1/* 2 * PXA2xx SPI private DMA support. 3 * 4 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17#include <linux/delay.h> 18#include <linux/device.h> 19#include <linux/dma-mapping.h> 20#include <linux/pxa2xx_ssp.h> 21#include <linux/spi/spi.h> 22#include <linux/spi/pxa2xx_spi.h> 23 24#include <mach/dma.h> 25#include "spi-pxa2xx.h" 26 27#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) 28#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK) 29 30bool pxa2xx_spi_dma_is_possible(size_t len) 31{ 32 /* Try to map dma buffer and do a dma transfer if successful, but 33 * only if the length is non-zero and less than MAX_DMA_LEN. 34 * 35 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use 36 * of PIO instead. Care is needed above because the transfer may 37 * have have been passed with buffers that are already dma mapped. 38 * A zero-length transfer in PIO mode will not try to write/read 39 * to/from the buffers 40 * 41 * REVISIT large transfers are exactly where we most want to be 42 * using DMA. If this happens much, split those transfers into 43 * multiple DMA segments rather than forcing PIO. 44 */ 45 return len > 0 && len <= MAX_DMA_LEN; 46} 47 48int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) 49{ 50 struct spi_message *msg = drv_data->cur_msg; 51 struct device *dev = &msg->spi->dev; 52 53 if (!drv_data->cur_chip->enable_dma) 54 return 0; 55 56 if (msg->is_dma_mapped) 57 return drv_data->rx_dma && drv_data->tx_dma; 58 59 if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) 60 return 0; 61 62 /* Modify setup if rx buffer is null */ 63 if (drv_data->rx == NULL) { 64 *drv_data->null_dma_buf = 0; 65 drv_data->rx = drv_data->null_dma_buf; 66 drv_data->rx_map_len = 4; 67 } else 68 drv_data->rx_map_len = drv_data->len; 69 70 71 /* Modify setup if tx buffer is null */ 72 if (drv_data->tx == NULL) { 73 *drv_data->null_dma_buf = 0; 74 drv_data->tx = drv_data->null_dma_buf; 75 drv_data->tx_map_len = 4; 76 } else 77 drv_data->tx_map_len = drv_data->len; 78 79 /* Stream map the tx buffer. Always do DMA_TO_DEVICE first 80 * so we flush the cache *before* invalidating it, in case 81 * the tx and rx buffers overlap. 82 */ 83 drv_data->tx_dma = dma_map_single(dev, drv_data->tx, 84 drv_data->tx_map_len, DMA_TO_DEVICE); 85 if (dma_mapping_error(dev, drv_data->tx_dma)) 86 return 0; 87 88 /* Stream map the rx buffer */ 89 drv_data->rx_dma = dma_map_single(dev, drv_data->rx, 90 drv_data->rx_map_len, DMA_FROM_DEVICE); 91 if (dma_mapping_error(dev, drv_data->rx_dma)) { 92 dma_unmap_single(dev, drv_data->tx_dma, 93 drv_data->tx_map_len, DMA_TO_DEVICE); 94 return 0; 95 } 96 97 return 1; 98} 99 100static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) 101{ 102 struct device *dev; 103 104 if (!drv_data->dma_mapped) 105 return; 106 107 if (!drv_data->cur_msg->is_dma_mapped) { 108 dev = &drv_data->cur_msg->spi->dev; 109 dma_unmap_single(dev, drv_data->rx_dma, 110 drv_data->rx_map_len, DMA_FROM_DEVICE); 111 dma_unmap_single(dev, drv_data->tx_dma, 112 drv_data->tx_map_len, DMA_TO_DEVICE); 113 } 114 115 drv_data->dma_mapped = 0; 116} 117 118static int wait_ssp_rx_stall(struct driver_data *drv_data) 119{ 120 unsigned long limit = loops_per_jiffy << 1; 121 122 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit) 123 cpu_relax(); 124 125 return limit; 126} 127 128static int wait_dma_channel_stop(int channel) 129{ 130 unsigned long limit = loops_per_jiffy << 1; 131 132 while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit) 133 cpu_relax(); 134 135 return limit; 136} 137 138static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data, 139 const char *msg) 140{ 141 /* Stop and reset */ 142 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; 143 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; 144 write_SSSR_CS(drv_data, drv_data->clear_sr); 145 pxa2xx_spi_write(drv_data, SSCR1, 146 pxa2xx_spi_read(drv_data, SSCR1) 147 & ~drv_data->dma_cr1); 148 if (!pxa25x_ssp_comp(drv_data)) 149 pxa2xx_spi_write(drv_data, SSTO, 0); 150 pxa2xx_spi_flush(drv_data); 151 pxa2xx_spi_write(drv_data, SSCR0, 152 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 153 154 pxa2xx_spi_unmap_dma_buffers(drv_data); 155 156 dev_err(&drv_data->pdev->dev, "%s\n", msg); 157 158 drv_data->cur_msg->state = ERROR_STATE; 159 tasklet_schedule(&drv_data->pump_transfers); 160} 161 162static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data) 163{ 164 struct spi_message *msg = drv_data->cur_msg; 165 166 /* Clear and disable interrupts on SSP and DMA channels*/ 167 pxa2xx_spi_write(drv_data, SSCR1, 168 pxa2xx_spi_read(drv_data, SSCR1) 169 & ~drv_data->dma_cr1); 170 write_SSSR_CS(drv_data, drv_data->clear_sr); 171 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; 172 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; 173 174 if (wait_dma_channel_stop(drv_data->rx_channel) == 0) 175 dev_err(&drv_data->pdev->dev, 176 "dma_handler: dma rx channel stop failed\n"); 177 178 if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) 179 dev_err(&drv_data->pdev->dev, 180 "dma_transfer: ssp rx stall failed\n"); 181 182 pxa2xx_spi_unmap_dma_buffers(drv_data); 183 184 /* update the buffer pointer for the amount completed in dma */ 185 drv_data->rx += drv_data->len - 186 (DCMD(drv_data->rx_channel) & DCMD_LENGTH); 187 188 /* read trailing data from fifo, it does not matter how many 189 * bytes are in the fifo just read until buffer is full 190 * or fifo is empty, which ever occurs first */ 191 drv_data->read(drv_data); 192 193 /* return count of what was actually read */ 194 msg->actual_length += drv_data->len - 195 (drv_data->rx_end - drv_data->rx); 196 197 /* Transfer delays and chip select release are 198 * handled in pump_transfers or giveback 199 */ 200 201 /* Move to next transfer */ 202 msg->state = pxa2xx_spi_next_transfer(drv_data); 203 204 /* Schedule transfer tasklet */ 205 tasklet_schedule(&drv_data->pump_transfers); 206} 207 208void pxa2xx_spi_dma_handler(int channel, void *data) 209{ 210 struct driver_data *drv_data = data; 211 u32 irq_status = DCSR(channel) & DMA_INT_MASK; 212 213 if (irq_status & DCSR_BUSERR) { 214 215 if (channel == drv_data->tx_channel) 216 pxa2xx_spi_dma_error_stop(drv_data, 217 "dma_handler: bad bus address on tx channel"); 218 else 219 pxa2xx_spi_dma_error_stop(drv_data, 220 "dma_handler: bad bus address on rx channel"); 221 return; 222 } 223 224 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ 225 if ((channel == drv_data->tx_channel) 226 && (irq_status & DCSR_ENDINTR) 227 && (drv_data->ssp_type == PXA25x_SSP)) { 228 229 /* Wait for rx to stall */ 230 if (wait_ssp_rx_stall(drv_data) == 0) 231 dev_err(&drv_data->pdev->dev, 232 "dma_handler: ssp rx stall failed\n"); 233 234 /* finish this transfer, start the next */ 235 pxa2xx_spi_dma_transfer_complete(drv_data); 236 } 237} 238 239irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) 240{ 241 u32 irq_status; 242 243 irq_status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; 244 if (irq_status & SSSR_ROR) { 245 pxa2xx_spi_dma_error_stop(drv_data, 246 "dma_transfer: fifo overrun"); 247 return IRQ_HANDLED; 248 } 249 250 /* Check for false positive timeout */ 251 if ((irq_status & SSSR_TINT) 252 && (DCSR(drv_data->tx_channel) & DCSR_RUN)) { 253 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 254 return IRQ_HANDLED; 255 } 256 257 if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { 258 259 /* Clear and disable timeout interrupt, do the rest in 260 * dma_transfer_complete */ 261 if (!pxa25x_ssp_comp(drv_data)) 262 pxa2xx_spi_write(drv_data, SSTO, 0); 263 264 /* finish this transfer, start the next */ 265 pxa2xx_spi_dma_transfer_complete(drv_data); 266 267 return IRQ_HANDLED; 268 } 269 270 /* Opps problem detected */ 271 return IRQ_NONE; 272} 273 274int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) 275{ 276 u32 dma_width; 277 278 switch (drv_data->n_bytes) { 279 case 1: 280 dma_width = DCMD_WIDTH1; 281 break; 282 case 2: 283 dma_width = DCMD_WIDTH2; 284 break; 285 default: 286 dma_width = DCMD_WIDTH4; 287 break; 288 } 289 290 /* Setup rx DMA Channel */ 291 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; 292 DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; 293 DTADR(drv_data->rx_channel) = drv_data->rx_dma; 294 if (drv_data->rx == drv_data->null_dma_buf) 295 /* No target address increment */ 296 DCMD(drv_data->rx_channel) = DCMD_FLOWSRC 297 | dma_width 298 | dma_burst 299 | drv_data->len; 300 else 301 DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR 302 | DCMD_FLOWSRC 303 | dma_width 304 | dma_burst 305 | drv_data->len; 306 307 /* Setup tx DMA Channel */ 308 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; 309 DSADR(drv_data->tx_channel) = drv_data->tx_dma; 310 DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; 311 if (drv_data->tx == drv_data->null_dma_buf) 312 /* No source address increment */ 313 DCMD(drv_data->tx_channel) = DCMD_FLOWTRG 314 | dma_width 315 | dma_burst 316 | drv_data->len; 317 else 318 DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR 319 | DCMD_FLOWTRG 320 | dma_width 321 | dma_burst 322 | drv_data->len; 323 324 /* Enable dma end irqs on SSP to detect end of transfer */ 325 if (drv_data->ssp_type == PXA25x_SSP) 326 DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; 327 328 return 0; 329} 330 331void pxa2xx_spi_dma_start(struct driver_data *drv_data) 332{ 333 DCSR(drv_data->rx_channel) |= DCSR_RUN; 334 DCSR(drv_data->tx_channel) |= DCSR_RUN; 335} 336 337int pxa2xx_spi_dma_setup(struct driver_data *drv_data) 338{ 339 struct device *dev = &drv_data->pdev->dev; 340 struct ssp_device *ssp = drv_data->ssp; 341 342 /* Get two DMA channels (rx and tx) */ 343 drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", 344 DMA_PRIO_HIGH, 345 pxa2xx_spi_dma_handler, 346 drv_data); 347 if (drv_data->rx_channel < 0) { 348 dev_err(dev, "problem (%d) requesting rx channel\n", 349 drv_data->rx_channel); 350 return -ENODEV; 351 } 352 drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", 353 DMA_PRIO_MEDIUM, 354 pxa2xx_spi_dma_handler, 355 drv_data); 356 if (drv_data->tx_channel < 0) { 357 dev_err(dev, "problem (%d) requesting tx channel\n", 358 drv_data->tx_channel); 359 pxa_free_dma(drv_data->rx_channel); 360 return -ENODEV; 361 } 362 363 DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; 364 DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; 365 366 return 0; 367} 368 369void pxa2xx_spi_dma_release(struct driver_data *drv_data) 370{ 371 struct ssp_device *ssp = drv_data->ssp; 372 373 DRCMR(ssp->drcmr_rx) = 0; 374 DRCMR(ssp->drcmr_tx) = 0; 375 376 if (drv_data->tx_channel != 0) 377 pxa_free_dma(drv_data->tx_channel); 378 if (drv_data->rx_channel != 0) 379 pxa_free_dma(drv_data->rx_channel); 380} 381 382void pxa2xx_spi_dma_resume(struct driver_data *drv_data) 383{ 384 if (drv_data->rx_channel != -1) 385 DRCMR(drv_data->ssp->drcmr_rx) = 386 DRCMR_MAPVLD | drv_data->rx_channel; 387 if (drv_data->tx_channel != -1) 388 DRCMR(drv_data->ssp->drcmr_tx) = 389 DRCMR_MAPVLD | drv_data->tx_channel; 390} 391 392int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, 393 struct spi_device *spi, 394 u8 bits_per_word, u32 *burst_code, 395 u32 *threshold) 396{ 397 struct pxa2xx_spi_chip *chip_info = 398 (struct pxa2xx_spi_chip *)spi->controller_data; 399 int bytes_per_word; 400 int burst_bytes; 401 int thresh_words; 402 int req_burst_size; 403 int retval = 0; 404 405 /* Set the threshold (in registers) to equal the same amount of data 406 * as represented by burst size (in bytes). The computation below 407 * is (burst_size rounded up to nearest 8 byte, word or long word) 408 * divided by (bytes/register); the tx threshold is the inverse of 409 * the rx, so that there will always be enough data in the rx fifo 410 * to satisfy a burst, and there will always be enough space in the 411 * tx fifo to accept a burst (a tx burst will overwrite the fifo if 412 * there is not enough space), there must always remain enough empty 413 * space in the rx fifo for any data loaded to the tx fifo. 414 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold 415 * will be 8, or half the fifo; 416 * The threshold can only be set to 2, 4 or 8, but not 16, because 417 * to burst 16 to the tx fifo, the fifo would have to be empty; 418 * however, the minimum fifo trigger level is 1, and the tx will 419 * request service when the fifo is at this level, with only 15 spaces. 420 */ 421 422 /* find bytes/word */ 423 if (bits_per_word <= 8) 424 bytes_per_word = 1; 425 else if (bits_per_word <= 16) 426 bytes_per_word = 2; 427 else 428 bytes_per_word = 4; 429 430 /* use struct pxa2xx_spi_chip->dma_burst_size if available */ 431 if (chip_info) 432 req_burst_size = chip_info->dma_burst_size; 433 else { 434 switch (chip->dma_burst_size) { 435 default: 436 /* if the default burst size is not set, 437 * do it now */ 438 chip->dma_burst_size = DCMD_BURST8; 439 case DCMD_BURST8: 440 req_burst_size = 8; 441 break; 442 case DCMD_BURST16: 443 req_burst_size = 16; 444 break; 445 case DCMD_BURST32: 446 req_burst_size = 32; 447 break; 448 } 449 } 450 if (req_burst_size <= 8) { 451 *burst_code = DCMD_BURST8; 452 burst_bytes = 8; 453 } else if (req_burst_size <= 16) { 454 if (bytes_per_word == 1) { 455 /* don't burst more than 1/2 the fifo */ 456 *burst_code = DCMD_BURST8; 457 burst_bytes = 8; 458 retval = 1; 459 } else { 460 *burst_code = DCMD_BURST16; 461 burst_bytes = 16; 462 } 463 } else { 464 if (bytes_per_word == 1) { 465 /* don't burst more than 1/2 the fifo */ 466 *burst_code = DCMD_BURST8; 467 burst_bytes = 8; 468 retval = 1; 469 } else if (bytes_per_word == 2) { 470 /* don't burst more than 1/2 the fifo */ 471 *burst_code = DCMD_BURST16; 472 burst_bytes = 16; 473 retval = 1; 474 } else { 475 *burst_code = DCMD_BURST32; 476 burst_bytes = 32; 477 } 478 } 479 480 thresh_words = burst_bytes / bytes_per_word; 481 482 /* thresh_words will be between 2 and 8 */ 483 *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT) 484 | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT); 485 486 return retval; 487} 488