);
1309	channel = chip->rf.channel;
1310	mutex_unlock(&chip->mutex);
1311	return channel;
1312}
1313
1314int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1315{
1316	const zd_addr_t a[] = {
1317		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1318		CR_LED,
1319	};
1320
1321	int r;
1322	u16 v[ARRAY_SIZE(a)];
1323	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1324		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1325		[1] = { CR_LED },
1326	};
1327	u16 other_led;
1328
1329	mutex_lock(&chip->mutex);
1330	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1331	if (r)
1332		goto out;
1333
1334	other_led = chip->link_led == LED1 ? LED2 : LED1;
1335
1336	switch (status) {
1337	case ZD_LED_OFF:
1338		ioreqs[0].value = FW_LINK_OFF;
1339		ioreqs[1].value = v[1] & ~(LED1|LED2);
1340		break;
1341	case ZD_LED_SCANNING:
1342		ioreqs[0].value = FW_LINK_OFF;
1343		ioreqs[1].value = v[1] & ~other_led;
1344		if (get_seconds() % 3 == 0) {
1345			ioreqs[1].value &= ~chip->link_led;
1346		} else {
1347			ioreqs[1].value |= chip->link_led;
1348		}
1349		break;
1350	case ZD_LED_ASSOCIATED:
1351		ioreqs[0].value = FW_LINK_TX;
1352		ioreqs[1].value = v[1] & ~other_led;
1353		ioreqs[1].value |= chip->link_led;
1354		break;
1355	default:
1356		r = -EINVAL;
1357		goto out;
1358	}
1359
1360	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1361		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1362		if (r)
1363			goto out;
1364	}
1365	r = 0;
1366out:
1367	mutex_unlock(&chip->mutex);
1368	return r;
1369}
1370
1371int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1372{
1373	int r;
1374
1375	if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1376		return -EINVAL;
1377
1378	mutex_lock(&chip->mutex);
1379	r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1380	mutex_unlock(&chip->mutex);
1381	return r;
1382}
1383
1384static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1385{
1386	return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1387}
1388
1389/**
1390 * zd_rx_rate - report zd-rate
1391 * @rx_frame - received frame
1392 * @rx_status - rx_status as given by the device
1393 *
1394 * This function converts the rate as encoded in the received packet to the
1395 * zd-rate, we are using on other places in the driver.
1396 */
1397u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1398{
1399	u8 zd_rate;
1400	if (status->frame_status & ZD_RX_OFDM) {
1401		zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1402	} else {
1403		switch (zd_cck_plcp_header_signal(rx_frame)) {
1404		case ZD_CCK_PLCP_SIGNAL_1M:
1405			zd_rate = ZD_CCK_RATE_1M;
1406			break;
1407		case ZD_CCK_PLCP_SIGNAL_2M:
1408			zd_rate = ZD_CCK_RATE_2M;
1409			break;
1410		case ZD_CCK_PLCP_SIGNAL_5M5:
1411			zd_rate = ZD_CCK_RATE_5_5M;
1412			break;
1413		case ZD_CCK_PLCP_SIGNAL_11M:
1414			zd_rate = ZD_CCK_RATE_11M;
1415			break;
1416		default:
1417			zd_rate = 0;
1418		}
1419	}
1420
1421	return zd_rate;
1422}
1423
1424int zd_chip_switch_radio_on(struct zd_chip *chip)
1425{
1426	int r;
1427
1428	mutex_lock(&chip->mutex);
1429	r = zd_switch_radio_on(&chip->rf);
1430	mutex_unlock(&chip->mutex);
1431	return r;
1432}
1433
1434int zd_chip_switch_radio_off(struct zd_chip *chip)
1435{
1436	int r;
1437
1438	mutex_lock(&chip->mutex);
1439	r = zd_switch_radio_off(&chip->rf);
1440	mutex_unlock(&chip->mutex);
1441	return r;
1442}
1443
1444int zd_chip_enable_int(struct zd_chip *chip)
1445{
1446	int r;
1447
1448	mutex_lock(&chip->mutex);
1449	r = zd_usb_enable_int(&chip->usb);
1450	mutex_unlock(&chip->mutex);
1451	return r;
1452}
1453
1454void zd_chip_disable_int(struct zd_chip *chip)
1455{
1456	mutex_lock(&chip->mutex);
1457	zd_usb_disable_int(&chip->usb);
1458	mutex_unlock(&chip->mutex);
1459
1460	/* cancel pending interrupt work */
1461	cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1462}
1463
1464int zd_chip_enable_rxtx(struct zd_chip *chip)
1465{
1466	int r;
1467
1468	mutex_lock(&chip->mutex);
1469	zd_usb_enable_tx(&chip->usb);
1470	r = zd_usb_enable_rx(&chip->usb);
1471	zd_tx_watchdog_enable(&chip->usb);
1472	mutex_unlock(&chip->mutex);
1473	return r;
1474}
1475
1476void zd_chip_disable_rxtx(struct zd_chip *chip)
1477{
1478	mutex_lock(&chip->mutex);
1479	zd_tx_watchdog_disable(&chip->usb);
1480	zd_usb_disable_rx(&chip->usb);
1481	zd_usb_disable_tx(&chip->usb);
1482	mutex_unlock(&chip->mutex);
1483}
1484
1485int zd_rfwritev_locked(struct zd_chip *chip,
1486	               const u32* values, unsigned int count, u8 bits)
1487{
1488	int r;
1489	unsigned int i;
1490
1491	for (i = 0; i < count; i++) {
1492		r = zd_rfwrite_locked(chip, values[i], bits);
1493		if (r)
1494			return r;
1495	}
1496
1497	return 0;
1498}
1499
1500/*
1501 * We can optionally program the RF directly through CR regs, if supported by
1502 * the hardware. This is much faster than the older method.
1503 */
1504int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1505{
1506	const struct zd_ioreq16 ioreqs[] = {
1507		{ ZD_CR244, (value >> 16) & 0xff },
1508		{ ZD_CR243, (value >>  8) & 0xff },
1509		{ ZD_CR242,  value        & 0xff },
1510	};
1511	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1512	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1513}
1514
1515int zd_rfwritev_cr_locked(struct zd_chip *chip,
1516	                  const u32 *values, unsigned int count)
1517{
1518	int r;
1519	unsigned int i;
1520
1521	for (i = 0; i < count; i++) {
1522		r = zd_rfwrite_cr_locked(chip, values[i]);
1523		if (r)
1524			return r;
1525	}
1526
1527	return 0;
1528}
1529
1530int zd_chip_set_multicast_hash(struct zd_chip *chip,
1531	                       struct zd_mc_hash *hash)
1532{
1533	const struct zd_ioreq32 ioreqs[] = {
1534		{ CR_GROUP_HASH_P1, hash->low },
1535		{ CR_GROUP_HASH_P2, hash->high },
1536	};
1537
1538	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1539}
1540
1541u64 zd_chip_get_tsf(struct zd_chip *chip)
1542{
1543	int r;
1544	static const zd_addr_t aw_pt_bi_addr[] =
1545		{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1546	u32 values[2];
1547	u64 tsf;
1548
1549	mutex_lock(&chip->mutex);
1550	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1551	                        ARRAY_SIZE(aw_pt_bi_addr));
1552	mutex_unlock(&chip->mutex);
1553	if (r)
1554		return 0;
1555
1556	tsf = values[1];
1557	tsf = (tsf << 32) | values[0];
1558
1559	return tsf;
1560}
1561