1/*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14#define pr_fmt(fmt) "pinctrl core: " fmt
15
16#include <linux/kernel.h>
17#include <linux/kref.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/list.h>
24#include <linux/sysfs.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/pinctrl/consumer.h>
28#include <linux/pinctrl/pinctrl.h>
29#include <linux/pinctrl/machine.h>
30
31#ifdef CONFIG_GPIOLIB
32#include <asm-generic/gpio.h>
33#endif
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinmux.h"
38#include "pinconf.h"
39
40
41static bool pinctrl_dummy_state;
42
43/* Mutex taken to protect pinctrl_list */
44static DEFINE_MUTEX(pinctrl_list_mutex);
45
46/* Mutex taken to protect pinctrl_maps */
47DEFINE_MUTEX(pinctrl_maps_mutex);
48
49/* Mutex taken to protect pinctrldev_list */
50static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52/* Global list of pin control devices (struct pinctrl_dev) */
53static LIST_HEAD(pinctrldev_list);
54
55/* List of pin controller handles (struct pinctrl) */
56static LIST_HEAD(pinctrl_list);
57
58/* List of pinctrl maps (struct pinctrl_maps) */
59LIST_HEAD(pinctrl_maps);
60
61
62/**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70void pinctrl_provide_dummies(void)
71{
72	pinctrl_dummy_state = true;
73}
74
75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76{
77	/* We're not allowed to register devices without name */
78	return pctldev->desc->name;
79}
80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83{
84	return dev_name(pctldev->dev);
85}
86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89{
90	return pctldev->driver_data;
91}
92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94/**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102{
103	struct pinctrl_dev *pctldev = NULL;
104
105	if (!devname)
106		return NULL;
107
108	mutex_lock(&pinctrldev_list_mutex);
109
110	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111		if (!strcmp(dev_name(pctldev->dev), devname)) {
112			/* Matched on device name */
113			mutex_unlock(&pinctrldev_list_mutex);
114			return pctldev;
115		}
116	}
117
118	mutex_unlock(&pinctrldev_list_mutex);
119
120	return NULL;
121}
122
123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124{
125	struct pinctrl_dev *pctldev;
126
127	mutex_lock(&pinctrldev_list_mutex);
128
129	list_for_each_entry(pctldev, &pinctrldev_list, node)
130		if (pctldev->dev->of_node == np) {
131			mutex_unlock(&pinctrldev_list_mutex);
132			return pctldev;
133		}
134
135	mutex_unlock(&pinctrldev_list_mutex);
136
137	return NULL;
138}
139
140/**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146{
147	unsigned i, pin;
148
149	/* The pin number can be retrived from the pin controller descriptor */
150	for (i = 0; i < pctldev->desc->npins; i++) {
151		struct pin_desc *desc;
152
153		pin = pctldev->desc->pins[i].number;
154		desc = pin_desc_get(pctldev, pin);
155		/* Pin space may be sparse */
156		if (desc && !strcmp(name, desc->name))
157			return pin;
158	}
159
160	return -EINVAL;
161}
162
163/**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169{
170	const struct pin_desc *desc;
171
172	desc = pin_desc_get(pctldev, pin);
173	if (desc == NULL) {
174		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175			pin);
176		return NULL;
177	}
178
179	return desc->name;
180}
181
182/**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191{
192	struct pin_desc *pindesc;
193
194	if (pin < 0)
195		return false;
196
197	mutex_lock(&pctldev->mutex);
198	pindesc = pin_desc_get(pctldev, pin);
199	mutex_unlock(&pctldev->mutex);
200
201	return pindesc != NULL;
202}
203EXPORT_SYMBOL_GPL(pin_is_valid);
204
205/* Deletes a range of pin descriptors */
206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207				  const struct pinctrl_pin_desc *pins,
208				  unsigned num_pins)
209{
210	int i;
211
212	for (i = 0; i < num_pins; i++) {
213		struct pin_desc *pindesc;
214
215		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216					    pins[i].number);
217		if (pindesc != NULL) {
218			radix_tree_delete(&pctldev->pin_desc_tree,
219					  pins[i].number);
220			if (pindesc->dynamic_name)
221				kfree(pindesc->name);
222		}
223		kfree(pindesc);
224	}
225}
226
227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228				    unsigned number, const char *name)
229{
230	struct pin_desc *pindesc;
231
232	pindesc = pin_desc_get(pctldev, number);
233	if (pindesc != NULL) {
234		pr_err("pin %d already registered on %s\n", number,
235		       pctldev->desc->name);
236		return -EINVAL;
237	}
238
239	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240	if (pindesc == NULL) {
241		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242		return -ENOMEM;
243	}
244
245	/* Set owner */
246	pindesc->pctldev = pctldev;
247
248	/* Copy basic pin info */
249	if (name) {
250		pindesc->name = name;
251	} else {
252		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253		if (pindesc->name == NULL) {
254			kfree(pindesc);
255			return -ENOMEM;
256		}
257		pindesc->dynamic_name = true;
258	}
259
260	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261	pr_debug("registered pin %d (%s) on %s\n",
262		 number, pindesc->name, pctldev->desc->name);
263	return 0;
264}
265
266static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267				 struct pinctrl_pin_desc const *pins,
268				 unsigned num_descs)
269{
270	unsigned i;
271	int ret = 0;
272
273	for (i = 0; i < num_descs; i++) {
274		ret = pinctrl_register_one_pin(pctldev,
275					       pins[i].number, pins[i].name);
276		if (ret)
277			return ret;
278	}
279
280	return 0;
281}
282
283/**
284 * gpio_to_pin() - GPIO range GPIO number to pin number translation
285 * @range: GPIO range used for the translation
286 * @gpio: gpio pin to translate to a pin number
287 *
288 * Finds the pin number for a given GPIO using the specified GPIO range
289 * as a base for translation. The distinction between linear GPIO ranges
290 * and pin list based GPIO ranges is managed correctly by this function.
291 *
292 * This function assumes the gpio is part of the specified GPIO range, use
293 * only after making sure this is the case (e.g. by calling it on the
294 * result of successful pinctrl_get_device_gpio_range calls)!
295 */
296static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297				unsigned int gpio)
298{
299	unsigned int offset = gpio - range->base;
300	if (range->pins)
301		return range->pins[offset];
302	else
303		return range->pin_base + offset;
304}
305
306/**
307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308 * @pctldev: pin controller device to check
309 * @gpio: gpio pin to check taken from the global GPIO pin space
310 *
311 * Tries to match a GPIO pin number to the ranges handled by a certain pin
312 * controller, return the range or NULL
313 */
314static struct pinctrl_gpio_range *
315pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316{
317	struct pinctrl_gpio_range *range = NULL;
318
319	mutex_lock(&pctldev->mutex);
320	/* Loop over the ranges */
321	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322		/* Check if we're in the valid range */
323		if (gpio >= range->base &&
324		    gpio < range->base + range->npins) {
325			mutex_unlock(&pctldev->mutex);
326			return range;
327		}
328	}
329	mutex_unlock(&pctldev->mutex);
330	return NULL;
331}
332
333/**
334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335 * the same GPIO chip are in range
336 * @gpio: gpio pin to check taken from the global GPIO pin space
337 *
338 * This function is complement of pinctrl_match_gpio_range(). If the return
339 * value of pinctrl_match_gpio_range() is NULL, this function could be used
340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341 * of the same GPIO chip don't have back-end pinctrl interface.
342 * If the return value is true, it means that pinctrl device is ready & the
343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344 * is false, it means that pinctrl device may not be ready.
345 */
346#ifdef CONFIG_GPIOLIB
347static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348{
349	struct pinctrl_dev *pctldev;
350	struct pinctrl_gpio_range *range = NULL;
351	struct gpio_chip *chip = gpio_to_chip(gpio);
352
353	mutex_lock(&pinctrldev_list_mutex);
354
355	/* Loop over the pin controllers */
356	list_for_each_entry(pctldev, &pinctrldev_list, node) {
357		/* Loop over the ranges */
358		mutex_lock(&pctldev->mutex);
359		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360			/* Check if any gpio range overlapped with gpio chip */
361			if (range->base + range->npins - 1 < chip->base ||
362			    range->base > chip->base + chip->ngpio - 1)
363				continue;
364			mutex_unlock(&pctldev->mutex);
365			mutex_unlock(&pinctrldev_list_mutex);
366			return true;
367		}
368		mutex_unlock(&pctldev->mutex);
369	}
370
371	mutex_unlock(&pinctrldev_list_mutex);
372
373	return false;
374}
375#else
376static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377#endif
378
379/**
380 * pinctrl_get_device_gpio_range() - find device for GPIO range
381 * @gpio: the pin to locate the pin controller for
382 * @outdev: the pin control device if found
383 * @outrange: the GPIO range if found
384 *
385 * Find the pin controller handling a certain GPIO pin from the pinspace of
386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388 * may still have not been registered.
389 */
390static int pinctrl_get_device_gpio_range(unsigned gpio,
391					 struct pinctrl_dev **outdev,
392					 struct pinctrl_gpio_range **outrange)
393{
394	struct pinctrl_dev *pctldev = NULL;
395
396	mutex_lock(&pinctrldev_list_mutex);
397
398	/* Loop over the pin controllers */
399	list_for_each_entry(pctldev, &pinctrldev_list, node) {
400		struct pinctrl_gpio_range *range;
401
402		range = pinctrl_match_gpio_range(pctldev, gpio);
403		if (range != NULL) {
404			*outdev = pctldev;
405			*outrange = range;
406			mutex_unlock(&pinctrldev_list_mutex);
407			return 0;
408		}
409	}
410
411	mutex_unlock(&pinctrldev_list_mutex);
412
413	return -EPROBE_DEFER;
414}
415
416/**
417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
418 * @pctldev: pin controller device to add the range to
419 * @range: the GPIO range to add
420 *
421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
422 * this to register handled ranges after registering your pin controller.
423 */
424void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425			    struct pinctrl_gpio_range *range)
426{
427	mutex_lock(&pctldev->mutex);
428	list_add_tail(&range->node, &pctldev->gpio_ranges);
429	mutex_unlock(&pctldev->mutex);
430}
431EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432
433void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434			     struct pinctrl_gpio_range *ranges,
435			     unsigned nranges)
436{
437	int i;
438
439	for (i = 0; i < nranges; i++)
440		pinctrl_add_gpio_range(pctldev, &ranges[i]);
441}
442EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443
444struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445		struct pinctrl_gpio_range *range)
446{
447	struct pinctrl_dev *pctldev;
448
449	pctldev = get_pinctrl_dev_from_devname(devname);
450
451	/*
452	 * If we can't find this device, let's assume that is because
453	 * it has not probed yet, so the driver trying to register this
454	 * range need to defer probing.
455	 */
456	if (!pctldev) {
457		return ERR_PTR(-EPROBE_DEFER);
458	}
459	pinctrl_add_gpio_range(pctldev, range);
460
461	return pctldev;
462}
463EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464
465int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466				const unsigned **pins, unsigned *num_pins)
467{
468	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469	int gs;
470
471	if (!pctlops->get_group_pins)
472		return -EINVAL;
473
474	gs = pinctrl_get_group_selector(pctldev, pin_group);
475	if (gs < 0)
476		return gs;
477
478	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
479}
480EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
481
482/**
483 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
484 * @pctldev: the pin controller device to look in
485 * @pin: a controller-local number to find the range for
486 */
487struct pinctrl_gpio_range *
488pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
489				 unsigned int pin)
490{
491	struct pinctrl_gpio_range *range;
492
493	mutex_lock(&pctldev->mutex);
494	/* Loop over the ranges */
495	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
496		/* Check if we're in the valid range */
497		if (range->pins) {
498			int a;
499			for (a = 0; a < range->npins; a++) {
500				if (range->pins[a] == pin)
501					goto out;
502			}
503		} else if (pin >= range->pin_base &&
504			   pin < range->pin_base + range->npins)
505			goto out;
506	}
507	range = NULL;
508out:
509	mutex_unlock(&pctldev->mutex);
510	return range;
511}
512EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
513
514/**
515 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
516 * @pctldev: pin controller device to remove the range from
517 * @range: the GPIO range to remove
518 */
519void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
520			       struct pinctrl_gpio_range *range)
521{
522	mutex_lock(&pctldev->mutex);
523	list_del(&range->node);
524	mutex_unlock(&pctldev->mutex);
525}
526EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
527
528/**
529 * pinctrl_get_group_selector() - returns the group selector for a group
530 * @pctldev: the pin controller handling the group
531 * @pin_group: the pin group to look up
532 */
533int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
534			       const char *pin_group)
535{
536	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
537	unsigned ngroups = pctlops->get_groups_count(pctldev);
538	unsigned group_selector = 0;
539
540	while (group_selector < ngroups) {
541		const char *gname = pctlops->get_group_name(pctldev,
542							    group_selector);
543		if (!strcmp(gname, pin_group)) {
544			dev_dbg(pctldev->dev,
545				"found group selector %u for %s\n",
546				group_selector,
547				pin_group);
548			return group_selector;
549		}
550
551		group_selector++;
552	}
553
554	dev_err(pctldev->dev, "does not have pin group %s\n",
555		pin_group);
556
557	return -EINVAL;
558}
559
560/**
561 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
562 * @gpio: the GPIO pin number from the GPIO subsystem number space
563 *
564 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
565 * as part of their gpio_request() semantics, platforms and individual drivers
566 * shall *NOT* request GPIO pins to be muxed in.
567 */
568int pinctrl_request_gpio(unsigned gpio)
569{
570	struct pinctrl_dev *pctldev;
571	struct pinctrl_gpio_range *range;
572	int ret;
573	int pin;
574
575	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
576	if (ret) {
577		if (pinctrl_ready_for_gpio_range(gpio))
578			ret = 0;
579		return ret;
580	}
581
582	mutex_lock(&pctldev->mutex);
583
584	/* Convert to the pin controllers number space */
585	pin = gpio_to_pin(range, gpio);
586
587	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
588
589	mutex_unlock(&pctldev->mutex);
590
591	return ret;
592}
593EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
594
595/**
596 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
597 * @gpio: the GPIO pin number from the GPIO subsystem number space
598 *
599 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
600 * as part of their gpio_free() semantics, platforms and individual drivers
601 * shall *NOT* request GPIO pins to be muxed out.
602 */
603void pinctrl_free_gpio(unsigned gpio)
604{
605	struct pinctrl_dev *pctldev;
606	struct pinctrl_gpio_range *range;
607	int ret;
608	int pin;
609
610	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
611	if (ret) {
612		return;
613	}
614	mutex_lock(&pctldev->mutex);
615
616	/* Convert to the pin controllers number space */
617	pin = gpio_to_pin(range, gpio);
618
619	pinmux_free_gpio(pctldev, pin, range);
620
621	mutex_unlock(&pctldev->mutex);
622}
623EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
624
625static int pinctrl_gpio_direction(unsigned gpio, bool input)
626{
627	struct pinctrl_dev *pctldev;
628	struct pinctrl_gpio_range *range;
629	int ret;
630	int pin;
631
632	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
633	if (ret) {
634		return ret;
635	}
636
637	mutex_lock(&pctldev->mutex);
638
639	/* Convert to the pin controllers number space */
640	pin = gpio_to_pin(range, gpio);
641	ret = pinmux_gpio_direction(pctldev, range, pin, input);
642
643	mutex_unlock(&pctldev->mutex);
644
645	return ret;
646}
647
648/**
649 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
650 * @gpio: the GPIO pin number from the GPIO subsystem number space
651 *
652 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
653 * as part of their gpio_direction_input() semantics, platforms and individual
654 * drivers shall *NOT* touch pin control GPIO calls.
655 */
656int pinctrl_gpio_direction_input(unsigned gpio)
657{
658	return pinctrl_gpio_direction(gpio, true);
659}
660EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
661
662/**
663 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
664 * @gpio: the GPIO pin number from the GPIO subsystem number space
665 *
666 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
667 * as part of their gpio_direction_output() semantics, platforms and individual
668 * drivers shall *NOT* touch pin control GPIO calls.
669 */
670int pinctrl_gpio_direction_output(unsigned gpio)
671{
672	return pinctrl_gpio_direction(gpio, false);
673}
674EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
675
676static struct pinctrl_state *find_state(struct pinctrl *p,
677					const char *name)
678{
679	struct pinctrl_state *state;
680
681	list_for_each_entry(state, &p->states, node)
682		if (!strcmp(state->name, name))
683			return state;
684
685	return NULL;
686}
687
688static struct pinctrl_state *create_state(struct pinctrl *p,
689					  const char *name)
690{
691	struct pinctrl_state *state;
692
693	state = kzalloc(sizeof(*state), GFP_KERNEL);
694	if (state == NULL) {
695		dev_err(p->dev,
696			"failed to alloc struct pinctrl_state\n");
697		return ERR_PTR(-ENOMEM);
698	}
699
700	state->name = name;
701	INIT_LIST_HEAD(&state->settings);
702
703	list_add_tail(&state->node, &p->states);
704
705	return state;
706}
707
708static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
709{
710	struct pinctrl_state *state;
711	struct pinctrl_setting *setting;
712	int ret;
713
714	state = find_state(p, map->name);
715	if (!state)
716		state = create_state(p, map->name);
717	if (IS_ERR(state))
718		return PTR_ERR(state);
719
720	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
721		return 0;
722
723	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
724	if (setting == NULL) {
725		dev_err(p->dev,
726			"failed to alloc struct pinctrl_setting\n");
727		return -ENOMEM;
728	}
729
730	setting->type = map->type;
731
732	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
733	if (setting->pctldev == NULL) {
734		kfree(setting);
735		/* Do not defer probing of hogs (circular loop) */
736		if (!strcmp(map->ctrl_dev_name, map->dev_name))
737			return -ENODEV;
738		/*
739		 * OK let us guess that the driver is not there yet, and
740		 * let's defer obtaining this pinctrl handle to later...
741		 */
742		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
743			map->ctrl_dev_name);
744		return -EPROBE_DEFER;
745	}
746
747	setting->dev_name = map->dev_name;
748
749	switch (map->type) {
750	case PIN_MAP_TYPE_MUX_GROUP:
751		ret = pinmux_map_to_setting(map, setting);
752		break;
753	case PIN_MAP_TYPE_CONFIGS_PIN:
754	case PIN_MAP_TYPE_CONFIGS_GROUP:
755		ret = pinconf_map_to_setting(map, setting);
756		break;
757	default:
758		ret = -EINVAL;
759		break;
760	}
761	if (ret < 0) {
762		kfree(setting);
763		return ret;
764	}
765
766	list_add_tail(&setting->node, &state->settings);
767
768	return 0;
769}
770
771static struct pinctrl *find_pinctrl(struct device *dev)
772{
773	struct pinctrl *p;
774
775	mutex_lock(&pinctrl_list_mutex);
776	list_for_each_entry(p, &pinctrl_list, node)
777		if (p->dev == dev) {
778			mutex_unlock(&pinctrl_list_mutex);
779			return p;
780		}
781
782	mutex_unlock(&pinctrl_list_mutex);
783	return NULL;
784}
785
786static void pinctrl_free(struct pinctrl *p, bool inlist);
787
788static struct pinctrl *create_pinctrl(struct device *dev)
789{
790	struct pinctrl *p;
791	const char *devname;
792	struct pinctrl_maps *maps_node;
793	int i;
794	struct pinctrl_map const *map;
795	int ret;
796
797	/*
798	 * create the state cookie holder struct pinctrl for each
799	 * mapping, this is what consumers will get when requesting
800	 * a pin control handle with pinctrl_get()
801	 */
802	p = kzalloc(sizeof(*p), GFP_KERNEL);
803	if (p == NULL) {
804		dev_err(dev, "failed to alloc struct pinctrl\n");
805		return ERR_PTR(-ENOMEM);
806	}
807	p->dev = dev;
808	INIT_LIST_HEAD(&p->states);
809	INIT_LIST_HEAD(&p->dt_maps);
810
811	ret = pinctrl_dt_to_map(p);
812	if (ret < 0) {
813		kfree(p);
814		return ERR_PTR(ret);
815	}
816
817	devname = dev_name(dev);
818
819	mutex_lock(&pinctrl_maps_mutex);
820	/* Iterate over the pin control maps to locate the right ones */
821	for_each_maps(maps_node, i, map) {
822		/* Map must be for this device */
823		if (strcmp(map->dev_name, devname))
824			continue;
825
826		ret = add_setting(p, map);
827		/*
828		 * At this point the adding of a setting may:
829		 *
830		 * - Defer, if the pinctrl device is not yet available
831		 * - Fail, if the pinctrl device is not yet available,
832		 *   AND the setting is a hog. We cannot defer that, since
833		 *   the hog will kick in immediately after the device
834		 *   is registered.
835		 *
836		 * If the error returned was not -EPROBE_DEFER then we
837		 * accumulate the errors to see if we end up with
838		 * an -EPROBE_DEFER later, as that is the worst case.
839		 */
840		if (ret == -EPROBE_DEFER) {
841			pinctrl_free(p, false);
842			mutex_unlock(&pinctrl_maps_mutex);
843			return ERR_PTR(ret);
844		}
845	}
846	mutex_unlock(&pinctrl_maps_mutex);
847
848	if (ret < 0) {
849		/* If some other error than deferral occured, return here */
850		pinctrl_free(p, false);
851		return ERR_PTR(ret);
852	}
853
854	kref_init(&p->users);
855
856	/* Add the pinctrl handle to the global list */
857	mutex_lock(&pinctrl_list_mutex);
858	list_add_tail(&p->node, &pinctrl_list);
859	mutex_unlock(&pinctrl_list_mutex);
860
861	return p;
862}
863
864/**
865 * pinctrl_get() - retrieves the pinctrl handle for a device
866 * @dev: the device to obtain the handle for
867 */
868struct pinctrl *pinctrl_get(struct device *dev)
869{
870	struct pinctrl *p;
871
872	if (WARN_ON(!dev))
873		return ERR_PTR(-EINVAL);
874
875	/*
876	 * See if somebody else (such as the device core) has already
877	 * obtained a handle to the pinctrl for this device. In that case,
878	 * return another pointer to it.
879	 */
880	p = find_pinctrl(dev);
881	if (p != NULL) {
882		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
883		kref_get(&p->users);
884		return p;
885	}
886
887	return create_pinctrl(dev);
888}
889EXPORT_SYMBOL_GPL(pinctrl_get);
890
891static void pinctrl_free_setting(bool disable_setting,
892				 struct pinctrl_setting *setting)
893{
894	switch (setting->type) {
895	case PIN_MAP_TYPE_MUX_GROUP:
896		if (disable_setting)
897			pinmux_disable_setting(setting);
898		pinmux_free_setting(setting);
899		break;
900	case PIN_MAP_TYPE_CONFIGS_PIN:
901	case PIN_MAP_TYPE_CONFIGS_GROUP:
902		pinconf_free_setting(setting);
903		break;
904	default:
905		break;
906	}
907}
908
909static void pinctrl_free(struct pinctrl *p, bool inlist)
910{
911	struct pinctrl_state *state, *n1;
912	struct pinctrl_setting *setting, *n2;
913
914	mutex_lock(&pinctrl_list_mutex);
915	list_for_each_entry_safe(state, n1, &p->states, node) {
916		list_for_each_entry_safe(setting, n2, &state->settings, node) {
917			pinctrl_free_setting(state == p->state, setting);
918			list_del(&setting->node);
919			kfree(setting);
920		}
921		list_del(&state->node);
922		kfree(state);
923	}
924
925	pinctrl_dt_free_maps(p);
926
927	if (inlist)
928		list_del(&p->node);
929	kfree(p);
930	mutex_unlock(&pinctrl_list_mutex);
931}
932
933/**
934 * pinctrl_release() - release the pinctrl handle
935 * @kref: the kref in the pinctrl being released
936 */
937static void pinctrl_release(struct kref *kref)
938{
939	struct pinctrl *p = container_of(kref, struct pinctrl, users);
940
941	pinctrl_free(p, true);
942}
943
944/**
945 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
946 * @p: the pinctrl handle to release
947 */
948void pinctrl_put(struct pinctrl *p)
949{
950	kref_put(&p->users, pinctrl_release);
951}
952EXPORT_SYMBOL_GPL(pinctrl_put);
953
954/**
955 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
956 * @p: the pinctrl handle to retrieve the state from
957 * @name: the state name to retrieve
958 */
959struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
960						 const char *name)
961{
962	struct pinctrl_state *state;
963
964	state = find_state(p, name);
965	if (!state) {
966		if (pinctrl_dummy_state) {
967			/* create dummy state */
968			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
969				name);
970			state = create_state(p, name);
971		} else
972			state = ERR_PTR(-ENODEV);
973	}
974
975	return state;
976}
977EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
978
979/**
980 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
981 * @p: the pinctrl handle for the device that requests configuration
982 * @state: the state handle to select/activate/program
983 */
984int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
985{
986	struct pinctrl_setting *setting, *setting2;
987	struct pinctrl_state *old_state = p->state;
988	int ret;
989
990	if (p->state == state)
991		return 0;
992
993	if (p->state) {
994		/*
995		 * For each pinmux setting in the old state, forget SW's record
996		 * of mux owner for that pingroup. Any pingroups which are
997		 * still owned by the new state will be re-acquired by the call
998		 * to pinmux_enable_setting() in the loop below.
999		 */
1000		list_for_each_entry(setting, &p->state->settings, node) {
1001			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1002				continue;
1003			pinmux_disable_setting(setting);
1004		}
1005	}
1006
1007	p->state = NULL;
1008
1009	/* Apply all the settings for the new state */
1010	list_for_each_entry(setting, &state->settings, node) {
1011		switch (setting->type) {
1012		case PIN_MAP_TYPE_MUX_GROUP:
1013			ret = pinmux_enable_setting(setting);
1014			break;
1015		case PIN_MAP_TYPE_CONFIGS_PIN:
1016		case PIN_MAP_TYPE_CONFIGS_GROUP:
1017			ret = pinconf_apply_setting(setting);
1018			break;
1019		default:
1020			ret = -EINVAL;
1021			break;
1022		}
1023
1024		if (ret < 0) {
1025			goto unapply_new_state;
1026		}
1027	}
1028
1029	p->state = state;
1030
1031	return 0;
1032
1033unapply_new_state:
1034	dev_err(p->dev, "Error applying setting, reverse things back\n");
1035
1036	list_for_each_entry(setting2, &state->settings, node) {
1037		if (&setting2->node == &setting->node)
1038			break;
1039		/*
1040		 * All we can do here is pinmux_disable_setting.
1041		 * That means that some pins are muxed differently now
1042		 * than they were before applying the setting (We can't
1043		 * "unmux a pin"!), but it's not a big deal since the pins
1044		 * are free to be muxed by another apply_setting.
1045		 */
1046		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1047			pinmux_disable_setting(setting2);
1048	}
1049
1050	/* There's no infinite recursive loop here because p->state is NULL */
1051	if (old_state)
1052		pinctrl_select_state(p, old_state);
1053
1054	return ret;
1055}
1056EXPORT_SYMBOL_GPL(pinctrl_select_state);
1057
1058static void devm_pinctrl_release(struct device *dev, void *res)
1059{
1060	pinctrl_put(*(struct pinctrl **)res);
1061}
1062
1063/**
1064 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1065 * @dev: the device to obtain the handle for
1066 *
1067 * If there is a need to explicitly destroy the returned struct pinctrl,
1068 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1069 */
1070struct pinctrl *devm_pinctrl_get(struct device *dev)
1071{
1072	struct pinctrl **ptr, *p;
1073
1074	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1075	if (!ptr)
1076		return ERR_PTR(-ENOMEM);
1077
1078	p = pinctrl_get(dev);
1079	if (!IS_ERR(p)) {
1080		*ptr = p;
1081		devres_add(dev, ptr);
1082	} else {
1083		devres_free(ptr);
1084	}
1085
1086	return p;
1087}
1088EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1089
1090static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1091{
1092	struct pinctrl **p = res;
1093
1094	return *p == data;
1095}
1096
1097/**
1098 * devm_pinctrl_put() - Resource managed pinctrl_put()
1099 * @p: the pinctrl handle to release
1100 *
1101 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1102 * this function will not need to be called and the resource management
1103 * code will ensure that the resource is freed.
1104 */
1105void devm_pinctrl_put(struct pinctrl *p)
1106{
1107	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1108			       devm_pinctrl_match, p));
1109}
1110EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1111
1112int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1113			 bool dup)
1114{
1115	int i, ret;
1116	struct pinctrl_maps *maps_node;
1117
1118	pr_debug("add %d pinmux maps\n", num_maps);
1119
1120	/* First sanity check the new mapping */
1121	for (i = 0; i < num_maps; i++) {
1122		if (!maps[i].dev_name) {
1123			pr_err("failed to register map %s (%d): no device given\n",
1124			       maps[i].name, i);
1125			return -EINVAL;
1126		}
1127
1128		if (!maps[i].name) {
1129			pr_err("failed to register map %d: no map name given\n",
1130			       i);
1131			return -EINVAL;
1132		}
1133
1134		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1135				!maps[i].ctrl_dev_name) {
1136			pr_err("failed to register map %s (%d): no pin control device given\n",
1137			       maps[i].name, i);
1138			return -EINVAL;
1139		}
1140
1141		switch (maps[i].type) {
1142		case PIN_MAP_TYPE_DUMMY_STATE:
1143			break;
1144		case PIN_MAP_TYPE_MUX_GROUP:
1145			ret = pinmux_validate_map(&maps[i], i);
1146			if (ret < 0)
1147				return ret;
1148			break;
1149		case PIN_MAP_TYPE_CONFIGS_PIN:
1150		case PIN_MAP_TYPE_CONFIGS_GROUP:
1151			ret = pinconf_validate_map(&maps[i], i);
1152			if (ret < 0)
1153				return ret;
1154			break;
1155		default:
1156			pr_err("failed to register map %s (%d): invalid type given\n",
1157			       maps[i].name, i);
1158			return -EINVAL;
1159		}
1160	}
1161
1162	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1163	if (!maps_node) {
1164		pr_err("failed to alloc struct pinctrl_maps\n");
1165		return -ENOMEM;
1166	}
1167
1168	maps_node->num_maps = num_maps;
1169	if (dup) {
1170		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1171					  GFP_KERNEL);
1172		if (!maps_node->maps) {
1173			pr_err("failed to duplicate mapping table\n");
1174			kfree(maps_node);
1175			return -ENOMEM;
1176		}
1177	} else {
1178		maps_node->maps = maps;
1179	}
1180
1181	mutex_lock(&pinctrl_maps_mutex);
1182	list_add_tail(&maps_node->node, &pinctrl_maps);
1183	mutex_unlock(&pinctrl_maps_mutex);
1184
1185	return 0;
1186}
1187
1188/**
1189 * pinctrl_register_mappings() - register a set of pin controller mappings
1190 * @maps: the pincontrol mappings table to register. This should probably be
1191 *	marked with __initdata so it can be discarded after boot. This
1192 *	function will perform a shallow copy for the mapping entries.
1193 * @num_maps: the number of maps in the mapping table
1194 */
1195int pinctrl_register_mappings(struct pinctrl_map const *maps,
1196			      unsigned num_maps)
1197{
1198	return pinctrl_register_map(maps, num_maps, true);
1199}
1200
1201void pinctrl_unregister_map(struct pinctrl_map const *map)
1202{
1203	struct pinctrl_maps *maps_node;
1204
1205	mutex_lock(&pinctrl_maps_mutex);
1206	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1207		if (maps_node->maps == map) {
1208			list_del(&maps_node->node);
1209			kfree(maps_node);
1210			mutex_unlock(&pinctrl_maps_mutex);
1211			return;
1212		}
1213	}
1214	mutex_unlock(&pinctrl_maps_mutex);
1215}
1216
1217/**
1218 * pinctrl_force_sleep() - turn a given controller device into sleep state
1219 * @pctldev: pin controller device
1220 */
1221int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1222{
1223	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1224		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1225	return 0;
1226}
1227EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1228
1229/**
1230 * pinctrl_force_default() - turn a given controller device into default state
1231 * @pctldev: pin controller device
1232 */
1233int pinctrl_force_default(struct pinctrl_dev *pctldev)
1234{
1235	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1236		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1237	return 0;
1238}
1239EXPORT_SYMBOL_GPL(pinctrl_force_default);
1240
1241#ifdef CONFIG_PM
1242
1243/**
1244 * pinctrl_pm_select_state() - select pinctrl state for PM
1245 * @dev: device to select default state for
1246 * @state: state to set
1247 */
1248static int pinctrl_pm_select_state(struct device *dev,
1249				   struct pinctrl_state *state)
1250{
1251	struct dev_pin_info *pins = dev->pins;
1252	int ret;
1253
1254	if (IS_ERR(state))
1255		return 0; /* No such state */
1256	ret = pinctrl_select_state(pins->p, state);
1257	if (ret)
1258		dev_err(dev, "failed to activate pinctrl state %s\n",
1259			state->name);
1260	return ret;
1261}
1262
1263/**
1264 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1265 * @dev: device to select default state for
1266 */
1267int pinctrl_pm_select_default_state(struct device *dev)
1268{
1269	if (!dev->pins)
1270		return 0;
1271
1272	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1273}
1274EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1275
1276/**
1277 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1278 * @dev: device to select sleep state for
1279 */
1280int pinctrl_pm_select_sleep_state(struct device *dev)
1281{
1282	if (!dev->pins)
1283		return 0;
1284
1285	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1286}
1287EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1288
1289/**
1290 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1291 * @dev: device to select idle state for
1292 */
1293int pinctrl_pm_select_idle_state(struct device *dev)
1294{
1295	if (!dev->pins)
1296		return 0;
1297
1298	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1299}
1300EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1301#endif
1302
1303#ifdef CONFIG_DEBUG_FS
1304
1305static int pinctrl_pins_show(struct seq_file *s, void *what)
1306{
1307	struct pinctrl_dev *pctldev = s->private;
1308	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1309	unsigned i, pin;
1310
1311	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1312
1313	mutex_lock(&pctldev->mutex);
1314
1315	/* The pin number can be retrived from the pin controller descriptor */
1316	for (i = 0; i < pctldev->desc->npins; i++) {
1317		struct pin_desc *desc;
1318
1319		pin = pctldev->desc->pins[i].number;
1320		desc = pin_desc_get(pctldev, pin);
1321		/* Pin space may be sparse */
1322		if (desc == NULL)
1323			continue;
1324
1325		seq_printf(s, "pin %d (%s) ", pin,
1326			   desc->name ? desc->name : "unnamed");
1327
1328		/* Driver-specific info per pin */
1329		if (ops->pin_dbg_show)
1330			ops->pin_dbg_show(pctldev, s, pin);
1331
1332		seq_puts(s, "\n");
1333	}
1334
1335	mutex_unlock(&pctldev->mutex);
1336
1337	return 0;
1338}
1339
1340static int pinctrl_groups_show(struct seq_file *s, void *what)
1341{
1342	struct pinctrl_dev *pctldev = s->private;
1343	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1344	unsigned ngroups, selector = 0;
1345
1346	mutex_lock(&pctldev->mutex);
1347
1348	ngroups = ops->get_groups_count(pctldev);
1349
1350	seq_puts(s, "registered pin groups:\n");
1351	while (selector < ngroups) {
1352		const unsigned *pins = NULL;
1353		unsigned num_pins = 0;
1354		const char *gname = ops->get_group_name(pctldev, selector);
1355		const char *pname;
1356		int ret = 0;
1357		int i;
1358
1359		if (ops->get_group_pins)
1360			ret = ops->get_group_pins(pctldev, selector,
1361						  &pins, &num_pins);
1362		if (ret)
1363			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1364				   gname);
1365		else {
1366			seq_printf(s, "group: %s\n", gname);
1367			for (i = 0; i < num_pins; i++) {
1368				pname = pin_get_name(pctldev, pins[i]);
1369				if (WARN_ON(!pname)) {
1370					mutex_unlock(&pctldev->mutex);
1371					return -EINVAL;
1372				}
1373				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1374			}
1375			seq_puts(s, "\n");
1376		}
1377		selector++;
1378	}
1379
1380	mutex_unlock(&pctldev->mutex);
1381
1382	return 0;
1383}
1384
1385static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1386{
1387	struct pinctrl_dev *pctldev = s->private;
1388	struct pinctrl_gpio_range *range = NULL;
1389
1390	seq_puts(s, "GPIO ranges handled:\n");
1391
1392	mutex_lock(&pctldev->mutex);
1393
1394	/* Loop over the ranges */
1395	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1396		if (range->pins) {
1397			int a;
1398			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1399				range->id, range->name,
1400				range->base, (range->base + range->npins - 1));
1401			for (a = 0; a < range->npins - 1; a++)
1402				seq_printf(s, "%u, ", range->pins[a]);
1403			seq_printf(s, "%u}\n", range->pins[a]);
1404		}
1405		else
1406			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1407				range->id, range->name,
1408				range->base, (range->base + range->npins - 1),
1409				range->pin_base,
1410				(range->pin_base + range->npins - 1));
1411	}
1412
1413	mutex_unlock(&pctldev->mutex);
1414
1415	return 0;
1416}
1417
1418static int pinctrl_devices_show(struct seq_file *s, void *what)
1419{
1420	struct pinctrl_dev *pctldev;
1421
1422	seq_puts(s, "name [pinmux] [pinconf]\n");
1423
1424	mutex_lock(&pinctrldev_list_mutex);
1425
1426	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1427		seq_printf(s, "%s ", pctldev->desc->name);
1428		if (pctldev->desc->pmxops)
1429			seq_puts(s, "yes ");
1430		else
1431			seq_puts(s, "no ");
1432		if (pctldev->desc->confops)
1433			seq_puts(s, "yes");
1434		else
1435			seq_puts(s, "no");
1436		seq_puts(s, "\n");
1437	}
1438
1439	mutex_unlock(&pinctrldev_list_mutex);
1440
1441	return 0;
1442}
1443
1444static inline const char *map_type(enum pinctrl_map_type type)
1445{
1446	static const char * const names[] = {
1447		"INVALID",
1448		"DUMMY_STATE",
1449		"MUX_GROUP",
1450		"CONFIGS_PIN",
1451		"CONFIGS_GROUP",
1452	};
1453
1454	if (type >= ARRAY_SIZE(names))
1455		return "UNKNOWN";
1456
1457	return names[type];
1458}
1459
1460static int pinctrl_maps_show(struct seq_file *s, void *what)
1461{
1462	struct pinctrl_maps *maps_node;
1463	int i;
1464	struct pinctrl_map const *map;
1465
1466	seq_puts(s, "Pinctrl maps:\n");
1467
1468	mutex_lock(&pinctrl_maps_mutex);
1469	for_each_maps(maps_node, i, map) {
1470		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1471			   map->dev_name, map->name, map_type(map->type),
1472			   map->type);
1473
1474		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1475			seq_printf(s, "controlling device %s\n",
1476				   map->ctrl_dev_name);
1477
1478		switch (map->type) {
1479		case PIN_MAP_TYPE_MUX_GROUP:
1480			pinmux_show_map(s, map);
1481			break;
1482		case PIN_MAP_TYPE_CONFIGS_PIN:
1483		case PIN_MAP_TYPE_CONFIGS_GROUP:
1484			pinconf_show_map(s, map);
1485			break;
1486		default:
1487			break;
1488		}
1489
1490		seq_printf(s, "\n");
1491	}
1492	mutex_unlock(&pinctrl_maps_mutex);
1493
1494	return 0;
1495}
1496
1497static int pinctrl_show(struct seq_file *s, void *what)
1498{
1499	struct pinctrl *p;
1500	struct pinctrl_state *state;
1501	struct pinctrl_setting *setting;
1502
1503	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1504
1505	mutex_lock(&pinctrl_list_mutex);
1506
1507	list_for_each_entry(p, &pinctrl_list, node) {
1508		seq_printf(s, "device: %s current state: %s\n",
1509			   dev_name(p->dev),
1510			   p->state ? p->state->name : "none");
1511
1512		list_for_each_entry(state, &p->states, node) {
1513			seq_printf(s, "  state: %s\n", state->name);
1514
1515			list_for_each_entry(setting, &state->settings, node) {
1516				struct pinctrl_dev *pctldev = setting->pctldev;
1517
1518				seq_printf(s, "    type: %s controller %s ",
1519					   map_type(setting->type),
1520					   pinctrl_dev_get_name(pctldev));
1521
1522				switch (setting->type) {
1523				case PIN_MAP_TYPE_MUX_GROUP:
1524					pinmux_show_setting(s, setting);
1525					break;
1526				case PIN_MAP_TYPE_CONFIGS_PIN:
1527				case PIN_MAP_TYPE_CONFIGS_GROUP:
1528					pinconf_show_setting(s, setting);
1529					break;
1530				default:
1531					break;
1532				}
1533			}
1534		}
1535	}
1536
1537	mutex_unlock(&pinctrl_list_mutex);
1538
1539	return 0;
1540}
1541
1542static int pinctrl_pins_open(struct inode *inode, struct file *file)
1543{
1544	return single_open(file, pinctrl_pins_show, inode->i_private);
1545}
1546
1547static int pinctrl_groups_open(struct inode *inode, struct file *file)
1548{
1549	return single_open(file, pinctrl_groups_show, inode->i_private);
1550}
1551
1552static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1553{
1554	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1555}
1556
1557static int pinctrl_devices_open(struct inode *inode, struct file *file)
1558{
1559	return single_open(file, pinctrl_devices_show, NULL);
1560}
1561
1562static int pinctrl_maps_open(struct inode *inode, struct file *file)
1563{
1564	return single_open(file, pinctrl_maps_show, NULL);
1565}
1566
1567static int pinctrl_open(struct inode *inode, struct file *file)
1568{
1569	return single_open(file, pinctrl_show, NULL);
1570}
1571
1572static const struct file_operations pinctrl_pins_ops = {
1573	.open		= pinctrl_pins_open,
1574	.read		= seq_read,
1575	.llseek		= seq_lseek,
1576	.release	= single_release,
1577};
1578
1579static const struct file_operations pinctrl_groups_ops = {
1580	.open		= pinctrl_groups_open,
1581	.read		= seq_read,
1582	.llseek		= seq_lseek,
1583	.release	= single_release,
1584};
1585
1586static const struct file_operations pinctrl_gpioranges_ops = {
1587	.open		= pinctrl_gpioranges_open,
1588	.read		= seq_read,
1589	.llseek		= seq_lseek,
1590	.release	= single_release,
1591};
1592
1593static const struct file_operations pinctrl_devices_ops = {
1594	.open		= pinctrl_devices_open,
1595	.read		= seq_read,
1596	.llseek		= seq_lseek,
1597	.release	= single_release,
1598};
1599
1600static const struct file_operations pinctrl_maps_ops = {
1601	.open		= pinctrl_maps_open,
1602	.read		= seq_read,
1603	.llseek		= seq_lseek,
1604	.release	= single_release,
1605};
1606
1607static const struct file_operations pinctrl_ops = {
1608	.open		= pinctrl_open,
1609	.read		= seq_read,
1610	.llseek		= seq_lseek,
1611	.release	= single_release,
1612};
1613
1614static struct dentry *debugfs_root;
1615
1616static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1617{
1618	struct dentry *device_root;
1619
1620	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1621					 debugfs_root);
1622	pctldev->device_root = device_root;
1623
1624	if (IS_ERR(device_root) || !device_root) {
1625		pr_warn("failed to create debugfs directory for %s\n",
1626			dev_name(pctldev->dev));
1627		return;
1628	}
1629	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1630			    device_root, pctldev, &pinctrl_pins_ops);
1631	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1632			    device_root, pctldev, &pinctrl_groups_ops);
1633	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1634			    device_root, pctldev, &pinctrl_gpioranges_ops);
1635	if (pctldev->desc->pmxops)
1636		pinmux_init_device_debugfs(device_root, pctldev);
1637	if (pctldev->desc->confops)
1638		pinconf_init_device_debugfs(device_root, pctldev);
1639}
1640
1641static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1642{
1643	debugfs_remove_recursive(pctldev->device_root);
1644}
1645
1646static void pinctrl_init_debugfs(void)
1647{
1648	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1649	if (IS_ERR(debugfs_root) || !debugfs_root) {
1650		pr_warn("failed to create debugfs directory\n");
1651		debugfs_root = NULL;
1652		return;
1653	}
1654
1655	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1656			    debugfs_root, NULL, &pinctrl_devices_ops);
1657	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1658			    debugfs_root, NULL, &pinctrl_maps_ops);
1659	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1660			    debugfs_root, NULL, &pinctrl_ops);
1661}
1662
1663#else /* CONFIG_DEBUG_FS */
1664
1665static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1666{
1667}
1668
1669static void pinctrl_init_debugfs(void)
1670{
1671}
1672
1673static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1674{
1675}
1676
1677#endif
1678
1679static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1680{
1681	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1682
1683	if (!ops ||
1684	    !ops->get_groups_count ||
1685	    !ops->get_group_name)
1686		return -EINVAL;
1687
1688	if (ops->dt_node_to_map && !ops->dt_free_map)
1689		return -EINVAL;
1690
1691	return 0;
1692}
1693
1694/**
1695 * pinctrl_register() - register a pin controller device
1696 * @pctldesc: descriptor for this pin controller
1697 * @dev: parent device for this pin controller
1698 * @driver_data: private pin controller data for this pin controller
1699 */
1700struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1701				    struct device *dev, void *driver_data)
1702{
1703	struct pinctrl_dev *pctldev;
1704	int ret;
1705
1706	if (!pctldesc)
1707		return NULL;
1708	if (!pctldesc->name)
1709		return NULL;
1710
1711	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1712	if (pctldev == NULL) {
1713		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1714		return NULL;
1715	}
1716
1717	/* Initialize pin control device struct */
1718	pctldev->owner = pctldesc->owner;
1719	pctldev->desc = pctldesc;
1720	pctldev->driver_data = driver_data;
1721	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1722	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1723	pctldev->dev = dev;
1724	mutex_init(&pctldev->mutex);
1725
1726	/* check core ops for sanity */
1727	if (pinctrl_check_ops(pctldev)) {
1728		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1729		goto out_err;
1730	}
1731
1732	/* If we're implementing pinmuxing, check the ops for sanity */
1733	if (pctldesc->pmxops) {
1734		if (pinmux_check_ops(pctldev))
1735			goto out_err;
1736	}
1737
1738	/* If we're implementing pinconfig, check the ops for sanity */
1739	if (pctldesc->confops) {
1740		if (pinconf_check_ops(pctldev))
1741			goto out_err;
1742	}
1743
1744	/* Register all the pins */
1745	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1746	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1747	if (ret) {
1748		dev_err(dev, "error during pin registration\n");
1749		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1750				      pctldesc->npins);
1751		goto out_err;
1752	}
1753
1754	mutex_lock(&pinctrldev_list_mutex);
1755	list_add_tail(&pctldev->node, &pinctrldev_list);
1756	mutex_unlock(&pinctrldev_list_mutex);
1757
1758	pctldev->p = pinctrl_get(pctldev->dev);
1759
1760	if (!IS_ERR(pctldev->p)) {
1761		pctldev->hog_default =
1762			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1763		if (IS_ERR(pctldev->hog_default)) {
1764			dev_dbg(dev, "failed to lookup the default state\n");
1765		} else {
1766			if (pinctrl_select_state(pctldev->p,
1767						pctldev->hog_default))
1768				dev_err(dev,
1769					"failed to select default state\n");
1770		}
1771
1772		pctldev->hog_sleep =
1773			pinctrl_lookup_state(pctldev->p,
1774						    PINCTRL_STATE_SLEEP);
1775		if (IS_ERR(pctldev->hog_sleep))
1776			dev_dbg(dev, "failed to lookup the sleep state\n");
1777	}
1778
1779	pinctrl_init_device_debugfs(pctldev);
1780
1781	return pctldev;
1782
1783out_err:
1784	mutex_destroy(&pctldev->mutex);
1785	kfree(pctldev);
1786	return NULL;
1787}
1788EXPORT_SYMBOL_GPL(pinctrl_register);
1789
1790/**
1791 * pinctrl_unregister() - unregister pinmux
1792 * @pctldev: pin controller to unregister
1793 *
1794 * Called by pinmux drivers to unregister a pinmux.
1795 */
1796void pinctrl_unregister(struct pinctrl_dev *pctldev)
1797{
1798	struct pinctrl_gpio_range *range, *n;
1799	if (pctldev == NULL)
1800		return;
1801
1802	mutex_lock(&pctldev->mutex);
1803	pinctrl_remove_device_debugfs(pctldev);
1804	mutex_unlock(&pctldev->mutex);
1805
1806	if (!IS_ERR(pctldev->p))
1807		pinctrl_put(pctldev->p);
1808
1809	mutex_lock(&pinctrldev_list_mutex);
1810	mutex_lock(&pctldev->mutex);
1811	/* TODO: check that no pinmuxes are still active? */
1812	list_del(&pctldev->node);
1813	/* Destroy descriptor tree */
1814	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1815			      pctldev->desc->npins);
1816	/* remove gpio ranges map */
1817	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1818		list_del(&range->node);
1819
1820	mutex_unlock(&pctldev->mutex);
1821	mutex_destroy(&pctldev->mutex);
1822	kfree(pctldev);
1823	mutex_unlock(&pinctrldev_list_mutex);
1824}
1825EXPORT_SYMBOL_GPL(pinctrl_unregister);
1826
1827static int __init pinctrl_init(void)
1828{
1829	pr_info("initialized pinctrl subsystem\n");
1830	pinctrl_init_debugfs();
1831	return 0;
1832}
1833
1834/* init early since many drivers really need to initialized pinmux early */
1835core_initcall(pinctrl_init);
1836