1/*
2 * drivers/spi/spi-fsl-dspi.c
3 *
4 * Copyright 2013 Freescale Semiconductor, Inc.
5 *
6 * Freescale DSPI driver
7 * This file contains a driver for the Freescale DSPI
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/errno.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/kernel.h>
23#include <linux/math64.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/regmap.h>
30#include <linux/sched.h>
31#include <linux/spi/spi.h>
32#include <linux/spi/spi_bitbang.h>
33#include <linux/time.h>
34
35#define DRIVER_NAME "fsl-dspi"
36
37#define TRAN_STATE_RX_VOID		0x01
38#define TRAN_STATE_TX_VOID		0x02
39#define TRAN_STATE_WORD_ODD_NUM	0x04
40
41#define DSPI_FIFO_SIZE			4
42
43#define SPI_MCR		0x00
44#define SPI_MCR_MASTER		(1 << 31)
45#define SPI_MCR_PCSIS		(0x3F << 16)
46#define SPI_MCR_CLR_TXF	(1 << 11)
47#define SPI_MCR_CLR_RXF	(1 << 10)
48
49#define SPI_TCR			0x08
50
51#define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
52#define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
53#define SPI_CTAR_CPOL(x)	((x) << 26)
54#define SPI_CTAR_CPHA(x)	((x) << 25)
55#define SPI_CTAR_LSBFE(x)	((x) << 24)
56#define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
57#define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
58#define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
59#define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
60#define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
61#define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
62#define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
63#define SPI_CTAR_BR(x)		((x) & 0x0000000f)
64#define SPI_CTAR_SCALE_BITS	0xf
65
66#define SPI_CTAR0_SLAVE	0x0c
67
68#define SPI_SR			0x2c
69#define SPI_SR_EOQF		0x10000000
70
71#define SPI_RSER		0x30
72#define SPI_RSER_EOQFE		0x10000000
73
74#define SPI_PUSHR		0x34
75#define SPI_PUSHR_CONT		(1 << 31)
76#define SPI_PUSHR_CTAS(x)	(((x) & 0x00000003) << 28)
77#define SPI_PUSHR_EOQ		(1 << 27)
78#define SPI_PUSHR_CTCNT	(1 << 26)
79#define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
80#define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
81
82#define SPI_PUSHR_SLAVE	0x34
83
84#define SPI_POPR		0x38
85#define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
86
87#define SPI_TXFR0		0x3c
88#define SPI_TXFR1		0x40
89#define SPI_TXFR2		0x44
90#define SPI_TXFR3		0x48
91#define SPI_RXFR0		0x7c
92#define SPI_RXFR1		0x80
93#define SPI_RXFR2		0x84
94#define SPI_RXFR3		0x88
95
96#define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
97#define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
98#define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
99#define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
100
101#define SPI_CS_INIT		0x01
102#define SPI_CS_ASSERT		0x02
103#define SPI_CS_DROP		0x04
104
105struct chip_data {
106	u32 mcr_val;
107	u32 ctar_val;
108	u16 void_write_data;
109};
110
111struct fsl_dspi {
112	struct spi_master	*master;
113	struct platform_device	*pdev;
114
115	struct regmap		*regmap;
116	int			irq;
117	struct clk		*clk;
118
119	struct spi_transfer	*cur_transfer;
120	struct spi_message	*cur_msg;
121	struct chip_data	*cur_chip;
122	size_t			len;
123	void			*tx;
124	void			*tx_end;
125	void			*rx;
126	void			*rx_end;
127	char			dataflags;
128	u8			cs;
129	u16			void_write_data;
130	u32			cs_change;
131
132	wait_queue_head_t	waitq;
133	u32			waitflags;
134};
135
136static inline int is_double_byte_mode(struct fsl_dspi *dspi)
137{
138	unsigned int val;
139
140	regmap_read(dspi->regmap, SPI_CTAR(dspi->cs), &val);
141
142	return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
143}
144
145static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
146		unsigned long clkrate)
147{
148	/* Valid baud rate pre-scaler values */
149	int pbr_tbl[4] = {2, 3, 5, 7};
150	int brs[16] = {	2,	4,	6,	8,
151		16,	32,	64,	128,
152		256,	512,	1024,	2048,
153		4096,	8192,	16384,	32768 };
154	int scale_needed, scale, minscale = INT_MAX;
155	int i, j;
156
157	scale_needed = clkrate / speed_hz;
158	if (clkrate % speed_hz)
159		scale_needed++;
160
161	for (i = 0; i < ARRAY_SIZE(brs); i++)
162		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
163			scale = brs[i] * pbr_tbl[j];
164			if (scale >= scale_needed) {
165				if (scale < minscale) {
166					minscale = scale;
167					*br = i;
168					*pbr = j;
169				}
170				break;
171			}
172		}
173
174	if (minscale == INT_MAX) {
175		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
176			speed_hz, clkrate);
177		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
178		*br =  ARRAY_SIZE(brs) - 1;
179	}
180}
181
182static void ns_delay_scale(char *psc, char *sc, int delay_ns,
183		unsigned long clkrate)
184{
185	int pscale_tbl[4] = {1, 3, 5, 7};
186	int scale_needed, scale, minscale = INT_MAX;
187	int i, j;
188	u32 remainder;
189
190	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
191			&remainder);
192	if (remainder)
193		scale_needed++;
194
195	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
196		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
197			scale = pscale_tbl[i] * (2 << j);
198			if (scale >= scale_needed) {
199				if (scale < minscale) {
200					minscale = scale;
201					*psc = i;
202					*sc = j;
203				}
204				break;
205			}
206		}
207
208	if (minscale == INT_MAX) {
209		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
210			delay_ns, clkrate);
211		*psc = ARRAY_SIZE(pscale_tbl) - 1;
212		*sc = SPI_CTAR_SCALE_BITS;
213	}
214}
215
216static int dspi_transfer_write(struct fsl_dspi *dspi)
217{
218	int tx_count = 0;
219	int tx_word;
220	u16 d16;
221	u8  d8;
222	u32 dspi_pushr = 0;
223	int first = 1;
224
225	tx_word = is_double_byte_mode(dspi);
226
227	/* If we are in word mode, but only have a single byte to transfer
228	 * then switch to byte mode temporarily.  Will switch back at the
229	 * end of the transfer.
230	 */
231	if (tx_word && (dspi->len == 1)) {
232		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
233		regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
234				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
235		tx_word = 0;
236	}
237
238	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
239		if (tx_word) {
240			if (dspi->len == 1)
241				break;
242
243			if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
244				d16 = *(u16 *)dspi->tx;
245				dspi->tx += 2;
246			} else {
247				d16 = dspi->void_write_data;
248			}
249
250			dspi_pushr = SPI_PUSHR_TXDATA(d16) |
251				SPI_PUSHR_PCS(dspi->cs) |
252				SPI_PUSHR_CTAS(dspi->cs) |
253				SPI_PUSHR_CONT;
254
255			dspi->len -= 2;
256		} else {
257			if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
258
259				d8 = *(u8 *)dspi->tx;
260				dspi->tx++;
261			} else {
262				d8 = (u8)dspi->void_write_data;
263			}
264
265			dspi_pushr = SPI_PUSHR_TXDATA(d8) |
266				SPI_PUSHR_PCS(dspi->cs) |
267				SPI_PUSHR_CTAS(dspi->cs) |
268				SPI_PUSHR_CONT;
269
270			dspi->len--;
271		}
272
273		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
274			/* last transfer in the transfer */
275			dspi_pushr |= SPI_PUSHR_EOQ;
276			if ((dspi->cs_change) && (!dspi->len))
277				dspi_pushr &= ~SPI_PUSHR_CONT;
278		} else if (tx_word && (dspi->len == 1))
279			dspi_pushr |= SPI_PUSHR_EOQ;
280
281		if (first) {
282			first = 0;
283			dspi_pushr |= SPI_PUSHR_CTCNT; /* clear counter */
284		}
285
286		regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
287
288		tx_count++;
289	}
290
291	return tx_count * (tx_word + 1);
292}
293
294static int dspi_transfer_read(struct fsl_dspi *dspi)
295{
296	int rx_count = 0;
297	int rx_word = is_double_byte_mode(dspi);
298	u16 d;
299
300	while ((dspi->rx < dspi->rx_end)
301			&& (rx_count < DSPI_FIFO_SIZE)) {
302		if (rx_word) {
303			unsigned int val;
304
305			if ((dspi->rx_end - dspi->rx) == 1)
306				break;
307
308			regmap_read(dspi->regmap, SPI_POPR, &val);
309			d = SPI_POPR_RXDATA(val);
310
311			if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
312				*(u16 *)dspi->rx = d;
313			dspi->rx += 2;
314
315		} else {
316			unsigned int val;
317
318			regmap_read(dspi->regmap, SPI_POPR, &val);
319			d = SPI_POPR_RXDATA(val);
320			if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
321				*(u8 *)dspi->rx = d;
322			dspi->rx++;
323		}
324		rx_count++;
325	}
326
327	return rx_count;
328}
329
330static int dspi_transfer_one_message(struct spi_master *master,
331		struct spi_message *message)
332{
333	struct fsl_dspi *dspi = spi_master_get_devdata(master);
334	struct spi_device *spi = message->spi;
335	struct spi_transfer *transfer;
336	int status = 0;
337	message->actual_length = 0;
338
339	list_for_each_entry(transfer, &message->transfers, transfer_list) {
340		dspi->cur_transfer = transfer;
341		dspi->cur_msg = message;
342		dspi->cur_chip = spi_get_ctldata(spi);
343		dspi->cs = spi->chip_select;
344		if (dspi->cur_transfer->transfer_list.next
345				== &dspi->cur_msg->transfers)
346			transfer->cs_change = 1;
347		dspi->cs_change = transfer->cs_change;
348		dspi->void_write_data = dspi->cur_chip->void_write_data;
349
350		dspi->dataflags = 0;
351		dspi->tx = (void *)transfer->tx_buf;
352		dspi->tx_end = dspi->tx + transfer->len;
353		dspi->rx = transfer->rx_buf;
354		dspi->rx_end = dspi->rx + transfer->len;
355		dspi->len = transfer->len;
356
357		if (!dspi->rx)
358			dspi->dataflags |= TRAN_STATE_RX_VOID;
359
360		if (!dspi->tx)
361			dspi->dataflags |= TRAN_STATE_TX_VOID;
362
363		regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
364		regmap_update_bits(dspi->regmap, SPI_MCR,
365				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
366				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
367		regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
368				dspi->cur_chip->ctar_val);
369		if (transfer->speed_hz)
370			regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
371					dspi->cur_chip->ctar_val);
372
373		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
374		message->actual_length += dspi_transfer_write(dspi);
375
376		if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
377			dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
378		dspi->waitflags = 0;
379
380		if (transfer->delay_usecs)
381			udelay(transfer->delay_usecs);
382	}
383
384	message->status = status;
385	spi_finalize_current_message(master);
386
387	return status;
388}
389
390static int dspi_setup(struct spi_device *spi)
391{
392	struct chip_data *chip;
393	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
394	u32 cs_sck_delay = 0, sck_cs_delay = 0;
395	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
396	unsigned char pasc = 0, asc = 0, fmsz = 0;
397	unsigned long clkrate;
398
399	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
400		fmsz = spi->bits_per_word - 1;
401	} else {
402		pr_err("Invalid wordsize\n");
403		return -ENODEV;
404	}
405
406	/* Only alloc on first setup */
407	chip = spi_get_ctldata(spi);
408	if (chip == NULL) {
409		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
410		if (!chip)
411			return -ENOMEM;
412	}
413
414	of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
415			&cs_sck_delay);
416
417	of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
418			&sck_cs_delay);
419
420	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
421		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
422
423	chip->void_write_data = 0;
424
425	clkrate = clk_get_rate(dspi->clk);
426	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
427
428	/* Set PCS to SCK delay scale values */
429	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
430
431	/* Set After SCK delay scale values */
432	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
433
434	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
435		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
436		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
437		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
438		| SPI_CTAR_PCSSCK(pcssck)
439		| SPI_CTAR_CSSCK(cssck)
440		| SPI_CTAR_PASC(pasc)
441		| SPI_CTAR_ASC(asc)
442		| SPI_CTAR_PBR(pbr)
443		| SPI_CTAR_BR(br);
444
445	spi_set_ctldata(spi, chip);
446
447	return 0;
448}
449
450static void dspi_cleanup(struct spi_device *spi)
451{
452	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
453
454	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
455			spi->master->bus_num, spi->chip_select);
456
457	kfree(chip);
458}
459
460static irqreturn_t dspi_interrupt(int irq, void *dev_id)
461{
462	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
463
464	struct spi_message *msg = dspi->cur_msg;
465
466	regmap_write(dspi->regmap, SPI_SR, SPI_SR_EOQF);
467	dspi_transfer_read(dspi);
468
469	if (!dspi->len) {
470		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
471			regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
472			SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(16));
473
474		dspi->waitflags = 1;
475		wake_up_interruptible(&dspi->waitq);
476	} else
477		msg->actual_length += dspi_transfer_write(dspi);
478
479	return IRQ_HANDLED;
480}
481
482static const struct of_device_id fsl_dspi_dt_ids[] = {
483	{ .compatible = "fsl,vf610-dspi", .data = NULL, },
484	{ /* sentinel */ }
485};
486MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
487
488#ifdef CONFIG_PM_SLEEP
489static int dspi_suspend(struct device *dev)
490{
491	struct spi_master *master = dev_get_drvdata(dev);
492	struct fsl_dspi *dspi = spi_master_get_devdata(master);
493
494	spi_master_suspend(master);
495	clk_disable_unprepare(dspi->clk);
496
497	return 0;
498}
499
500static int dspi_resume(struct device *dev)
501{
502	struct spi_master *master = dev_get_drvdata(dev);
503	struct fsl_dspi *dspi = spi_master_get_devdata(master);
504
505	clk_prepare_enable(dspi->clk);
506	spi_master_resume(master);
507
508	return 0;
509}
510#endif /* CONFIG_PM_SLEEP */
511
512static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
513
514static const struct regmap_config dspi_regmap_config = {
515	.reg_bits = 32,
516	.val_bits = 32,
517	.reg_stride = 4,
518	.max_register = 0x88,
519};
520
521static int dspi_probe(struct platform_device *pdev)
522{
523	struct device_node *np = pdev->dev.of_node;
524	struct spi_master *master;
525	struct fsl_dspi *dspi;
526	struct resource *res;
527	void __iomem *base;
528	int ret = 0, cs_num, bus_num;
529
530	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
531	if (!master)
532		return -ENOMEM;
533
534	dspi = spi_master_get_devdata(master);
535	dspi->pdev = pdev;
536	dspi->master = master;
537
538	master->transfer = NULL;
539	master->setup = dspi_setup;
540	master->transfer_one_message = dspi_transfer_one_message;
541	master->dev.of_node = pdev->dev.of_node;
542
543	master->cleanup = dspi_cleanup;
544	master->mode_bits = SPI_CPOL | SPI_CPHA;
545	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
546					SPI_BPW_MASK(16);
547
548	ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
549	if (ret < 0) {
550		dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
551		goto out_master_put;
552	}
553	master->num_chipselect = cs_num;
554
555	ret = of_property_read_u32(np, "bus-num", &bus_num);
556	if (ret < 0) {
557		dev_err(&pdev->dev, "can't get bus-num\n");
558		goto out_master_put;
559	}
560	master->bus_num = bus_num;
561
562	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
563	base = devm_ioremap_resource(&pdev->dev, res);
564	if (IS_ERR(base)) {
565		ret = PTR_ERR(base);
566		goto out_master_put;
567	}
568
569	dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dspi", base,
570						&dspi_regmap_config);
571	if (IS_ERR(dspi->regmap)) {
572		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
573				PTR_ERR(dspi->regmap));
574		return PTR_ERR(dspi->regmap);
575	}
576
577	dspi->irq = platform_get_irq(pdev, 0);
578	if (dspi->irq < 0) {
579		dev_err(&pdev->dev, "can't get platform irq\n");
580		ret = dspi->irq;
581		goto out_master_put;
582	}
583
584	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
585			pdev->name, dspi);
586	if (ret < 0) {
587		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
588		goto out_master_put;
589	}
590
591	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
592	if (IS_ERR(dspi->clk)) {
593		ret = PTR_ERR(dspi->clk);
594		dev_err(&pdev->dev, "unable to get clock\n");
595		goto out_master_put;
596	}
597	clk_prepare_enable(dspi->clk);
598
599	init_waitqueue_head(&dspi->waitq);
600	platform_set_drvdata(pdev, master);
601
602	ret = spi_register_master(master);
603	if (ret != 0) {
604		dev_err(&pdev->dev, "Problem registering DSPI master\n");
605		goto out_clk_put;
606	}
607
608	return ret;
609
610out_clk_put:
611	clk_disable_unprepare(dspi->clk);
612out_master_put:
613	spi_master_put(master);
614
615	return ret;
616}
617
618static int dspi_remove(struct platform_device *pdev)
619{
620	struct spi_master *master = platform_get_drvdata(pdev);
621	struct fsl_dspi *dspi = spi_master_get_devdata(master);
622
623	/* Disconnect from the SPI framework */
624	clk_disable_unprepare(dspi->clk);
625	spi_unregister_master(dspi->master);
626	spi_master_put(dspi->master);
627
628	return 0;
629}
630
631static struct platform_driver fsl_dspi_driver = {
632	.driver.name    = DRIVER_NAME,
633	.driver.of_match_table = fsl_dspi_dt_ids,
634	.driver.owner   = THIS_MODULE,
635	.driver.pm = &dspi_pm,
636	.probe          = dspi_probe,
637	.remove		= dspi_remove,
638};
639module_platform_driver(fsl_dspi_driver);
640
641MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
642MODULE_LICENSE("GPL");
643MODULE_ALIAS("platform:" DRIVER_NAME);
644