1/*
2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
3 *    john@geolog.com
4 *    jshiffle@netcom.com
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 */
16
17/*
18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
19 * provided much of the inspiration and some of the code for this
20 * driver. Everything I know about Amiga DMA was gleaned from careful
21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
22 * borrowed shamelessly from all over that source. Thanks Hamish!
23 *
24 * _This_ driver is (I feel) an improvement over the old one in
25 * several respects:
26 *
27 *    -  Target Disconnection/Reconnection  is now supported. Any
28 *          system with more than one device active on the SCSI bus
29 *          will benefit from this. The driver defaults to what I
30 *          call 'adaptive disconnect' - meaning that each command
31 *          is evaluated individually as to whether or not it should
32 *          be run with the option to disconnect/reselect (if the
33 *          device chooses), or as a "SCSI-bus-hog".
34 *
35 *    -  Synchronous data transfers are now supported. Because of
36 *          a few devices that choke after telling the driver that
37 *          they can do sync transfers, we don't automatically use
38 *          this faster protocol - it can be enabled via the command-
39 *          line on a device-by-device basis.
40 *
41 *    -  Runtime operating parameters can now be specified through
42 *       the 'amiboot' or the 'insmod' command line. For amiboot do:
43 *          "amiboot [usual stuff] wd33c93=blah,blah,blah"
44 *       The defaults should be good for most people. See the comment
45 *       for 'setup_strings' below for more details.
46 *
47 *    -  The old driver relied exclusively on what the Western Digital
48 *          docs call "Combination Level 2 Commands", which are a great
49 *          idea in that the CPU is relieved of a lot of interrupt
50 *          overhead. However, by accepting a certain (user-settable)
51 *          amount of additional interrupts, this driver achieves
52 *          better control over the SCSI bus, and data transfers are
53 *          almost as fast while being much easier to define, track,
54 *          and debug.
55 *
56 *
57 * TODO:
58 *       more speed. linked commands.
59 *
60 *
61 * People with bug reports, wish-lists, complaints, comments,
62 * or improvements are asked to pah-leeez email me (John Shifflett)
63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
64 * this thing into as good a shape as possible, and I'm positive
65 * there are lots of lurking bugs and "Stupid Places".
66 *
67 * Updates:
68 *
69 * Added support for pre -A chips, which don't have advanced features
70 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
71 *	Richard Hirst <richard@sleepie.demon.co.uk>  August 2000
72 *
73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
74 * default_sx_per for asynchronous data transfers. Added adjustment
75 * of transfer periods in sx_table to the actual input-clock.
76 *  peter fuerst <post@pfrst.de>  February 2007
77 */
78
79#include <linux/module.h>
80
81#include <linux/string.h>
82#include <linux/delay.h>
83#include <linux/init.h>
84#include <linux/interrupt.h>
85#include <linux/blkdev.h>
86
87#include <scsi/scsi.h>
88#include <scsi/scsi_cmnd.h>
89#include <scsi/scsi_device.h>
90#include <scsi/scsi_host.h>
91
92#include <asm/irq.h>
93
94#include "wd33c93.h"
95
96#define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
97
98
99#define WD33C93_VERSION    "1.26++"
100#define WD33C93_DATE       "10/Feb/2007"
101
102MODULE_AUTHOR("John Shifflett");
103MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
104MODULE_LICENSE("GPL");
105
106/*
107 * 'setup_strings' is a single string used to pass operating parameters and
108 * settings from the kernel/module command-line to the driver. 'setup_args[]'
109 * is an array of strings that define the compile-time default values for
110 * these settings. If Linux boots with an amiboot or insmod command-line,
111 * those settings are combined with 'setup_args[]'. Note that amiboot
112 * command-lines are prefixed with "wd33c93=" while insmod uses a
113 * "setup_strings=" prefix. The driver recognizes the following keywords
114 * (lower case required) and arguments:
115 *
116 * -  nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
117 *                    the 7 possible SCSI devices. Set a bit to negotiate for
118 *                    asynchronous transfers on that device. To maintain
119 *                    backwards compatibility, a command-line such as
120 *                    "wd33c93=255" will be automatically translated to
121 *                    "wd33c93=nosync:0xff".
122 * -  nodma:x        -x = 1 to disable DMA, x = 0 to enable it. Argument is
123 *                    optional - if not present, same as "nodma:1".
124 * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer
125 *                    period. Default is 500; acceptable values are 250 - 1000.
126 * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them.
127 *                    x = 1 does 'adaptive' disconnects, which is the default
128 *                    and generally the best choice.
129 * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
130 *                    various types of debug output to printed - see the DB_xxx
131 *                    defines in wd33c93.h
132 * -  clock:x        -x = clock input in MHz for WD33c93 chip. Normal values
133 *                    would be from 8 through 20. Default is 8.
134 * -  burst:x        -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
135 *                    Single Byte DMA, which is the default. Argument is
136 *                    optional - if not present, same as "burst:1".
137 * -  fast:x         -x = 1 to enable Fast SCSI, which is only effective with
138 *                    input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
139 *                    it, which is the default.  Argument is optional - if not
140 *                    present, same as "fast:1".
141 * -  next           -No argument. Used to separate blocks of keywords when
142 *                    there's more than one host adapter in the system.
143 *
144 * Syntax Notes:
145 * -  Numeric arguments can be decimal or the '0x' form of hex notation. There
146 *    _must_ be a colon between a keyword and its numeric argument, with no
147 *    spaces.
148 * -  Keywords are separated by commas, no spaces, in the standard kernel
149 *    command-line manner.
150 * -  A keyword in the 'nth' comma-separated command-line member will overwrite
151 *    the 'nth' element of setup_args[]. A blank command-line member (in
152 *    other words, a comma with no preceding keyword) will _not_ overwrite
153 *    the corresponding setup_args[] element.
154 * -  If a keyword is used more than once, the first one applies to the first
155 *    SCSI host found, the second to the second card, etc, unless the 'next'
156 *    keyword is used to change the order.
157 *
158 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
159 * -  wd33c93=nosync:255
160 * -  wd33c93=nodma
161 * -  wd33c93=nodma:1
162 * -  wd33c93=disconnect:2,nosync:0x08,period:250
163 * -  wd33c93=debug:0x1c
164 */
165
166/* Normally, no defaults are specified */
167static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
168
169static char *setup_strings;
170module_param(setup_strings, charp, 0);
171
172static void wd33c93_execute(struct Scsi_Host *instance);
173
174#ifdef CONFIG_WD33C93_PIO
175static inline uchar
176read_wd33c93(const wd33c93_regs regs, uchar reg_num)
177{
178	uchar data;
179
180	outb(reg_num, regs.SASR);
181	data = inb(regs.SCMD);
182	return data;
183}
184
185static inline unsigned long
186read_wd33c93_count(const wd33c93_regs regs)
187{
188	unsigned long value;
189
190	outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
191	value = inb(regs.SCMD) << 16;
192	value |= inb(regs.SCMD) << 8;
193	value |= inb(regs.SCMD);
194	return value;
195}
196
197static inline uchar
198read_aux_stat(const wd33c93_regs regs)
199{
200	return inb(regs.SASR);
201}
202
203static inline void
204write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
205{
206      outb(reg_num, regs.SASR);
207      outb(value, regs.SCMD);
208}
209
210static inline void
211write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
212{
213	outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
214	outb((value >> 16) & 0xff, regs.SCMD);
215	outb((value >> 8) & 0xff, regs.SCMD);
216	outb( value & 0xff, regs.SCMD);
217}
218
219#define write_wd33c93_cmd(regs, cmd) \
220	write_wd33c93((regs), WD_COMMAND, (cmd))
221
222static inline void
223write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
224{
225	int i;
226
227	outb(WD_CDB_1, regs.SASR);
228	for (i=0; i<len; i++)
229		outb(cmnd[i], regs.SCMD);
230}
231
232#else /* CONFIG_WD33C93_PIO */
233static inline uchar
234read_wd33c93(const wd33c93_regs regs, uchar reg_num)
235{
236	*regs.SASR = reg_num;
237	mb();
238	return (*regs.SCMD);
239}
240
241static unsigned long
242read_wd33c93_count(const wd33c93_regs regs)
243{
244	unsigned long value;
245
246	*regs.SASR = WD_TRANSFER_COUNT_MSB;
247	mb();
248	value = *regs.SCMD << 16;
249	value |= *regs.SCMD << 8;
250	value |= *regs.SCMD;
251	mb();
252	return value;
253}
254
255static inline uchar
256read_aux_stat(const wd33c93_regs regs)
257{
258	return *regs.SASR;
259}
260
261static inline void
262write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
263{
264	*regs.SASR = reg_num;
265	mb();
266	*regs.SCMD = value;
267	mb();
268}
269
270static void
271write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
272{
273	*regs.SASR = WD_TRANSFER_COUNT_MSB;
274	mb();
275	*regs.SCMD = value >> 16;
276	*regs.SCMD = value >> 8;
277	*regs.SCMD = value;
278	mb();
279}
280
281static inline void
282write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
283{
284	*regs.SASR = WD_COMMAND;
285	mb();
286	*regs.SCMD = cmd;
287	mb();
288}
289
290static inline void
291write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
292{
293	int i;
294
295	*regs.SASR = WD_CDB_1;
296	for (i = 0; i < len; i++)
297		*regs.SCMD = cmnd[i];
298}
299#endif /* CONFIG_WD33C93_PIO */
300
301static inline uchar
302read_1_byte(const wd33c93_regs regs)
303{
304	uchar asr;
305	uchar x = 0;
306
307	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
308	write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
309	do {
310		asr = read_aux_stat(regs);
311		if (asr & ASR_DBR)
312			x = read_wd33c93(regs, WD_DATA);
313	} while (!(asr & ASR_INT));
314	return x;
315}
316
317static int
318round_period(unsigned int period, const struct sx_period *sx_table)
319{
320	int x;
321
322	for (x = 1; sx_table[x].period_ns; x++) {
323		if ((period <= sx_table[x - 0].period_ns) &&
324		    (period > sx_table[x - 1].period_ns)) {
325			return x;
326		}
327	}
328	return 7;
329}
330
331/*
332 * Calculate Synchronous Transfer Register value from SDTR code.
333 */
334static uchar
335calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
336               const struct sx_period *sx_table)
337{
338	/* When doing Fast SCSI synchronous data transfers, the corresponding
339	 * value in 'sx_table' is two times the actually used transfer period.
340	 */
341	uchar result;
342
343	if (offset && fast) {
344		fast = STR_FSS;
345		period *= 2;
346	} else {
347		fast = 0;
348	}
349	period *= 4;		/* convert SDTR code to ns */
350	result = sx_table[round_period(period,sx_table)].reg_value;
351	result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
352	result |= fast;
353	return result;
354}
355
356/*
357 * Calculate SDTR code bytes [3],[4] from period and offset.
358 */
359static inline void
360calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
361                uchar  msg[2])
362{
363	/* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
364	 * actually used transfer period for Fast SCSI synchronous data
365	 * transfers is half that value.
366	 */
367	period /= 4;
368	if (offset && fast)
369		period /= 2;
370	msg[0] = period;
371	msg[1] = offset;
372}
373
374static int
375wd33c93_queuecommand_lck(struct scsi_cmnd *cmd,
376		void (*done)(struct scsi_cmnd *))
377{
378	struct WD33C93_hostdata *hostdata;
379	struct scsi_cmnd *tmp;
380
381	hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
382
383	DB(DB_QUEUE_COMMAND,
384	   printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))
385
386/* Set up a few fields in the scsi_cmnd structure for our own use:
387 *  - host_scribble is the pointer to the next cmd in the input queue
388 *  - scsi_done points to the routine we call when a cmd is finished
389 *  - result is what you'd expect
390 */
391	cmd->host_scribble = NULL;
392	cmd->scsi_done = done;
393	cmd->result = 0;
394
395/* We use the Scsi_Pointer structure that's included with each command
396 * as a scratchpad (as it's intended to be used!). The handy thing about
397 * the SCp.xxx fields is that they're always associated with a given
398 * cmd, and are preserved across disconnect-reselect. This means we
399 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
400 * if we keep all the critical pointers and counters in SCp:
401 *  - SCp.ptr is the pointer into the RAM buffer
402 *  - SCp.this_residual is the size of that buffer
403 *  - SCp.buffer points to the current scatter-gather buffer
404 *  - SCp.buffers_residual tells us how many S.G. buffers there are
405 *  - SCp.have_data_in is not used
406 *  - SCp.sent_command is not used
407 *  - SCp.phase records this command's SRCID_ER bit setting
408 */
409
410	if (scsi_bufflen(cmd)) {
411		cmd->SCp.buffer = scsi_sglist(cmd);
412		cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
413		cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
414		cmd->SCp.this_residual = cmd->SCp.buffer->length;
415	} else {
416		cmd->SCp.buffer = NULL;
417		cmd->SCp.buffers_residual = 0;
418		cmd->SCp.ptr = NULL;
419		cmd->SCp.this_residual = 0;
420	}
421
422/* WD docs state that at the conclusion of a "LEVEL2" command, the
423 * status byte can be retrieved from the LUN register. Apparently,
424 * this is the case only for *uninterrupted* LEVEL2 commands! If
425 * there are any unexpected phases entered, even if they are 100%
426 * legal (different devices may choose to do things differently),
427 * the LEVEL2 command sequence is exited. This often occurs prior
428 * to receiving the status byte, in which case the driver does a
429 * status phase interrupt and gets the status byte on its own.
430 * While such a command can then be "resumed" (ie restarted to
431 * finish up as a LEVEL2 command), the LUN register will NOT be
432 * a valid status byte at the command's conclusion, and we must
433 * use the byte obtained during the earlier interrupt. Here, we
434 * preset SCp.Status to an illegal value (0xff) so that when
435 * this command finally completes, we can tell where the actual
436 * status byte is stored.
437 */
438
439	cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
440
441	/*
442	 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
443	 * commands are added to the head of the queue so that the desired
444	 * sense data is not lost before REQUEST_SENSE executes.
445	 */
446
447	spin_lock_irq(&hostdata->lock);
448
449	if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
450		cmd->host_scribble = (uchar *) hostdata->input_Q;
451		hostdata->input_Q = cmd;
452	} else {		/* find the end of the queue */
453		for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
454		     tmp->host_scribble;
455		     tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
456		tmp->host_scribble = (uchar *) cmd;
457	}
458
459/* We know that there's at least one command in 'input_Q' now.
460 * Go see if any of them are runnable!
461 */
462
463	wd33c93_execute(cmd->device->host);
464
465	DB(DB_QUEUE_COMMAND, printk(")Q "))
466
467	spin_unlock_irq(&hostdata->lock);
468	return 0;
469}
470
471DEF_SCSI_QCMD(wd33c93_queuecommand)
472
473/*
474 * This routine attempts to start a scsi command. If the host_card is
475 * already connected, we give up immediately. Otherwise, look through
476 * the input_Q, using the first command we find that's intended
477 * for a currently non-busy target/lun.
478 *
479 * wd33c93_execute() is always called with interrupts disabled or from
480 * the wd33c93_intr itself, which means that a wd33c93 interrupt
481 * cannot occur while we are in here.
482 */
483static void
484wd33c93_execute(struct Scsi_Host *instance)
485{
486	struct WD33C93_hostdata *hostdata =
487	    (struct WD33C93_hostdata *) instance->hostdata;
488	const wd33c93_regs regs = hostdata->regs;
489	struct scsi_cmnd *cmd, *prev;
490
491	DB(DB_EXECUTE, printk("EX("))
492	if (hostdata->selecting || hostdata->connected) {
493		DB(DB_EXECUTE, printk(")EX-0 "))
494		return;
495	}
496
497	/*
498	 * Search through the input_Q for a command destined
499	 * for an idle target/lun.
500	 */
501
502	cmd = (struct scsi_cmnd *) hostdata->input_Q;
503	prev = NULL;
504	while (cmd) {
505		if (!(hostdata->busy[cmd->device->id] &
506		      (1 << (cmd->device->lun & 0xff))))
507			break;
508		prev = cmd;
509		cmd = (struct scsi_cmnd *) cmd->host_scribble;
510	}
511
512	/* quit if queue empty or all possible targets are busy */
513
514	if (!cmd) {
515		DB(DB_EXECUTE, printk(")EX-1 "))
516		return;
517	}
518
519	/*  remove command from queue */
520
521	if (prev)
522		prev->host_scribble = cmd->host_scribble;
523	else
524		hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
525
526#ifdef PROC_STATISTICS
527	hostdata->cmd_cnt[cmd->device->id]++;
528#endif
529
530	/*
531	 * Start the selection process
532	 */
533
534	if (cmd->sc_data_direction == DMA_TO_DEVICE)
535		write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
536	else
537		write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
538
539/* Now we need to figure out whether or not this command is a good
540 * candidate for disconnect/reselect. We guess to the best of our
541 * ability, based on a set of hierarchical rules. When several
542 * devices are operating simultaneously, disconnects are usually
543 * an advantage. In a single device system, or if only 1 device
544 * is being accessed, transfers usually go faster if disconnects
545 * are not allowed:
546 *
547 * + Commands should NEVER disconnect if hostdata->disconnect =
548 *   DIS_NEVER (this holds for tape drives also), and ALWAYS
549 *   disconnect if hostdata->disconnect = DIS_ALWAYS.
550 * + Tape drive commands should always be allowed to disconnect.
551 * + Disconnect should be allowed if disconnected_Q isn't empty.
552 * + Commands should NOT disconnect if input_Q is empty.
553 * + Disconnect should be allowed if there are commands in input_Q
554 *   for a different target/lun. In this case, the other commands
555 *   should be made disconnect-able, if not already.
556 *
557 * I know, I know - this code would flunk me out of any
558 * "C Programming 101" class ever offered. But it's easy
559 * to change around and experiment with for now.
560 */
561
562	cmd->SCp.phase = 0;	/* assume no disconnect */
563	if (hostdata->disconnect == DIS_NEVER)
564		goto no;
565	if (hostdata->disconnect == DIS_ALWAYS)
566		goto yes;
567	if (cmd->device->type == 1)	/* tape drive? */
568		goto yes;
569	if (hostdata->disconnected_Q)	/* other commands disconnected? */
570		goto yes;
571	if (!(hostdata->input_Q))	/* input_Q empty? */
572		goto no;
573	for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
574	     prev = (struct scsi_cmnd *) prev->host_scribble) {
575		if ((prev->device->id != cmd->device->id) ||
576		    (prev->device->lun != cmd->device->lun)) {
577			for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
578			     prev = (struct scsi_cmnd *) prev->host_scribble)
579				prev->SCp.phase = 1;
580			goto yes;
581		}
582	}
583
584	goto no;
585
586 yes:
587	cmd->SCp.phase = 1;
588
589#ifdef PROC_STATISTICS
590	hostdata->disc_allowed_cnt[cmd->device->id]++;
591#endif
592
593 no:
594
595	write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
596
597	write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun);
598	write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
599		      hostdata->sync_xfer[cmd->device->id]);
600	hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));
601
602	if ((hostdata->level2 == L2_NONE) ||
603	    (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
604
605		/*
606		 * Do a 'Select-With-ATN' command. This will end with
607		 * one of the following interrupts:
608		 *    CSR_RESEL_AM:  failure - can try again later.
609		 *    CSR_TIMEOUT:   failure - give up.
610		 *    CSR_SELECT:    success - proceed.
611		 */
612
613		hostdata->selecting = cmd;
614
615/* Every target has its own synchronous transfer setting, kept in the
616 * sync_xfer array, and a corresponding status byte in sync_stat[].
617 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
618 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
619 * means that the parameters are undetermined as yet, and that we
620 * need to send an SDTR message to this device after selection is
621 * complete: We set SS_FIRST to tell the interrupt routine to do so.
622 * If we've been asked not to try synchronous transfers on this
623 * target (and _all_ luns within it), we'll still send the SDTR message
624 * later, but at that time we'll negotiate for async by specifying a
625 * sync fifo depth of 0.
626 */
627		if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
628			hostdata->sync_stat[cmd->device->id] = SS_FIRST;
629		hostdata->state = S_SELECTING;
630		write_wd33c93_count(regs, 0);	/* guarantee a DATA_PHASE interrupt */
631		write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
632	} else {
633
634		/*
635		 * Do a 'Select-With-ATN-Xfer' command. This will end with
636		 * one of the following interrupts:
637		 *    CSR_RESEL_AM:  failure - can try again later.
638		 *    CSR_TIMEOUT:   failure - give up.
639		 *    anything else: success - proceed.
640		 */
641
642		hostdata->connected = cmd;
643		write_wd33c93(regs, WD_COMMAND_PHASE, 0);
644
645		/* copy command_descriptor_block into WD chip
646		 * (take advantage of auto-incrementing)
647		 */
648
649		write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
650
651		/* The wd33c93 only knows about Group 0, 1, and 5 commands when
652		 * it's doing a 'select-and-transfer'. To be safe, we write the
653		 * size of the CDB into the OWN_ID register for every case. This
654		 * way there won't be problems with vendor-unique, audio, etc.
655		 */
656
657		write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
658
659		/* When doing a non-disconnect command with DMA, we can save
660		 * ourselves a DATA phase interrupt later by setting everything
661		 * up ahead of time.
662		 */
663
664		if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
665			if (hostdata->dma_setup(cmd,
666			    (cmd->sc_data_direction == DMA_TO_DEVICE) ?
667			     DATA_OUT_DIR : DATA_IN_DIR))
668				write_wd33c93_count(regs, 0);	/* guarantee a DATA_PHASE interrupt */
669			else {
670				write_wd33c93_count(regs,
671						    cmd->SCp.this_residual);
672				write_wd33c93(regs, WD_CONTROL,
673					      CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
674				hostdata->dma = D_DMA_RUNNING;
675			}
676		} else
677			write_wd33c93_count(regs, 0);	/* guarantee a DATA_PHASE interrupt */
678
679		hostdata->state = S_RUNNING_LEVEL2;
680		write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
681	}
682
683	/*
684	 * Since the SCSI bus can handle only 1 connection at a time,
685	 * we get out of here now. If the selection fails, or when
686	 * the command disconnects, we'll come back to this routine
687	 * to search the input_Q again...
688	 */
689
690	DB(DB_EXECUTE,
691	   printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
692}
693
694static void
695transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
696	     int data_in_dir, struct WD33C93_hostdata *hostdata)
697{
698	uchar asr;
699
700	DB(DB_TRANSFER,
701	   printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
702
703	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
704	write_wd33c93_count(regs, cnt);
705	write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
706	if (data_in_dir) {
707		do {
708			asr = read_aux_stat(regs);
709			if (asr & ASR_DBR)
710				*buf++ = read_wd33c93(regs, WD_DATA);
711		} while (!(asr & ASR_INT));
712	} else {
713		do {
714			asr = read_aux_stat(regs);
715			if (asr & ASR_DBR)
716				write_wd33c93(regs, WD_DATA, *buf++);
717		} while (!(asr & ASR_INT));
718	}
719
720	/* Note: we are returning with the interrupt UN-cleared.
721	 * Since (presumably) an entire I/O operation has
722	 * completed, the bus phase is probably different, and
723	 * the interrupt routine will discover this when it
724	 * responds to the uncleared int.
725	 */
726
727}
728
729static void
730transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
731		int data_in_dir)
732{
733	struct WD33C93_hostdata *hostdata;
734	unsigned long length;
735
736	hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
737
738/* Normally, you'd expect 'this_residual' to be non-zero here.
739 * In a series of scatter-gather transfers, however, this
740 * routine will usually be called with 'this_residual' equal
741 * to 0 and 'buffers_residual' non-zero. This means that a
742 * previous transfer completed, clearing 'this_residual', and
743 * now we need to setup the next scatter-gather buffer as the
744 * source or destination for THIS transfer.
745 */
746	if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
747		++cmd->SCp.buffer;
748		--cmd->SCp.buffers_residual;
749		cmd->SCp.this_residual = cmd->SCp.buffer->length;
750		cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
751	}
752	if (!cmd->SCp.this_residual) /* avoid bogus setups */
753		return;
754
755	write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
756		      hostdata->sync_xfer[cmd->device->id]);
757
758/* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
759 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
760 */
761
762	if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
763#ifdef PROC_STATISTICS
764		hostdata->pio_cnt++;
765#endif
766		transfer_pio(regs, (uchar *) cmd->SCp.ptr,
767			     cmd->SCp.this_residual, data_in_dir, hostdata);
768		length = cmd->SCp.this_residual;
769		cmd->SCp.this_residual = read_wd33c93_count(regs);
770		cmd->SCp.ptr += (length - cmd->SCp.this_residual);
771	}
772
773/* We are able to do DMA (in fact, the Amiga hardware is
774 * already going!), so start up the wd33c93 in DMA mode.
775 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
776 * transfer completes and causes an interrupt, we're
777 * reminded to tell the Amiga to shut down its end. We'll
778 * postpone the updating of 'this_residual' and 'ptr'
779 * until then.
780 */
781
782	else {
783#ifdef PROC_STATISTICS
784		hostdata->dma_cnt++;
785#endif
786		write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
787		write_wd33c93_count(regs, cmd->SCp.this_residual);
788
789		if ((hostdata->level2 >= L2_DATA) ||
790		    (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
791			write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
792			write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
793			hostdata->state = S_RUNNING_LEVEL2;
794		} else
795			write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
796
797		hostdata->dma = D_DMA_RUNNING;
798	}
799}
800
801void
802wd33c93_intr(struct Scsi_Host *instance)
803{
804	struct WD33C93_hostdata *hostdata =
805	    (struct WD33C93_hostdata *) instance->hostdata;
806	const wd33c93_regs regs = hostdata->regs;
807	struct scsi_cmnd *patch, *cmd;
808	uchar asr, sr, phs, id, lun, *ucp, msg;
809	unsigned long length, flags;
810
811	asr = read_aux_stat(regs);
812	if (!(asr & ASR_INT) || (asr & ASR_BSY))
813		return;
814
815	spin_lock_irqsave(&hostdata->lock, flags);
816
817#ifdef PROC_STATISTICS
818	hostdata->int_cnt++;
819#endif
820
821	cmd = (struct scsi_cmnd *) hostdata->connected;	/* assume we're connected */
822	sr = read_wd33c93(regs, WD_SCSI_STATUS);	/* clear the interrupt */
823	phs = read_wd33c93(regs, WD_COMMAND_PHASE);
824
825	DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
826
827/* After starting a DMA transfer, the next interrupt
828 * is guaranteed to be in response to completion of
829 * the transfer. Since the Amiga DMA hardware runs in
830 * in an open-ended fashion, it needs to be told when
831 * to stop; do that here if D_DMA_RUNNING is true.
832 * Also, we have to update 'this_residual' and 'ptr'
833 * based on the contents of the TRANSFER_COUNT register,
834 * in case the device decided to do an intermediate
835 * disconnect (a device may do this if it has to do a
836 * seek, or just to be nice and let other devices have
837 * some bus time during long transfers). After doing
838 * whatever is needed, we go on and service the WD3393
839 * interrupt normally.
840 */
841	    if (hostdata->dma == D_DMA_RUNNING) {
842		DB(DB_TRANSFER,
843		   printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
844		    hostdata->dma_stop(cmd->device->host, cmd, 1);
845		hostdata->dma = D_DMA_OFF;
846		length = cmd->SCp.this_residual;
847		cmd->SCp.this_residual = read_wd33c93_count(regs);
848		cmd->SCp.ptr += (length - cmd->SCp.this_residual);
849		DB(DB_TRANSFER,
850		   printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
851	}
852
853/* Respond to the specific WD3393 interrupt - there are quite a few! */
854	switch (sr) {
855	case CSR_TIMEOUT:
856		DB(DB_INTR, printk("TIMEOUT"))
857
858		    if (hostdata->state == S_RUNNING_LEVEL2)
859			hostdata->connected = NULL;
860		else {
861			cmd = (struct scsi_cmnd *) hostdata->selecting;	/* get a valid cmd */
862			hostdata->selecting = NULL;
863		}
864
865		cmd->result = DID_NO_CONNECT << 16;
866		hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
867		hostdata->state = S_UNCONNECTED;
868		cmd->scsi_done(cmd);
869
870		/* From esp.c:
871		 * There is a window of time within the scsi_done() path
872		 * of execution where interrupts are turned back on full
873		 * blast and left that way.  During that time we could
874		 * reconnect to a disconnected command, then we'd bomb
875		 * out below.  We could also end up executing two commands
876		 * at _once_.  ...just so you know why the restore_flags()
877		 * is here...
878		 */
879
880		spin_unlock_irqrestore(&hostdata->lock, flags);
881
882/* We are not connected to a target - check to see if there
883 * are commands waiting to be executed.
884 */
885
886		wd33c93_execute(instance);
887		break;
888
889/* Note: this interrupt should not occur in a LEVEL2 command */
890
891	case CSR_SELECT:
892		DB(DB_INTR, printk("SELECT"))
893		    hostdata->connected = cmd =
894		    (struct scsi_cmnd *) hostdata->selecting;
895		hostdata->selecting = NULL;
896
897		/* construct an IDENTIFY message with correct disconnect bit */
898
899		hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun);
900		if (cmd->SCp.phase)
901			hostdata->outgoing_msg[0] |= 0x40;
902
903		if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
904
905			hostdata->sync_stat[cmd->device->id] = SS_WAITING;
906
907/* Tack on a 2nd message to ask about synchronous transfers. If we've
908 * been asked to do only asynchronous transfers on this device, we
909 * request a fifo depth of 0, which is equivalent to async - should
910 * solve the problems some people have had with GVP's Guru ROM.
911 */
912
913			hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
914			hostdata->outgoing_msg[2] = 3;
915			hostdata->outgoing_msg[3] = EXTENDED_SDTR;
916			if (hostdata->no_sync & (1 << cmd->device->id)) {
917				calc_sync_msg(hostdata->default_sx_per, 0,
918						0, hostdata->outgoing_msg + 4);
919			} else {
920				calc_sync_msg(optimum_sx_per(hostdata),
921						OPTIMUM_SX_OFF,
922						hostdata->fast,
923						hostdata->outgoing_msg + 4);
924			}
925			hostdata->outgoing_len = 6;
926#ifdef SYNC_DEBUG
927			ucp = hostdata->outgoing_msg + 1;
928			printk(" sending SDTR %02x03%02x%02x%02x ",
929				ucp[0], ucp[2], ucp[3], ucp[4]);
930#endif
931		} else
932			hostdata->outgoing_len = 1;
933
934		hostdata->state = S_CONNECTED;
935		spin_unlock_irqrestore(&hostdata->lock, flags);
936		break;
937
938	case CSR_XFER_DONE | PHS_DATA_IN:
939	case CSR_UNEXP | PHS_DATA_IN:
940	case CSR_SRV_REQ | PHS_DATA_IN:
941		DB(DB_INTR,
942		   printk("IN-%d.%d", cmd->SCp.this_residual,
943			  cmd->SCp.buffers_residual))
944		    transfer_bytes(regs, cmd, DATA_IN_DIR);
945		if (hostdata->state != S_RUNNING_LEVEL2)
946			hostdata->state = S_CONNECTED;
947		spin_unlock_irqrestore(&hostdata->lock, flags);
948		break;
949
950	case CSR_XFER_DONE | PHS_DATA_OUT:
951	case CSR_UNEXP | PHS_DATA_OUT:
952	case CSR_SRV_REQ | PHS_DATA_OUT:
953		DB(DB_INTR,
954		   printk("OUT-%d.%d", cmd->SCp.this_residual,
955			  cmd->SCp.buffers_residual))
956		    transfer_bytes(regs, cmd, DATA_OUT_DIR);
957		if (hostdata->state != S_RUNNING_LEVEL2)
958			hostdata->state = S_CONNECTED;
959		spin_unlock_irqrestore(&hostdata->lock, flags);
960		break;
961
962/* Note: this interrupt should not occur in a LEVEL2 command */
963
964	case CSR_XFER_DONE | PHS_COMMAND:
965	case CSR_UNEXP | PHS_COMMAND:
966	case CSR_SRV_REQ | PHS_COMMAND:
967		DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
968		    transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
969				 hostdata);
970		hostdata->state = S_CONNECTED;
971		spin_unlock_irqrestore(&hostdata->lock, flags);
972		break;
973
974	case CSR_XFER_DONE | PHS_STATUS:
975	case CSR_UNEXP | PHS_STATUS:
976	case CSR_SRV_REQ | PHS_STATUS:
977		DB(DB_INTR, printk("STATUS="))
978		cmd->SCp.Status = read_1_byte(regs);
979		DB(DB_INTR, printk("%02x", cmd->SCp.Status))
980		    if (hostdata->level2 >= L2_BASIC) {
981			sr = read_wd33c93(regs, WD_SCSI_STATUS);	/* clear interrupt */
982			udelay(7);
983			hostdata->state = S_RUNNING_LEVEL2;
984			write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
985			write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
986		} else {
987			hostdata->state = S_CONNECTED;
988		}
989		spin_unlock_irqrestore(&hostdata->lock, flags);
990		break;
991
992	case CSR_XFER_DONE | PHS_MESS_IN:
993	case CSR_UNEXP | PHS_MESS_IN:
994	case CSR_SRV_REQ | PHS_MESS_IN:
995		DB(DB_INTR, printk("MSG_IN="))
996
997		msg = read_1_byte(regs);
998		sr = read_wd33c93(regs, WD_SCSI_STATUS);	/* clear interrupt */
999		udelay(7);
1000
1001		hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1002		if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1003			msg = EXTENDED_MESSAGE;
1004		else
1005			hostdata->incoming_ptr = 0;
1006
1007		cmd->SCp.Message = msg;
1008		switch (msg) {
1009
1010		case COMMAND_COMPLETE:
1011			DB(DB_INTR, printk("CCMP"))
1012			    write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1013			hostdata->state = S_PRE_CMP_DISC;
1014			break;
1015
1016		case SAVE_POINTERS:
1017			DB(DB_INTR, printk("SDP"))
1018			    write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1019			hostdata->state = S_CONNECTED;
1020			break;
1021
1022		case RESTORE_POINTERS:
1023			DB(DB_INTR, printk("RDP"))
1024			    if (hostdata->level2 >= L2_BASIC) {
1025				write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1026				write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1027				hostdata->state = S_RUNNING_LEVEL2;
1028			} else {
1029				write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1030				hostdata->state = S_CONNECTED;
1031			}
1032			break;
1033
1034		case DISCONNECT:
1035			DB(DB_INTR, printk("DIS"))
1036			    cmd->device->disconnect = 1;
1037			write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1038			hostdata->state = S_PRE_TMP_DISC;
1039			break;
1040
1041		case MESSAGE_REJECT:
1042			DB(DB_INTR, printk("REJ"))
1043#ifdef SYNC_DEBUG
1044			    printk("-REJ-");
1045#endif
1046			if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
1047				hostdata->sync_stat[cmd->device->id] = SS_SET;
1048				/* we want default_sx_per, not DEFAULT_SX_PER */
1049				hostdata->sync_xfer[cmd->device->id] =
1050					calc_sync_xfer(hostdata->default_sx_per
1051						/ 4, 0, 0, hostdata->sx_table);
1052			}
1053			write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1054			hostdata->state = S_CONNECTED;
1055			break;
1056
1057		case EXTENDED_MESSAGE:
1058			DB(DB_INTR, printk("EXT"))
1059
1060			    ucp = hostdata->incoming_msg;
1061
1062#ifdef SYNC_DEBUG
1063			printk("%02x", ucp[hostdata->incoming_ptr]);
1064#endif
1065			/* Is this the last byte of the extended message? */
1066
1067			if ((hostdata->incoming_ptr >= 2) &&
1068			    (hostdata->incoming_ptr == (ucp[1] + 1))) {
1069
1070				switch (ucp[2]) {	/* what's the EXTENDED code? */
1071				case EXTENDED_SDTR:
1072					/* default to default async period */
1073					id = calc_sync_xfer(hostdata->
1074							default_sx_per / 4, 0,
1075							0, hostdata->sx_table);
1076					if (hostdata->sync_stat[cmd->device->id] !=
1077					    SS_WAITING) {
1078
1079/* A device has sent an unsolicited SDTR message; rather than go
1080 * through the effort of decoding it and then figuring out what
1081 * our reply should be, we're just gonna say that we have a
1082 * synchronous fifo depth of 0. This will result in asynchronous
1083 * transfers - not ideal but so much easier.
1084 * Actually, this is OK because it assures us that if we don't
1085 * specifically ask for sync transfers, we won't do any.
1086 */
1087
1088						write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1089						hostdata->outgoing_msg[0] =
1090						    EXTENDED_MESSAGE;
1091						hostdata->outgoing_msg[1] = 3;
1092						hostdata->outgoing_msg[2] =
1093						    EXTENDED_SDTR;
1094						calc_sync_msg(hostdata->
1095							default_sx_per, 0,
1096							0, hostdata->outgoing_msg + 3);
1097						hostdata->outgoing_len = 5;
1098					} else {
1099						if (ucp[4]) /* well, sync transfer */
1100							id = calc_sync_xfer(ucp[3], ucp[4],
1101									hostdata->fast,
1102									hostdata->sx_table);
1103						else if (ucp[3]) /* very unlikely... */
1104							id = calc_sync_xfer(ucp[3], ucp[4],
1105									0, hostdata->sx_table);
1106					}
1107					hostdata->sync_xfer[cmd->device->id] = id;
1108#ifdef SYNC_DEBUG
1109					printk(" sync_xfer=%02x\n",
1110					       hostdata->sync_xfer[cmd->device->id]);
1111#endif
1112					hostdata->sync_stat[cmd->device->id] =
1113					    SS_SET;
1114					write_wd33c93_cmd(regs,
1115							  WD_CMD_NEGATE_ACK);
1116					hostdata->state = S_CONNECTED;
1117					break;
1118				case EXTENDED_WDTR:
1119					write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1120					printk("sending WDTR ");
1121					hostdata->outgoing_msg[0] =
1122					    EXTENDED_MESSAGE;
1123					hostdata->outgoing_msg[1] = 2;
1124					hostdata->outgoing_msg[2] =
1125					    EXTENDED_WDTR;
1126					hostdata->outgoing_msg[3] = 0;	/* 8 bit transfer width */
1127					hostdata->outgoing_len = 4;
1128					write_wd33c93_cmd(regs,
1129							  WD_CMD_NEGATE_ACK);
1130					hostdata->state = S_CONNECTED;
1131					break;
1132				default:
1133					write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1134					printk
1135					    ("Rejecting Unknown Extended Message(%02x). ",
1136					     ucp[2]);
1137					hostdata->outgoing_msg[0] =
1138					    MESSAGE_REJECT;
1139					hostdata->outgoing_len = 1;
1140					write_wd33c93_cmd(regs,
1141							  WD_CMD_NEGATE_ACK);
1142					hostdata->state = S_CONNECTED;
1143					break;
1144				}
1145				hostdata->incoming_ptr = 0;
1146			}
1147
1148			/* We need to read more MESS_IN bytes for the extended message */
1149
1150			else {
1151				hostdata->incoming_ptr++;
1152				write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1153				hostdata->state = S_CONNECTED;
1154			}
1155			break;
1156
1157		default:
1158			printk("Rejecting Unknown Message(%02x) ", msg);
1159			write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1160			hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1161			hostdata->outgoing_len = 1;
1162			write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1163			hostdata->state = S_CONNECTED;
1164		}
1165		spin_unlock_irqrestore(&hostdata->lock, flags);
1166		break;
1167
1168/* Note: this interrupt will occur only after a LEVEL2 command */
1169
1170	case CSR_SEL_XFER_DONE:
1171
1172/* Make sure that reselection is enabled at this point - it may
1173 * have been turned off for the command that just completed.
1174 */
1175
1176		write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1177		if (phs == 0x60) {
1178			DB(DB_INTR, printk("SX-DONE"))
1179			    cmd->SCp.Message = COMMAND_COMPLETE;
1180			lun = read_wd33c93(regs, WD_TARGET_LUN);
1181			DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1182			    hostdata->connected = NULL;
1183			hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1184			hostdata->state = S_UNCONNECTED;
1185			if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1186				cmd->SCp.Status = lun;
1187			if (cmd->cmnd[0] == REQUEST_SENSE
1188			    && cmd->SCp.Status != GOOD)
1189				cmd->result =
1190				    (cmd->
1191				     result & 0x00ffff) | (DID_ERROR << 16);
1192			else
1193				cmd->result =
1194				    cmd->SCp.Status | (cmd->SCp.Message << 8);
1195			cmd->scsi_done(cmd);
1196
1197/* We are no longer  connected to a target - check to see if
1198 * there are commands waiting to be executed.
1199 */
1200			spin_unlock_irqrestore(&hostdata->lock, flags);
1201			wd33c93_execute(instance);
1202		} else {
1203			printk
1204			    ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
1205			     asr, sr, phs);
1206			spin_unlock_irqrestore(&hostdata->lock, flags);
1207		}
1208		break;
1209
1210/* Note: this interrupt will occur only after a LEVEL2 command */
1211
1212	case CSR_SDP:
1213		DB(DB_INTR, printk("SDP"))
1214		    hostdata->state = S_RUNNING_LEVEL2;
1215		write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1216		write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1217		spin_unlock_irqrestore(&hostdata->lock, flags);
1218		break;
1219
1220	case CSR_XFER_DONE | PHS_MESS_OUT:
1221	case CSR_UNEXP | PHS_MESS_OUT:
1222	case CSR_SRV_REQ | PHS_MESS_OUT:
1223		DB(DB_INTR, printk("MSG_OUT="))
1224
1225/* To get here, we've probably requested MESSAGE_OUT and have
1226 * already put the correct bytes in outgoing_msg[] and filled
1227 * in outgoing_len. We simply send them out to the SCSI bus.
1228 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1229 * it - like when our SDTR message is rejected by a target. Some
1230 * targets send the REJECT before receiving all of the extended
1231 * message, and then seem to go back to MESSAGE_OUT for a byte
1232 * or two. Not sure why, or if I'm doing something wrong to
1233 * cause this to happen. Regardless, it seems that sending
1234 * NOP messages in these situations results in no harm and
1235 * makes everyone happy.
1236 */
1237		    if (hostdata->outgoing_len == 0) {
1238			hostdata->outgoing_len = 1;
1239			hostdata->outgoing_msg[0] = NOP;
1240		}
1241		transfer_pio(regs, hostdata->outgoing_msg,
1242			     hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1243		DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1244		    hostdata->outgoing_len = 0;
1245		hostdata->state = S_CONNECTED;
1246		spin_unlock_irqrestore(&hostdata->lock, flags);
1247		break;
1248
1249	case CSR_UNEXP_DISC:
1250
1251/* I think I've seen this after a request-sense that was in response
1252 * to an error condition, but not sure. We certainly need to do
1253 * something when we get this interrupt - the question is 'what?'.
1254 * Let's think positively, and assume some command has finished
1255 * in a legal manner (like a command that provokes a request-sense),
1256 * so we treat it as a normal command-complete-disconnect.
1257 */
1258
1259/* Make sure that reselection is enabled at this point - it may
1260 * have been turned off for the command that just completed.
1261 */
1262
1263		write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1264		if (cmd == NULL) {
1265			printk(" - Already disconnected! ");
1266			hostdata->state = S_UNCONNECTED;
1267			spin_unlock_irqrestore(&hostdata->lock, flags);
1268			return;
1269		}
1270		DB(DB_INTR, printk("UNEXP_DISC"))
1271		    hostdata->connected = NULL;
1272		hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1273		hostdata->state = S_UNCONNECTED;
1274		if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1275			cmd->result =
1276			    (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1277		else
1278			cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1279		cmd->scsi_done(cmd);
1280
1281/* We are no longer connected to a target - check to see if
1282 * there are commands waiting to be executed.
1283 */
1284		/* look above for comments on scsi_done() */
1285		spin_unlock_irqrestore(&hostdata->lock, flags);
1286		wd33c93_execute(instance);
1287		break;
1288
1289	case CSR_DISC:
1290
1291/* Make sure that reselection is enabled at this point - it may
1292 * have been turned off for the command that just completed.
1293 */
1294
1295		write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1296		DB(DB_INTR, printk("DISC"))
1297		    if (cmd == NULL) {
1298			printk(" - Already disconnected! ");
1299			hostdata->state = S_UNCONNECTED;
1300		}
1301		switch (hostdata->state) {
1302		case S_PRE_CMP_DISC:
1303			hostdata->connected = NULL;
1304			hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1305			hostdata->state = S_UNCONNECTED;
1306			DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1307			    if (cmd->cmnd[0] == REQUEST_SENSE
1308				&& cmd->SCp.Status != GOOD)
1309				cmd->result =
1310				    (cmd->
1311				     result & 0x00ffff) | (DID_ERROR << 16);
1312			else
1313				cmd->result =
1314				    cmd->SCp.Status | (cmd->SCp.Message << 8);
1315			cmd->scsi_done(cmd);
1316			break;
1317		case S_PRE_TMP_DISC:
1318		case S_RUNNING_LEVEL2:
1319			cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1320			hostdata->disconnected_Q = cmd;
1321			hostdata->connected = NULL;
1322			hostdata->state = S_UNCONNECTED;
1323
1324#ifdef PROC_STATISTICS
1325			hostdata->disc_done_cnt[cmd->device->id]++;
1326#endif
1327
1328			break;
1329		default:
1330			printk("*** Unexpected DISCONNECT interrupt! ***");
1331			hostdata->state = S_UNCONNECTED;
1332		}
1333
1334/* We are no longer connected to a target - check to see if
1335 * there are commands waiting to be executed.
1336 */
1337		spin_unlock_irqrestore(&hostdata->lock, flags);
1338		wd33c93_execute(instance);
1339		break;
1340
1341	case CSR_RESEL_AM:
1342	case CSR_RESEL:
1343		DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1344
1345		    /* Old chips (pre -A ???) don't have advanced features and will
1346		     * generate CSR_RESEL.  In that case we have to extract the LUN the
1347		     * hard way (see below).
1348		     * First we have to make sure this reselection didn't
1349		     * happen during Arbitration/Selection of some other device.
1350		     * If yes, put losing command back on top of input_Q.
1351		     */
1352		    if (hostdata->level2 <= L2_NONE) {
1353
1354			if (hostdata->selecting) {
1355				cmd = (struct scsi_cmnd *) hostdata->selecting;
1356				hostdata->selecting = NULL;
1357				hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1358				cmd->host_scribble =
1359				    (uchar *) hostdata->input_Q;
1360				hostdata->input_Q = cmd;
1361			}
1362		}
1363
1364		else {
1365
1366			if (cmd) {
1367				if (phs == 0x00) {
1368					hostdata->busy[cmd->device->id] &=
1369						~(1 << (cmd->device->lun & 0xff));
1370					cmd->host_scribble =
1371					    (uchar *) hostdata->input_Q;
1372					hostdata->input_Q = cmd;
1373				} else {
1374					printk
1375					    ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1376					     asr, sr, phs);
1377					while (1)
1378						printk("\r");
1379				}
1380			}
1381
1382		}
1383
1384		/* OK - find out which device reselected us. */
1385
1386		id = read_wd33c93(regs, WD_SOURCE_ID);
1387		id &= SRCID_MASK;
1388
1389		/* and extract the lun from the ID message. (Note that we don't
1390		 * bother to check for a valid message here - I guess this is
1391		 * not the right way to go, but...)
1392		 */
1393
1394		if (sr == CSR_RESEL_AM) {
1395			lun = read_wd33c93(regs, WD_DATA);
1396			if (hostdata->level2 < L2_RESELECT)
1397				write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1398			lun &= 7;
1399		} else {
1400			/* Old chip; wait for msgin phase to pick up the LUN. */
1401			for (lun = 255; lun; lun--) {
1402				if ((asr = read_aux_stat(regs)) & ASR_INT)
1403					break;
1404				udelay(10);
1405			}
1406			if (!(asr & ASR_INT)) {
1407				printk
1408				    ("wd33c93: Reselected without IDENTIFY\n");
1409				lun = 0;
1410			} else {
1411				/* Verify this is a change to MSG_IN and read the message */
1412				sr = read_wd33c93(regs, WD_SCSI_STATUS);
1413				udelay(7);
1414				if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1415				    sr == (CSR_UNEXP | PHS_MESS_IN) ||
1416				    sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1417					/* Got MSG_IN, grab target LUN */
1418					lun = read_1_byte(regs);
1419					/* Now we expect a 'paused with ACK asserted' int.. */
1420					asr = read_aux_stat(regs);
1421					if (!(asr & ASR_INT)) {
1422						udelay(10);
1423						asr = read_aux_stat(regs);
1424						if (!(asr & ASR_INT))
1425							printk
1426							    ("wd33c93: No int after LUN on RESEL (%02x)\n",
1427							     asr);
1428					}
1429					sr = read_wd33c93(regs, WD_SCSI_STATUS);
1430					udelay(7);
1431					if (sr != CSR_MSGIN)
1432						printk
1433						    ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1434						     sr);
1435					lun &= 7;
1436					write_wd33c93_cmd(regs,
1437							  WD_CMD_NEGATE_ACK);
1438				} else {
1439					printk
1440					    ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1441					     sr);
1442					lun = 0;
1443				}
1444			}
1445		}
1446
1447		/* Now we look for the command that's reconnecting. */
1448
1449		cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1450		patch = NULL;
1451		while (cmd) {
1452			if (id == cmd->device->id && lun == (u8)cmd->device->lun)
1453				break;
1454			patch = cmd;
1455			cmd = (struct scsi_cmnd *) cmd->host_scribble;
1456		}
1457
1458		/* Hmm. Couldn't find a valid command.... What to do? */
1459
1460		if (!cmd) {
1461			printk
1462			    ("---TROUBLE: target %d.%d not in disconnect queue---",
1463			     id, (u8)lun);
1464			spin_unlock_irqrestore(&hostdata->lock, flags);
1465			return;
1466		}
1467
1468		/* Ok, found the command - now start it up again. */
1469
1470		if (patch)
1471			patch->host_scribble = cmd->host_scribble;
1472		else
1473			hostdata->disconnected_Q =
1474			    (struct scsi_cmnd *) cmd->host_scribble;
1475		hostdata->connected = cmd;
1476
1477		/* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1478		 * because these things are preserved over a disconnect.
1479		 * But we DO need to fix the DPD bit so it's correct for this command.
1480		 */
1481
1482		if (cmd->sc_data_direction == DMA_TO_DEVICE)
1483			write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1484		else
1485			write_wd33c93(regs, WD_DESTINATION_ID,
1486				      cmd->device->id | DSTID_DPD);
1487		if (hostdata->level2 >= L2_RESELECT) {
1488			write_wd33c93_count(regs, 0);	/* we want a DATA_PHASE interrupt */
1489			write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1490			write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1491			hostdata->state = S_RUNNING_LEVEL2;
1492		} else
1493			hostdata->state = S_CONNECTED;
1494
1495		    spin_unlock_irqrestore(&hostdata->lock, flags);
1496		break;
1497
1498	default:
1499		printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1500		spin_unlock_irqrestore(&hostdata->lock, flags);
1501	}
1502
1503	DB(DB_INTR, printk("} "))
1504
1505}
1506
1507static void
1508reset_wd33c93(struct Scsi_Host *instance)
1509{
1510	struct WD33C93_hostdata *hostdata =
1511	    (struct WD33C93_hostdata *) instance->hostdata;
1512	const wd33c93_regs regs = hostdata->regs;
1513	uchar sr;
1514
1515#ifdef CONFIG_SGI_IP22
1516	{
1517		int busycount = 0;
1518		extern void sgiwd93_reset(unsigned long);
1519		/* wait 'til the chip gets some time for us */
1520		while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1521			udelay (10);
1522	/*
1523 	 * there are scsi devices out there, which manage to lock up
1524	 * the wd33c93 in a busy condition. In this state it won't
1525	 * accept the reset command. The only way to solve this is to
1526 	 * give the chip a hardware reset (if possible). The code below
1527	 * does this for the SGI Indy, where this is possible
1528	 */
1529	/* still busy ? */
1530	if (read_aux_stat(regs) & ASR_BSY)
1531		sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1532	}
1533#endif
1534
1535	write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1536		      instance->this_id | hostdata->clock_freq);
1537	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1538	write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1539		      calc_sync_xfer(hostdata->default_sx_per / 4,
1540				     DEFAULT_SX_OFF, 0, hostdata->sx_table));
1541	write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1542
1543
1544#ifdef CONFIG_MVME147_SCSI
1545	udelay(25);		/* The old wd33c93 on MVME147 needs this, at least */
1546#endif
1547
1548	while (!(read_aux_stat(regs) & ASR_INT))
1549		;
1550	sr = read_wd33c93(regs, WD_SCSI_STATUS);
1551
1552	hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1553	if (sr == 0x00)
1554		hostdata->chip = C_WD33C93;
1555	else if (sr == 0x01) {
1556		write_wd33c93(regs, WD_QUEUE_TAG, 0xa5);	/* any random number */
1557		sr = read_wd33c93(regs, WD_QUEUE_TAG);
1558		if (sr == 0xa5) {
1559			hostdata->chip = C_WD33C93B;
1560			write_wd33c93(regs, WD_QUEUE_TAG, 0);
1561		} else
1562			hostdata->chip = C_WD33C93A;
1563	} else
1564		hostdata->chip = C_UNKNOWN_CHIP;
1565
1566	if (hostdata->chip != C_WD33C93B)	/* Fast SCSI unavailable */
1567		hostdata->fast = 0;
1568
1569	write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1570	write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1571}
1572
1573int
1574wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1575{
1576	struct Scsi_Host *instance;
1577	struct WD33C93_hostdata *hostdata;
1578	int i;
1579
1580	instance = SCpnt->device->host;
1581	hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1582
1583	printk("scsi%d: reset. ", instance->host_no);
1584	disable_irq(instance->irq);
1585
1586	hostdata->dma_stop(instance, NULL, 0);
1587	for (i = 0; i < 8; i++) {
1588		hostdata->busy[i] = 0;
1589		hostdata->sync_xfer[i] =
1590			calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1591					0, hostdata->sx_table);
1592		hostdata->sync_stat[i] = SS_UNSET;	/* using default sync values */
1593	}
1594	hostdata->input_Q = NULL;
1595	hostdata->selecting = NULL;
1596	hostdata->connected = NULL;
1597	hostdata->disconnected_Q = NULL;
1598	hostdata->state = S_UNCONNECTED;
1599	hostdata->dma = D_DMA_OFF;
1600	hostdata->incoming_ptr = 0;
1601	hostdata->outgoing_len = 0;
1602
1603	reset_wd33c93(instance);
1604	SCpnt->result = DID_RESET << 16;
1605	enable_irq(instance->irq);
1606	return SUCCESS;
1607}
1608
1609int
1610wd33c93_abort(struct scsi_cmnd * cmd)
1611{
1612	struct Scsi_Host *instance;
1613	struct WD33C93_hostdata *hostdata;
1614	wd33c93_regs regs;
1615	struct scsi_cmnd *tmp, *prev;
1616
1617	disable_irq(cmd->device->host->irq);
1618
1619	instance = cmd->device->host;
1620	hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1621	regs = hostdata->regs;
1622
1623/*
1624 * Case 1 : If the command hasn't been issued yet, we simply remove it
1625 *     from the input_Q.
1626 */
1627
1628	tmp = (struct scsi_cmnd *) hostdata->input_Q;
1629	prev = NULL;
1630	while (tmp) {
1631		if (tmp == cmd) {
1632			if (prev)
1633				prev->host_scribble = cmd->host_scribble;
1634			else
1635				hostdata->input_Q =
1636				    (struct scsi_cmnd *) cmd->host_scribble;
1637			cmd->host_scribble = NULL;
1638			cmd->result = DID_ABORT << 16;
1639			printk
1640			    ("scsi%d: Abort - removing command from input_Q. ",
1641			     instance->host_no);
1642			enable_irq(cmd->device->host->irq);
1643			cmd->scsi_done(cmd);
1644			return SUCCESS;
1645		}
1646		prev = tmp;
1647		tmp = (struct scsi_cmnd *) tmp->host_scribble;
1648	}
1649
1650/*
1651 * Case 2 : If the command is connected, we're going to fail the abort
1652 *     and let the high level SCSI driver retry at a later time or
1653 *     issue a reset.
1654 *
1655 *     Timeouts, and therefore aborted commands, will be highly unlikely
1656 *     and handling them cleanly in this situation would make the common
1657 *     case of noresets less efficient, and would pollute our code.  So,
1658 *     we fail.
1659 */
1660
1661	if (hostdata->connected == cmd) {
1662		uchar sr, asr;
1663		unsigned long timeout;
1664
1665		printk("scsi%d: Aborting connected command - ",
1666		       instance->host_no);
1667
1668		printk("stopping DMA - ");
1669		if (hostdata->dma == D_DMA_RUNNING) {
1670			hostdata->dma_stop(instance, cmd, 0);
1671			hostdata->dma = D_DMA_OFF;
1672		}
1673
1674		printk("sending wd33c93 ABORT command - ");
1675		write_wd33c93(regs, WD_CONTROL,
1676			      CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1677		write_wd33c93_cmd(regs, WD_CMD_ABORT);
1678
1679/* Now we have to attempt to flush out the FIFO... */
1680
1681		printk("flushing fifo - ");
1682		timeout = 1000000;
1683		do {
1684			asr = read_aux_stat(regs);
1685			if (asr & ASR_DBR)
1686				read_wd33c93(regs, WD_DATA);
1687		} while (!(asr & ASR_INT) && timeout-- > 0);
1688		sr = read_wd33c93(regs, WD_SCSI_STATUS);
1689		printk
1690		    ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1691		     asr, sr, read_wd33c93_count(regs), timeout);
1692
1693		/*
1694		 * Abort command processed.
1695		 * Still connected.
1696		 * We must disconnect.
1697		 */
1698
1699		printk("sending wd33c93 DISCONNECT command - ");
1700		write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1701
1702		timeout = 1000000;
1703		asr = read_aux_stat(regs);
1704		while ((asr & ASR_CIP) && timeout-- > 0)
1705			asr = read_aux_stat(regs);
1706		sr = read_wd33c93(regs, WD_SCSI_STATUS);
1707		printk("asr=%02x, sr=%02x.", asr, sr);
1708
1709		hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1710		hostdata->connected = NULL;
1711		hostdata->state = S_UNCONNECTED;
1712		cmd->result = DID_ABORT << 16;
1713
1714/*      sti();*/
1715		wd33c93_execute(instance);
1716
1717		enable_irq(cmd->device->host->irq);
1718		cmd->scsi_done(cmd);
1719		return SUCCESS;
1720	}
1721
1722/*
1723 * Case 3: If the command is currently disconnected from the bus,
1724 * we're not going to expend much effort here: Let's just return
1725 * an ABORT_SNOOZE and hope for the best...
1726 */
1727
1728	tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1729	while (tmp) {
1730		if (tmp == cmd) {
1731			printk
1732			    ("scsi%d: Abort - command found on disconnected_Q - ",
1733			     instance->host_no);
1734			printk("Abort SNOOZE. ");
1735			enable_irq(cmd->device->host->irq);
1736			return FAILED;
1737		}
1738		tmp = (struct scsi_cmnd *) tmp->host_scribble;
1739	}
1740
1741/*
1742 * Case 4 : If we reached this point, the command was not found in any of
1743 *     the queues.
1744 *
1745 * We probably reached this point because of an unlikely race condition
1746 * between the command completing successfully and the abortion code,
1747 * so we won't panic, but we will notify the user in case something really
1748 * broke.
1749 */
1750
1751/*   sti();*/
1752	wd33c93_execute(instance);
1753
1754	enable_irq(cmd->device->host->irq);
1755	printk("scsi%d: warning : SCSI command probably completed successfully"
1756	       "         before abortion. ", instance->host_no);
1757	return FAILED;
1758}
1759
1760#define MAX_WD33C93_HOSTS 4
1761#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1762#define SETUP_BUFFER_SIZE 200
1763static char setup_buffer[SETUP_BUFFER_SIZE];
1764static char setup_used[MAX_SETUP_ARGS];
1765static int done_setup = 0;
1766
1767static int
1768wd33c93_setup(char *str)
1769{
1770	int i;
1771	char *p1, *p2;
1772
1773	/* The kernel does some processing of the command-line before calling
1774	 * this function: If it begins with any decimal or hex number arguments,
1775	 * ints[0] = how many numbers found and ints[1] through [n] are the values
1776	 * themselves. str points to where the non-numeric arguments (if any)
1777	 * start: We do our own parsing of those. We construct synthetic 'nosync'
1778	 * keywords out of numeric args (to maintain compatibility with older
1779	 * versions) and then add the rest of the arguments.
1780	 */
1781
1782	p1 = setup_buffer;
1783	*p1 = '\0';
1784	if (str)
1785		strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1786	setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1787	p1 = setup_buffer;
1788	i = 0;
1789	while (*p1 && (i < MAX_SETUP_ARGS)) {
1790		p2 = strchr(p1, ',');
1791		if (p2) {
1792			*p2 = '\0';
1793			if (p1 != p2)
1794				setup_args[i] = p1;
1795			p1 = p2 + 1;
1796			i++;
1797		} else {
1798			setup_args[i] = p1;
1799			break;
1800		}
1801	}
1802	for (i = 0; i < MAX_SETUP_ARGS; i++)
1803		setup_used[i] = 0;
1804	done_setup = 1;
1805
1806	return 1;
1807}
1808__setup("wd33c93=", wd33c93_setup);
1809
1810/* check_setup_args() returns index if key found, 0 if not
1811 */
1812static int
1813check_setup_args(char *key, int *flags, int *val, char *buf)
1814{
1815	int x;
1816	char *cp;
1817
1818	for (x = 0; x < MAX_SETUP_ARGS; x++) {
1819		if (setup_used[x])
1820			continue;
1821		if (!strncmp(setup_args[x], key, strlen(key)))
1822			break;
1823		if (!strncmp(setup_args[x], "next", strlen("next")))
1824			return 0;
1825	}
1826	if (x == MAX_SETUP_ARGS)
1827		return 0;
1828	setup_used[x] = 1;
1829	cp = setup_args[x] + strlen(key);
1830	*val = -1;
1831	if (*cp != ':')
1832		return ++x;
1833	cp++;
1834	if ((*cp >= '0') && (*cp <= '9')) {
1835		*val = simple_strtoul(cp, NULL, 0);
1836	}
1837	return ++x;
1838}
1839
1840/*
1841 * Calculate internal data-transfer-clock cycle from input-clock
1842 * frequency (/MHz) and fill 'sx_table'.
1843 *
1844 * The original driver used to rely on a fixed sx_table, containing periods
1845 * for (only) the lower limits of the respective input-clock-frequency ranges
1846 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
1847 * this setting so far, it might be desirable to adjust the transfer periods
1848 * closer to the really attached, possibly 25% higher, input-clock, since
1849 * - the wd33c93 may really use a significant shorter period, than it has
1850 *   negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1851 *   instead).
1852 * - the wd33c93 may ask the target for a lower transfer rate, than the target
1853 *   is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1854 *   possible 200ns, which indeed shows up in tests as an approx. 10% lower
1855 *   transfer rate).
1856 */
1857static inline unsigned int
1858round_4(unsigned int x)
1859{
1860	switch (x & 3) {
1861		case 1: --x;
1862			break;
1863		case 2: ++x;
1864		case 3: ++x;
1865	}
1866	return x;
1867}
1868
1869static void
1870calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1871{
1872	unsigned int d, i;
1873	if (mhz < 11)
1874		d = 2;	/* divisor for  8-10 MHz input-clock */
1875	else if (mhz < 16)
1876		d = 3;	/* divisor for 12-15 MHz input-clock */
1877	else
1878		d = 4;	/* divisor for 16-20 MHz input-clock */
1879
1880	d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1881
1882	sx_table[0].period_ns = 1;
1883	sx_table[0].reg_value = 0x20;
1884	for (i = 1; i < 8; i++) {
1885		sx_table[i].period_ns = round_4((i+1)*d / 100);
1886		sx_table[i].reg_value = (i+1)*0x10;
1887	}
1888	sx_table[7].reg_value = 0;
1889	sx_table[8].period_ns = 0;
1890	sx_table[8].reg_value = 0;
1891}
1892
1893/*
1894 * check and, maybe, map an init- or "clock:"- argument.
1895 */
1896static uchar
1897set_clk_freq(int freq, int *mhz)
1898{
1899	int x = freq;
1900	if (WD33C93_FS_8_10 == freq)
1901		freq = 8;
1902	else if (WD33C93_FS_12_15 == freq)
1903		freq = 12;
1904	else if (WD33C93_FS_16_20 == freq)
1905		freq = 16;
1906	else if (freq > 7 && freq < 11)
1907		x = WD33C93_FS_8_10;
1908		else if (freq > 11 && freq < 16)
1909		x = WD33C93_FS_12_15;
1910		else if (freq > 15 && freq < 21)
1911		x = WD33C93_FS_16_20;
1912	else {
1913			/* Hmm, wouldn't it be safer to assume highest freq here? */
1914		x = WD33C93_FS_8_10;
1915		freq = 8;
1916	}
1917	*mhz = freq;
1918	return x;
1919}
1920
1921/*
1922 * to be used with the resync: fast: ... options
1923 */
1924static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1925{
1926	int i;
1927	for (i = 0; i < 8; i++)
1928		if (mask & (1 << i))
1929			hd->sync_stat[i] = SS_UNSET;
1930}
1931
1932void
1933wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1934	     dma_setup_t setup, dma_stop_t stop, int clock_freq)
1935{
1936	struct WD33C93_hostdata *hostdata;
1937	int i;
1938	int flags;
1939	int val;
1940	char buf[32];
1941
1942	if (!done_setup && setup_strings)
1943		wd33c93_setup(setup_strings);
1944
1945	hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1946
1947	hostdata->regs = regs;
1948	hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1949	calc_sx_table(i, hostdata->sx_table);
1950	hostdata->dma_setup = setup;
1951	hostdata->dma_stop = stop;
1952	hostdata->dma_bounce_buffer = NULL;
1953	hostdata->dma_bounce_len = 0;
1954	for (i = 0; i < 8; i++) {
1955		hostdata->busy[i] = 0;
1956		hostdata->sync_xfer[i] =
1957			calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1958					0, hostdata->sx_table);
1959		hostdata->sync_stat[i] = SS_UNSET;	/* using default sync values */
1960#ifdef PROC_STATISTICS
1961		hostdata->cmd_cnt[i] = 0;
1962		hostdata->disc_allowed_cnt[i] = 0;
1963		hostdata->disc_done_cnt[i] = 0;
1964#endif
1965	}
1966	hostdata->input_Q = NULL;
1967	hostdata->selecting = NULL;
1968	hostdata->connected = NULL;
1969	hostdata->disconnected_Q = NULL;
1970	hostdata->state = S_UNCONNECTED;
1971	hostdata->dma = D_DMA_OFF;
1972	hostdata->level2 = L2_BASIC;
1973	hostdata->disconnect = DIS_ADAPTIVE;
1974	hostdata->args = DEBUG_DEFAULTS;
1975	hostdata->incoming_ptr = 0;
1976	hostdata->outgoing_len = 0;
1977	hostdata->default_sx_per = DEFAULT_SX_PER;
1978	hostdata->no_dma = 0;	/* default is DMA enabled */
1979
1980#ifdef PROC_INTERFACE
1981	hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1982	    PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1983#ifdef PROC_STATISTICS
1984	hostdata->dma_cnt = 0;
1985	hostdata->pio_cnt = 0;
1986	hostdata->int_cnt = 0;
1987#endif
1988#endif
1989
1990	if (check_setup_args("clock", &flags, &val, buf)) {
1991		hostdata->clock_freq = set_clk_freq(val, &val);
1992		calc_sx_table(val, hostdata->sx_table);
1993	}
1994
1995	if (check_setup_args("nosync", &flags, &val, buf))
1996		hostdata->no_sync = val;
1997
1998	if (check_setup_args("nodma", &flags, &val, buf))
1999		hostdata->no_dma = (val == -1) ? 1 : val;
2000
2001	if (check_setup_args("period", &flags, &val, buf))
2002		hostdata->default_sx_per =
2003		    hostdata->sx_table[round_period((unsigned int) val,
2004		                                    hostdata->sx_table)].period_ns;
2005
2006	if (check_setup_args("disconnect", &flags, &val, buf)) {
2007		if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2008			hostdata->disconnect = val;
2009		else
2010			hostdata->disconnect = DIS_ADAPTIVE;
2011	}
2012
2013	if (check_setup_args("level2", &flags, &val, buf))
2014		hostdata->level2 = val;
2015
2016	if (check_setup_args("debug", &flags, &val, buf))
2017		hostdata->args = val & DB_MASK;
2018
2019	if (check_setup_args("burst", &flags, &val, buf))
2020		hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
2021
2022	if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
2023		&& check_setup_args("fast", &flags, &val, buf))
2024		hostdata->fast = !!val;
2025
2026	if ((i = check_setup_args("next", &flags, &val, buf))) {
2027		while (i)
2028			setup_used[--i] = 1;
2029	}
2030#ifdef PROC_INTERFACE
2031	if (check_setup_args("proc", &flags, &val, buf))
2032		hostdata->proc = val;
2033#endif
2034
2035	spin_lock_irq(&hostdata->lock);
2036	reset_wd33c93(instance);
2037	spin_unlock_irq(&hostdata->lock);
2038
2039	printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
2040	       instance->host_no,
2041	       (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
2042							    C_WD33C93A) ?
2043	       "WD33c93A" : (hostdata->chip ==
2044			     C_WD33C93B) ? "WD33c93B" : "unknown",
2045	       hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
2046#ifdef DEBUGGING_ON
2047	printk(" debug_flags=0x%02x\n", hostdata->args);
2048#else
2049	printk(" debugging=OFF\n");
2050#endif
2051	printk("           setup_args=");
2052	for (i = 0; i < MAX_SETUP_ARGS; i++)
2053		printk("%s,", setup_args[i]);
2054	printk("\n");
2055	printk("           Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
2056}
2057
2058int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len)
2059{
2060#ifdef PROC_INTERFACE
2061	char *bp;
2062	struct WD33C93_hostdata *hd;
2063	int x;
2064
2065	hd = (struct WD33C93_hostdata *) instance->hostdata;
2066
2067/* We accept the following
2068 * keywords (same format as command-line, but arguments are not optional):
2069 *    debug
2070 *    disconnect
2071 *    period
2072 *    resync
2073 *    proc
2074 *    nodma
2075 *    level2
2076 *    burst
2077 *    fast
2078 *    nosync
2079 */
2080
2081	buf[len] = '\0';
2082	for (bp = buf; *bp; ) {
2083		while (',' == *bp || ' ' == *bp)
2084			++bp;
2085	if (!strncmp(bp, "debug:", 6)) {
2086			hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2087	} else if (!strncmp(bp, "disconnect:", 11)) {
2088			x = simple_strtoul(bp+11, &bp, 0);
2089		if (x < DIS_NEVER || x > DIS_ALWAYS)
2090			x = DIS_ADAPTIVE;
2091		hd->disconnect = x;
2092	} else if (!strncmp(bp, "period:", 7)) {
2093		x = simple_strtoul(bp+7, &bp, 0);
2094		hd->default_sx_per =
2095			hd->sx_table[round_period((unsigned int) x,
2096						  hd->sx_table)].period_ns;
2097	} else if (!strncmp(bp, "resync:", 7)) {
2098			set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2099	} else if (!strncmp(bp, "proc:", 5)) {
2100			hd->proc = simple_strtoul(bp+5, &bp, 0);
2101	} else if (!strncmp(bp, "nodma:", 6)) {
2102			hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2103	} else if (!strncmp(bp, "level2:", 7)) {
2104			hd->level2 = simple_strtoul(bp+7, &bp, 0);
2105		} else if (!strncmp(bp, "burst:", 6)) {
2106			hd->dma_mode =
2107				simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2108		} else if (!strncmp(bp, "fast:", 5)) {
2109			x = !!simple_strtol(bp+5, &bp, 0);
2110			if (x != hd->fast)
2111				set_resync(hd, 0xff);
2112			hd->fast = x;
2113		} else if (!strncmp(bp, "nosync:", 7)) {
2114			x = simple_strtoul(bp+7, &bp, 0);
2115			set_resync(hd, x ^ hd->no_sync);
2116			hd->no_sync = x;
2117		} else {
2118			break; /* unknown keyword,syntax-error,... */
2119		}
2120	}
2121	return len;
2122#else
2123	return 0;
2124#endif
2125}
2126
2127int
2128wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance)
2129{
2130#ifdef PROC_INTERFACE
2131	struct WD33C93_hostdata *hd;
2132	struct scsi_cmnd *cmd;
2133	int x;
2134
2135	hd = (struct WD33C93_hostdata *) instance->hostdata;
2136
2137	spin_lock_irq(&hd->lock);
2138	if (hd->proc & PR_VERSION)
2139		seq_printf(m, "\nVersion %s - %s.",
2140			WD33C93_VERSION, WD33C93_DATE);
2141
2142	if (hd->proc & PR_INFO) {
2143		seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
2144			" dma_mode=%02x fast=%d",
2145			hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
2146		seq_puts(m, "\nsync_xfer[] =       ");
2147		for (x = 0; x < 7; x++)
2148			seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2149		seq_puts(m, "\nsync_stat[] =       ");
2150		for (x = 0; x < 7; x++)
2151			seq_printf(m, "\t%02x", hd->sync_stat[x]);
2152	}
2153#ifdef PROC_STATISTICS
2154	if (hd->proc & PR_STATISTICS) {
2155		seq_puts(m, "\ncommands issued:    ");
2156		for (x = 0; x < 7; x++)
2157			seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2158		seq_puts(m, "\ndisconnects allowed:");
2159		for (x = 0; x < 7; x++)
2160			seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2161		seq_puts(m, "\ndisconnects done:   ");
2162		for (x = 0; x < 7; x++)
2163			seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2164		seq_printf(m,
2165			"\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2166			hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2167	}
2168#endif
2169	if (hd->proc & PR_CONNECTED) {
2170		seq_puts(m, "\nconnected:     ");
2171		if (hd->connected) {
2172			cmd = (struct scsi_cmnd *) hd->connected;
2173			seq_printf(m, " %d:%llu(%02x)",
2174				cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2175		}
2176	}
2177	if (hd->proc & PR_INPUTQ) {
2178		seq_puts(m, "\ninput_Q:       ");
2179		cmd = (struct scsi_cmnd *) hd->input_Q;
2180		while (cmd) {
2181			seq_printf(m, " %d:%llu(%02x)",
2182				cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2183			cmd = (struct scsi_cmnd *) cmd->host_scribble;
2184		}
2185	}
2186	if (hd->proc & PR_DISCQ) {
2187		seq_puts(m, "\ndisconnected_Q:");
2188		cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2189		while (cmd) {
2190			seq_printf(m, " %d:%llu(%02x)",
2191				cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2192			cmd = (struct scsi_cmnd *) cmd->host_scribble;
2193		}
2194	}
2195	seq_putc(m, '\n');
2196	spin_unlock_irq(&hd->lock);
2197#endif				/* PROC_INTERFACE */
2198	return 0;
2199}
2200
2201EXPORT_SYMBOL(wd33c93_host_reset);
2202EXPORT_SYMBOL(wd33c93_init);
2203EXPORT_SYMBOL(wd33c93_abort);
2204EXPORT_SYMBOL(wd33c93_queuecommand);
2205EXPORT_SYMBOL(wd33c93_intr);
2206EXPORT_SYMBOL(wd33c93_show_info);
2207EXPORT_SYMBOL(wd33c93_write_info);
2208