1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/gpio/consumer.h>
28#include <linux/of.h>
29#include <linux/regmap.h>
30#include <linux/regulator/of_regulator.h>
31#include <linux/regulator/consumer.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include <linux/module.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/regulator.h>
38
39#include "dummy.h"
40#include "internal.h"
41
42#define rdev_crit(rdev, fmt, ...)					\
43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_err(rdev, fmt, ...)					\
45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_warn(rdev, fmt, ...)					\
47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_info(rdev, fmt, ...)					\
49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50#define rdev_dbg(rdev, fmt, ...)					\
51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53static DEFINE_MUTEX(regulator_list_mutex);
54static LIST_HEAD(regulator_list);
55static LIST_HEAD(regulator_map_list);
56static LIST_HEAD(regulator_ena_gpio_list);
57static LIST_HEAD(regulator_supply_alias_list);
58static bool has_full_constraints;
59
60static struct dentry *debugfs_root;
61
62/*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67struct regulator_map {
68	struct list_head list;
69	const char *dev_name;   /* The dev_name() for the consumer */
70	const char *supply;
71	struct regulator_dev *regulator;
72};
73
74/*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79struct regulator_enable_gpio {
80	struct list_head list;
81	struct gpio_desc *gpiod;
82	u32 enable_count;	/* a number of enabled shared GPIO */
83	u32 request_count;	/* a number of requested shared GPIO */
84	unsigned int ena_gpio_invert:1;
85};
86
87/*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92struct regulator_supply_alias {
93	struct list_head list;
94	struct device *src_dev;
95	const char *src_supply;
96	struct device *alias_dev;
97	const char *alias_supply;
98};
99
100static int _regulator_is_enabled(struct regulator_dev *rdev);
101static int _regulator_disable(struct regulator_dev *rdev);
102static int _regulator_get_voltage(struct regulator_dev *rdev);
103static int _regulator_get_current_limit(struct regulator_dev *rdev);
104static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105static int _notifier_call_chain(struct regulator_dev *rdev,
106				  unsigned long event, void *data);
107static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108				     int min_uV, int max_uV);
109static struct regulator *create_regulator(struct regulator_dev *rdev,
110					  struct device *dev,
111					  const char *supply_name);
112
113static struct regulator_dev *dev_to_rdev(struct device *dev)
114{
115	return container_of(dev, struct regulator_dev, dev);
116}
117
118static const char *rdev_get_name(struct regulator_dev *rdev)
119{
120	if (rdev->constraints && rdev->constraints->name)
121		return rdev->constraints->name;
122	else if (rdev->desc->name)
123		return rdev->desc->name;
124	else
125		return "";
126}
127
128static bool have_full_constraints(void)
129{
130	return has_full_constraints || of_have_populated_dt();
131}
132
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * returns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144	struct device_node *regnode = NULL;
145	char prop_name[32]; /* 32 is max size of property name */
146
147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149	snprintf(prop_name, 32, "%s-supply", supply);
150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152	if (!regnode) {
153		dev_dbg(dev, "Looking up %s property in node %s failed",
154				prop_name, dev->of_node->full_name);
155		return NULL;
156	}
157	return regnode;
158}
159
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162	if (!rdev->constraints)
163		return 0;
164
165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166		return 1;
167	else
168		return 0;
169}
170
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173				   int *min_uV, int *max_uV)
174{
175	BUG_ON(*min_uV > *max_uV);
176
177	if (!rdev->constraints) {
178		rdev_err(rdev, "no constraints\n");
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182		rdev_err(rdev, "operation not allowed\n");
183		return -EPERM;
184	}
185
186	if (*max_uV > rdev->constraints->max_uV)
187		*max_uV = rdev->constraints->max_uV;
188	if (*min_uV < rdev->constraints->min_uV)
189		*min_uV = rdev->constraints->min_uV;
190
191	if (*min_uV > *max_uV) {
192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193			 *min_uV, *max_uV);
194		return -EINVAL;
195	}
196
197	return 0;
198}
199
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204				     int *min_uV, int *max_uV)
205{
206	struct regulator *regulator;
207
208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209		/*
210		 * Assume consumers that didn't say anything are OK
211		 * with anything in the constraint range.
212		 */
213		if (!regulator->min_uV && !regulator->max_uV)
214			continue;
215
216		if (*max_uV > regulator->max_uV)
217			*max_uV = regulator->max_uV;
218		if (*min_uV < regulator->min_uV)
219			*min_uV = regulator->min_uV;
220	}
221
222	if (*min_uV > *max_uV) {
223		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
224			*min_uV, *max_uV);
225		return -EINVAL;
226	}
227
228	return 0;
229}
230
231/* current constraint check */
232static int regulator_check_current_limit(struct regulator_dev *rdev,
233					int *min_uA, int *max_uA)
234{
235	BUG_ON(*min_uA > *max_uA);
236
237	if (!rdev->constraints) {
238		rdev_err(rdev, "no constraints\n");
239		return -ENODEV;
240	}
241	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
242		rdev_err(rdev, "operation not allowed\n");
243		return -EPERM;
244	}
245
246	if (*max_uA > rdev->constraints->max_uA)
247		*max_uA = rdev->constraints->max_uA;
248	if (*min_uA < rdev->constraints->min_uA)
249		*min_uA = rdev->constraints->min_uA;
250
251	if (*min_uA > *max_uA) {
252		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
253			 *min_uA, *max_uA);
254		return -EINVAL;
255	}
256
257	return 0;
258}
259
260/* operating mode constraint check */
261static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
262{
263	switch (*mode) {
264	case REGULATOR_MODE_FAST:
265	case REGULATOR_MODE_NORMAL:
266	case REGULATOR_MODE_IDLE:
267	case REGULATOR_MODE_STANDBY:
268		break;
269	default:
270		rdev_err(rdev, "invalid mode %x specified\n", *mode);
271		return -EINVAL;
272	}
273
274	if (!rdev->constraints) {
275		rdev_err(rdev, "no constraints\n");
276		return -ENODEV;
277	}
278	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
279		rdev_err(rdev, "operation not allowed\n");
280		return -EPERM;
281	}
282
283	/* The modes are bitmasks, the most power hungry modes having
284	 * the lowest values. If the requested mode isn't supported
285	 * try higher modes. */
286	while (*mode) {
287		if (rdev->constraints->valid_modes_mask & *mode)
288			return 0;
289		*mode /= 2;
290	}
291
292	return -EINVAL;
293}
294
295/* dynamic regulator mode switching constraint check */
296static int regulator_check_drms(struct regulator_dev *rdev)
297{
298	if (!rdev->constraints) {
299		rdev_err(rdev, "no constraints\n");
300		return -ENODEV;
301	}
302	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
303		rdev_err(rdev, "operation not allowed\n");
304		return -EPERM;
305	}
306	return 0;
307}
308
309static ssize_t regulator_uV_show(struct device *dev,
310				struct device_attribute *attr, char *buf)
311{
312	struct regulator_dev *rdev = dev_get_drvdata(dev);
313	ssize_t ret;
314
315	mutex_lock(&rdev->mutex);
316	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317	mutex_unlock(&rdev->mutex);
318
319	return ret;
320}
321static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322
323static ssize_t regulator_uA_show(struct device *dev,
324				struct device_attribute *attr, char *buf)
325{
326	struct regulator_dev *rdev = dev_get_drvdata(dev);
327
328	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329}
330static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331
332static ssize_t name_show(struct device *dev, struct device_attribute *attr,
333			 char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%s\n", rdev_get_name(rdev));
338}
339static DEVICE_ATTR_RO(name);
340
341static ssize_t regulator_print_opmode(char *buf, int mode)
342{
343	switch (mode) {
344	case REGULATOR_MODE_FAST:
345		return sprintf(buf, "fast\n");
346	case REGULATOR_MODE_NORMAL:
347		return sprintf(buf, "normal\n");
348	case REGULATOR_MODE_IDLE:
349		return sprintf(buf, "idle\n");
350	case REGULATOR_MODE_STANDBY:
351		return sprintf(buf, "standby\n");
352	}
353	return sprintf(buf, "unknown\n");
354}
355
356static ssize_t regulator_opmode_show(struct device *dev,
357				    struct device_attribute *attr, char *buf)
358{
359	struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
362}
363static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
364
365static ssize_t regulator_print_state(char *buf, int state)
366{
367	if (state > 0)
368		return sprintf(buf, "enabled\n");
369	else if (state == 0)
370		return sprintf(buf, "disabled\n");
371	else
372		return sprintf(buf, "unknown\n");
373}
374
375static ssize_t regulator_state_show(struct device *dev,
376				   struct device_attribute *attr, char *buf)
377{
378	struct regulator_dev *rdev = dev_get_drvdata(dev);
379	ssize_t ret;
380
381	mutex_lock(&rdev->mutex);
382	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
383	mutex_unlock(&rdev->mutex);
384
385	return ret;
386}
387static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
388
389static ssize_t regulator_status_show(struct device *dev,
390				   struct device_attribute *attr, char *buf)
391{
392	struct regulator_dev *rdev = dev_get_drvdata(dev);
393	int status;
394	char *label;
395
396	status = rdev->desc->ops->get_status(rdev);
397	if (status < 0)
398		return status;
399
400	switch (status) {
401	case REGULATOR_STATUS_OFF:
402		label = "off";
403		break;
404	case REGULATOR_STATUS_ON:
405		label = "on";
406		break;
407	case REGULATOR_STATUS_ERROR:
408		label = "error";
409		break;
410	case REGULATOR_STATUS_FAST:
411		label = "fast";
412		break;
413	case REGULATOR_STATUS_NORMAL:
414		label = "normal";
415		break;
416	case REGULATOR_STATUS_IDLE:
417		label = "idle";
418		break;
419	case REGULATOR_STATUS_STANDBY:
420		label = "standby";
421		break;
422	case REGULATOR_STATUS_BYPASS:
423		label = "bypass";
424		break;
425	case REGULATOR_STATUS_UNDEFINED:
426		label = "undefined";
427		break;
428	default:
429		return -ERANGE;
430	}
431
432	return sprintf(buf, "%s\n", label);
433}
434static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
435
436static ssize_t regulator_min_uA_show(struct device *dev,
437				    struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	if (!rdev->constraints)
442		return sprintf(buf, "constraint not defined\n");
443
444	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
445}
446static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
447
448static ssize_t regulator_max_uA_show(struct device *dev,
449				    struct device_attribute *attr, char *buf)
450{
451	struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453	if (!rdev->constraints)
454		return sprintf(buf, "constraint not defined\n");
455
456	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
457}
458static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
459
460static ssize_t regulator_min_uV_show(struct device *dev,
461				    struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465	if (!rdev->constraints)
466		return sprintf(buf, "constraint not defined\n");
467
468	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
469}
470static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
471
472static ssize_t regulator_max_uV_show(struct device *dev,
473				    struct device_attribute *attr, char *buf)
474{
475	struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477	if (!rdev->constraints)
478		return sprintf(buf, "constraint not defined\n");
479
480	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
481}
482static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
483
484static ssize_t regulator_total_uA_show(struct device *dev,
485				      struct device_attribute *attr, char *buf)
486{
487	struct regulator_dev *rdev = dev_get_drvdata(dev);
488	struct regulator *regulator;
489	int uA = 0;
490
491	mutex_lock(&rdev->mutex);
492	list_for_each_entry(regulator, &rdev->consumer_list, list)
493		uA += regulator->uA_load;
494	mutex_unlock(&rdev->mutex);
495	return sprintf(buf, "%d\n", uA);
496}
497static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
498
499static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
500			      char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503	return sprintf(buf, "%d\n", rdev->use_count);
504}
505static DEVICE_ATTR_RO(num_users);
506
507static ssize_t type_show(struct device *dev, struct device_attribute *attr,
508			 char *buf)
509{
510	struct regulator_dev *rdev = dev_get_drvdata(dev);
511
512	switch (rdev->desc->type) {
513	case REGULATOR_VOLTAGE:
514		return sprintf(buf, "voltage\n");
515	case REGULATOR_CURRENT:
516		return sprintf(buf, "current\n");
517	}
518	return sprintf(buf, "unknown\n");
519}
520static DEVICE_ATTR_RO(type);
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530		regulator_suspend_mem_uV_show, NULL);
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533				struct device_attribute *attr, char *buf)
534{
535	struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540		regulator_suspend_disk_uV_show, NULL);
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543				struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550		regulator_suspend_standby_uV_show, NULL);
551
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_mem.mode);
559}
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561		regulator_suspend_mem_mode_show, NULL);
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_disk.mode);
570}
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572		regulator_suspend_disk_mode_show, NULL);
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575				struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_opmode(buf,
580		rdev->constraints->state_standby.mode);
581}
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583		regulator_suspend_standby_mode_show, NULL);
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_mem.enabled);
592}
593static DEVICE_ATTR(suspend_mem_state, 0444,
594		regulator_suspend_mem_state_show, NULL);
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_disk.enabled);
603}
604static DEVICE_ATTR(suspend_disk_state, 0444,
605		regulator_suspend_disk_state_show, NULL);
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608				   struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612	return regulator_print_state(buf,
613			rdev->constraints->state_standby.enabled);
614}
615static DEVICE_ATTR(suspend_standby_state, 0444,
616		regulator_suspend_standby_state_show, NULL);
617
618static ssize_t regulator_bypass_show(struct device *dev,
619				     struct device_attribute *attr, char *buf)
620{
621	struct regulator_dev *rdev = dev_get_drvdata(dev);
622	const char *report;
623	bool bypass;
624	int ret;
625
626	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
627
628	if (ret != 0)
629		report = "unknown";
630	else if (bypass)
631		report = "enabled";
632	else
633		report = "disabled";
634
635	return sprintf(buf, "%s\n", report);
636}
637static DEVICE_ATTR(bypass, 0444,
638		   regulator_bypass_show, NULL);
639
640/* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
642static int drms_uA_update(struct regulator_dev *rdev)
643{
644	struct regulator *sibling;
645	int current_uA = 0, output_uV, input_uV, err;
646	unsigned int mode;
647
648	/*
649	 * first check to see if we can set modes at all, otherwise just
650	 * tell the consumer everything is OK.
651	 */
652	err = regulator_check_drms(rdev);
653	if (err < 0)
654		return 0;
655
656	if (!rdev->desc->ops->get_optimum_mode &&
657	    !rdev->desc->ops->set_load)
658		return 0;
659
660	if (!rdev->desc->ops->set_mode &&
661	    !rdev->desc->ops->set_load)
662		return -EINVAL;
663
664	/* get output voltage */
665	output_uV = _regulator_get_voltage(rdev);
666	if (output_uV <= 0) {
667		rdev_err(rdev, "invalid output voltage found\n");
668		return -EINVAL;
669	}
670
671	/* get input voltage */
672	input_uV = 0;
673	if (rdev->supply)
674		input_uV = regulator_get_voltage(rdev->supply);
675	if (input_uV <= 0)
676		input_uV = rdev->constraints->input_uV;
677	if (input_uV <= 0) {
678		rdev_err(rdev, "invalid input voltage found\n");
679		return -EINVAL;
680	}
681
682	/* calc total requested load */
683	list_for_each_entry(sibling, &rdev->consumer_list, list)
684		current_uA += sibling->uA_load;
685
686	if (rdev->desc->ops->set_load) {
687		/* set the optimum mode for our new total regulator load */
688		err = rdev->desc->ops->set_load(rdev, current_uA);
689		if (err < 0)
690			rdev_err(rdev, "failed to set load %d\n", current_uA);
691	} else {
692		/* now get the optimum mode for our new total regulator load */
693		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694							 output_uV, current_uA);
695
696		/* check the new mode is allowed */
697		err = regulator_mode_constrain(rdev, &mode);
698		if (err < 0) {
699			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
700				 current_uA, input_uV, output_uV);
701			return err;
702		}
703
704		err = rdev->desc->ops->set_mode(rdev, mode);
705		if (err < 0)
706			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
707	}
708
709	return err;
710}
711
712static int suspend_set_state(struct regulator_dev *rdev,
713	struct regulator_state *rstate)
714{
715	int ret = 0;
716
717	/* If we have no suspend mode configration don't set anything;
718	 * only warn if the driver implements set_suspend_voltage or
719	 * set_suspend_mode callback.
720	 */
721	if (!rstate->enabled && !rstate->disabled) {
722		if (rdev->desc->ops->set_suspend_voltage ||
723		    rdev->desc->ops->set_suspend_mode)
724			rdev_warn(rdev, "No configuration\n");
725		return 0;
726	}
727
728	if (rstate->enabled && rstate->disabled) {
729		rdev_err(rdev, "invalid configuration\n");
730		return -EINVAL;
731	}
732
733	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
734		ret = rdev->desc->ops->set_suspend_enable(rdev);
735	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
736		ret = rdev->desc->ops->set_suspend_disable(rdev);
737	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
738		ret = 0;
739
740	if (ret < 0) {
741		rdev_err(rdev, "failed to enabled/disable\n");
742		return ret;
743	}
744
745	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
746		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
747		if (ret < 0) {
748			rdev_err(rdev, "failed to set voltage\n");
749			return ret;
750		}
751	}
752
753	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
754		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
755		if (ret < 0) {
756			rdev_err(rdev, "failed to set mode\n");
757			return ret;
758		}
759	}
760	return ret;
761}
762
763/* locks held by caller */
764static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
765{
766	if (!rdev->constraints)
767		return -EINVAL;
768
769	switch (state) {
770	case PM_SUSPEND_STANDBY:
771		return suspend_set_state(rdev,
772			&rdev->constraints->state_standby);
773	case PM_SUSPEND_MEM:
774		return suspend_set_state(rdev,
775			&rdev->constraints->state_mem);
776	case PM_SUSPEND_MAX:
777		return suspend_set_state(rdev,
778			&rdev->constraints->state_disk);
779	default:
780		return -EINVAL;
781	}
782}
783
784static void print_constraints(struct regulator_dev *rdev)
785{
786	struct regulation_constraints *constraints = rdev->constraints;
787	char buf[160] = "";
788	int count = 0;
789	int ret;
790
791	if (constraints->min_uV && constraints->max_uV) {
792		if (constraints->min_uV == constraints->max_uV)
793			count += sprintf(buf + count, "%d mV ",
794					 constraints->min_uV / 1000);
795		else
796			count += sprintf(buf + count, "%d <--> %d mV ",
797					 constraints->min_uV / 1000,
798					 constraints->max_uV / 1000);
799	}
800
801	if (!constraints->min_uV ||
802	    constraints->min_uV != constraints->max_uV) {
803		ret = _regulator_get_voltage(rdev);
804		if (ret > 0)
805			count += sprintf(buf + count, "at %d mV ", ret / 1000);
806	}
807
808	if (constraints->uV_offset)
809		count += sprintf(buf, "%dmV offset ",
810				 constraints->uV_offset / 1000);
811
812	if (constraints->min_uA && constraints->max_uA) {
813		if (constraints->min_uA == constraints->max_uA)
814			count += sprintf(buf + count, "%d mA ",
815					 constraints->min_uA / 1000);
816		else
817			count += sprintf(buf + count, "%d <--> %d mA ",
818					 constraints->min_uA / 1000,
819					 constraints->max_uA / 1000);
820	}
821
822	if (!constraints->min_uA ||
823	    constraints->min_uA != constraints->max_uA) {
824		ret = _regulator_get_current_limit(rdev);
825		if (ret > 0)
826			count += sprintf(buf + count, "at %d mA ", ret / 1000);
827	}
828
829	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
830		count += sprintf(buf + count, "fast ");
831	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
832		count += sprintf(buf + count, "normal ");
833	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
834		count += sprintf(buf + count, "idle ");
835	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
836		count += sprintf(buf + count, "standby");
837
838	if (!count)
839		sprintf(buf, "no parameters");
840
841	rdev_dbg(rdev, "%s\n", buf);
842
843	if ((constraints->min_uV != constraints->max_uV) &&
844	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
845		rdev_warn(rdev,
846			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
847}
848
849static int machine_constraints_voltage(struct regulator_dev *rdev,
850	struct regulation_constraints *constraints)
851{
852	const struct regulator_ops *ops = rdev->desc->ops;
853	int ret;
854
855	/* do we need to apply the constraint voltage */
856	if (rdev->constraints->apply_uV &&
857	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
858		int current_uV = _regulator_get_voltage(rdev);
859		if (current_uV < 0) {
860			rdev_err(rdev,
861				 "failed to get the current voltage(%d)\n",
862				 current_uV);
863			return current_uV;
864		}
865		if (current_uV < rdev->constraints->min_uV ||
866		    current_uV > rdev->constraints->max_uV) {
867			ret = _regulator_do_set_voltage(
868				rdev, rdev->constraints->min_uV,
869				rdev->constraints->max_uV);
870			if (ret < 0) {
871				rdev_err(rdev,
872					"failed to apply %duV constraint(%d)\n",
873					rdev->constraints->min_uV, ret);
874				return ret;
875			}
876		}
877	}
878
879	/* constrain machine-level voltage specs to fit
880	 * the actual range supported by this regulator.
881	 */
882	if (ops->list_voltage && rdev->desc->n_voltages) {
883		int	count = rdev->desc->n_voltages;
884		int	i;
885		int	min_uV = INT_MAX;
886		int	max_uV = INT_MIN;
887		int	cmin = constraints->min_uV;
888		int	cmax = constraints->max_uV;
889
890		/* it's safe to autoconfigure fixed-voltage supplies
891		   and the constraints are used by list_voltage. */
892		if (count == 1 && !cmin) {
893			cmin = 1;
894			cmax = INT_MAX;
895			constraints->min_uV = cmin;
896			constraints->max_uV = cmax;
897		}
898
899		/* voltage constraints are optional */
900		if ((cmin == 0) && (cmax == 0))
901			return 0;
902
903		/* else require explicit machine-level constraints */
904		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
905			rdev_err(rdev, "invalid voltage constraints\n");
906			return -EINVAL;
907		}
908
909		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
910		for (i = 0; i < count; i++) {
911			int	value;
912
913			value = ops->list_voltage(rdev, i);
914			if (value <= 0)
915				continue;
916
917			/* maybe adjust [min_uV..max_uV] */
918			if (value >= cmin && value < min_uV)
919				min_uV = value;
920			if (value <= cmax && value > max_uV)
921				max_uV = value;
922		}
923
924		/* final: [min_uV..max_uV] valid iff constraints valid */
925		if (max_uV < min_uV) {
926			rdev_err(rdev,
927				 "unsupportable voltage constraints %u-%uuV\n",
928				 min_uV, max_uV);
929			return -EINVAL;
930		}
931
932		/* use regulator's subset of machine constraints */
933		if (constraints->min_uV < min_uV) {
934			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
935				 constraints->min_uV, min_uV);
936			constraints->min_uV = min_uV;
937		}
938		if (constraints->max_uV > max_uV) {
939			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
940				 constraints->max_uV, max_uV);
941			constraints->max_uV = max_uV;
942		}
943	}
944
945	return 0;
946}
947
948static int machine_constraints_current(struct regulator_dev *rdev,
949	struct regulation_constraints *constraints)
950{
951	const struct regulator_ops *ops = rdev->desc->ops;
952	int ret;
953
954	if (!constraints->min_uA && !constraints->max_uA)
955		return 0;
956
957	if (constraints->min_uA > constraints->max_uA) {
958		rdev_err(rdev, "Invalid current constraints\n");
959		return -EINVAL;
960	}
961
962	if (!ops->set_current_limit || !ops->get_current_limit) {
963		rdev_warn(rdev, "Operation of current configuration missing\n");
964		return 0;
965	}
966
967	/* Set regulator current in constraints range */
968	ret = ops->set_current_limit(rdev, constraints->min_uA,
969			constraints->max_uA);
970	if (ret < 0) {
971		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
972		return ret;
973	}
974
975	return 0;
976}
977
978static int _regulator_do_enable(struct regulator_dev *rdev);
979
980/**
981 * set_machine_constraints - sets regulator constraints
982 * @rdev: regulator source
983 * @constraints: constraints to apply
984 *
985 * Allows platform initialisation code to define and constrain
986 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
987 * Constraints *must* be set by platform code in order for some
988 * regulator operations to proceed i.e. set_voltage, set_current_limit,
989 * set_mode.
990 */
991static int set_machine_constraints(struct regulator_dev *rdev,
992	const struct regulation_constraints *constraints)
993{
994	int ret = 0;
995	const struct regulator_ops *ops = rdev->desc->ops;
996
997	if (constraints)
998		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
999					    GFP_KERNEL);
1000	else
1001		rdev->constraints = kzalloc(sizeof(*constraints),
1002					    GFP_KERNEL);
1003	if (!rdev->constraints)
1004		return -ENOMEM;
1005
1006	ret = machine_constraints_voltage(rdev, rdev->constraints);
1007	if (ret != 0)
1008		goto out;
1009
1010	ret = machine_constraints_current(rdev, rdev->constraints);
1011	if (ret != 0)
1012		goto out;
1013
1014	/* do we need to setup our suspend state */
1015	if (rdev->constraints->initial_state) {
1016		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1017		if (ret < 0) {
1018			rdev_err(rdev, "failed to set suspend state\n");
1019			goto out;
1020		}
1021	}
1022
1023	if (rdev->constraints->initial_mode) {
1024		if (!ops->set_mode) {
1025			rdev_err(rdev, "no set_mode operation\n");
1026			ret = -EINVAL;
1027			goto out;
1028		}
1029
1030		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1031		if (ret < 0) {
1032			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1033			goto out;
1034		}
1035	}
1036
1037	/* If the constraints say the regulator should be on at this point
1038	 * and we have control then make sure it is enabled.
1039	 */
1040	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1041		ret = _regulator_do_enable(rdev);
1042		if (ret < 0 && ret != -EINVAL) {
1043			rdev_err(rdev, "failed to enable\n");
1044			goto out;
1045		}
1046	}
1047
1048	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1049		&& ops->set_ramp_delay) {
1050		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1051		if (ret < 0) {
1052			rdev_err(rdev, "failed to set ramp_delay\n");
1053			goto out;
1054		}
1055	}
1056
1057	print_constraints(rdev);
1058	return 0;
1059out:
1060	kfree(rdev->constraints);
1061	rdev->constraints = NULL;
1062	return ret;
1063}
1064
1065/**
1066 * set_supply - set regulator supply regulator
1067 * @rdev: regulator name
1068 * @supply_rdev: supply regulator name
1069 *
1070 * Called by platform initialisation code to set the supply regulator for this
1071 * regulator. This ensures that a regulators supply will also be enabled by the
1072 * core if it's child is enabled.
1073 */
1074static int set_supply(struct regulator_dev *rdev,
1075		      struct regulator_dev *supply_rdev)
1076{
1077	int err;
1078
1079	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1080
1081	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1082	if (rdev->supply == NULL) {
1083		err = -ENOMEM;
1084		return err;
1085	}
1086	supply_rdev->open_count++;
1087
1088	return 0;
1089}
1090
1091/**
1092 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1093 * @rdev:         regulator source
1094 * @consumer_dev_name: dev_name() string for device supply applies to
1095 * @supply:       symbolic name for supply
1096 *
1097 * Allows platform initialisation code to map physical regulator
1098 * sources to symbolic names for supplies for use by devices.  Devices
1099 * should use these symbolic names to request regulators, avoiding the
1100 * need to provide board-specific regulator names as platform data.
1101 */
1102static int set_consumer_device_supply(struct regulator_dev *rdev,
1103				      const char *consumer_dev_name,
1104				      const char *supply)
1105{
1106	struct regulator_map *node;
1107	int has_dev;
1108
1109	if (supply == NULL)
1110		return -EINVAL;
1111
1112	if (consumer_dev_name != NULL)
1113		has_dev = 1;
1114	else
1115		has_dev = 0;
1116
1117	list_for_each_entry(node, &regulator_map_list, list) {
1118		if (node->dev_name && consumer_dev_name) {
1119			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1120				continue;
1121		} else if (node->dev_name || consumer_dev_name) {
1122			continue;
1123		}
1124
1125		if (strcmp(node->supply, supply) != 0)
1126			continue;
1127
1128		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1129			 consumer_dev_name,
1130			 dev_name(&node->regulator->dev),
1131			 node->regulator->desc->name,
1132			 supply,
1133			 dev_name(&rdev->dev), rdev_get_name(rdev));
1134		return -EBUSY;
1135	}
1136
1137	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1138	if (node == NULL)
1139		return -ENOMEM;
1140
1141	node->regulator = rdev;
1142	node->supply = supply;
1143
1144	if (has_dev) {
1145		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1146		if (node->dev_name == NULL) {
1147			kfree(node);
1148			return -ENOMEM;
1149		}
1150	}
1151
1152	list_add(&node->list, &regulator_map_list);
1153	return 0;
1154}
1155
1156static void unset_regulator_supplies(struct regulator_dev *rdev)
1157{
1158	struct regulator_map *node, *n;
1159
1160	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1161		if (rdev == node->regulator) {
1162			list_del(&node->list);
1163			kfree(node->dev_name);
1164			kfree(node);
1165		}
1166	}
1167}
1168
1169#define REG_STR_SIZE	64
1170
1171static struct regulator *create_regulator(struct regulator_dev *rdev,
1172					  struct device *dev,
1173					  const char *supply_name)
1174{
1175	struct regulator *regulator;
1176	char buf[REG_STR_SIZE];
1177	int err, size;
1178
1179	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1180	if (regulator == NULL)
1181		return NULL;
1182
1183	mutex_lock(&rdev->mutex);
1184	regulator->rdev = rdev;
1185	list_add(&regulator->list, &rdev->consumer_list);
1186
1187	if (dev) {
1188		regulator->dev = dev;
1189
1190		/* Add a link to the device sysfs entry */
1191		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1192				 dev->kobj.name, supply_name);
1193		if (size >= REG_STR_SIZE)
1194			goto overflow_err;
1195
1196		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1197		if (regulator->supply_name == NULL)
1198			goto overflow_err;
1199
1200		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1201					buf);
1202		if (err) {
1203			rdev_warn(rdev, "could not add device link %s err %d\n",
1204				  dev->kobj.name, err);
1205			/* non-fatal */
1206		}
1207	} else {
1208		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1209		if (regulator->supply_name == NULL)
1210			goto overflow_err;
1211	}
1212
1213	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1214						rdev->debugfs);
1215	if (!regulator->debugfs) {
1216		rdev_warn(rdev, "Failed to create debugfs directory\n");
1217	} else {
1218		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1219				   &regulator->uA_load);
1220		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1221				   &regulator->min_uV);
1222		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1223				   &regulator->max_uV);
1224	}
1225
1226	/*
1227	 * Check now if the regulator is an always on regulator - if
1228	 * it is then we don't need to do nearly so much work for
1229	 * enable/disable calls.
1230	 */
1231	if (!_regulator_can_change_status(rdev) &&
1232	    _regulator_is_enabled(rdev))
1233		regulator->always_on = true;
1234
1235	mutex_unlock(&rdev->mutex);
1236	return regulator;
1237overflow_err:
1238	list_del(&regulator->list);
1239	kfree(regulator);
1240	mutex_unlock(&rdev->mutex);
1241	return NULL;
1242}
1243
1244static int _regulator_get_enable_time(struct regulator_dev *rdev)
1245{
1246	if (rdev->constraints && rdev->constraints->enable_time)
1247		return rdev->constraints->enable_time;
1248	if (!rdev->desc->ops->enable_time)
1249		return rdev->desc->enable_time;
1250	return rdev->desc->ops->enable_time(rdev);
1251}
1252
1253static struct regulator_supply_alias *regulator_find_supply_alias(
1254		struct device *dev, const char *supply)
1255{
1256	struct regulator_supply_alias *map;
1257
1258	list_for_each_entry(map, &regulator_supply_alias_list, list)
1259		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1260			return map;
1261
1262	return NULL;
1263}
1264
1265static void regulator_supply_alias(struct device **dev, const char **supply)
1266{
1267	struct regulator_supply_alias *map;
1268
1269	map = regulator_find_supply_alias(*dev, *supply);
1270	if (map) {
1271		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1272				*supply, map->alias_supply,
1273				dev_name(map->alias_dev));
1274		*dev = map->alias_dev;
1275		*supply = map->alias_supply;
1276	}
1277}
1278
1279static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1280						  const char *supply,
1281						  int *ret)
1282{
1283	struct regulator_dev *r;
1284	struct device_node *node;
1285	struct regulator_map *map;
1286	const char *devname = NULL;
1287
1288	regulator_supply_alias(&dev, &supply);
1289
1290	/* first do a dt based lookup */
1291	if (dev && dev->of_node) {
1292		node = of_get_regulator(dev, supply);
1293		if (node) {
1294			list_for_each_entry(r, &regulator_list, list)
1295				if (r->dev.parent &&
1296					node == r->dev.of_node)
1297					return r;
1298			*ret = -EPROBE_DEFER;
1299			return NULL;
1300		} else {
1301			/*
1302			 * If we couldn't even get the node then it's
1303			 * not just that the device didn't register
1304			 * yet, there's no node and we'll never
1305			 * succeed.
1306			 */
1307			*ret = -ENODEV;
1308		}
1309	}
1310
1311	/* if not found, try doing it non-dt way */
1312	if (dev)
1313		devname = dev_name(dev);
1314
1315	list_for_each_entry(r, &regulator_list, list)
1316		if (strcmp(rdev_get_name(r), supply) == 0)
1317			return r;
1318
1319	list_for_each_entry(map, &regulator_map_list, list) {
1320		/* If the mapping has a device set up it must match */
1321		if (map->dev_name &&
1322		    (!devname || strcmp(map->dev_name, devname)))
1323			continue;
1324
1325		if (strcmp(map->supply, supply) == 0)
1326			return map->regulator;
1327	}
1328
1329
1330	return NULL;
1331}
1332
1333static int regulator_resolve_supply(struct regulator_dev *rdev)
1334{
1335	struct regulator_dev *r;
1336	struct device *dev = rdev->dev.parent;
1337	int ret;
1338
1339	/* No supply to resovle? */
1340	if (!rdev->supply_name)
1341		return 0;
1342
1343	/* Supply already resolved? */
1344	if (rdev->supply)
1345		return 0;
1346
1347	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1348	if (ret == -ENODEV) {
1349		/*
1350		 * No supply was specified for this regulator and
1351		 * there will never be one.
1352		 */
1353		return 0;
1354	}
1355
1356	if (!r) {
1357		dev_err(dev, "Failed to resolve %s-supply for %s\n",
1358			rdev->supply_name, rdev->desc->name);
1359		return -EPROBE_DEFER;
1360	}
1361
1362	/* Recursively resolve the supply of the supply */
1363	ret = regulator_resolve_supply(r);
1364	if (ret < 0)
1365		return ret;
1366
1367	ret = set_supply(rdev, r);
1368	if (ret < 0)
1369		return ret;
1370
1371	/* Cascade always-on state to supply */
1372	if (_regulator_is_enabled(rdev)) {
1373		ret = regulator_enable(rdev->supply);
1374		if (ret < 0)
1375			return ret;
1376	}
1377
1378	return 0;
1379}
1380
1381/* Internal regulator request function */
1382static struct regulator *_regulator_get(struct device *dev, const char *id,
1383					bool exclusive, bool allow_dummy)
1384{
1385	struct regulator_dev *rdev;
1386	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1387	const char *devname = NULL;
1388	int ret;
1389
1390	if (id == NULL) {
1391		pr_err("get() with no identifier\n");
1392		return ERR_PTR(-EINVAL);
1393	}
1394
1395	if (dev)
1396		devname = dev_name(dev);
1397
1398	if (have_full_constraints())
1399		ret = -ENODEV;
1400	else
1401		ret = -EPROBE_DEFER;
1402
1403	mutex_lock(&regulator_list_mutex);
1404
1405	rdev = regulator_dev_lookup(dev, id, &ret);
1406	if (rdev)
1407		goto found;
1408
1409	regulator = ERR_PTR(ret);
1410
1411	/*
1412	 * If we have return value from dev_lookup fail, we do not expect to
1413	 * succeed, so, quit with appropriate error value
1414	 */
1415	if (ret && ret != -ENODEV)
1416		goto out;
1417
1418	if (!devname)
1419		devname = "deviceless";
1420
1421	/*
1422	 * Assume that a regulator is physically present and enabled
1423	 * even if it isn't hooked up and just provide a dummy.
1424	 */
1425	if (have_full_constraints() && allow_dummy) {
1426		pr_warn("%s supply %s not found, using dummy regulator\n",
1427			devname, id);
1428
1429		rdev = dummy_regulator_rdev;
1430		goto found;
1431	/* Don't log an error when called from regulator_get_optional() */
1432	} else if (!have_full_constraints() || exclusive) {
1433		dev_warn(dev, "dummy supplies not allowed\n");
1434	}
1435
1436	mutex_unlock(&regulator_list_mutex);
1437	return regulator;
1438
1439found:
1440	if (rdev->exclusive) {
1441		regulator = ERR_PTR(-EPERM);
1442		goto out;
1443	}
1444
1445	if (exclusive && rdev->open_count) {
1446		regulator = ERR_PTR(-EBUSY);
1447		goto out;
1448	}
1449
1450	ret = regulator_resolve_supply(rdev);
1451	if (ret < 0) {
1452		regulator = ERR_PTR(ret);
1453		goto out;
1454	}
1455
1456	if (!try_module_get(rdev->owner))
1457		goto out;
1458
1459	regulator = create_regulator(rdev, dev, id);
1460	if (regulator == NULL) {
1461		regulator = ERR_PTR(-ENOMEM);
1462		module_put(rdev->owner);
1463		goto out;
1464	}
1465
1466	rdev->open_count++;
1467	if (exclusive) {
1468		rdev->exclusive = 1;
1469
1470		ret = _regulator_is_enabled(rdev);
1471		if (ret > 0)
1472			rdev->use_count = 1;
1473		else
1474			rdev->use_count = 0;
1475	}
1476
1477out:
1478	mutex_unlock(&regulator_list_mutex);
1479
1480	return regulator;
1481}
1482
1483/**
1484 * regulator_get - lookup and obtain a reference to a regulator.
1485 * @dev: device for regulator "consumer"
1486 * @id: Supply name or regulator ID.
1487 *
1488 * Returns a struct regulator corresponding to the regulator producer,
1489 * or IS_ERR() condition containing errno.
1490 *
1491 * Use of supply names configured via regulator_set_device_supply() is
1492 * strongly encouraged.  It is recommended that the supply name used
1493 * should match the name used for the supply and/or the relevant
1494 * device pins in the datasheet.
1495 */
1496struct regulator *regulator_get(struct device *dev, const char *id)
1497{
1498	return _regulator_get(dev, id, false, true);
1499}
1500EXPORT_SYMBOL_GPL(regulator_get);
1501
1502/**
1503 * regulator_get_exclusive - obtain exclusive access to a regulator.
1504 * @dev: device for regulator "consumer"
1505 * @id: Supply name or regulator ID.
1506 *
1507 * Returns a struct regulator corresponding to the regulator producer,
1508 * or IS_ERR() condition containing errno.  Other consumers will be
1509 * unable to obtain this regulator while this reference is held and the
1510 * use count for the regulator will be initialised to reflect the current
1511 * state of the regulator.
1512 *
1513 * This is intended for use by consumers which cannot tolerate shared
1514 * use of the regulator such as those which need to force the
1515 * regulator off for correct operation of the hardware they are
1516 * controlling.
1517 *
1518 * Use of supply names configured via regulator_set_device_supply() is
1519 * strongly encouraged.  It is recommended that the supply name used
1520 * should match the name used for the supply and/or the relevant
1521 * device pins in the datasheet.
1522 */
1523struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1524{
1525	return _regulator_get(dev, id, true, false);
1526}
1527EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1528
1529/**
1530 * regulator_get_optional - obtain optional access to a regulator.
1531 * @dev: device for regulator "consumer"
1532 * @id: Supply name or regulator ID.
1533 *
1534 * Returns a struct regulator corresponding to the regulator producer,
1535 * or IS_ERR() condition containing errno.
1536 *
1537 * This is intended for use by consumers for devices which can have
1538 * some supplies unconnected in normal use, such as some MMC devices.
1539 * It can allow the regulator core to provide stub supplies for other
1540 * supplies requested using normal regulator_get() calls without
1541 * disrupting the operation of drivers that can handle absent
1542 * supplies.
1543 *
1544 * Use of supply names configured via regulator_set_device_supply() is
1545 * strongly encouraged.  It is recommended that the supply name used
1546 * should match the name used for the supply and/or the relevant
1547 * device pins in the datasheet.
1548 */
1549struct regulator *regulator_get_optional(struct device *dev, const char *id)
1550{
1551	return _regulator_get(dev, id, false, false);
1552}
1553EXPORT_SYMBOL_GPL(regulator_get_optional);
1554
1555/* regulator_list_mutex lock held by regulator_put() */
1556static void _regulator_put(struct regulator *regulator)
1557{
1558	struct regulator_dev *rdev;
1559
1560	if (regulator == NULL || IS_ERR(regulator))
1561		return;
1562
1563	rdev = regulator->rdev;
1564
1565	debugfs_remove_recursive(regulator->debugfs);
1566
1567	/* remove any sysfs entries */
1568	if (regulator->dev)
1569		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1570	mutex_lock(&rdev->mutex);
1571	kfree(regulator->supply_name);
1572	list_del(&regulator->list);
1573	kfree(regulator);
1574
1575	rdev->open_count--;
1576	rdev->exclusive = 0;
1577	mutex_unlock(&rdev->mutex);
1578
1579	module_put(rdev->owner);
1580}
1581
1582/**
1583 * regulator_put - "free" the regulator source
1584 * @regulator: regulator source
1585 *
1586 * Note: drivers must ensure that all regulator_enable calls made on this
1587 * regulator source are balanced by regulator_disable calls prior to calling
1588 * this function.
1589 */
1590void regulator_put(struct regulator *regulator)
1591{
1592	mutex_lock(&regulator_list_mutex);
1593	_regulator_put(regulator);
1594	mutex_unlock(&regulator_list_mutex);
1595}
1596EXPORT_SYMBOL_GPL(regulator_put);
1597
1598/**
1599 * regulator_register_supply_alias - Provide device alias for supply lookup
1600 *
1601 * @dev: device that will be given as the regulator "consumer"
1602 * @id: Supply name or regulator ID
1603 * @alias_dev: device that should be used to lookup the supply
1604 * @alias_id: Supply name or regulator ID that should be used to lookup the
1605 * supply
1606 *
1607 * All lookups for id on dev will instead be conducted for alias_id on
1608 * alias_dev.
1609 */
1610int regulator_register_supply_alias(struct device *dev, const char *id,
1611				    struct device *alias_dev,
1612				    const char *alias_id)
1613{
1614	struct regulator_supply_alias *map;
1615
1616	map = regulator_find_supply_alias(dev, id);
1617	if (map)
1618		return -EEXIST;
1619
1620	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1621	if (!map)
1622		return -ENOMEM;
1623
1624	map->src_dev = dev;
1625	map->src_supply = id;
1626	map->alias_dev = alias_dev;
1627	map->alias_supply = alias_id;
1628
1629	list_add(&map->list, &regulator_supply_alias_list);
1630
1631	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1632		id, dev_name(dev), alias_id, dev_name(alias_dev));
1633
1634	return 0;
1635}
1636EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1637
1638/**
1639 * regulator_unregister_supply_alias - Remove device alias
1640 *
1641 * @dev: device that will be given as the regulator "consumer"
1642 * @id: Supply name or regulator ID
1643 *
1644 * Remove a lookup alias if one exists for id on dev.
1645 */
1646void regulator_unregister_supply_alias(struct device *dev, const char *id)
1647{
1648	struct regulator_supply_alias *map;
1649
1650	map = regulator_find_supply_alias(dev, id);
1651	if (map) {
1652		list_del(&map->list);
1653		kfree(map);
1654	}
1655}
1656EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1657
1658/**
1659 * regulator_bulk_register_supply_alias - register multiple aliases
1660 *
1661 * @dev: device that will be given as the regulator "consumer"
1662 * @id: List of supply names or regulator IDs
1663 * @alias_dev: device that should be used to lookup the supply
1664 * @alias_id: List of supply names or regulator IDs that should be used to
1665 * lookup the supply
1666 * @num_id: Number of aliases to register
1667 *
1668 * @return 0 on success, an errno on failure.
1669 *
1670 * This helper function allows drivers to register several supply
1671 * aliases in one operation.  If any of the aliases cannot be
1672 * registered any aliases that were registered will be removed
1673 * before returning to the caller.
1674 */
1675int regulator_bulk_register_supply_alias(struct device *dev,
1676					 const char *const *id,
1677					 struct device *alias_dev,
1678					 const char *const *alias_id,
1679					 int num_id)
1680{
1681	int i;
1682	int ret;
1683
1684	for (i = 0; i < num_id; ++i) {
1685		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1686						      alias_id[i]);
1687		if (ret < 0)
1688			goto err;
1689	}
1690
1691	return 0;
1692
1693err:
1694	dev_err(dev,
1695		"Failed to create supply alias %s,%s -> %s,%s\n",
1696		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1697
1698	while (--i >= 0)
1699		regulator_unregister_supply_alias(dev, id[i]);
1700
1701	return ret;
1702}
1703EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1704
1705/**
1706 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1707 *
1708 * @dev: device that will be given as the regulator "consumer"
1709 * @id: List of supply names or regulator IDs
1710 * @num_id: Number of aliases to unregister
1711 *
1712 * This helper function allows drivers to unregister several supply
1713 * aliases in one operation.
1714 */
1715void regulator_bulk_unregister_supply_alias(struct device *dev,
1716					    const char *const *id,
1717					    int num_id)
1718{
1719	int i;
1720
1721	for (i = 0; i < num_id; ++i)
1722		regulator_unregister_supply_alias(dev, id[i]);
1723}
1724EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1725
1726
1727/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1728static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1729				const struct regulator_config *config)
1730{
1731	struct regulator_enable_gpio *pin;
1732	struct gpio_desc *gpiod;
1733	int ret;
1734
1735	gpiod = gpio_to_desc(config->ena_gpio);
1736
1737	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1738		if (pin->gpiod == gpiod) {
1739			rdev_dbg(rdev, "GPIO %d is already used\n",
1740				config->ena_gpio);
1741			goto update_ena_gpio_to_rdev;
1742		}
1743	}
1744
1745	ret = gpio_request_one(config->ena_gpio,
1746				GPIOF_DIR_OUT | config->ena_gpio_flags,
1747				rdev_get_name(rdev));
1748	if (ret)
1749		return ret;
1750
1751	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1752	if (pin == NULL) {
1753		gpio_free(config->ena_gpio);
1754		return -ENOMEM;
1755	}
1756
1757	pin->gpiod = gpiod;
1758	pin->ena_gpio_invert = config->ena_gpio_invert;
1759	list_add(&pin->list, &regulator_ena_gpio_list);
1760
1761update_ena_gpio_to_rdev:
1762	pin->request_count++;
1763	rdev->ena_pin = pin;
1764	return 0;
1765}
1766
1767static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1768{
1769	struct regulator_enable_gpio *pin, *n;
1770
1771	if (!rdev->ena_pin)
1772		return;
1773
1774	/* Free the GPIO only in case of no use */
1775	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1776		if (pin->gpiod == rdev->ena_pin->gpiod) {
1777			if (pin->request_count <= 1) {
1778				pin->request_count = 0;
1779				gpiod_put(pin->gpiod);
1780				list_del(&pin->list);
1781				kfree(pin);
1782				rdev->ena_pin = NULL;
1783				return;
1784			} else {
1785				pin->request_count--;
1786			}
1787		}
1788	}
1789}
1790
1791/**
1792 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1793 * @rdev: regulator_dev structure
1794 * @enable: enable GPIO at initial use?
1795 *
1796 * GPIO is enabled in case of initial use. (enable_count is 0)
1797 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1798 */
1799static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1800{
1801	struct regulator_enable_gpio *pin = rdev->ena_pin;
1802
1803	if (!pin)
1804		return -EINVAL;
1805
1806	if (enable) {
1807		/* Enable GPIO at initial use */
1808		if (pin->enable_count == 0)
1809			gpiod_set_value_cansleep(pin->gpiod,
1810						 !pin->ena_gpio_invert);
1811
1812		pin->enable_count++;
1813	} else {
1814		if (pin->enable_count > 1) {
1815			pin->enable_count--;
1816			return 0;
1817		}
1818
1819		/* Disable GPIO if not used */
1820		if (pin->enable_count <= 1) {
1821			gpiod_set_value_cansleep(pin->gpiod,
1822						 pin->ena_gpio_invert);
1823			pin->enable_count = 0;
1824		}
1825	}
1826
1827	return 0;
1828}
1829
1830/**
1831 * _regulator_enable_delay - a delay helper function
1832 * @delay: time to delay in microseconds
1833 *
1834 * Delay for the requested amount of time as per the guidelines in:
1835 *
1836 *     Documentation/timers/timers-howto.txt
1837 *
1838 * The assumption here is that regulators will never be enabled in
1839 * atomic context and therefore sleeping functions can be used.
1840 */
1841static void _regulator_enable_delay(unsigned int delay)
1842{
1843	unsigned int ms = delay / 1000;
1844	unsigned int us = delay % 1000;
1845
1846	if (ms > 0) {
1847		/*
1848		 * For small enough values, handle super-millisecond
1849		 * delays in the usleep_range() call below.
1850		 */
1851		if (ms < 20)
1852			us += ms * 1000;
1853		else
1854			msleep(ms);
1855	}
1856
1857	/*
1858	 * Give the scheduler some room to coalesce with any other
1859	 * wakeup sources. For delays shorter than 10 us, don't even
1860	 * bother setting up high-resolution timers and just busy-
1861	 * loop.
1862	 */
1863	if (us >= 10)
1864		usleep_range(us, us + 100);
1865	else
1866		udelay(us);
1867}
1868
1869static int _regulator_do_enable(struct regulator_dev *rdev)
1870{
1871	int ret, delay;
1872
1873	/* Query before enabling in case configuration dependent.  */
1874	ret = _regulator_get_enable_time(rdev);
1875	if (ret >= 0) {
1876		delay = ret;
1877	} else {
1878		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1879		delay = 0;
1880	}
1881
1882	trace_regulator_enable(rdev_get_name(rdev));
1883
1884	if (rdev->desc->off_on_delay) {
1885		/* if needed, keep a distance of off_on_delay from last time
1886		 * this regulator was disabled.
1887		 */
1888		unsigned long start_jiffy = jiffies;
1889		unsigned long intended, max_delay, remaining;
1890
1891		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1892		intended = rdev->last_off_jiffy + max_delay;
1893
1894		if (time_before(start_jiffy, intended)) {
1895			/* calc remaining jiffies to deal with one-time
1896			 * timer wrapping.
1897			 * in case of multiple timer wrapping, either it can be
1898			 * detected by out-of-range remaining, or it cannot be
1899			 * detected and we gets a panelty of
1900			 * _regulator_enable_delay().
1901			 */
1902			remaining = intended - start_jiffy;
1903			if (remaining <= max_delay)
1904				_regulator_enable_delay(
1905						jiffies_to_usecs(remaining));
1906		}
1907	}
1908
1909	if (rdev->ena_pin) {
1910		if (!rdev->ena_gpio_state) {
1911			ret = regulator_ena_gpio_ctrl(rdev, true);
1912			if (ret < 0)
1913				return ret;
1914			rdev->ena_gpio_state = 1;
1915		}
1916	} else if (rdev->desc->ops->enable) {
1917		ret = rdev->desc->ops->enable(rdev);
1918		if (ret < 0)
1919			return ret;
1920	} else {
1921		return -EINVAL;
1922	}
1923
1924	/* Allow the regulator to ramp; it would be useful to extend
1925	 * this for bulk operations so that the regulators can ramp
1926	 * together.  */
1927	trace_regulator_enable_delay(rdev_get_name(rdev));
1928
1929	_regulator_enable_delay(delay);
1930
1931	trace_regulator_enable_complete(rdev_get_name(rdev));
1932
1933	return 0;
1934}
1935
1936/* locks held by regulator_enable() */
1937static int _regulator_enable(struct regulator_dev *rdev)
1938{
1939	int ret;
1940
1941	/* check voltage and requested load before enabling */
1942	if (rdev->constraints &&
1943	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1944		drms_uA_update(rdev);
1945
1946	if (rdev->use_count == 0) {
1947		/* The regulator may on if it's not switchable or left on */
1948		ret = _regulator_is_enabled(rdev);
1949		if (ret == -EINVAL || ret == 0) {
1950			if (!_regulator_can_change_status(rdev))
1951				return -EPERM;
1952
1953			ret = _regulator_do_enable(rdev);
1954			if (ret < 0)
1955				return ret;
1956
1957		} else if (ret < 0) {
1958			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1959			return ret;
1960		}
1961		/* Fallthrough on positive return values - already enabled */
1962	}
1963
1964	rdev->use_count++;
1965
1966	return 0;
1967}
1968
1969/**
1970 * regulator_enable - enable regulator output
1971 * @regulator: regulator source
1972 *
1973 * Request that the regulator be enabled with the regulator output at
1974 * the predefined voltage or current value.  Calls to regulator_enable()
1975 * must be balanced with calls to regulator_disable().
1976 *
1977 * NOTE: the output value can be set by other drivers, boot loader or may be
1978 * hardwired in the regulator.
1979 */
1980int regulator_enable(struct regulator *regulator)
1981{
1982	struct regulator_dev *rdev = regulator->rdev;
1983	int ret = 0;
1984
1985	if (regulator->always_on)
1986		return 0;
1987
1988	if (rdev->supply) {
1989		ret = regulator_enable(rdev->supply);
1990		if (ret != 0)
1991			return ret;
1992	}
1993
1994	mutex_lock(&rdev->mutex);
1995	ret = _regulator_enable(rdev);
1996	mutex_unlock(&rdev->mutex);
1997
1998	if (ret != 0 && rdev->supply)
1999		regulator_disable(rdev->supply);
2000
2001	return ret;
2002}
2003EXPORT_SYMBOL_GPL(regulator_enable);
2004
2005static int _regulator_do_disable(struct regulator_dev *rdev)
2006{
2007	int ret;
2008
2009	trace_regulator_disable(rdev_get_name(rdev));
2010
2011	if (rdev->ena_pin) {
2012		if (rdev->ena_gpio_state) {
2013			ret = regulator_ena_gpio_ctrl(rdev, false);
2014			if (ret < 0)
2015				return ret;
2016			rdev->ena_gpio_state = 0;
2017		}
2018
2019	} else if (rdev->desc->ops->disable) {
2020		ret = rdev->desc->ops->disable(rdev);
2021		if (ret != 0)
2022			return ret;
2023	}
2024
2025	/* cares about last_off_jiffy only if off_on_delay is required by
2026	 * device.
2027	 */
2028	if (rdev->desc->off_on_delay)
2029		rdev->last_off_jiffy = jiffies;
2030
2031	trace_regulator_disable_complete(rdev_get_name(rdev));
2032
2033	return 0;
2034}
2035
2036/* locks held by regulator_disable() */
2037static int _regulator_disable(struct regulator_dev *rdev)
2038{
2039	int ret = 0;
2040
2041	if (WARN(rdev->use_count <= 0,
2042		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2043		return -EIO;
2044
2045	/* are we the last user and permitted to disable ? */
2046	if (rdev->use_count == 1 &&
2047	    (rdev->constraints && !rdev->constraints->always_on)) {
2048
2049		/* we are last user */
2050		if (_regulator_can_change_status(rdev)) {
2051			ret = _notifier_call_chain(rdev,
2052						   REGULATOR_EVENT_PRE_DISABLE,
2053						   NULL);
2054			if (ret & NOTIFY_STOP_MASK)
2055				return -EINVAL;
2056
2057			ret = _regulator_do_disable(rdev);
2058			if (ret < 0) {
2059				rdev_err(rdev, "failed to disable\n");
2060				_notifier_call_chain(rdev,
2061						REGULATOR_EVENT_ABORT_DISABLE,
2062						NULL);
2063				return ret;
2064			}
2065			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2066					NULL);
2067		}
2068
2069		rdev->use_count = 0;
2070	} else if (rdev->use_count > 1) {
2071
2072		if (rdev->constraints &&
2073			(rdev->constraints->valid_ops_mask &
2074			REGULATOR_CHANGE_DRMS))
2075			drms_uA_update(rdev);
2076
2077		rdev->use_count--;
2078	}
2079
2080	return ret;
2081}
2082
2083/**
2084 * regulator_disable - disable regulator output
2085 * @regulator: regulator source
2086 *
2087 * Disable the regulator output voltage or current.  Calls to
2088 * regulator_enable() must be balanced with calls to
2089 * regulator_disable().
2090 *
2091 * NOTE: this will only disable the regulator output if no other consumer
2092 * devices have it enabled, the regulator device supports disabling and
2093 * machine constraints permit this operation.
2094 */
2095int regulator_disable(struct regulator *regulator)
2096{
2097	struct regulator_dev *rdev = regulator->rdev;
2098	int ret = 0;
2099
2100	if (regulator->always_on)
2101		return 0;
2102
2103	mutex_lock(&rdev->mutex);
2104	ret = _regulator_disable(rdev);
2105	mutex_unlock(&rdev->mutex);
2106
2107	if (ret == 0 && rdev->supply)
2108		regulator_disable(rdev->supply);
2109
2110	return ret;
2111}
2112EXPORT_SYMBOL_GPL(regulator_disable);
2113
2114/* locks held by regulator_force_disable() */
2115static int _regulator_force_disable(struct regulator_dev *rdev)
2116{
2117	int ret = 0;
2118
2119	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2120			REGULATOR_EVENT_PRE_DISABLE, NULL);
2121	if (ret & NOTIFY_STOP_MASK)
2122		return -EINVAL;
2123
2124	ret = _regulator_do_disable(rdev);
2125	if (ret < 0) {
2126		rdev_err(rdev, "failed to force disable\n");
2127		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2129		return ret;
2130	}
2131
2132	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2133			REGULATOR_EVENT_DISABLE, NULL);
2134
2135	return 0;
2136}
2137
2138/**
2139 * regulator_force_disable - force disable regulator output
2140 * @regulator: regulator source
2141 *
2142 * Forcibly disable the regulator output voltage or current.
2143 * NOTE: this *will* disable the regulator output even if other consumer
2144 * devices have it enabled. This should be used for situations when device
2145 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2146 */
2147int regulator_force_disable(struct regulator *regulator)
2148{
2149	struct regulator_dev *rdev = regulator->rdev;
2150	int ret;
2151
2152	mutex_lock(&rdev->mutex);
2153	regulator->uA_load = 0;
2154	ret = _regulator_force_disable(regulator->rdev);
2155	mutex_unlock(&rdev->mutex);
2156
2157	if (rdev->supply)
2158		while (rdev->open_count--)
2159			regulator_disable(rdev->supply);
2160
2161	return ret;
2162}
2163EXPORT_SYMBOL_GPL(regulator_force_disable);
2164
2165static void regulator_disable_work(struct work_struct *work)
2166{
2167	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2168						  disable_work.work);
2169	int count, i, ret;
2170
2171	mutex_lock(&rdev->mutex);
2172
2173	BUG_ON(!rdev->deferred_disables);
2174
2175	count = rdev->deferred_disables;
2176	rdev->deferred_disables = 0;
2177
2178	for (i = 0; i < count; i++) {
2179		ret = _regulator_disable(rdev);
2180		if (ret != 0)
2181			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2182	}
2183
2184	mutex_unlock(&rdev->mutex);
2185
2186	if (rdev->supply) {
2187		for (i = 0; i < count; i++) {
2188			ret = regulator_disable(rdev->supply);
2189			if (ret != 0) {
2190				rdev_err(rdev,
2191					 "Supply disable failed: %d\n", ret);
2192			}
2193		}
2194	}
2195}
2196
2197/**
2198 * regulator_disable_deferred - disable regulator output with delay
2199 * @regulator: regulator source
2200 * @ms: miliseconds until the regulator is disabled
2201 *
2202 * Execute regulator_disable() on the regulator after a delay.  This
2203 * is intended for use with devices that require some time to quiesce.
2204 *
2205 * NOTE: this will only disable the regulator output if no other consumer
2206 * devices have it enabled, the regulator device supports disabling and
2207 * machine constraints permit this operation.
2208 */
2209int regulator_disable_deferred(struct regulator *regulator, int ms)
2210{
2211	struct regulator_dev *rdev = regulator->rdev;
2212	int ret;
2213
2214	if (regulator->always_on)
2215		return 0;
2216
2217	if (!ms)
2218		return regulator_disable(regulator);
2219
2220	mutex_lock(&rdev->mutex);
2221	rdev->deferred_disables++;
2222	mutex_unlock(&rdev->mutex);
2223
2224	ret = queue_delayed_work(system_power_efficient_wq,
2225				 &rdev->disable_work,
2226				 msecs_to_jiffies(ms));
2227	if (ret < 0)
2228		return ret;
2229	else
2230		return 0;
2231}
2232EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2233
2234static int _regulator_is_enabled(struct regulator_dev *rdev)
2235{
2236	/* A GPIO control always takes precedence */
2237	if (rdev->ena_pin)
2238		return rdev->ena_gpio_state;
2239
2240	/* If we don't know then assume that the regulator is always on */
2241	if (!rdev->desc->ops->is_enabled)
2242		return 1;
2243
2244	return rdev->desc->ops->is_enabled(rdev);
2245}
2246
2247/**
2248 * regulator_is_enabled - is the regulator output enabled
2249 * @regulator: regulator source
2250 *
2251 * Returns positive if the regulator driver backing the source/client
2252 * has requested that the device be enabled, zero if it hasn't, else a
2253 * negative errno code.
2254 *
2255 * Note that the device backing this regulator handle can have multiple
2256 * users, so it might be enabled even if regulator_enable() was never
2257 * called for this particular source.
2258 */
2259int regulator_is_enabled(struct regulator *regulator)
2260{
2261	int ret;
2262
2263	if (regulator->always_on)
2264		return 1;
2265
2266	mutex_lock(&regulator->rdev->mutex);
2267	ret = _regulator_is_enabled(regulator->rdev);
2268	mutex_unlock(&regulator->rdev->mutex);
2269
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(regulator_is_enabled);
2273
2274/**
2275 * regulator_can_change_voltage - check if regulator can change voltage
2276 * @regulator: regulator source
2277 *
2278 * Returns positive if the regulator driver backing the source/client
2279 * can change its voltage, false otherwise. Useful for detecting fixed
2280 * or dummy regulators and disabling voltage change logic in the client
2281 * driver.
2282 */
2283int regulator_can_change_voltage(struct regulator *regulator)
2284{
2285	struct regulator_dev	*rdev = regulator->rdev;
2286
2287	if (rdev->constraints &&
2288	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2289		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2290			return 1;
2291
2292		if (rdev->desc->continuous_voltage_range &&
2293		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2294		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2295			return 1;
2296	}
2297
2298	return 0;
2299}
2300EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2301
2302/**
2303 * regulator_count_voltages - count regulator_list_voltage() selectors
2304 * @regulator: regulator source
2305 *
2306 * Returns number of selectors, or negative errno.  Selectors are
2307 * numbered starting at zero, and typically correspond to bitfields
2308 * in hardware registers.
2309 */
2310int regulator_count_voltages(struct regulator *regulator)
2311{
2312	struct regulator_dev	*rdev = regulator->rdev;
2313
2314	if (rdev->desc->n_voltages)
2315		return rdev->desc->n_voltages;
2316
2317	if (!rdev->supply)
2318		return -EINVAL;
2319
2320	return regulator_count_voltages(rdev->supply);
2321}
2322EXPORT_SYMBOL_GPL(regulator_count_voltages);
2323
2324/**
2325 * regulator_list_voltage - enumerate supported voltages
2326 * @regulator: regulator source
2327 * @selector: identify voltage to list
2328 * Context: can sleep
2329 *
2330 * Returns a voltage that can be passed to @regulator_set_voltage(),
2331 * zero if this selector code can't be used on this system, or a
2332 * negative errno.
2333 */
2334int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2335{
2336	struct regulator_dev *rdev = regulator->rdev;
2337	const struct regulator_ops *ops = rdev->desc->ops;
2338	int ret;
2339
2340	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2341		return rdev->desc->fixed_uV;
2342
2343	if (ops->list_voltage) {
2344		if (selector >= rdev->desc->n_voltages)
2345			return -EINVAL;
2346		mutex_lock(&rdev->mutex);
2347		ret = ops->list_voltage(rdev, selector);
2348		mutex_unlock(&rdev->mutex);
2349	} else if (rdev->supply) {
2350		ret = regulator_list_voltage(rdev->supply, selector);
2351	} else {
2352		return -EINVAL;
2353	}
2354
2355	if (ret > 0) {
2356		if (ret < rdev->constraints->min_uV)
2357			ret = 0;
2358		else if (ret > rdev->constraints->max_uV)
2359			ret = 0;
2360	}
2361
2362	return ret;
2363}
2364EXPORT_SYMBOL_GPL(regulator_list_voltage);
2365
2366/**
2367 * regulator_get_regmap - get the regulator's register map
2368 * @regulator: regulator source
2369 *
2370 * Returns the register map for the given regulator, or an ERR_PTR value
2371 * if the regulator doesn't use regmap.
2372 */
2373struct regmap *regulator_get_regmap(struct regulator *regulator)
2374{
2375	struct regmap *map = regulator->rdev->regmap;
2376
2377	return map ? map : ERR_PTR(-EOPNOTSUPP);
2378}
2379
2380/**
2381 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2382 * @regulator: regulator source
2383 * @vsel_reg: voltage selector register, output parameter
2384 * @vsel_mask: mask for voltage selector bitfield, output parameter
2385 *
2386 * Returns the hardware register offset and bitmask used for setting the
2387 * regulator voltage. This might be useful when configuring voltage-scaling
2388 * hardware or firmware that can make I2C requests behind the kernel's back,
2389 * for example.
2390 *
2391 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2392 * and 0 is returned, otherwise a negative errno is returned.
2393 */
2394int regulator_get_hardware_vsel_register(struct regulator *regulator,
2395					 unsigned *vsel_reg,
2396					 unsigned *vsel_mask)
2397{
2398	struct regulator_dev *rdev = regulator->rdev;
2399	const struct regulator_ops *ops = rdev->desc->ops;
2400
2401	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2402		return -EOPNOTSUPP;
2403
2404	 *vsel_reg = rdev->desc->vsel_reg;
2405	 *vsel_mask = rdev->desc->vsel_mask;
2406
2407	 return 0;
2408}
2409EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2410
2411/**
2412 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2413 * @regulator: regulator source
2414 * @selector: identify voltage to list
2415 *
2416 * Converts the selector to a hardware-specific voltage selector that can be
2417 * directly written to the regulator registers. The address of the voltage
2418 * register can be determined by calling @regulator_get_hardware_vsel_register.
2419 *
2420 * On error a negative errno is returned.
2421 */
2422int regulator_list_hardware_vsel(struct regulator *regulator,
2423				 unsigned selector)
2424{
2425	struct regulator_dev *rdev = regulator->rdev;
2426	const struct regulator_ops *ops = rdev->desc->ops;
2427
2428	if (selector >= rdev->desc->n_voltages)
2429		return -EINVAL;
2430	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2431		return -EOPNOTSUPP;
2432
2433	return selector;
2434}
2435EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2436
2437/**
2438 * regulator_get_linear_step - return the voltage step size between VSEL values
2439 * @regulator: regulator source
2440 *
2441 * Returns the voltage step size between VSEL values for linear
2442 * regulators, or return 0 if the regulator isn't a linear regulator.
2443 */
2444unsigned int regulator_get_linear_step(struct regulator *regulator)
2445{
2446	struct regulator_dev *rdev = regulator->rdev;
2447
2448	return rdev->desc->uV_step;
2449}
2450EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2451
2452/**
2453 * regulator_is_supported_voltage - check if a voltage range can be supported
2454 *
2455 * @regulator: Regulator to check.
2456 * @min_uV: Minimum required voltage in uV.
2457 * @max_uV: Maximum required voltage in uV.
2458 *
2459 * Returns a boolean or a negative error code.
2460 */
2461int regulator_is_supported_voltage(struct regulator *regulator,
2462				   int min_uV, int max_uV)
2463{
2464	struct regulator_dev *rdev = regulator->rdev;
2465	int i, voltages, ret;
2466
2467	/* If we can't change voltage check the current voltage */
2468	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2469		ret = regulator_get_voltage(regulator);
2470		if (ret >= 0)
2471			return min_uV <= ret && ret <= max_uV;
2472		else
2473			return ret;
2474	}
2475
2476	/* Any voltage within constrains range is fine? */
2477	if (rdev->desc->continuous_voltage_range)
2478		return min_uV >= rdev->constraints->min_uV &&
2479				max_uV <= rdev->constraints->max_uV;
2480
2481	ret = regulator_count_voltages(regulator);
2482	if (ret < 0)
2483		return ret;
2484	voltages = ret;
2485
2486	for (i = 0; i < voltages; i++) {
2487		ret = regulator_list_voltage(regulator, i);
2488
2489		if (ret >= min_uV && ret <= max_uV)
2490			return 1;
2491	}
2492
2493	return 0;
2494}
2495EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2496
2497static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2498				       int min_uV, int max_uV,
2499				       unsigned *selector)
2500{
2501	struct pre_voltage_change_data data;
2502	int ret;
2503
2504	data.old_uV = _regulator_get_voltage(rdev);
2505	data.min_uV = min_uV;
2506	data.max_uV = max_uV;
2507	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2508				   &data);
2509	if (ret & NOTIFY_STOP_MASK)
2510		return -EINVAL;
2511
2512	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2513	if (ret >= 0)
2514		return ret;
2515
2516	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2517			     (void *)data.old_uV);
2518
2519	return ret;
2520}
2521
2522static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2523					   int uV, unsigned selector)
2524{
2525	struct pre_voltage_change_data data;
2526	int ret;
2527
2528	data.old_uV = _regulator_get_voltage(rdev);
2529	data.min_uV = uV;
2530	data.max_uV = uV;
2531	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2532				   &data);
2533	if (ret & NOTIFY_STOP_MASK)
2534		return -EINVAL;
2535
2536	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2537	if (ret >= 0)
2538		return ret;
2539
2540	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2541			     (void *)data.old_uV);
2542
2543	return ret;
2544}
2545
2546static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2547				     int min_uV, int max_uV)
2548{
2549	int ret;
2550	int delay = 0;
2551	int best_val = 0;
2552	unsigned int selector;
2553	int old_selector = -1;
2554
2555	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2556
2557	min_uV += rdev->constraints->uV_offset;
2558	max_uV += rdev->constraints->uV_offset;
2559
2560	/*
2561	 * If we can't obtain the old selector there is not enough
2562	 * info to call set_voltage_time_sel().
2563	 */
2564	if (_regulator_is_enabled(rdev) &&
2565	    rdev->desc->ops->set_voltage_time_sel &&
2566	    rdev->desc->ops->get_voltage_sel) {
2567		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2568		if (old_selector < 0)
2569			return old_selector;
2570	}
2571
2572	if (rdev->desc->ops->set_voltage) {
2573		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2574						  &selector);
2575
2576		if (ret >= 0) {
2577			if (rdev->desc->ops->list_voltage)
2578				best_val = rdev->desc->ops->list_voltage(rdev,
2579									 selector);
2580			else
2581				best_val = _regulator_get_voltage(rdev);
2582		}
2583
2584	} else if (rdev->desc->ops->set_voltage_sel) {
2585		if (rdev->desc->ops->map_voltage) {
2586			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2587							   max_uV);
2588		} else {
2589			if (rdev->desc->ops->list_voltage ==
2590			    regulator_list_voltage_linear)
2591				ret = regulator_map_voltage_linear(rdev,
2592								min_uV, max_uV);
2593			else if (rdev->desc->ops->list_voltage ==
2594				 regulator_list_voltage_linear_range)
2595				ret = regulator_map_voltage_linear_range(rdev,
2596								min_uV, max_uV);
2597			else
2598				ret = regulator_map_voltage_iterate(rdev,
2599								min_uV, max_uV);
2600		}
2601
2602		if (ret >= 0) {
2603			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2604			if (min_uV <= best_val && max_uV >= best_val) {
2605				selector = ret;
2606				if (old_selector == selector)
2607					ret = 0;
2608				else
2609					ret = _regulator_call_set_voltage_sel(
2610						rdev, best_val, selector);
2611			} else {
2612				ret = -EINVAL;
2613			}
2614		}
2615	} else {
2616		ret = -EINVAL;
2617	}
2618
2619	/* Call set_voltage_time_sel if successfully obtained old_selector */
2620	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2621		&& old_selector != selector) {
2622
2623		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2624						old_selector, selector);
2625		if (delay < 0) {
2626			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2627				  delay);
2628			delay = 0;
2629		}
2630
2631		/* Insert any necessary delays */
2632		if (delay >= 1000) {
2633			mdelay(delay / 1000);
2634			udelay(delay % 1000);
2635		} else if (delay) {
2636			udelay(delay);
2637		}
2638	}
2639
2640	if (ret == 0 && best_val >= 0) {
2641		unsigned long data = best_val;
2642
2643		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2644				     (void *)data);
2645	}
2646
2647	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2648
2649	return ret;
2650}
2651
2652/**
2653 * regulator_set_voltage - set regulator output voltage
2654 * @regulator: regulator source
2655 * @min_uV: Minimum required voltage in uV
2656 * @max_uV: Maximum acceptable voltage in uV
2657 *
2658 * Sets a voltage regulator to the desired output voltage. This can be set
2659 * during any regulator state. IOW, regulator can be disabled or enabled.
2660 *
2661 * If the regulator is enabled then the voltage will change to the new value
2662 * immediately otherwise if the regulator is disabled the regulator will
2663 * output at the new voltage when enabled.
2664 *
2665 * NOTE: If the regulator is shared between several devices then the lowest
2666 * request voltage that meets the system constraints will be used.
2667 * Regulator system constraints must be set for this regulator before
2668 * calling this function otherwise this call will fail.
2669 */
2670int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2671{
2672	struct regulator_dev *rdev = regulator->rdev;
2673	int ret = 0;
2674	int old_min_uV, old_max_uV;
2675	int current_uV;
2676
2677	mutex_lock(&rdev->mutex);
2678
2679	/* If we're setting the same range as last time the change
2680	 * should be a noop (some cpufreq implementations use the same
2681	 * voltage for multiple frequencies, for example).
2682	 */
2683	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2684		goto out;
2685
2686	/* If we're trying to set a range that overlaps the current voltage,
2687	 * return succesfully even though the regulator does not support
2688	 * changing the voltage.
2689	 */
2690	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2691		current_uV = _regulator_get_voltage(rdev);
2692		if (min_uV <= current_uV && current_uV <= max_uV) {
2693			regulator->min_uV = min_uV;
2694			regulator->max_uV = max_uV;
2695			goto out;
2696		}
2697	}
2698
2699	/* sanity check */
2700	if (!rdev->desc->ops->set_voltage &&
2701	    !rdev->desc->ops->set_voltage_sel) {
2702		ret = -EINVAL;
2703		goto out;
2704	}
2705
2706	/* constraints check */
2707	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2708	if (ret < 0)
2709		goto out;
2710
2711	/* restore original values in case of error */
2712	old_min_uV = regulator->min_uV;
2713	old_max_uV = regulator->max_uV;
2714	regulator->min_uV = min_uV;
2715	regulator->max_uV = max_uV;
2716
2717	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2718	if (ret < 0)
2719		goto out2;
2720
2721	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2722	if (ret < 0)
2723		goto out2;
2724
2725out:
2726	mutex_unlock(&rdev->mutex);
2727	return ret;
2728out2:
2729	regulator->min_uV = old_min_uV;
2730	regulator->max_uV = old_max_uV;
2731	mutex_unlock(&rdev->mutex);
2732	return ret;
2733}
2734EXPORT_SYMBOL_GPL(regulator_set_voltage);
2735
2736/**
2737 * regulator_set_voltage_time - get raise/fall time
2738 * @regulator: regulator source
2739 * @old_uV: starting voltage in microvolts
2740 * @new_uV: target voltage in microvolts
2741 *
2742 * Provided with the starting and ending voltage, this function attempts to
2743 * calculate the time in microseconds required to rise or fall to this new
2744 * voltage.
2745 */
2746int regulator_set_voltage_time(struct regulator *regulator,
2747			       int old_uV, int new_uV)
2748{
2749	struct regulator_dev *rdev = regulator->rdev;
2750	const struct regulator_ops *ops = rdev->desc->ops;
2751	int old_sel = -1;
2752	int new_sel = -1;
2753	int voltage;
2754	int i;
2755
2756	/* Currently requires operations to do this */
2757	if (!ops->list_voltage || !ops->set_voltage_time_sel
2758	    || !rdev->desc->n_voltages)
2759		return -EINVAL;
2760
2761	for (i = 0; i < rdev->desc->n_voltages; i++) {
2762		/* We only look for exact voltage matches here */
2763		voltage = regulator_list_voltage(regulator, i);
2764		if (voltage < 0)
2765			return -EINVAL;
2766		if (voltage == 0)
2767			continue;
2768		if (voltage == old_uV)
2769			old_sel = i;
2770		if (voltage == new_uV)
2771			new_sel = i;
2772	}
2773
2774	if (old_sel < 0 || new_sel < 0)
2775		return -EINVAL;
2776
2777	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2778}
2779EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2780
2781/**
2782 * regulator_set_voltage_time_sel - get raise/fall time
2783 * @rdev: regulator source device
2784 * @old_selector: selector for starting voltage
2785 * @new_selector: selector for target voltage
2786 *
2787 * Provided with the starting and target voltage selectors, this function
2788 * returns time in microseconds required to rise or fall to this new voltage
2789 *
2790 * Drivers providing ramp_delay in regulation_constraints can use this as their
2791 * set_voltage_time_sel() operation.
2792 */
2793int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2794				   unsigned int old_selector,
2795				   unsigned int new_selector)
2796{
2797	unsigned int ramp_delay = 0;
2798	int old_volt, new_volt;
2799
2800	if (rdev->constraints->ramp_delay)
2801		ramp_delay = rdev->constraints->ramp_delay;
2802	else if (rdev->desc->ramp_delay)
2803		ramp_delay = rdev->desc->ramp_delay;
2804
2805	if (ramp_delay == 0) {
2806		rdev_warn(rdev, "ramp_delay not set\n");
2807		return 0;
2808	}
2809
2810	/* sanity check */
2811	if (!rdev->desc->ops->list_voltage)
2812		return -EINVAL;
2813
2814	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2815	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2816
2817	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2818}
2819EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2820
2821/**
2822 * regulator_sync_voltage - re-apply last regulator output voltage
2823 * @regulator: regulator source
2824 *
2825 * Re-apply the last configured voltage.  This is intended to be used
2826 * where some external control source the consumer is cooperating with
2827 * has caused the configured voltage to change.
2828 */
2829int regulator_sync_voltage(struct regulator *regulator)
2830{
2831	struct regulator_dev *rdev = regulator->rdev;
2832	int ret, min_uV, max_uV;
2833
2834	mutex_lock(&rdev->mutex);
2835
2836	if (!rdev->desc->ops->set_voltage &&
2837	    !rdev->desc->ops->set_voltage_sel) {
2838		ret = -EINVAL;
2839		goto out;
2840	}
2841
2842	/* This is only going to work if we've had a voltage configured. */
2843	if (!regulator->min_uV && !regulator->max_uV) {
2844		ret = -EINVAL;
2845		goto out;
2846	}
2847
2848	min_uV = regulator->min_uV;
2849	max_uV = regulator->max_uV;
2850
2851	/* This should be a paranoia check... */
2852	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2853	if (ret < 0)
2854		goto out;
2855
2856	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2857	if (ret < 0)
2858		goto out;
2859
2860	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2861
2862out:
2863	mutex_unlock(&rdev->mutex);
2864	return ret;
2865}
2866EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2867
2868static int _regulator_get_voltage(struct regulator_dev *rdev)
2869{
2870	int sel, ret;
2871
2872	if (rdev->desc->ops->get_voltage_sel) {
2873		sel = rdev->desc->ops->get_voltage_sel(rdev);
2874		if (sel < 0)
2875			return sel;
2876		ret = rdev->desc->ops->list_voltage(rdev, sel);
2877	} else if (rdev->desc->ops->get_voltage) {
2878		ret = rdev->desc->ops->get_voltage(rdev);
2879	} else if (rdev->desc->ops->list_voltage) {
2880		ret = rdev->desc->ops->list_voltage(rdev, 0);
2881	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2882		ret = rdev->desc->fixed_uV;
2883	} else if (rdev->supply) {
2884		ret = regulator_get_voltage(rdev->supply);
2885	} else {
2886		return -EINVAL;
2887	}
2888
2889	if (ret < 0)
2890		return ret;
2891	return ret - rdev->constraints->uV_offset;
2892}
2893
2894/**
2895 * regulator_get_voltage - get regulator output voltage
2896 * @regulator: regulator source
2897 *
2898 * This returns the current regulator voltage in uV.
2899 *
2900 * NOTE: If the regulator is disabled it will return the voltage value. This
2901 * function should not be used to determine regulator state.
2902 */
2903int regulator_get_voltage(struct regulator *regulator)
2904{
2905	int ret;
2906
2907	mutex_lock(&regulator->rdev->mutex);
2908
2909	ret = _regulator_get_voltage(regulator->rdev);
2910
2911	mutex_unlock(&regulator->rdev->mutex);
2912
2913	return ret;
2914}
2915EXPORT_SYMBOL_GPL(regulator_get_voltage);
2916
2917/**
2918 * regulator_set_current_limit - set regulator output current limit
2919 * @regulator: regulator source
2920 * @min_uA: Minimum supported current in uA
2921 * @max_uA: Maximum supported current in uA
2922 *
2923 * Sets current sink to the desired output current. This can be set during
2924 * any regulator state. IOW, regulator can be disabled or enabled.
2925 *
2926 * If the regulator is enabled then the current will change to the new value
2927 * immediately otherwise if the regulator is disabled the regulator will
2928 * output at the new current when enabled.
2929 *
2930 * NOTE: Regulator system constraints must be set for this regulator before
2931 * calling this function otherwise this call will fail.
2932 */
2933int regulator_set_current_limit(struct regulator *regulator,
2934			       int min_uA, int max_uA)
2935{
2936	struct regulator_dev *rdev = regulator->rdev;
2937	int ret;
2938
2939	mutex_lock(&rdev->mutex);
2940
2941	/* sanity check */
2942	if (!rdev->desc->ops->set_current_limit) {
2943		ret = -EINVAL;
2944		goto out;
2945	}
2946
2947	/* constraints check */
2948	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2949	if (ret < 0)
2950		goto out;
2951
2952	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2953out:
2954	mutex_unlock(&rdev->mutex);
2955	return ret;
2956}
2957EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2958
2959static int _regulator_get_current_limit(struct regulator_dev *rdev)
2960{
2961	int ret;
2962
2963	mutex_lock(&rdev->mutex);
2964
2965	/* sanity check */
2966	if (!rdev->desc->ops->get_current_limit) {
2967		ret = -EINVAL;
2968		goto out;
2969	}
2970
2971	ret = rdev->desc->ops->get_current_limit(rdev);
2972out:
2973	mutex_unlock(&rdev->mutex);
2974	return ret;
2975}
2976
2977/**
2978 * regulator_get_current_limit - get regulator output current
2979 * @regulator: regulator source
2980 *
2981 * This returns the current supplied by the specified current sink in uA.
2982 *
2983 * NOTE: If the regulator is disabled it will return the current value. This
2984 * function should not be used to determine regulator state.
2985 */
2986int regulator_get_current_limit(struct regulator *regulator)
2987{
2988	return _regulator_get_current_limit(regulator->rdev);
2989}
2990EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2991
2992/**
2993 * regulator_set_mode - set regulator operating mode
2994 * @regulator: regulator source
2995 * @mode: operating mode - one of the REGULATOR_MODE constants
2996 *
2997 * Set regulator operating mode to increase regulator efficiency or improve
2998 * regulation performance.
2999 *
3000 * NOTE: Regulator system constraints must be set for this regulator before
3001 * calling this function otherwise this call will fail.
3002 */
3003int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3004{
3005	struct regulator_dev *rdev = regulator->rdev;
3006	int ret;
3007	int regulator_curr_mode;
3008
3009	mutex_lock(&rdev->mutex);
3010
3011	/* sanity check */
3012	if (!rdev->desc->ops->set_mode) {
3013		ret = -EINVAL;
3014		goto out;
3015	}
3016
3017	/* return if the same mode is requested */
3018	if (rdev->desc->ops->get_mode) {
3019		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3020		if (regulator_curr_mode == mode) {
3021			ret = 0;
3022			goto out;
3023		}
3024	}
3025
3026	/* constraints check */
3027	ret = regulator_mode_constrain(rdev, &mode);
3028	if (ret < 0)
3029		goto out;
3030
3031	ret = rdev->desc->ops->set_mode(rdev, mode);
3032out:
3033	mutex_unlock(&rdev->mutex);
3034	return ret;
3035}
3036EXPORT_SYMBOL_GPL(regulator_set_mode);
3037
3038static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3039{
3040	int ret;
3041
3042	mutex_lock(&rdev->mutex);
3043
3044	/* sanity check */
3045	if (!rdev->desc->ops->get_mode) {
3046		ret = -EINVAL;
3047		goto out;
3048	}
3049
3050	ret = rdev->desc->ops->get_mode(rdev);
3051out:
3052	mutex_unlock(&rdev->mutex);
3053	return ret;
3054}
3055
3056/**
3057 * regulator_get_mode - get regulator operating mode
3058 * @regulator: regulator source
3059 *
3060 * Get the current regulator operating mode.
3061 */
3062unsigned int regulator_get_mode(struct regulator *regulator)
3063{
3064	return _regulator_get_mode(regulator->rdev);
3065}
3066EXPORT_SYMBOL_GPL(regulator_get_mode);
3067
3068/**
3069 * regulator_set_load - set regulator load
3070 * @regulator: regulator source
3071 * @uA_load: load current
3072 *
3073 * Notifies the regulator core of a new device load. This is then used by
3074 * DRMS (if enabled by constraints) to set the most efficient regulator
3075 * operating mode for the new regulator loading.
3076 *
3077 * Consumer devices notify their supply regulator of the maximum power
3078 * they will require (can be taken from device datasheet in the power
3079 * consumption tables) when they change operational status and hence power
3080 * state. Examples of operational state changes that can affect power
3081 * consumption are :-
3082 *
3083 *    o Device is opened / closed.
3084 *    o Device I/O is about to begin or has just finished.
3085 *    o Device is idling in between work.
3086 *
3087 * This information is also exported via sysfs to userspace.
3088 *
3089 * DRMS will sum the total requested load on the regulator and change
3090 * to the most efficient operating mode if platform constraints allow.
3091 *
3092 * On error a negative errno is returned.
3093 */
3094int regulator_set_load(struct regulator *regulator, int uA_load)
3095{
3096	struct regulator_dev *rdev = regulator->rdev;
3097	int ret;
3098
3099	mutex_lock(&rdev->mutex);
3100	regulator->uA_load = uA_load;
3101	ret = drms_uA_update(rdev);
3102	mutex_unlock(&rdev->mutex);
3103
3104	return ret;
3105}
3106EXPORT_SYMBOL_GPL(regulator_set_load);
3107
3108/**
3109 * regulator_allow_bypass - allow the regulator to go into bypass mode
3110 *
3111 * @regulator: Regulator to configure
3112 * @enable: enable or disable bypass mode
3113 *
3114 * Allow the regulator to go into bypass mode if all other consumers
3115 * for the regulator also enable bypass mode and the machine
3116 * constraints allow this.  Bypass mode means that the regulator is
3117 * simply passing the input directly to the output with no regulation.
3118 */
3119int regulator_allow_bypass(struct regulator *regulator, bool enable)
3120{
3121	struct regulator_dev *rdev = regulator->rdev;
3122	int ret = 0;
3123
3124	if (!rdev->desc->ops->set_bypass)
3125		return 0;
3126
3127	if (rdev->constraints &&
3128	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3129		return 0;
3130
3131	mutex_lock(&rdev->mutex);
3132
3133	if (enable && !regulator->bypass) {
3134		rdev->bypass_count++;
3135
3136		if (rdev->bypass_count == rdev->open_count) {
3137			ret = rdev->desc->ops->set_bypass(rdev, enable);
3138			if (ret != 0)
3139				rdev->bypass_count--;
3140		}
3141
3142	} else if (!enable && regulator->bypass) {
3143		rdev->bypass_count--;
3144
3145		if (rdev->bypass_count != rdev->open_count) {
3146			ret = rdev->desc->ops->set_bypass(rdev, enable);
3147			if (ret != 0)
3148				rdev->bypass_count++;
3149		}
3150	}
3151
3152	if (ret == 0)
3153		regulator->bypass = enable;
3154
3155	mutex_unlock(&rdev->mutex);
3156
3157	return ret;
3158}
3159EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3160
3161/**
3162 * regulator_register_notifier - register regulator event notifier
3163 * @regulator: regulator source
3164 * @nb: notifier block
3165 *
3166 * Register notifier block to receive regulator events.
3167 */
3168int regulator_register_notifier(struct regulator *regulator,
3169			      struct notifier_block *nb)
3170{
3171	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3172						nb);
3173}
3174EXPORT_SYMBOL_GPL(regulator_register_notifier);
3175
3176/**
3177 * regulator_unregister_notifier - unregister regulator event notifier
3178 * @regulator: regulator source
3179 * @nb: notifier block
3180 *
3181 * Unregister regulator event notifier block.
3182 */
3183int regulator_unregister_notifier(struct regulator *regulator,
3184				struct notifier_block *nb)
3185{
3186	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3187						  nb);
3188}
3189EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3190
3191/* notify regulator consumers and downstream regulator consumers.
3192 * Note mutex must be held by caller.
3193 */
3194static int _notifier_call_chain(struct regulator_dev *rdev,
3195				  unsigned long event, void *data)
3196{
3197	/* call rdev chain first */
3198	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3199}
3200
3201/**
3202 * regulator_bulk_get - get multiple regulator consumers
3203 *
3204 * @dev:           Device to supply
3205 * @num_consumers: Number of consumers to register
3206 * @consumers:     Configuration of consumers; clients are stored here.
3207 *
3208 * @return 0 on success, an errno on failure.
3209 *
3210 * This helper function allows drivers to get several regulator
3211 * consumers in one operation.  If any of the regulators cannot be
3212 * acquired then any regulators that were allocated will be freed
3213 * before returning to the caller.
3214 */
3215int regulator_bulk_get(struct device *dev, int num_consumers,
3216		       struct regulator_bulk_data *consumers)
3217{
3218	int i;
3219	int ret;
3220
3221	for (i = 0; i < num_consumers; i++)
3222		consumers[i].consumer = NULL;
3223
3224	for (i = 0; i < num_consumers; i++) {
3225		consumers[i].consumer = regulator_get(dev,
3226						      consumers[i].supply);
3227		if (IS_ERR(consumers[i].consumer)) {
3228			ret = PTR_ERR(consumers[i].consumer);
3229			dev_err(dev, "Failed to get supply '%s': %d\n",
3230				consumers[i].supply, ret);
3231			consumers[i].consumer = NULL;
3232			goto err;
3233		}
3234	}
3235
3236	return 0;
3237
3238err:
3239	while (--i >= 0)
3240		regulator_put(consumers[i].consumer);
3241
3242	return ret;
3243}
3244EXPORT_SYMBOL_GPL(regulator_bulk_get);
3245
3246static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3247{
3248	struct regulator_bulk_data *bulk = data;
3249
3250	bulk->ret = regulator_enable(bulk->consumer);
3251}
3252
3253/**
3254 * regulator_bulk_enable - enable multiple regulator consumers
3255 *
3256 * @num_consumers: Number of consumers
3257 * @consumers:     Consumer data; clients are stored here.
3258 * @return         0 on success, an errno on failure
3259 *
3260 * This convenience API allows consumers to enable multiple regulator
3261 * clients in a single API call.  If any consumers cannot be enabled
3262 * then any others that were enabled will be disabled again prior to
3263 * return.
3264 */
3265int regulator_bulk_enable(int num_consumers,
3266			  struct regulator_bulk_data *consumers)
3267{
3268	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3269	int i;
3270	int ret = 0;
3271
3272	for (i = 0; i < num_consumers; i++) {
3273		if (consumers[i].consumer->always_on)
3274			consumers[i].ret = 0;
3275		else
3276			async_schedule_domain(regulator_bulk_enable_async,
3277					      &consumers[i], &async_domain);
3278	}
3279
3280	async_synchronize_full_domain(&async_domain);
3281
3282	/* If any consumer failed we need to unwind any that succeeded */
3283	for (i = 0; i < num_consumers; i++) {
3284		if (consumers[i].ret != 0) {
3285			ret = consumers[i].ret;
3286			goto err;
3287		}
3288	}
3289
3290	return 0;
3291
3292err:
3293	for (i = 0; i < num_consumers; i++) {
3294		if (consumers[i].ret < 0)
3295			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3296			       consumers[i].ret);
3297		else
3298			regulator_disable(consumers[i].consumer);
3299	}
3300
3301	return ret;
3302}
3303EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3304
3305/**
3306 * regulator_bulk_disable - disable multiple regulator consumers
3307 *
3308 * @num_consumers: Number of consumers
3309 * @consumers:     Consumer data; clients are stored here.
3310 * @return         0 on success, an errno on failure
3311 *
3312 * This convenience API allows consumers to disable multiple regulator
3313 * clients in a single API call.  If any consumers cannot be disabled
3314 * then any others that were disabled will be enabled again prior to
3315 * return.
3316 */
3317int regulator_bulk_disable(int num_consumers,
3318			   struct regulator_bulk_data *consumers)
3319{
3320	int i;
3321	int ret, r;
3322
3323	for (i = num_consumers - 1; i >= 0; --i) {
3324		ret = regulator_disable(consumers[i].consumer);
3325		if (ret != 0)
3326			goto err;
3327	}
3328
3329	return 0;
3330
3331err:
3332	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3333	for (++i; i < num_consumers; ++i) {
3334		r = regulator_enable(consumers[i].consumer);
3335		if (r != 0)
3336			pr_err("Failed to reename %s: %d\n",
3337			       consumers[i].supply, r);
3338	}
3339
3340	return ret;
3341}
3342EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3343
3344/**
3345 * regulator_bulk_force_disable - force disable multiple regulator consumers
3346 *
3347 * @num_consumers: Number of consumers
3348 * @consumers:     Consumer data; clients are stored here.
3349 * @return         0 on success, an errno on failure
3350 *
3351 * This convenience API allows consumers to forcibly disable multiple regulator
3352 * clients in a single API call.
3353 * NOTE: This should be used for situations when device damage will
3354 * likely occur if the regulators are not disabled (e.g. over temp).
3355 * Although regulator_force_disable function call for some consumers can
3356 * return error numbers, the function is called for all consumers.
3357 */
3358int regulator_bulk_force_disable(int num_consumers,
3359			   struct regulator_bulk_data *consumers)
3360{
3361	int i;
3362	int ret;
3363
3364	for (i = 0; i < num_consumers; i++)
3365		consumers[i].ret =
3366			    regulator_force_disable(consumers[i].consumer);
3367
3368	for (i = 0; i < num_consumers; i++) {
3369		if (consumers[i].ret != 0) {
3370			ret = consumers[i].ret;
3371			goto out;
3372		}
3373	}
3374
3375	return 0;
3376out:
3377	return ret;
3378}
3379EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3380
3381/**
3382 * regulator_bulk_free - free multiple regulator consumers
3383 *
3384 * @num_consumers: Number of consumers
3385 * @consumers:     Consumer data; clients are stored here.
3386 *
3387 * This convenience API allows consumers to free multiple regulator
3388 * clients in a single API call.
3389 */
3390void regulator_bulk_free(int num_consumers,
3391			 struct regulator_bulk_data *consumers)
3392{
3393	int i;
3394
3395	for (i = 0; i < num_consumers; i++) {
3396		regulator_put(consumers[i].consumer);
3397		consumers[i].consumer = NULL;
3398	}
3399}
3400EXPORT_SYMBOL_GPL(regulator_bulk_free);
3401
3402/**
3403 * regulator_notifier_call_chain - call regulator event notifier
3404 * @rdev: regulator source
3405 * @event: notifier block
3406 * @data: callback-specific data.
3407 *
3408 * Called by regulator drivers to notify clients a regulator event has
3409 * occurred. We also notify regulator clients downstream.
3410 * Note lock must be held by caller.
3411 */
3412int regulator_notifier_call_chain(struct regulator_dev *rdev,
3413				  unsigned long event, void *data)
3414{
3415	_notifier_call_chain(rdev, event, data);
3416	return NOTIFY_DONE;
3417
3418}
3419EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3420
3421/**
3422 * regulator_mode_to_status - convert a regulator mode into a status
3423 *
3424 * @mode: Mode to convert
3425 *
3426 * Convert a regulator mode into a status.
3427 */
3428int regulator_mode_to_status(unsigned int mode)
3429{
3430	switch (mode) {
3431	case REGULATOR_MODE_FAST:
3432		return REGULATOR_STATUS_FAST;
3433	case REGULATOR_MODE_NORMAL:
3434		return REGULATOR_STATUS_NORMAL;
3435	case REGULATOR_MODE_IDLE:
3436		return REGULATOR_STATUS_IDLE;
3437	case REGULATOR_MODE_STANDBY:
3438		return REGULATOR_STATUS_STANDBY;
3439	default:
3440		return REGULATOR_STATUS_UNDEFINED;
3441	}
3442}
3443EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3444
3445static struct attribute *regulator_dev_attrs[] = {
3446	&dev_attr_name.attr,
3447	&dev_attr_num_users.attr,
3448	&dev_attr_type.attr,
3449	&dev_attr_microvolts.attr,
3450	&dev_attr_microamps.attr,
3451	&dev_attr_opmode.attr,
3452	&dev_attr_state.attr,
3453	&dev_attr_status.attr,
3454	&dev_attr_bypass.attr,
3455	&dev_attr_requested_microamps.attr,
3456	&dev_attr_min_microvolts.attr,
3457	&dev_attr_max_microvolts.attr,
3458	&dev_attr_min_microamps.attr,
3459	&dev_attr_max_microamps.attr,
3460	&dev_attr_suspend_standby_state.attr,
3461	&dev_attr_suspend_mem_state.attr,
3462	&dev_attr_suspend_disk_state.attr,
3463	&dev_attr_suspend_standby_microvolts.attr,
3464	&dev_attr_suspend_mem_microvolts.attr,
3465	&dev_attr_suspend_disk_microvolts.attr,
3466	&dev_attr_suspend_standby_mode.attr,
3467	&dev_attr_suspend_mem_mode.attr,
3468	&dev_attr_suspend_disk_mode.attr,
3469	NULL
3470};
3471
3472/*
3473 * To avoid cluttering sysfs (and memory) with useless state, only
3474 * create attributes that can be meaningfully displayed.
3475 */
3476static umode_t regulator_attr_is_visible(struct kobject *kobj,
3477					 struct attribute *attr, int idx)
3478{
3479	struct device *dev = kobj_to_dev(kobj);
3480	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3481	const struct regulator_ops *ops = rdev->desc->ops;
3482	umode_t mode = attr->mode;
3483
3484	/* these three are always present */
3485	if (attr == &dev_attr_name.attr ||
3486	    attr == &dev_attr_num_users.attr ||
3487	    attr == &dev_attr_type.attr)
3488		return mode;
3489
3490	/* some attributes need specific methods to be displayed */
3491	if (attr == &dev_attr_microvolts.attr) {
3492		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3493		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3494		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3495		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3496			return mode;
3497		return 0;
3498	}
3499
3500	if (attr == &dev_attr_microamps.attr)
3501		return ops->get_current_limit ? mode : 0;
3502
3503	if (attr == &dev_attr_opmode.attr)
3504		return ops->get_mode ? mode : 0;
3505
3506	if (attr == &dev_attr_state.attr)
3507		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3508
3509	if (attr == &dev_attr_status.attr)
3510		return ops->get_status ? mode : 0;
3511
3512	if (attr == &dev_attr_bypass.attr)
3513		return ops->get_bypass ? mode : 0;
3514
3515	/* some attributes are type-specific */
3516	if (attr == &dev_attr_requested_microamps.attr)
3517		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3518
3519	/* constraints need specific supporting methods */
3520	if (attr == &dev_attr_min_microvolts.attr ||
3521	    attr == &dev_attr_max_microvolts.attr)
3522		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3523
3524	if (attr == &dev_attr_min_microamps.attr ||
3525	    attr == &dev_attr_max_microamps.attr)
3526		return ops->set_current_limit ? mode : 0;
3527
3528	if (attr == &dev_attr_suspend_standby_state.attr ||
3529	    attr == &dev_attr_suspend_mem_state.attr ||
3530	    attr == &dev_attr_suspend_disk_state.attr)
3531		return mode;
3532
3533	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3534	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3535	    attr == &dev_attr_suspend_disk_microvolts.attr)
3536		return ops->set_suspend_voltage ? mode : 0;
3537
3538	if (attr == &dev_attr_suspend_standby_mode.attr ||
3539	    attr == &dev_attr_suspend_mem_mode.attr ||
3540	    attr == &dev_attr_suspend_disk_mode.attr)
3541		return ops->set_suspend_mode ? mode : 0;
3542
3543	return mode;
3544}
3545
3546static const struct attribute_group regulator_dev_group = {
3547	.attrs = regulator_dev_attrs,
3548	.is_visible = regulator_attr_is_visible,
3549};
3550
3551static const struct attribute_group *regulator_dev_groups[] = {
3552	&regulator_dev_group,
3553	NULL
3554};
3555
3556static void regulator_dev_release(struct device *dev)
3557{
3558	struct regulator_dev *rdev = dev_get_drvdata(dev);
3559	kfree(rdev);
3560}
3561
3562static struct class regulator_class = {
3563	.name = "regulator",
3564	.dev_release = regulator_dev_release,
3565	.dev_groups = regulator_dev_groups,
3566};
3567
3568static void rdev_init_debugfs(struct regulator_dev *rdev)
3569{
3570	struct device *parent = rdev->dev.parent;
3571	const char *rname = rdev_get_name(rdev);
3572	char name[NAME_MAX];
3573
3574	/* Avoid duplicate debugfs directory names */
3575	if (parent && rname == rdev->desc->name) {
3576		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3577			 rname);
3578		rname = name;
3579	}
3580
3581	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3582	if (!rdev->debugfs) {
3583		rdev_warn(rdev, "Failed to create debugfs directory\n");
3584		return;
3585	}
3586
3587	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3588			   &rdev->use_count);
3589	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3590			   &rdev->open_count);
3591	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3592			   &rdev->bypass_count);
3593}
3594
3595static int regulator_register_resolve_supply(struct device *dev, void *data)
3596{
3597	return regulator_resolve_supply(dev_to_rdev(dev));
3598}
3599
3600/**
3601 * regulator_register - register regulator
3602 * @regulator_desc: regulator to register
3603 * @cfg: runtime configuration for regulator
3604 *
3605 * Called by regulator drivers to register a regulator.
3606 * Returns a valid pointer to struct regulator_dev on success
3607 * or an ERR_PTR() on error.
3608 */
3609struct regulator_dev *
3610regulator_register(const struct regulator_desc *regulator_desc,
3611		   const struct regulator_config *cfg)
3612{
3613	const struct regulation_constraints *constraints = NULL;
3614	const struct regulator_init_data *init_data;
3615	struct regulator_config *config = NULL;
3616	static atomic_t regulator_no = ATOMIC_INIT(-1);
3617	struct regulator_dev *rdev;
3618	struct device *dev;
3619	int ret, i;
3620
3621	if (regulator_desc == NULL || cfg == NULL)
3622		return ERR_PTR(-EINVAL);
3623
3624	dev = cfg->dev;
3625	WARN_ON(!dev);
3626
3627	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3628		return ERR_PTR(-EINVAL);
3629
3630	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3631	    regulator_desc->type != REGULATOR_CURRENT)
3632		return ERR_PTR(-EINVAL);
3633
3634	/* Only one of each should be implemented */
3635	WARN_ON(regulator_desc->ops->get_voltage &&
3636		regulator_desc->ops->get_voltage_sel);
3637	WARN_ON(regulator_desc->ops->set_voltage &&
3638		regulator_desc->ops->set_voltage_sel);
3639
3640	/* If we're using selectors we must implement list_voltage. */
3641	if (regulator_desc->ops->get_voltage_sel &&
3642	    !regulator_desc->ops->list_voltage) {
3643		return ERR_PTR(-EINVAL);
3644	}
3645	if (regulator_desc->ops->set_voltage_sel &&
3646	    !regulator_desc->ops->list_voltage) {
3647		return ERR_PTR(-EINVAL);
3648	}
3649
3650	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3651	if (rdev == NULL)
3652		return ERR_PTR(-ENOMEM);
3653
3654	/*
3655	 * Duplicate the config so the driver could override it after
3656	 * parsing init data.
3657	 */
3658	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3659	if (config == NULL) {
3660		kfree(rdev);
3661		return ERR_PTR(-ENOMEM);
3662	}
3663
3664	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3665					       &rdev->dev.of_node);
3666	if (!init_data) {
3667		init_data = config->init_data;
3668		rdev->dev.of_node = of_node_get(config->of_node);
3669	}
3670
3671	mutex_lock(&regulator_list_mutex);
3672
3673	mutex_init(&rdev->mutex);
3674	rdev->reg_data = config->driver_data;
3675	rdev->owner = regulator_desc->owner;
3676	rdev->desc = regulator_desc;
3677	if (config->regmap)
3678		rdev->regmap = config->regmap;
3679	else if (dev_get_regmap(dev, NULL))
3680		rdev->regmap = dev_get_regmap(dev, NULL);
3681	else if (dev->parent)
3682		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3683	INIT_LIST_HEAD(&rdev->consumer_list);
3684	INIT_LIST_HEAD(&rdev->list);
3685	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3686	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3687
3688	/* preform any regulator specific init */
3689	if (init_data && init_data->regulator_init) {
3690		ret = init_data->regulator_init(rdev->reg_data);
3691		if (ret < 0)
3692			goto clean;
3693	}
3694
3695	/* register with sysfs */
3696	rdev->dev.class = &regulator_class;
3697	rdev->dev.parent = dev;
3698	dev_set_name(&rdev->dev, "regulator.%lu",
3699		    (unsigned long) atomic_inc_return(&regulator_no));
3700	ret = device_register(&rdev->dev);
3701	if (ret != 0) {
3702		put_device(&rdev->dev);
3703		goto clean;
3704	}
3705
3706	dev_set_drvdata(&rdev->dev, rdev);
3707
3708	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3709	    gpio_is_valid(config->ena_gpio)) {
3710		ret = regulator_ena_gpio_request(rdev, config);
3711		if (ret != 0) {
3712			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3713				 config->ena_gpio, ret);
3714			goto wash;
3715		}
3716	}
3717
3718	/* set regulator constraints */
3719	if (init_data)
3720		constraints = &init_data->constraints;
3721
3722	ret = set_machine_constraints(rdev, constraints);
3723	if (ret < 0)
3724		goto scrub;
3725
3726	if (init_data && init_data->supply_regulator)
3727		rdev->supply_name = init_data->supply_regulator;
3728	else if (regulator_desc->supply_name)
3729		rdev->supply_name = regulator_desc->supply_name;
3730
3731	/* add consumers devices */
3732	if (init_data) {
3733		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3734			ret = set_consumer_device_supply(rdev,
3735				init_data->consumer_supplies[i].dev_name,
3736				init_data->consumer_supplies[i].supply);
3737			if (ret < 0) {
3738				dev_err(dev, "Failed to set supply %s\n",
3739					init_data->consumer_supplies[i].supply);
3740				goto unset_supplies;
3741			}
3742		}
3743	}
3744
3745	list_add(&rdev->list, &regulator_list);
3746
3747	rdev_init_debugfs(rdev);
3748
3749	/* try to resolve regulators supply since a new one was registered */
3750	class_for_each_device(&regulator_class, NULL, NULL,
3751			      regulator_register_resolve_supply);
3752out:
3753	mutex_unlock(&regulator_list_mutex);
3754	kfree(config);
3755	return rdev;
3756
3757unset_supplies:
3758	unset_regulator_supplies(rdev);
3759
3760scrub:
3761	regulator_ena_gpio_free(rdev);
3762	kfree(rdev->constraints);
3763wash:
3764	device_unregister(&rdev->dev);
3765	/* device core frees rdev */
3766	rdev = ERR_PTR(ret);
3767	goto out;
3768
3769clean:
3770	kfree(rdev);
3771	rdev = ERR_PTR(ret);
3772	goto out;
3773}
3774EXPORT_SYMBOL_GPL(regulator_register);
3775
3776/**
3777 * regulator_unregister - unregister regulator
3778 * @rdev: regulator to unregister
3779 *
3780 * Called by regulator drivers to unregister a regulator.
3781 */
3782void regulator_unregister(struct regulator_dev *rdev)
3783{
3784	if (rdev == NULL)
3785		return;
3786
3787	if (rdev->supply) {
3788		while (rdev->use_count--)
3789			regulator_disable(rdev->supply);
3790		regulator_put(rdev->supply);
3791	}
3792	mutex_lock(&regulator_list_mutex);
3793	debugfs_remove_recursive(rdev->debugfs);
3794	flush_work(&rdev->disable_work.work);
3795	WARN_ON(rdev->open_count);
3796	unset_regulator_supplies(rdev);
3797	list_del(&rdev->list);
3798	kfree(rdev->constraints);
3799	regulator_ena_gpio_free(rdev);
3800	of_node_put(rdev->dev.of_node);
3801	device_unregister(&rdev->dev);
3802	mutex_unlock(&regulator_list_mutex);
3803}
3804EXPORT_SYMBOL_GPL(regulator_unregister);
3805
3806/**
3807 * regulator_suspend_prepare - prepare regulators for system wide suspend
3808 * @state: system suspend state
3809 *
3810 * Configure each regulator with it's suspend operating parameters for state.
3811 * This will usually be called by machine suspend code prior to supending.
3812 */
3813int regulator_suspend_prepare(suspend_state_t state)
3814{
3815	struct regulator_dev *rdev;
3816	int ret = 0;
3817
3818	/* ON is handled by regulator active state */
3819	if (state == PM_SUSPEND_ON)
3820		return -EINVAL;
3821
3822	mutex_lock(&regulator_list_mutex);
3823	list_for_each_entry(rdev, &regulator_list, list) {
3824
3825		mutex_lock(&rdev->mutex);
3826		ret = suspend_prepare(rdev, state);
3827		mutex_unlock(&rdev->mutex);
3828
3829		if (ret < 0) {
3830			rdev_err(rdev, "failed to prepare\n");
3831			goto out;
3832		}
3833	}
3834out:
3835	mutex_unlock(&regulator_list_mutex);
3836	return ret;
3837}
3838EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3839
3840/**
3841 * regulator_suspend_finish - resume regulators from system wide suspend
3842 *
3843 * Turn on regulators that might be turned off by regulator_suspend_prepare
3844 * and that should be turned on according to the regulators properties.
3845 */
3846int regulator_suspend_finish(void)
3847{
3848	struct regulator_dev *rdev;
3849	int ret = 0, error;
3850
3851	mutex_lock(&regulator_list_mutex);
3852	list_for_each_entry(rdev, &regulator_list, list) {
3853		mutex_lock(&rdev->mutex);
3854		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3855			if (!_regulator_is_enabled(rdev)) {
3856				error = _regulator_do_enable(rdev);
3857				if (error)
3858					ret = error;
3859			}
3860		} else {
3861			if (!have_full_constraints())
3862				goto unlock;
3863			if (!_regulator_is_enabled(rdev))
3864				goto unlock;
3865
3866			error = _regulator_do_disable(rdev);
3867			if (error)
3868				ret = error;
3869		}
3870unlock:
3871		mutex_unlock(&rdev->mutex);
3872	}
3873	mutex_unlock(&regulator_list_mutex);
3874	return ret;
3875}
3876EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3877
3878/**
3879 * regulator_has_full_constraints - the system has fully specified constraints
3880 *
3881 * Calling this function will cause the regulator API to disable all
3882 * regulators which have a zero use count and don't have an always_on
3883 * constraint in a late_initcall.
3884 *
3885 * The intention is that this will become the default behaviour in a
3886 * future kernel release so users are encouraged to use this facility
3887 * now.
3888 */
3889void regulator_has_full_constraints(void)
3890{
3891	has_full_constraints = 1;
3892}
3893EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3894
3895/**
3896 * rdev_get_drvdata - get rdev regulator driver data
3897 * @rdev: regulator
3898 *
3899 * Get rdev regulator driver private data. This call can be used in the
3900 * regulator driver context.
3901 */
3902void *rdev_get_drvdata(struct regulator_dev *rdev)
3903{
3904	return rdev->reg_data;
3905}
3906EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3907
3908/**
3909 * regulator_get_drvdata - get regulator driver data
3910 * @regulator: regulator
3911 *
3912 * Get regulator driver private data. This call can be used in the consumer
3913 * driver context when non API regulator specific functions need to be called.
3914 */
3915void *regulator_get_drvdata(struct regulator *regulator)
3916{
3917	return regulator->rdev->reg_data;
3918}
3919EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3920
3921/**
3922 * regulator_set_drvdata - set regulator driver data
3923 * @regulator: regulator
3924 * @data: data
3925 */
3926void regulator_set_drvdata(struct regulator *regulator, void *data)
3927{
3928	regulator->rdev->reg_data = data;
3929}
3930EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3931
3932/**
3933 * regulator_get_id - get regulator ID
3934 * @rdev: regulator
3935 */
3936int rdev_get_id(struct regulator_dev *rdev)
3937{
3938	return rdev->desc->id;
3939}
3940EXPORT_SYMBOL_GPL(rdev_get_id);
3941
3942struct device *rdev_get_dev(struct regulator_dev *rdev)
3943{
3944	return &rdev->dev;
3945}
3946EXPORT_SYMBOL_GPL(rdev_get_dev);
3947
3948void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3949{
3950	return reg_init_data->driver_data;
3951}
3952EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3953
3954#ifdef CONFIG_DEBUG_FS
3955static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3956				    size_t count, loff_t *ppos)
3957{
3958	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3959	ssize_t len, ret = 0;
3960	struct regulator_map *map;
3961
3962	if (!buf)
3963		return -ENOMEM;
3964
3965	list_for_each_entry(map, &regulator_map_list, list) {
3966		len = snprintf(buf + ret, PAGE_SIZE - ret,
3967			       "%s -> %s.%s\n",
3968			       rdev_get_name(map->regulator), map->dev_name,
3969			       map->supply);
3970		if (len >= 0)
3971			ret += len;
3972		if (ret > PAGE_SIZE) {
3973			ret = PAGE_SIZE;
3974			break;
3975		}
3976	}
3977
3978	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3979
3980	kfree(buf);
3981
3982	return ret;
3983}
3984#endif
3985
3986static const struct file_operations supply_map_fops = {
3987#ifdef CONFIG_DEBUG_FS
3988	.read = supply_map_read_file,
3989	.llseek = default_llseek,
3990#endif
3991};
3992
3993#ifdef CONFIG_DEBUG_FS
3994static void regulator_summary_show_subtree(struct seq_file *s,
3995					   struct regulator_dev *rdev,
3996					   int level)
3997{
3998	struct list_head *list = s->private;
3999	struct regulator_dev *child;
4000	struct regulation_constraints *c;
4001	struct regulator *consumer;
4002
4003	if (!rdev)
4004		return;
4005
4006	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4007		   level * 3 + 1, "",
4008		   30 - level * 3, rdev_get_name(rdev),
4009		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4010
4011	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4012	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4013
4014	c = rdev->constraints;
4015	if (c) {
4016		switch (rdev->desc->type) {
4017		case REGULATOR_VOLTAGE:
4018			seq_printf(s, "%5dmV %5dmV ",
4019				   c->min_uV / 1000, c->max_uV / 1000);
4020			break;
4021		case REGULATOR_CURRENT:
4022			seq_printf(s, "%5dmA %5dmA ",
4023				   c->min_uA / 1000, c->max_uA / 1000);
4024			break;
4025		}
4026	}
4027
4028	seq_puts(s, "\n");
4029
4030	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4031		if (consumer->dev->class == &regulator_class)
4032			continue;
4033
4034		seq_printf(s, "%*s%-*s ",
4035			   (level + 1) * 3 + 1, "",
4036			   30 - (level + 1) * 3, dev_name(consumer->dev));
4037
4038		switch (rdev->desc->type) {
4039		case REGULATOR_VOLTAGE:
4040			seq_printf(s, "%37dmV %5dmV",
4041				   consumer->min_uV / 1000,
4042				   consumer->max_uV / 1000);
4043			break;
4044		case REGULATOR_CURRENT:
4045			break;
4046		}
4047
4048		seq_puts(s, "\n");
4049	}
4050
4051	list_for_each_entry(child, list, list) {
4052		/* handle only non-root regulators supplied by current rdev */
4053		if (!child->supply || child->supply->rdev != rdev)
4054			continue;
4055
4056		regulator_summary_show_subtree(s, child, level + 1);
4057	}
4058}
4059
4060static int regulator_summary_show(struct seq_file *s, void *data)
4061{
4062	struct list_head *list = s->private;
4063	struct regulator_dev *rdev;
4064
4065	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4066	seq_puts(s, "-------------------------------------------------------------------------------\n");
4067
4068	mutex_lock(&regulator_list_mutex);
4069
4070	list_for_each_entry(rdev, list, list) {
4071		if (rdev->supply)
4072			continue;
4073
4074		regulator_summary_show_subtree(s, rdev, 0);
4075	}
4076
4077	mutex_unlock(&regulator_list_mutex);
4078
4079	return 0;
4080}
4081
4082static int regulator_summary_open(struct inode *inode, struct file *file)
4083{
4084	return single_open(file, regulator_summary_show, inode->i_private);
4085}
4086#endif
4087
4088static const struct file_operations regulator_summary_fops = {
4089#ifdef CONFIG_DEBUG_FS
4090	.open		= regulator_summary_open,
4091	.read		= seq_read,
4092	.llseek		= seq_lseek,
4093	.release	= single_release,
4094#endif
4095};
4096
4097static int __init regulator_init(void)
4098{
4099	int ret;
4100
4101	ret = class_register(&regulator_class);
4102
4103	debugfs_root = debugfs_create_dir("regulator", NULL);
4104	if (!debugfs_root)
4105		pr_warn("regulator: Failed to create debugfs directory\n");
4106
4107	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4108			    &supply_map_fops);
4109
4110	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4111			    &regulator_list, &regulator_summary_fops);
4112
4113	regulator_dummy_init();
4114
4115	return ret;
4116}
4117
4118/* init early to allow our consumers to complete system booting */
4119core_initcall(regulator_init);
4120
4121static int __init regulator_late_cleanup(struct device *dev, void *data)
4122{
4123	struct regulator_dev *rdev = dev_to_rdev(dev);
4124	const struct regulator_ops *ops = rdev->desc->ops;
4125	struct regulation_constraints *c = rdev->constraints;
4126	int enabled, ret;
4127
4128	if (c && c->always_on)
4129		return 0;
4130
4131	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4132		return 0;
4133
4134	mutex_lock(&rdev->mutex);
4135
4136	if (rdev->use_count)
4137		goto unlock;
4138
4139	/* If we can't read the status assume it's on. */
4140	if (ops->is_enabled)
4141		enabled = ops->is_enabled(rdev);
4142	else
4143		enabled = 1;
4144
4145	if (!enabled)
4146		goto unlock;
4147
4148	if (have_full_constraints()) {
4149		/* We log since this may kill the system if it goes
4150		 * wrong. */
4151		rdev_info(rdev, "disabling\n");
4152		ret = _regulator_do_disable(rdev);
4153		if (ret != 0)
4154			rdev_err(rdev, "couldn't disable: %d\n", ret);
4155	} else {
4156		/* The intention is that in future we will
4157		 * assume that full constraints are provided
4158		 * so warn even if we aren't going to do
4159		 * anything here.
4160		 */
4161		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4162	}
4163
4164unlock:
4165	mutex_unlock(&rdev->mutex);
4166
4167	return 0;
4168}
4169
4170static int __init regulator_init_complete(void)
4171{
4172	/*
4173	 * Since DT doesn't provide an idiomatic mechanism for
4174	 * enabling full constraints and since it's much more natural
4175	 * with DT to provide them just assume that a DT enabled
4176	 * system has full constraints.
4177	 */
4178	if (of_have_populated_dt())
4179		has_full_constraints = true;
4180
4181	/* If we have a full configuration then disable any regulators
4182	 * we have permission to change the status for and which are
4183	 * not in use or always_on.  This is effectively the default
4184	 * for DT and ACPI as they have full constraints.
4185	 */
4186	class_for_each_device(&regulator_class, NULL, NULL,
4187			      regulator_late_cleanup);
4188
4189	return 0;
4190}
4191late_initcall_sync(regulator_init_complete);
4192