1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING.  If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 *  commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 *    communication.
30 *
31 */
32
33#include <linux/kernel.h>
34#include <linux/init.h>
35#include <linux/types.h>
36#include <linux/sched.h>
37#include <linux/pci.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/completion.h>
41#include <linux/blkdev.h>
42#include <linux/delay.h>
43#include <linux/kthread.h>
44#include <linux/interrupt.h>
45#include <linux/semaphore.h>
46#include <scsi/scsi.h>
47#include <scsi/scsi_host.h>
48#include <scsi/scsi_device.h>
49#include <scsi/scsi_cmnd.h>
50
51#include "aacraid.h"
52
53/**
54 *	fib_map_alloc		-	allocate the fib objects
55 *	@dev: Adapter to allocate for
56 *
57 *	Allocate and map the shared PCI space for the FIB blocks used to
58 *	talk to the Adaptec firmware.
59 */
60
61static int fib_map_alloc(struct aac_dev *dev)
62{
63	dprintk((KERN_INFO
64	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70		&dev->hw_fib_pa);
71	if (dev->hw_fib_va == NULL)
72		return -ENOMEM;
73	return 0;
74}
75
76/**
77 *	aac_fib_map_free		-	free the fib objects
78 *	@dev: Adapter to free
79 *
80 *	Free the PCI mappings and the memory allocated for FIB blocks
81 *	on this adapter.
82 */
83
84void aac_fib_map_free(struct aac_dev *dev)
85{
86	if (dev->hw_fib_va && dev->max_fib_size) {
87		pci_free_consistent(dev->pdev,
88		(dev->max_fib_size *
89		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90		dev->hw_fib_va, dev->hw_fib_pa);
91	}
92	dev->hw_fib_va = NULL;
93	dev->hw_fib_pa = 0;
94}
95
96void aac_fib_vector_assign(struct aac_dev *dev)
97{
98	u32 i = 0;
99	u32 vector = 1;
100	struct fib *fibptr = NULL;
101
102	for (i = 0, fibptr = &dev->fibs[i];
103		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
104		i++, fibptr++) {
105		if ((dev->max_msix == 1) ||
106		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
107			- dev->vector_cap))) {
108			fibptr->vector_no = 0;
109		} else {
110			fibptr->vector_no = vector;
111			vector++;
112			if (vector == dev->max_msix)
113				vector = 1;
114		}
115	}
116}
117
118/**
119 *	aac_fib_setup	-	setup the fibs
120 *	@dev: Adapter to set up
121 *
122 *	Allocate the PCI space for the fibs, map it and then initialise the
123 *	fib area, the unmapped fib data and also the free list
124 */
125
126int aac_fib_setup(struct aac_dev * dev)
127{
128	struct fib *fibptr;
129	struct hw_fib *hw_fib;
130	dma_addr_t hw_fib_pa;
131	int i;
132
133	while (((i = fib_map_alloc(dev)) == -ENOMEM)
134	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
135		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
136		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
137	}
138	if (i<0)
139		return -ENOMEM;
140
141	/* 32 byte alignment for PMC */
142	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
143	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
144		(hw_fib_pa - dev->hw_fib_pa));
145	dev->hw_fib_pa = hw_fib_pa;
146	memset(dev->hw_fib_va, 0,
147		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
148		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
149
150	/* add Xport header */
151	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
152		sizeof(struct aac_fib_xporthdr));
153	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
154
155	hw_fib = dev->hw_fib_va;
156	hw_fib_pa = dev->hw_fib_pa;
157	/*
158	 *	Initialise the fibs
159	 */
160	for (i = 0, fibptr = &dev->fibs[i];
161		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
162		i++, fibptr++)
163	{
164		fibptr->flags = 0;
165		fibptr->dev = dev;
166		fibptr->hw_fib_va = hw_fib;
167		fibptr->data = (void *) fibptr->hw_fib_va->data;
168		fibptr->next = fibptr+1;	/* Forward chain the fibs */
169		sema_init(&fibptr->event_wait, 0);
170		spin_lock_init(&fibptr->event_lock);
171		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
172		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
173		fibptr->hw_fib_pa = hw_fib_pa;
174		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
176		hw_fib_pa = hw_fib_pa +
177			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
178	}
179
180	/*
181	 *Assign vector numbers to fibs
182	 */
183	aac_fib_vector_assign(dev);
184
185	/*
186	 *	Add the fib chain to the free list
187	 */
188	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
189	/*
190	 *	Enable this to debug out of queue space
191	 */
192	dev->free_fib = &dev->fibs[0];
193	return 0;
194}
195
196/**
197 *	aac_fib_alloc	-	allocate a fib
198 *	@dev: Adapter to allocate the fib for
199 *
200 *	Allocate a fib from the adapter fib pool. If the pool is empty we
201 *	return NULL.
202 */
203
204struct fib *aac_fib_alloc(struct aac_dev *dev)
205{
206	struct fib * fibptr;
207	unsigned long flags;
208	spin_lock_irqsave(&dev->fib_lock, flags);
209	fibptr = dev->free_fib;
210	if(!fibptr){
211		spin_unlock_irqrestore(&dev->fib_lock, flags);
212		return fibptr;
213	}
214	dev->free_fib = fibptr->next;
215	spin_unlock_irqrestore(&dev->fib_lock, flags);
216	/*
217	 *	Set the proper node type code and node byte size
218	 */
219	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
220	fibptr->size = sizeof(struct fib);
221	/*
222	 *	Null out fields that depend on being zero at the start of
223	 *	each I/O
224	 */
225	fibptr->hw_fib_va->header.XferState = 0;
226	fibptr->flags = 0;
227	fibptr->callback = NULL;
228	fibptr->callback_data = NULL;
229
230	return fibptr;
231}
232
233/**
234 *	aac_fib_free	-	free a fib
235 *	@fibptr: fib to free up
236 *
237 *	Frees up a fib and places it on the appropriate queue
238 */
239
240void aac_fib_free(struct fib *fibptr)
241{
242	unsigned long flags;
243
244	if (fibptr->done == 2)
245		return;
246
247	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
248	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
249		aac_config.fib_timeouts++;
250	if (fibptr->hw_fib_va->header.XferState != 0) {
251		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
252			 (void*)fibptr,
253			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
254	}
255	fibptr->next = fibptr->dev->free_fib;
256	fibptr->dev->free_fib = fibptr;
257	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
258}
259
260/**
261 *	aac_fib_init	-	initialise a fib
262 *	@fibptr: The fib to initialize
263 *
264 *	Set up the generic fib fields ready for use
265 */
266
267void aac_fib_init(struct fib *fibptr)
268{
269	struct hw_fib *hw_fib = fibptr->hw_fib_va;
270
271	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
272	hw_fib->header.StructType = FIB_MAGIC;
273	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
274	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
275	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
276	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
277}
278
279/**
280 *	fib_deallocate		-	deallocate a fib
281 *	@fibptr: fib to deallocate
282 *
283 *	Will deallocate and return to the free pool the FIB pointed to by the
284 *	caller.
285 */
286
287static void fib_dealloc(struct fib * fibptr)
288{
289	struct hw_fib *hw_fib = fibptr->hw_fib_va;
290	hw_fib->header.XferState = 0;
291}
292
293/*
294 *	Commuication primitives define and support the queuing method we use to
295 *	support host to adapter commuication. All queue accesses happen through
296 *	these routines and are the only routines which have a knowledge of the
297 *	 how these queues are implemented.
298 */
299
300/**
301 *	aac_get_entry		-	get a queue entry
302 *	@dev: Adapter
303 *	@qid: Queue Number
304 *	@entry: Entry return
305 *	@index: Index return
306 *	@nonotify: notification control
307 *
308 *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
309 *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
310 *	returned.
311 */
312
313static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
314{
315	struct aac_queue * q;
316	unsigned long idx;
317
318	/*
319	 *	All of the queues wrap when they reach the end, so we check
320	 *	to see if they have reached the end and if they have we just
321	 *	set the index back to zero. This is a wrap. You could or off
322	 *	the high bits in all updates but this is a bit faster I think.
323	 */
324
325	q = &dev->queues->queue[qid];
326
327	idx = *index = le32_to_cpu(*(q->headers.producer));
328	/* Interrupt Moderation, only interrupt for first two entries */
329	if (idx != le32_to_cpu(*(q->headers.consumer))) {
330		if (--idx == 0) {
331			if (qid == AdapNormCmdQueue)
332				idx = ADAP_NORM_CMD_ENTRIES;
333			else
334				idx = ADAP_NORM_RESP_ENTRIES;
335		}
336		if (idx != le32_to_cpu(*(q->headers.consumer)))
337			*nonotify = 1;
338	}
339
340	if (qid == AdapNormCmdQueue) {
341		if (*index >= ADAP_NORM_CMD_ENTRIES)
342			*index = 0; /* Wrap to front of the Producer Queue. */
343	} else {
344		if (*index >= ADAP_NORM_RESP_ENTRIES)
345			*index = 0; /* Wrap to front of the Producer Queue. */
346	}
347
348	/* Queue is full */
349	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
350		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
351				qid, atomic_read(&q->numpending));
352		return 0;
353	} else {
354		*entry = q->base + *index;
355		return 1;
356	}
357}
358
359/**
360 *	aac_queue_get		-	get the next free QE
361 *	@dev: Adapter
362 *	@index: Returned index
363 *	@priority: Priority of fib
364 *	@fib: Fib to associate with the queue entry
365 *	@wait: Wait if queue full
366 *	@fibptr: Driver fib object to go with fib
367 *	@nonotify: Don't notify the adapter
368 *
369 *	Gets the next free QE off the requested priorty adapter command
370 *	queue and associates the Fib with the QE. The QE represented by
371 *	index is ready to insert on the queue when this routine returns
372 *	success.
373 */
374
375int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
376{
377	struct aac_entry * entry = NULL;
378	int map = 0;
379
380	if (qid == AdapNormCmdQueue) {
381		/*  if no entries wait for some if caller wants to */
382		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
383			printk(KERN_ERR "GetEntries failed\n");
384		}
385		/*
386		 *	Setup queue entry with a command, status and fib mapped
387		 */
388		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
389		map = 1;
390	} else {
391		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
392			/* if no entries wait for some if caller wants to */
393		}
394		/*
395		 *	Setup queue entry with command, status and fib mapped
396		 */
397		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
398		entry->addr = hw_fib->header.SenderFibAddress;
399			/* Restore adapters pointer to the FIB */
400		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
401		map = 0;
402	}
403	/*
404	 *	If MapFib is true than we need to map the Fib and put pointers
405	 *	in the queue entry.
406	 */
407	if (map)
408		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
409	return 0;
410}
411
412/*
413 *	Define the highest level of host to adapter communication routines.
414 *	These routines will support host to adapter FS commuication. These
415 *	routines have no knowledge of the commuication method used. This level
416 *	sends and receives FIBs. This level has no knowledge of how these FIBs
417 *	get passed back and forth.
418 */
419
420/**
421 *	aac_fib_send	-	send a fib to the adapter
422 *	@command: Command to send
423 *	@fibptr: The fib
424 *	@size: Size of fib data area
425 *	@priority: Priority of Fib
426 *	@wait: Async/sync select
427 *	@reply: True if a reply is wanted
428 *	@callback: Called with reply
429 *	@callback_data: Passed to callback
430 *
431 *	Sends the requested FIB to the adapter and optionally will wait for a
432 *	response FIB. If the caller does not wish to wait for a response than
433 *	an event to wait on must be supplied. This event will be set when a
434 *	response FIB is received from the adapter.
435 */
436
437int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
438		int priority, int wait, int reply, fib_callback callback,
439		void *callback_data)
440{
441	struct aac_dev * dev = fibptr->dev;
442	struct hw_fib * hw_fib = fibptr->hw_fib_va;
443	unsigned long flags = 0;
444	unsigned long mflags = 0;
445	unsigned long sflags = 0;
446
447
448	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
449		return -EBUSY;
450	/*
451	 *	There are 5 cases with the wait and response requested flags.
452	 *	The only invalid cases are if the caller requests to wait and
453	 *	does not request a response and if the caller does not want a
454	 *	response and the Fib is not allocated from pool. If a response
455	 *	is not requesed the Fib will just be deallocaed by the DPC
456	 *	routine when the response comes back from the adapter. No
457	 *	further processing will be done besides deleting the Fib. We
458	 *	will have a debug mode where the adapter can notify the host
459	 *	it had a problem and the host can log that fact.
460	 */
461	fibptr->flags = 0;
462	if (wait && !reply) {
463		return -EINVAL;
464	} else if (!wait && reply) {
465		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
466		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
467	} else if (!wait && !reply) {
468		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
469		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
470	} else if (wait && reply) {
471		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
472		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
473	}
474	/*
475	 *	Map the fib into 32bits by using the fib number
476	 */
477
478	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
479	hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
480	/*
481	 *	Set FIB state to indicate where it came from and if we want a
482	 *	response from the adapter. Also load the command from the
483	 *	caller.
484	 *
485	 *	Map the hw fib pointer as a 32bit value
486	 */
487	hw_fib->header.Command = cpu_to_le16(command);
488	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
489	/*
490	 *	Set the size of the Fib we want to send to the adapter
491	 */
492	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
493	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
494		return -EMSGSIZE;
495	}
496	/*
497	 *	Get a queue entry connect the FIB to it and send an notify
498	 *	the adapter a command is ready.
499	 */
500	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
501
502	/*
503	 *	Fill in the Callback and CallbackContext if we are not
504	 *	going to wait.
505	 */
506	if (!wait) {
507		fibptr->callback = callback;
508		fibptr->callback_data = callback_data;
509		fibptr->flags = FIB_CONTEXT_FLAG;
510	}
511
512	fibptr->done = 0;
513
514	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
515
516	dprintk((KERN_DEBUG "Fib contents:.\n"));
517	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
518	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
519	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
520	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
521	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
522	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
523
524	if (!dev->queues)
525		return -EBUSY;
526
527	if (wait) {
528
529		spin_lock_irqsave(&dev->manage_lock, mflags);
530		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
531			printk(KERN_INFO "No management Fibs Available:%d\n",
532						dev->management_fib_count);
533			spin_unlock_irqrestore(&dev->manage_lock, mflags);
534			return -EBUSY;
535		}
536		dev->management_fib_count++;
537		spin_unlock_irqrestore(&dev->manage_lock, mflags);
538		spin_lock_irqsave(&fibptr->event_lock, flags);
539	}
540
541	if (dev->sync_mode) {
542		if (wait)
543			spin_unlock_irqrestore(&fibptr->event_lock, flags);
544		spin_lock_irqsave(&dev->sync_lock, sflags);
545		if (dev->sync_fib) {
546			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
547			spin_unlock_irqrestore(&dev->sync_lock, sflags);
548		} else {
549			dev->sync_fib = fibptr;
550			spin_unlock_irqrestore(&dev->sync_lock, sflags);
551			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
552				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
553				NULL, NULL, NULL, NULL, NULL);
554		}
555		if (wait) {
556			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
557			if (down_interruptible(&fibptr->event_wait)) {
558				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
559				return -EFAULT;
560			}
561			return 0;
562		}
563		return -EINPROGRESS;
564	}
565
566	if (aac_adapter_deliver(fibptr) != 0) {
567		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
568		if (wait) {
569			spin_unlock_irqrestore(&fibptr->event_lock, flags);
570			spin_lock_irqsave(&dev->manage_lock, mflags);
571			dev->management_fib_count--;
572			spin_unlock_irqrestore(&dev->manage_lock, mflags);
573		}
574		return -EBUSY;
575	}
576
577
578	/*
579	 *	If the caller wanted us to wait for response wait now.
580	 */
581
582	if (wait) {
583		spin_unlock_irqrestore(&fibptr->event_lock, flags);
584		/* Only set for first known interruptable command */
585		if (wait < 0) {
586			/*
587			 * *VERY* Dangerous to time out a command, the
588			 * assumption is made that we have no hope of
589			 * functioning because an interrupt routing or other
590			 * hardware failure has occurred.
591			 */
592			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
593			while (down_trylock(&fibptr->event_wait)) {
594				int blink;
595				if (time_is_before_eq_jiffies(timeout)) {
596					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
597					atomic_dec(&q->numpending);
598					if (wait == -1) {
599	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
600						  "Usually a result of a PCI interrupt routing problem;\n"
601						  "update mother board BIOS or consider utilizing one of\n"
602						  "the SAFE mode kernel options (acpi, apic etc)\n");
603					}
604					return -ETIMEDOUT;
605				}
606				if ((blink = aac_adapter_check_health(dev)) > 0) {
607					if (wait == -1) {
608	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
609						  "Usually a result of a serious unrecoverable hardware problem\n",
610						  blink);
611					}
612					return -EFAULT;
613				}
614				/*
615				 * Allow other processes / CPUS to use core
616				 */
617				schedule();
618			}
619		} else if (down_interruptible(&fibptr->event_wait)) {
620			/* Do nothing ... satisfy
621			 * down_interruptible must_check */
622		}
623
624		spin_lock_irqsave(&fibptr->event_lock, flags);
625		if (fibptr->done == 0) {
626			fibptr->done = 2; /* Tell interrupt we aborted */
627			spin_unlock_irqrestore(&fibptr->event_lock, flags);
628			return -ERESTARTSYS;
629		}
630		spin_unlock_irqrestore(&fibptr->event_lock, flags);
631		BUG_ON(fibptr->done == 0);
632
633		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
634			return -ETIMEDOUT;
635		return 0;
636	}
637	/*
638	 *	If the user does not want a response than return success otherwise
639	 *	return pending
640	 */
641	if (reply)
642		return -EINPROGRESS;
643	else
644		return 0;
645}
646
647/**
648 *	aac_consumer_get	-	get the top of the queue
649 *	@dev: Adapter
650 *	@q: Queue
651 *	@entry: Return entry
652 *
653 *	Will return a pointer to the entry on the top of the queue requested that
654 *	we are a consumer of, and return the address of the queue entry. It does
655 *	not change the state of the queue.
656 */
657
658int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
659{
660	u32 index;
661	int status;
662	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
663		status = 0;
664	} else {
665		/*
666		 *	The consumer index must be wrapped if we have reached
667		 *	the end of the queue, else we just use the entry
668		 *	pointed to by the header index
669		 */
670		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
671			index = 0;
672		else
673			index = le32_to_cpu(*q->headers.consumer);
674		*entry = q->base + index;
675		status = 1;
676	}
677	return(status);
678}
679
680/**
681 *	aac_consumer_free	-	free consumer entry
682 *	@dev: Adapter
683 *	@q: Queue
684 *	@qid: Queue ident
685 *
686 *	Frees up the current top of the queue we are a consumer of. If the
687 *	queue was full notify the producer that the queue is no longer full.
688 */
689
690void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
691{
692	int wasfull = 0;
693	u32 notify;
694
695	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
696		wasfull = 1;
697
698	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
699		*q->headers.consumer = cpu_to_le32(1);
700	else
701		le32_add_cpu(q->headers.consumer, 1);
702
703	if (wasfull) {
704		switch (qid) {
705
706		case HostNormCmdQueue:
707			notify = HostNormCmdNotFull;
708			break;
709		case HostNormRespQueue:
710			notify = HostNormRespNotFull;
711			break;
712		default:
713			BUG();
714			return;
715		}
716		aac_adapter_notify(dev, notify);
717	}
718}
719
720/**
721 *	aac_fib_adapter_complete	-	complete adapter issued fib
722 *	@fibptr: fib to complete
723 *	@size: size of fib
724 *
725 *	Will do all necessary work to complete a FIB that was sent from
726 *	the adapter.
727 */
728
729int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
730{
731	struct hw_fib * hw_fib = fibptr->hw_fib_va;
732	struct aac_dev * dev = fibptr->dev;
733	struct aac_queue * q;
734	unsigned long nointr = 0;
735	unsigned long qflags;
736
737	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
738	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
739		kfree(hw_fib);
740		return 0;
741	}
742
743	if (hw_fib->header.XferState == 0) {
744		if (dev->comm_interface == AAC_COMM_MESSAGE)
745			kfree(hw_fib);
746		return 0;
747	}
748	/*
749	 *	If we plan to do anything check the structure type first.
750	 */
751	if (hw_fib->header.StructType != FIB_MAGIC &&
752	    hw_fib->header.StructType != FIB_MAGIC2 &&
753	    hw_fib->header.StructType != FIB_MAGIC2_64) {
754		if (dev->comm_interface == AAC_COMM_MESSAGE)
755			kfree(hw_fib);
756		return -EINVAL;
757	}
758	/*
759	 *	This block handles the case where the adapter had sent us a
760	 *	command and we have finished processing the command. We
761	 *	call completeFib when we are done processing the command
762	 *	and want to send a response back to the adapter. This will
763	 *	send the completed cdb to the adapter.
764	 */
765	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
766		if (dev->comm_interface == AAC_COMM_MESSAGE) {
767			kfree (hw_fib);
768		} else {
769			u32 index;
770			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
771			if (size) {
772				size += sizeof(struct aac_fibhdr);
773				if (size > le16_to_cpu(hw_fib->header.SenderSize))
774					return -EMSGSIZE;
775				hw_fib->header.Size = cpu_to_le16(size);
776			}
777			q = &dev->queues->queue[AdapNormRespQueue];
778			spin_lock_irqsave(q->lock, qflags);
779			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
780			*(q->headers.producer) = cpu_to_le32(index + 1);
781			spin_unlock_irqrestore(q->lock, qflags);
782			if (!(nointr & (int)aac_config.irq_mod))
783				aac_adapter_notify(dev, AdapNormRespQueue);
784		}
785	} else {
786		printk(KERN_WARNING "aac_fib_adapter_complete: "
787			"Unknown xferstate detected.\n");
788		BUG();
789	}
790	return 0;
791}
792
793/**
794 *	aac_fib_complete	-	fib completion handler
795 *	@fib: FIB to complete
796 *
797 *	Will do all necessary work to complete a FIB.
798 */
799
800int aac_fib_complete(struct fib *fibptr)
801{
802	struct hw_fib * hw_fib = fibptr->hw_fib_va;
803
804	/*
805	 *	Check for a fib which has already been completed
806	 */
807
808	if (hw_fib->header.XferState == 0)
809		return 0;
810	/*
811	 *	If we plan to do anything check the structure type first.
812	 */
813
814	if (hw_fib->header.StructType != FIB_MAGIC &&
815	    hw_fib->header.StructType != FIB_MAGIC2 &&
816	    hw_fib->header.StructType != FIB_MAGIC2_64)
817		return -EINVAL;
818	/*
819	 *	This block completes a cdb which orginated on the host and we
820	 *	just need to deallocate the cdb or reinit it. At this point the
821	 *	command is complete that we had sent to the adapter and this
822	 *	cdb could be reused.
823	 */
824
825	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
826		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
827	{
828		fib_dealloc(fibptr);
829	}
830	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
831	{
832		/*
833		 *	This handles the case when the host has aborted the I/O
834		 *	to the adapter because the adapter is not responding
835		 */
836		fib_dealloc(fibptr);
837	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
838		fib_dealloc(fibptr);
839	} else {
840		BUG();
841	}
842	return 0;
843}
844
845/**
846 *	aac_printf	-	handle printf from firmware
847 *	@dev: Adapter
848 *	@val: Message info
849 *
850 *	Print a message passed to us by the controller firmware on the
851 *	Adaptec board
852 */
853
854void aac_printf(struct aac_dev *dev, u32 val)
855{
856	char *cp = dev->printfbuf;
857	if (dev->printf_enabled)
858	{
859		int length = val & 0xffff;
860		int level = (val >> 16) & 0xffff;
861
862		/*
863		 *	The size of the printfbuf is set in port.c
864		 *	There is no variable or define for it
865		 */
866		if (length > 255)
867			length = 255;
868		if (cp[length] != 0)
869			cp[length] = 0;
870		if (level == LOG_AAC_HIGH_ERROR)
871			printk(KERN_WARNING "%s:%s", dev->name, cp);
872		else
873			printk(KERN_INFO "%s:%s", dev->name, cp);
874	}
875	memset(cp, 0, 256);
876}
877
878
879/**
880 *	aac_handle_aif		-	Handle a message from the firmware
881 *	@dev: Which adapter this fib is from
882 *	@fibptr: Pointer to fibptr from adapter
883 *
884 *	This routine handles a driver notify fib from the adapter and
885 *	dispatches it to the appropriate routine for handling.
886 */
887
888#define AIF_SNIFF_TIMEOUT	(500*HZ)
889static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
890{
891	struct hw_fib * hw_fib = fibptr->hw_fib_va;
892	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
893	u32 channel, id, lun, container;
894	struct scsi_device *device;
895	enum {
896		NOTHING,
897		DELETE,
898		ADD,
899		CHANGE
900	} device_config_needed = NOTHING;
901
902	/* Sniff for container changes */
903
904	if (!dev || !dev->fsa_dev)
905		return;
906	container = channel = id = lun = (u32)-1;
907
908	/*
909	 *	We have set this up to try and minimize the number of
910	 * re-configures that take place. As a result of this when
911	 * certain AIF's come in we will set a flag waiting for another
912	 * type of AIF before setting the re-config flag.
913	 */
914	switch (le32_to_cpu(aifcmd->command)) {
915	case AifCmdDriverNotify:
916		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
917		case AifRawDeviceRemove:
918			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
919			if ((container >> 28)) {
920				container = (u32)-1;
921				break;
922			}
923			channel = (container >> 24) & 0xF;
924			if (channel >= dev->maximum_num_channels) {
925				container = (u32)-1;
926				break;
927			}
928			id = container & 0xFFFF;
929			if (id >= dev->maximum_num_physicals) {
930				container = (u32)-1;
931				break;
932			}
933			lun = (container >> 16) & 0xFF;
934			container = (u32)-1;
935			channel = aac_phys_to_logical(channel);
936			device_config_needed =
937			  (((__le32 *)aifcmd->data)[0] ==
938			    cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
939
940			if (device_config_needed == ADD) {
941				device = scsi_device_lookup(
942					dev->scsi_host_ptr,
943					channel, id, lun);
944				if (device) {
945					scsi_remove_device(device);
946					scsi_device_put(device);
947				}
948			}
949			break;
950		/*
951		 *	Morph or Expand complete
952		 */
953		case AifDenMorphComplete:
954		case AifDenVolumeExtendComplete:
955			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
956			if (container >= dev->maximum_num_containers)
957				break;
958
959			/*
960			 *	Find the scsi_device associated with the SCSI
961			 * address. Make sure we have the right array, and if
962			 * so set the flag to initiate a new re-config once we
963			 * see an AifEnConfigChange AIF come through.
964			 */
965
966			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
967				device = scsi_device_lookup(dev->scsi_host_ptr,
968					CONTAINER_TO_CHANNEL(container),
969					CONTAINER_TO_ID(container),
970					CONTAINER_TO_LUN(container));
971				if (device) {
972					dev->fsa_dev[container].config_needed = CHANGE;
973					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
974					dev->fsa_dev[container].config_waiting_stamp = jiffies;
975					scsi_device_put(device);
976				}
977			}
978		}
979
980		/*
981		 *	If we are waiting on something and this happens to be
982		 * that thing then set the re-configure flag.
983		 */
984		if (container != (u32)-1) {
985			if (container >= dev->maximum_num_containers)
986				break;
987			if ((dev->fsa_dev[container].config_waiting_on ==
988			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
989			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
990				dev->fsa_dev[container].config_waiting_on = 0;
991		} else for (container = 0;
992		    container < dev->maximum_num_containers; ++container) {
993			if ((dev->fsa_dev[container].config_waiting_on ==
994			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
995			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
996				dev->fsa_dev[container].config_waiting_on = 0;
997		}
998		break;
999
1000	case AifCmdEventNotify:
1001		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1002		case AifEnBatteryEvent:
1003			dev->cache_protected =
1004				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1005			break;
1006		/*
1007		 *	Add an Array.
1008		 */
1009		case AifEnAddContainer:
1010			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1011			if (container >= dev->maximum_num_containers)
1012				break;
1013			dev->fsa_dev[container].config_needed = ADD;
1014			dev->fsa_dev[container].config_waiting_on =
1015				AifEnConfigChange;
1016			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1017			break;
1018
1019		/*
1020		 *	Delete an Array.
1021		 */
1022		case AifEnDeleteContainer:
1023			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1024			if (container >= dev->maximum_num_containers)
1025				break;
1026			dev->fsa_dev[container].config_needed = DELETE;
1027			dev->fsa_dev[container].config_waiting_on =
1028				AifEnConfigChange;
1029			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1030			break;
1031
1032		/*
1033		 *	Container change detected. If we currently are not
1034		 * waiting on something else, setup to wait on a Config Change.
1035		 */
1036		case AifEnContainerChange:
1037			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1038			if (container >= dev->maximum_num_containers)
1039				break;
1040			if (dev->fsa_dev[container].config_waiting_on &&
1041			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1042				break;
1043			dev->fsa_dev[container].config_needed = CHANGE;
1044			dev->fsa_dev[container].config_waiting_on =
1045				AifEnConfigChange;
1046			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1047			break;
1048
1049		case AifEnConfigChange:
1050			break;
1051
1052		case AifEnAddJBOD:
1053		case AifEnDeleteJBOD:
1054			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1055			if ((container >> 28)) {
1056				container = (u32)-1;
1057				break;
1058			}
1059			channel = (container >> 24) & 0xF;
1060			if (channel >= dev->maximum_num_channels) {
1061				container = (u32)-1;
1062				break;
1063			}
1064			id = container & 0xFFFF;
1065			if (id >= dev->maximum_num_physicals) {
1066				container = (u32)-1;
1067				break;
1068			}
1069			lun = (container >> 16) & 0xFF;
1070			container = (u32)-1;
1071			channel = aac_phys_to_logical(channel);
1072			device_config_needed =
1073			  (((__le32 *)aifcmd->data)[0] ==
1074			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1075			if (device_config_needed == ADD) {
1076				device = scsi_device_lookup(dev->scsi_host_ptr,
1077					channel,
1078					id,
1079					lun);
1080				if (device) {
1081					scsi_remove_device(device);
1082					scsi_device_put(device);
1083				}
1084			}
1085			break;
1086
1087		case AifEnEnclosureManagement:
1088			/*
1089			 * If in JBOD mode, automatic exposure of new
1090			 * physical target to be suppressed until configured.
1091			 */
1092			if (dev->jbod)
1093				break;
1094			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1095			case EM_DRIVE_INSERTION:
1096			case EM_DRIVE_REMOVAL:
1097			case EM_SES_DRIVE_INSERTION:
1098			case EM_SES_DRIVE_REMOVAL:
1099				container = le32_to_cpu(
1100					((__le32 *)aifcmd->data)[2]);
1101				if ((container >> 28)) {
1102					container = (u32)-1;
1103					break;
1104				}
1105				channel = (container >> 24) & 0xF;
1106				if (channel >= dev->maximum_num_channels) {
1107					container = (u32)-1;
1108					break;
1109				}
1110				id = container & 0xFFFF;
1111				lun = (container >> 16) & 0xFF;
1112				container = (u32)-1;
1113				if (id >= dev->maximum_num_physicals) {
1114					/* legacy dev_t ? */
1115					if ((0x2000 <= id) || lun || channel ||
1116					  ((channel = (id >> 7) & 0x3F) >=
1117					  dev->maximum_num_channels))
1118						break;
1119					lun = (id >> 4) & 7;
1120					id &= 0xF;
1121				}
1122				channel = aac_phys_to_logical(channel);
1123				device_config_needed =
1124				  ((((__le32 *)aifcmd->data)[3]
1125				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1126				    (((__le32 *)aifcmd->data)[3]
1127				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1128				  ADD : DELETE;
1129				break;
1130			}
1131			break;
1132		}
1133
1134		/*
1135		 *	If we are waiting on something and this happens to be
1136		 * that thing then set the re-configure flag.
1137		 */
1138		if (container != (u32)-1) {
1139			if (container >= dev->maximum_num_containers)
1140				break;
1141			if ((dev->fsa_dev[container].config_waiting_on ==
1142			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1143			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1144				dev->fsa_dev[container].config_waiting_on = 0;
1145		} else for (container = 0;
1146		    container < dev->maximum_num_containers; ++container) {
1147			if ((dev->fsa_dev[container].config_waiting_on ==
1148			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1149			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1150				dev->fsa_dev[container].config_waiting_on = 0;
1151		}
1152		break;
1153
1154	case AifCmdJobProgress:
1155		/*
1156		 *	These are job progress AIF's. When a Clear is being
1157		 * done on a container it is initially created then hidden from
1158		 * the OS. When the clear completes we don't get a config
1159		 * change so we monitor the job status complete on a clear then
1160		 * wait for a container change.
1161		 */
1162
1163		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1164		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1165		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1166			for (container = 0;
1167			    container < dev->maximum_num_containers;
1168			    ++container) {
1169				/*
1170				 * Stomp on all config sequencing for all
1171				 * containers?
1172				 */
1173				dev->fsa_dev[container].config_waiting_on =
1174					AifEnContainerChange;
1175				dev->fsa_dev[container].config_needed = ADD;
1176				dev->fsa_dev[container].config_waiting_stamp =
1177					jiffies;
1178			}
1179		}
1180		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1181		    ((__le32 *)aifcmd->data)[6] == 0 &&
1182		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1183			for (container = 0;
1184			    container < dev->maximum_num_containers;
1185			    ++container) {
1186				/*
1187				 * Stomp on all config sequencing for all
1188				 * containers?
1189				 */
1190				dev->fsa_dev[container].config_waiting_on =
1191					AifEnContainerChange;
1192				dev->fsa_dev[container].config_needed = DELETE;
1193				dev->fsa_dev[container].config_waiting_stamp =
1194					jiffies;
1195			}
1196		}
1197		break;
1198	}
1199
1200	container = 0;
1201retry_next:
1202	if (device_config_needed == NOTHING)
1203	for (; container < dev->maximum_num_containers; ++container) {
1204		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1205			(dev->fsa_dev[container].config_needed != NOTHING) &&
1206			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1207			device_config_needed =
1208				dev->fsa_dev[container].config_needed;
1209			dev->fsa_dev[container].config_needed = NOTHING;
1210			channel = CONTAINER_TO_CHANNEL(container);
1211			id = CONTAINER_TO_ID(container);
1212			lun = CONTAINER_TO_LUN(container);
1213			break;
1214		}
1215	}
1216	if (device_config_needed == NOTHING)
1217		return;
1218
1219	/*
1220	 *	If we decided that a re-configuration needs to be done,
1221	 * schedule it here on the way out the door, please close the door
1222	 * behind you.
1223	 */
1224
1225	/*
1226	 *	Find the scsi_device associated with the SCSI address,
1227	 * and mark it as changed, invalidating the cache. This deals
1228	 * with changes to existing device IDs.
1229	 */
1230
1231	if (!dev || !dev->scsi_host_ptr)
1232		return;
1233	/*
1234	 * force reload of disk info via aac_probe_container
1235	 */
1236	if ((channel == CONTAINER_CHANNEL) &&
1237	  (device_config_needed != NOTHING)) {
1238		if (dev->fsa_dev[container].valid == 1)
1239			dev->fsa_dev[container].valid = 2;
1240		aac_probe_container(dev, container);
1241	}
1242	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1243	if (device) {
1244		switch (device_config_needed) {
1245		case DELETE:
1246#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1247			scsi_remove_device(device);
1248#else
1249			if (scsi_device_online(device)) {
1250				scsi_device_set_state(device, SDEV_OFFLINE);
1251				sdev_printk(KERN_INFO, device,
1252					"Device offlined - %s\n",
1253					(channel == CONTAINER_CHANNEL) ?
1254						"array deleted" :
1255						"enclosure services event");
1256			}
1257#endif
1258			break;
1259		case ADD:
1260			if (!scsi_device_online(device)) {
1261				sdev_printk(KERN_INFO, device,
1262					"Device online - %s\n",
1263					(channel == CONTAINER_CHANNEL) ?
1264						"array created" :
1265						"enclosure services event");
1266				scsi_device_set_state(device, SDEV_RUNNING);
1267			}
1268			/* FALLTHRU */
1269		case CHANGE:
1270			if ((channel == CONTAINER_CHANNEL)
1271			 && (!dev->fsa_dev[container].valid)) {
1272#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1273				scsi_remove_device(device);
1274#else
1275				if (!scsi_device_online(device))
1276					break;
1277				scsi_device_set_state(device, SDEV_OFFLINE);
1278				sdev_printk(KERN_INFO, device,
1279					"Device offlined - %s\n",
1280					"array failed");
1281#endif
1282				break;
1283			}
1284			scsi_rescan_device(&device->sdev_gendev);
1285
1286		default:
1287			break;
1288		}
1289		scsi_device_put(device);
1290		device_config_needed = NOTHING;
1291	}
1292	if (device_config_needed == ADD)
1293		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1294	if (channel == CONTAINER_CHANNEL) {
1295		container++;
1296		device_config_needed = NOTHING;
1297		goto retry_next;
1298	}
1299}
1300
1301static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1302{
1303	int index, quirks;
1304	int retval, i;
1305	struct Scsi_Host *host;
1306	struct scsi_device *dev;
1307	struct scsi_cmnd *command;
1308	struct scsi_cmnd *command_list;
1309	int jafo = 0;
1310	int cpu;
1311
1312	/*
1313	 * Assumptions:
1314	 *	- host is locked, unless called by the aacraid thread.
1315	 *	  (a matter of convenience, due to legacy issues surrounding
1316	 *	  eh_host_adapter_reset).
1317	 *	- in_reset is asserted, so no new i/o is getting to the
1318	 *	  card.
1319	 *	- The card is dead, or will be very shortly ;-/ so no new
1320	 *	  commands are completing in the interrupt service.
1321	 */
1322	host = aac->scsi_host_ptr;
1323	scsi_block_requests(host);
1324	aac_adapter_disable_int(aac);
1325	if (aac->thread->pid != current->pid) {
1326		spin_unlock_irq(host->host_lock);
1327		kthread_stop(aac->thread);
1328		jafo = 1;
1329	}
1330
1331	/*
1332	 *	If a positive health, means in a known DEAD PANIC
1333	 * state and the adapter could be reset to `try again'.
1334	 */
1335	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1336
1337	if (retval)
1338		goto out;
1339
1340	/*
1341	 *	Loop through the fibs, close the synchronous FIBS
1342	 */
1343	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1344		struct fib *fib = &aac->fibs[index];
1345		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1346		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1347			unsigned long flagv;
1348			spin_lock_irqsave(&fib->event_lock, flagv);
1349			up(&fib->event_wait);
1350			spin_unlock_irqrestore(&fib->event_lock, flagv);
1351			schedule();
1352			retval = 0;
1353		}
1354	}
1355	/* Give some extra time for ioctls to complete. */
1356	if (retval == 0)
1357		ssleep(2);
1358	index = aac->cardtype;
1359
1360	/*
1361	 * Re-initialize the adapter, first free resources, then carefully
1362	 * apply the initialization sequence to come back again. Only risk
1363	 * is a change in Firmware dropping cache, it is assumed the caller
1364	 * will ensure that i/o is queisced and the card is flushed in that
1365	 * case.
1366	 */
1367	aac_fib_map_free(aac);
1368	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1369	aac->comm_addr = NULL;
1370	aac->comm_phys = 0;
1371	kfree(aac->queues);
1372	aac->queues = NULL;
1373	cpu = cpumask_first(cpu_online_mask);
1374	if (aac->pdev->device == PMC_DEVICE_S6 ||
1375	    aac->pdev->device == PMC_DEVICE_S7 ||
1376	    aac->pdev->device == PMC_DEVICE_S8 ||
1377	    aac->pdev->device == PMC_DEVICE_S9) {
1378		if (aac->max_msix > 1) {
1379			for (i = 0; i < aac->max_msix; i++) {
1380				if (irq_set_affinity_hint(
1381				    aac->msixentry[i].vector,
1382				    NULL)) {
1383					printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
1384						aac->name,
1385						aac->id,
1386						cpu);
1387				}
1388				cpu = cpumask_next(cpu,
1389						cpu_online_mask);
1390				free_irq(aac->msixentry[i].vector,
1391					 &(aac->aac_msix[i]));
1392			}
1393			pci_disable_msix(aac->pdev);
1394		} else {
1395			free_irq(aac->pdev->irq, &(aac->aac_msix[0]));
1396		}
1397	} else {
1398		free_irq(aac->pdev->irq, aac);
1399	}
1400	if (aac->msi)
1401		pci_disable_msi(aac->pdev);
1402	kfree(aac->fsa_dev);
1403	aac->fsa_dev = NULL;
1404	quirks = aac_get_driver_ident(index)->quirks;
1405	if (quirks & AAC_QUIRK_31BIT) {
1406		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1407		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1408			goto out;
1409	} else {
1410		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1411		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1412			goto out;
1413	}
1414	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1415		goto out;
1416	if (quirks & AAC_QUIRK_31BIT)
1417		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1418			goto out;
1419	if (jafo) {
1420		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1421					  aac->name);
1422		if (IS_ERR(aac->thread)) {
1423			retval = PTR_ERR(aac->thread);
1424			goto out;
1425		}
1426	}
1427	(void)aac_get_adapter_info(aac);
1428	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1429		host->sg_tablesize = 34;
1430		host->max_sectors = (host->sg_tablesize * 8) + 112;
1431	}
1432	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1433		host->sg_tablesize = 17;
1434		host->max_sectors = (host->sg_tablesize * 8) + 112;
1435	}
1436	aac_get_config_status(aac, 1);
1437	aac_get_containers(aac);
1438	/*
1439	 * This is where the assumption that the Adapter is quiesced
1440	 * is important.
1441	 */
1442	command_list = NULL;
1443	__shost_for_each_device(dev, host) {
1444		unsigned long flags;
1445		spin_lock_irqsave(&dev->list_lock, flags);
1446		list_for_each_entry(command, &dev->cmd_list, list)
1447			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1448				command->SCp.buffer = (struct scatterlist *)command_list;
1449				command_list = command;
1450			}
1451		spin_unlock_irqrestore(&dev->list_lock, flags);
1452	}
1453	while ((command = command_list)) {
1454		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1455		command->SCp.buffer = NULL;
1456		command->result = DID_OK << 16
1457		  | COMMAND_COMPLETE << 8
1458		  | SAM_STAT_TASK_SET_FULL;
1459		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1460		command->scsi_done(command);
1461	}
1462	retval = 0;
1463
1464out:
1465	aac->in_reset = 0;
1466	scsi_unblock_requests(host);
1467	if (jafo) {
1468		spin_lock_irq(host->host_lock);
1469	}
1470	return retval;
1471}
1472
1473int aac_reset_adapter(struct aac_dev * aac, int forced)
1474{
1475	unsigned long flagv = 0;
1476	int retval;
1477	struct Scsi_Host * host;
1478
1479	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1480		return -EBUSY;
1481
1482	if (aac->in_reset) {
1483		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1484		return -EBUSY;
1485	}
1486	aac->in_reset = 1;
1487	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1488
1489	/*
1490	 * Wait for all commands to complete to this specific
1491	 * target (block maximum 60 seconds). Although not necessary,
1492	 * it does make us a good storage citizen.
1493	 */
1494	host = aac->scsi_host_ptr;
1495	scsi_block_requests(host);
1496	if (forced < 2) for (retval = 60; retval; --retval) {
1497		struct scsi_device * dev;
1498		struct scsi_cmnd * command;
1499		int active = 0;
1500
1501		__shost_for_each_device(dev, host) {
1502			spin_lock_irqsave(&dev->list_lock, flagv);
1503			list_for_each_entry(command, &dev->cmd_list, list) {
1504				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1505					active++;
1506					break;
1507				}
1508			}
1509			spin_unlock_irqrestore(&dev->list_lock, flagv);
1510			if (active)
1511				break;
1512
1513		}
1514		/*
1515		 * We can exit If all the commands are complete
1516		 */
1517		if (active == 0)
1518			break;
1519		ssleep(1);
1520	}
1521
1522	/* Quiesce build, flush cache, write through mode */
1523	if (forced < 2)
1524		aac_send_shutdown(aac);
1525	spin_lock_irqsave(host->host_lock, flagv);
1526	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1527	spin_unlock_irqrestore(host->host_lock, flagv);
1528
1529	if ((forced < 2) && (retval == -ENODEV)) {
1530		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1531		struct fib * fibctx = aac_fib_alloc(aac);
1532		if (fibctx) {
1533			struct aac_pause *cmd;
1534			int status;
1535
1536			aac_fib_init(fibctx);
1537
1538			cmd = (struct aac_pause *) fib_data(fibctx);
1539
1540			cmd->command = cpu_to_le32(VM_ContainerConfig);
1541			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1542			cmd->timeout = cpu_to_le32(1);
1543			cmd->min = cpu_to_le32(1);
1544			cmd->noRescan = cpu_to_le32(1);
1545			cmd->count = cpu_to_le32(0);
1546
1547			status = aac_fib_send(ContainerCommand,
1548			  fibctx,
1549			  sizeof(struct aac_pause),
1550			  FsaNormal,
1551			  -2 /* Timeout silently */, 1,
1552			  NULL, NULL);
1553
1554			if (status >= 0)
1555				aac_fib_complete(fibctx);
1556			/* FIB should be freed only after getting
1557			 * the response from the F/W */
1558			if (status != -ERESTARTSYS)
1559				aac_fib_free(fibctx);
1560		}
1561	}
1562
1563	return retval;
1564}
1565
1566int aac_check_health(struct aac_dev * aac)
1567{
1568	int BlinkLED;
1569	unsigned long time_now, flagv = 0;
1570	struct list_head * entry;
1571	struct Scsi_Host * host;
1572
1573	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1574	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1575		return 0;
1576
1577	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1578		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1579		return 0; /* OK */
1580	}
1581
1582	aac->in_reset = 1;
1583
1584	/* Fake up an AIF:
1585	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1586	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1587	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1588	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1589	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1590	 *	aac.aifcmd.data[3] = BlinkLED
1591	 */
1592
1593	time_now = jiffies/HZ;
1594	entry = aac->fib_list.next;
1595
1596	/*
1597	 * For each Context that is on the
1598	 * fibctxList, make a copy of the
1599	 * fib, and then set the event to wake up the
1600	 * thread that is waiting for it.
1601	 */
1602	while (entry != &aac->fib_list) {
1603		/*
1604		 * Extract the fibctx
1605		 */
1606		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1607		struct hw_fib * hw_fib;
1608		struct fib * fib;
1609		/*
1610		 * Check if the queue is getting
1611		 * backlogged
1612		 */
1613		if (fibctx->count > 20) {
1614			/*
1615			 * It's *not* jiffies folks,
1616			 * but jiffies / HZ, so do not
1617			 * panic ...
1618			 */
1619			u32 time_last = fibctx->jiffies;
1620			/*
1621			 * Has it been > 2 minutes
1622			 * since the last read off
1623			 * the queue?
1624			 */
1625			if ((time_now - time_last) > aif_timeout) {
1626				entry = entry->next;
1627				aac_close_fib_context(aac, fibctx);
1628				continue;
1629			}
1630		}
1631		/*
1632		 * Warning: no sleep allowed while
1633		 * holding spinlock
1634		 */
1635		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1636		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1637		if (fib && hw_fib) {
1638			struct aac_aifcmd * aif;
1639
1640			fib->hw_fib_va = hw_fib;
1641			fib->dev = aac;
1642			aac_fib_init(fib);
1643			fib->type = FSAFS_NTC_FIB_CONTEXT;
1644			fib->size = sizeof (struct fib);
1645			fib->data = hw_fib->data;
1646			aif = (struct aac_aifcmd *)hw_fib->data;
1647			aif->command = cpu_to_le32(AifCmdEventNotify);
1648			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1649			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1650			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1651			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1652			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1653
1654			/*
1655			 * Put the FIB onto the
1656			 * fibctx's fibs
1657			 */
1658			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1659			fibctx->count++;
1660			/*
1661			 * Set the event to wake up the
1662			 * thread that will waiting.
1663			 */
1664			up(&fibctx->wait_sem);
1665		} else {
1666			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1667			kfree(fib);
1668			kfree(hw_fib);
1669		}
1670		entry = entry->next;
1671	}
1672
1673	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1674
1675	if (BlinkLED < 0) {
1676		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1677		goto out;
1678	}
1679
1680	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1681
1682	if (!aac_check_reset || ((aac_check_reset == 1) &&
1683		(aac->supplement_adapter_info.SupportedOptions2 &
1684			AAC_OPTION_IGNORE_RESET)))
1685		goto out;
1686	host = aac->scsi_host_ptr;
1687	if (aac->thread->pid != current->pid)
1688		spin_lock_irqsave(host->host_lock, flagv);
1689	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1690	if (aac->thread->pid != current->pid)
1691		spin_unlock_irqrestore(host->host_lock, flagv);
1692	return BlinkLED;
1693
1694out:
1695	aac->in_reset = 0;
1696	return BlinkLED;
1697}
1698
1699
1700/**
1701 *	aac_command_thread	-	command processing thread
1702 *	@dev: Adapter to monitor
1703 *
1704 *	Waits on the commandready event in it's queue. When the event gets set
1705 *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1706 *	until the queue is empty. When the queue is empty it will wait for
1707 *	more FIBs.
1708 */
1709
1710int aac_command_thread(void *data)
1711{
1712	struct aac_dev *dev = data;
1713	struct hw_fib *hw_fib, *hw_newfib;
1714	struct fib *fib, *newfib;
1715	struct aac_fib_context *fibctx;
1716	unsigned long flags;
1717	DECLARE_WAITQUEUE(wait, current);
1718	unsigned long next_jiffies = jiffies + HZ;
1719	unsigned long next_check_jiffies = next_jiffies;
1720	long difference = HZ;
1721
1722	/*
1723	 *	We can only have one thread per adapter for AIF's.
1724	 */
1725	if (dev->aif_thread)
1726		return -EINVAL;
1727
1728	/*
1729	 *	Let the DPC know it has a place to send the AIF's to.
1730	 */
1731	dev->aif_thread = 1;
1732	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1733	set_current_state(TASK_INTERRUPTIBLE);
1734	dprintk ((KERN_INFO "aac_command_thread start\n"));
1735	while (1) {
1736		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1737		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1738			struct list_head *entry;
1739			struct aac_aifcmd * aifcmd;
1740
1741			set_current_state(TASK_RUNNING);
1742
1743			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1744			list_del(entry);
1745
1746			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1747			fib = list_entry(entry, struct fib, fiblink);
1748			/*
1749			 *	We will process the FIB here or pass it to a
1750			 *	worker thread that is TBD. We Really can't
1751			 *	do anything at this point since we don't have
1752			 *	anything defined for this thread to do.
1753			 */
1754			hw_fib = fib->hw_fib_va;
1755			memset(fib, 0, sizeof(struct fib));
1756			fib->type = FSAFS_NTC_FIB_CONTEXT;
1757			fib->size = sizeof(struct fib);
1758			fib->hw_fib_va = hw_fib;
1759			fib->data = hw_fib->data;
1760			fib->dev = dev;
1761			/*
1762			 *	We only handle AifRequest fibs from the adapter.
1763			 */
1764			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1765			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1766				/* Handle Driver Notify Events */
1767				aac_handle_aif(dev, fib);
1768				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1769				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1770			} else {
1771				/* The u32 here is important and intended. We are using
1772				   32bit wrapping time to fit the adapter field */
1773
1774				u32 time_now, time_last;
1775				unsigned long flagv;
1776				unsigned num;
1777				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1778				struct fib ** fib_pool, ** fib_p;
1779
1780				/* Sniff events */
1781				if ((aifcmd->command ==
1782				     cpu_to_le32(AifCmdEventNotify)) ||
1783				    (aifcmd->command ==
1784				     cpu_to_le32(AifCmdJobProgress))) {
1785					aac_handle_aif(dev, fib);
1786				}
1787
1788				time_now = jiffies/HZ;
1789
1790				/*
1791				 * Warning: no sleep allowed while
1792				 * holding spinlock. We take the estimate
1793				 * and pre-allocate a set of fibs outside the
1794				 * lock.
1795				 */
1796				num = le32_to_cpu(dev->init->AdapterFibsSize)
1797				    / sizeof(struct hw_fib); /* some extra */
1798				spin_lock_irqsave(&dev->fib_lock, flagv);
1799				entry = dev->fib_list.next;
1800				while (entry != &dev->fib_list) {
1801					entry = entry->next;
1802					++num;
1803				}
1804				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1805				hw_fib_pool = NULL;
1806				fib_pool = NULL;
1807				if (num
1808				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1809				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1810					hw_fib_p = hw_fib_pool;
1811					fib_p = fib_pool;
1812					while (hw_fib_p < &hw_fib_pool[num]) {
1813						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1814							--hw_fib_p;
1815							break;
1816						}
1817						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1818							kfree(*(--hw_fib_p));
1819							break;
1820						}
1821					}
1822					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1823						kfree(fib_pool);
1824						fib_pool = NULL;
1825						kfree(hw_fib_pool);
1826						hw_fib_pool = NULL;
1827					}
1828				} else {
1829					kfree(hw_fib_pool);
1830					hw_fib_pool = NULL;
1831				}
1832				spin_lock_irqsave(&dev->fib_lock, flagv);
1833				entry = dev->fib_list.next;
1834				/*
1835				 * For each Context that is on the
1836				 * fibctxList, make a copy of the
1837				 * fib, and then set the event to wake up the
1838				 * thread that is waiting for it.
1839				 */
1840				hw_fib_p = hw_fib_pool;
1841				fib_p = fib_pool;
1842				while (entry != &dev->fib_list) {
1843					/*
1844					 * Extract the fibctx
1845					 */
1846					fibctx = list_entry(entry, struct aac_fib_context, next);
1847					/*
1848					 * Check if the queue is getting
1849					 * backlogged
1850					 */
1851					if (fibctx->count > 20)
1852					{
1853						/*
1854						 * It's *not* jiffies folks,
1855						 * but jiffies / HZ so do not
1856						 * panic ...
1857						 */
1858						time_last = fibctx->jiffies;
1859						/*
1860						 * Has it been > 2 minutes
1861						 * since the last read off
1862						 * the queue?
1863						 */
1864						if ((time_now - time_last) > aif_timeout) {
1865							entry = entry->next;
1866							aac_close_fib_context(dev, fibctx);
1867							continue;
1868						}
1869					}
1870					/*
1871					 * Warning: no sleep allowed while
1872					 * holding spinlock
1873					 */
1874					if (hw_fib_p < &hw_fib_pool[num]) {
1875						hw_newfib = *hw_fib_p;
1876						*(hw_fib_p++) = NULL;
1877						newfib = *fib_p;
1878						*(fib_p++) = NULL;
1879						/*
1880						 * Make the copy of the FIB
1881						 */
1882						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1883						memcpy(newfib, fib, sizeof(struct fib));
1884						newfib->hw_fib_va = hw_newfib;
1885						/*
1886						 * Put the FIB onto the
1887						 * fibctx's fibs
1888						 */
1889						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1890						fibctx->count++;
1891						/*
1892						 * Set the event to wake up the
1893						 * thread that is waiting.
1894						 */
1895						up(&fibctx->wait_sem);
1896					} else {
1897						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1898					}
1899					entry = entry->next;
1900				}
1901				/*
1902				 *	Set the status of this FIB
1903				 */
1904				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1905				aac_fib_adapter_complete(fib, sizeof(u32));
1906				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1907				/* Free up the remaining resources */
1908				hw_fib_p = hw_fib_pool;
1909				fib_p = fib_pool;
1910				while (hw_fib_p < &hw_fib_pool[num]) {
1911					kfree(*hw_fib_p);
1912					kfree(*fib_p);
1913					++fib_p;
1914					++hw_fib_p;
1915				}
1916				kfree(hw_fib_pool);
1917				kfree(fib_pool);
1918			}
1919			kfree(fib);
1920			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1921		}
1922		/*
1923		 *	There are no more AIF's
1924		 */
1925		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1926
1927		/*
1928		 *	Background activity
1929		 */
1930		if ((time_before(next_check_jiffies,next_jiffies))
1931		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1932			next_check_jiffies = next_jiffies;
1933			if (aac_check_health(dev) == 0) {
1934				difference = ((long)(unsigned)check_interval)
1935					   * HZ;
1936				next_check_jiffies = jiffies + difference;
1937			} else if (!dev->queues)
1938				break;
1939		}
1940		if (!time_before(next_check_jiffies,next_jiffies)
1941		 && ((difference = next_jiffies - jiffies) <= 0)) {
1942			struct timeval now;
1943			int ret;
1944
1945			/* Don't even try to talk to adapter if its sick */
1946			ret = aac_check_health(dev);
1947			if (!ret && !dev->queues)
1948				break;
1949			next_check_jiffies = jiffies
1950					   + ((long)(unsigned)check_interval)
1951					   * HZ;
1952			do_gettimeofday(&now);
1953
1954			/* Synchronize our watches */
1955			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1956			 && (now.tv_usec > (1000000 / HZ)))
1957				difference = (((1000000 - now.tv_usec) * HZ)
1958				  + 500000) / 1000000;
1959			else if (ret == 0) {
1960				struct fib *fibptr;
1961
1962				if ((fibptr = aac_fib_alloc(dev))) {
1963					int status;
1964					__le32 *info;
1965
1966					aac_fib_init(fibptr);
1967
1968					info = (__le32 *) fib_data(fibptr);
1969					if (now.tv_usec > 500000)
1970						++now.tv_sec;
1971
1972					*info = cpu_to_le32(now.tv_sec);
1973
1974					status = aac_fib_send(SendHostTime,
1975						fibptr,
1976						sizeof(*info),
1977						FsaNormal,
1978						1, 1,
1979						NULL,
1980						NULL);
1981					/* Do not set XferState to zero unless
1982					 * receives a response from F/W */
1983					if (status >= 0)
1984						aac_fib_complete(fibptr);
1985					/* FIB should be freed only after
1986					 * getting the response from the F/W */
1987					if (status != -ERESTARTSYS)
1988						aac_fib_free(fibptr);
1989				}
1990				difference = (long)(unsigned)update_interval*HZ;
1991			} else {
1992				/* retry shortly */
1993				difference = 10 * HZ;
1994			}
1995			next_jiffies = jiffies + difference;
1996			if (time_before(next_check_jiffies,next_jiffies))
1997				difference = next_check_jiffies - jiffies;
1998		}
1999		if (difference <= 0)
2000			difference = 1;
2001		set_current_state(TASK_INTERRUPTIBLE);
2002
2003		if (kthread_should_stop())
2004			break;
2005
2006		schedule_timeout(difference);
2007
2008		if (kthread_should_stop())
2009			break;
2010	}
2011	if (dev->queues)
2012		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2013	dev->aif_thread = 0;
2014	return 0;
2015}
2016