1/*
2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 *    to endorse or promote products derived from this software without
17 *    specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36#ifndef __DWC2_HCD_H__
37#define __DWC2_HCD_H__
38
39/*
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
42 *
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
46 * API to the USBD.
47 */
48
49struct dwc2_qh;
50
51/**
52 * struct dwc2_host_chan - Software host channel descriptor
53 *
54 * @hc_num:             Host channel number, used for register address lookup
55 * @dev_addr:           Address of the device
56 * @ep_num:             Endpoint of the device
57 * @ep_is_in:           Endpoint direction
58 * @speed:              Device speed. One of the following values:
59 *                       - USB_SPEED_LOW
60 *                       - USB_SPEED_FULL
61 *                       - USB_SPEED_HIGH
62 * @ep_type:            Endpoint type. One of the following values:
63 *                       - USB_ENDPOINT_XFER_CONTROL: 0
64 *                       - USB_ENDPOINT_XFER_ISOC:    1
65 *                       - USB_ENDPOINT_XFER_BULK:    2
66 *                       - USB_ENDPOINT_XFER_INTR:    3
67 * @max_packet:         Max packet size in bytes
68 * @data_pid_start:     PID for initial transaction.
69 *                       0: DATA0
70 *                       1: DATA2
71 *                       2: DATA1
72 *                       3: MDATA (non-Control EP),
73 *                          SETUP (Control EP)
74 * @multi_count:        Number of additional periodic transactions per
75 *                      (micro)frame
76 * @xfer_buf:           Pointer to current transfer buffer position
77 * @xfer_dma:           DMA address of xfer_buf
78 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
79 *                      DWORD aligned
80 * @xfer_len:           Total number of bytes to transfer
81 * @xfer_count:         Number of bytes transferred so far
82 * @start_pkt_count:    Packet count at start of transfer
83 * @xfer_started:       True if the transfer has been started
84 * @ping:               True if a PING request should be issued on this channel
85 * @error_state:        True if the error count for this transaction is non-zero
86 * @halt_on_queue:      True if this channel should be halted the next time a
87 *                      request is queued for the channel. This is necessary in
88 *                      slave mode if no request queue space is available when
89 *                      an attempt is made to halt the channel.
90 * @halt_pending:       True if the host channel has been halted, but the core
91 *                      is not finished flushing queued requests
92 * @do_split:           Enable split for the channel
93 * @complete_split:     Enable complete split
94 * @hub_addr:           Address of high speed hub for the split
95 * @hub_port:           Port of the low/full speed device for the split
96 * @xact_pos:           Split transaction position. One of the following values:
97 *                       - DWC2_HCSPLT_XACTPOS_MID
98 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
99 *                       - DWC2_HCSPLT_XACTPOS_END
100 *                       - DWC2_HCSPLT_XACTPOS_ALL
101 * @requests:           Number of requests issued for this channel since it was
102 *                      assigned to the current transfer (not counting PINGs)
103 * @schinfo:            Scheduling micro-frame bitmap
104 * @ntd:                Number of transfer descriptors for the transfer
105 * @halt_status:        Reason for halting the host channel
106 * @hcint               Contents of the HCINT register when the interrupt came
107 * @qh:                 QH for the transfer being processed by this channel
108 * @hc_list_entry:      For linking to list of host channels
109 * @desc_list_addr:     Current QH's descriptor list DMA address
110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115struct dwc2_host_chan {
116	u8 hc_num;
117
118	unsigned dev_addr:7;
119	unsigned ep_num:4;
120	unsigned ep_is_in:1;
121	unsigned speed:4;
122	unsigned ep_type:2;
123	unsigned max_packet:11;
124	unsigned data_pid_start:2;
125#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130
131	unsigned multi_count:2;
132
133	u8 *xfer_buf;
134	dma_addr_t xfer_dma;
135	dma_addr_t align_buf;
136	u32 xfer_len;
137	u32 xfer_count;
138	u16 start_pkt_count;
139	u8 xfer_started;
140	u8 do_ping;
141	u8 error_state;
142	u8 halt_on_queue;
143	u8 halt_pending;
144	u8 do_split;
145	u8 complete_split;
146	u8 hub_addr;
147	u8 hub_port;
148	u8 xact_pos;
149#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153
154	u8 requests;
155	u8 schinfo;
156	u16 ntd;
157	enum dwc2_halt_status halt_status;
158	u32 hcint;
159	struct dwc2_qh *qh;
160	struct list_head hc_list_entry;
161	dma_addr_t desc_list_addr;
162};
163
164struct dwc2_hcd_pipe_info {
165	u8 dev_addr;
166	u8 ep_num;
167	u8 pipe_type;
168	u8 pipe_dir;
169	u16 mps;
170};
171
172struct dwc2_hcd_iso_packet_desc {
173	u32 offset;
174	u32 length;
175	u32 actual_length;
176	u32 status;
177};
178
179struct dwc2_qtd;
180
181struct dwc2_hcd_urb {
182	void *priv;
183	struct dwc2_qtd *qtd;
184	void *buf;
185	dma_addr_t dma;
186	void *setup_packet;
187	dma_addr_t setup_dma;
188	u32 length;
189	u32 actual_length;
190	u32 status;
191	u32 error_count;
192	u32 packet_count;
193	u32 flags;
194	u16 interval;
195	struct dwc2_hcd_pipe_info pipe_info;
196	struct dwc2_hcd_iso_packet_desc iso_descs[0];
197};
198
199/* Phases for control transfers */
200enum dwc2_control_phase {
201	DWC2_CONTROL_SETUP,
202	DWC2_CONTROL_DATA,
203	DWC2_CONTROL_STATUS,
204};
205
206/* Transaction types */
207enum dwc2_transaction_type {
208	DWC2_TRANSACTION_NONE,
209	DWC2_TRANSACTION_PERIODIC,
210	DWC2_TRANSACTION_NON_PERIODIC,
211	DWC2_TRANSACTION_ALL,
212};
213
214/**
215 * struct dwc2_qh - Software queue head structure
216 *
217 * @ep_type:            Endpoint type. One of the following values:
218 *                       - USB_ENDPOINT_XFER_CONTROL
219 *                       - USB_ENDPOINT_XFER_BULK
220 *                       - USB_ENDPOINT_XFER_INT
221 *                       - USB_ENDPOINT_XFER_ISOC
222 * @ep_is_in:           Endpoint direction
223 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
224 * @dev_speed:          Device speed. One of the following values:
225 *                       - USB_SPEED_LOW
226 *                       - USB_SPEED_FULL
227 *                       - USB_SPEED_HIGH
228 * @data_toggle:        Determines the PID of the next data packet for
229 *                      non-controltransfers. Ignored for control transfers.
230 *                      One of the following values:
231 *                       - DWC2_HC_PID_DATA0
232 *                       - DWC2_HC_PID_DATA1
233 * @ping_state:         Ping state
234 * @do_split:           Full/low speed endpoint on high-speed hub requires split
235 * @td_first:           Index of first activated isochronous transfer descriptor
236 * @td_last:            Index of last activated isochronous transfer descriptor
237 * @usecs:              Bandwidth in microseconds per (micro)frame
238 * @interval:           Interval between transfers in (micro)frames
239 * @sched_frame:        (Micro)frame to initialize a periodic transfer.
240 *                      The transfer executes in the following (micro)frame.
241 * @frame_usecs:        Internal variable used by the microframe scheduler
242 * @start_split_frame:  (Micro)frame at which last start split was initialized
243 * @ntd:                Actual number of transfer descriptors in a list
244 * @dw_align_buf:       Used instead of original buffer if its physical address
245 *                      is not dword-aligned
246 * @dw_align_buf_size:  Size of dw_align_buf
247 * @dw_align_buf_dma:   DMA address for dw_align_buf
248 * @qtd_list:           List of QTDs for this QH
249 * @channel:            Host channel currently processing transfers for this QH
250 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
251 *                      schedule
252 * @desc_list:          List of transfer descriptors
253 * @desc_list_dma:      Physical address of desc_list
254 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
255 *                      descriptor and indicates original XferSize value for the
256 *                      descriptor
257 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
258 *
259 * A Queue Head (QH) holds the static characteristics of an endpoint and
260 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
261 * be entered in either the non-periodic or periodic schedule.
262 */
263struct dwc2_qh {
264	u8 ep_type;
265	u8 ep_is_in;
266	u16 maxp;
267	u8 dev_speed;
268	u8 data_toggle;
269	u8 ping_state;
270	u8 do_split;
271	u8 td_first;
272	u8 td_last;
273	u16 usecs;
274	u16 interval;
275	u16 sched_frame;
276	u16 frame_usecs[8];
277	u16 start_split_frame;
278	u16 ntd;
279	u8 *dw_align_buf;
280	int dw_align_buf_size;
281	dma_addr_t dw_align_buf_dma;
282	struct list_head qtd_list;
283	struct dwc2_host_chan *channel;
284	struct list_head qh_list_entry;
285	struct dwc2_hcd_dma_desc *desc_list;
286	dma_addr_t desc_list_dma;
287	u32 *n_bytes;
288	unsigned tt_buffer_dirty:1;
289};
290
291/**
292 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
293 *
294 * @control_phase:      Current phase for control transfers (Setup, Data, or
295 *                      Status)
296 * @in_process:         Indicates if this QTD is currently processed by HW
297 * @data_toggle:        Determines the PID of the next data packet for the
298 *                      data phase of control transfers. Ignored for other
299 *                      transfer types. One of the following values:
300 *                       - DWC2_HC_PID_DATA0
301 *                       - DWC2_HC_PID_DATA1
302 * @complete_split:     Keeps track of the current split type for FS/LS
303 *                      endpoints on a HS Hub
304 * @isoc_split_pos:     Position of the ISOC split in full/low speed
305 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
306 *                      transfer. A frame descriptor describes the buffer
307 *                      position and length of the data to be transferred in the
308 *                      next scheduled (micro)frame of an isochronous transfer.
309 *                      It also holds status for that transaction. The frame
310 *                      index starts at 0.
311 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
312 *                      current frame
313 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
314 * @error_count:        Holds the number of bus errors that have occurred for
315 *                      a transaction within this transfer
316 * @n_desc:             Number of DMA descriptors for this QTD
317 * @isoc_frame_index_last: Last activated frame (packet) index, used in
318 *                      descriptor DMA mode only
319 * @urb:                URB for this transfer
320 * @qh:                 Queue head for this QTD
321 * @qtd_list_entry:     For linking to the QH's list of QTDs
322 *
323 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
324 * interrupt, or isochronous transfer. A single QTD is created for each URB
325 * (of one of these types) submitted to the HCD. The transfer associated with
326 * a QTD may require one or multiple transactions.
327 *
328 * A QTD is linked to a Queue Head, which is entered in either the
329 * non-periodic or periodic schedule for execution. When a QTD is chosen for
330 * execution, some or all of its transactions may be executed. After
331 * execution, the state of the QTD is updated. The QTD may be retired if all
332 * its transactions are complete or if an error occurred. Otherwise, it
333 * remains in the schedule so more transactions can be executed later.
334 */
335struct dwc2_qtd {
336	enum dwc2_control_phase control_phase;
337	u8 in_process;
338	u8 data_toggle;
339	u8 complete_split;
340	u8 isoc_split_pos;
341	u16 isoc_frame_index;
342	u16 isoc_split_offset;
343	u32 ssplit_out_xfer_count;
344	u8 error_count;
345	u8 n_desc;
346	u16 isoc_frame_index_last;
347	struct dwc2_hcd_urb *urb;
348	struct dwc2_qh *qh;
349	struct list_head qtd_list_entry;
350};
351
352#ifdef DEBUG
353struct hc_xfer_info {
354	struct dwc2_hsotg *hsotg;
355	struct dwc2_host_chan *chan;
356};
357#endif
358
359/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
360static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
361{
362	return (struct usb_hcd *)hsotg->priv;
363}
364
365/*
366 * Inline used to disable one channel interrupt. Channel interrupts are
367 * disabled when the channel is halted or released by the interrupt handler.
368 * There is no need to handle further interrupts of that type until the
369 * channel is re-assigned. In fact, subsequent handling may cause crashes
370 * because the channel structures are cleaned up when the channel is released.
371 */
372static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
373{
374	u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
375
376	mask &= ~intr;
377	writel(mask, hsotg->regs + HCINTMSK(chnum));
378}
379
380/*
381 * Returns the mode of operation, host or device
382 */
383static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
384{
385	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
386}
387static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
388{
389	return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
390}
391
392/*
393 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
394 * are read as 1, they won't clear when written back.
395 */
396static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
397{
398	u32 hprt0 = readl(hsotg->regs + HPRT0);
399
400	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
401	return hprt0;
402}
403
404static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
405{
406	return pipe->ep_num;
407}
408
409static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
410{
411	return pipe->pipe_type;
412}
413
414static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
415{
416	return pipe->mps;
417}
418
419static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
420{
421	return pipe->dev_addr;
422}
423
424static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
425{
426	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
427}
428
429static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
430{
431	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
432}
433
434static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
435{
436	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
437}
438
439static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
440{
441	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
442}
443
444static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
445{
446	return pipe->pipe_dir == USB_DIR_IN;
447}
448
449static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
450{
451	return !dwc2_hcd_is_pipe_in(pipe);
452}
453
454extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
455			 const struct dwc2_core_params *params);
456extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
457extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
458				const struct dwc2_core_params *params);
459extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
460extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
461
462/* Transaction Execution Functions */
463extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
464						struct dwc2_hsotg *hsotg);
465extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
466					enum dwc2_transaction_type tr_type);
467
468/* Schedule Queue Functions */
469/* Implemented in hcd_queue.c */
470extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
471extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
472extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
473extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
474extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
475				   int sched_csplit);
476
477extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
478extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
479			    struct dwc2_qh **qh, gfp_t mem_flags);
480
481/* Unlinks and frees a QTD */
482static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
483						struct dwc2_qtd *qtd,
484						struct dwc2_qh *qh)
485{
486	list_del(&qtd->qtd_list_entry);
487	kfree(qtd);
488}
489
490/* Descriptor DMA support functions */
491extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
492				     struct dwc2_qh *qh);
493extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
494					struct dwc2_host_chan *chan, int chnum,
495					enum dwc2_halt_status halt_status);
496
497extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
498				 gfp_t mem_flags);
499extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
500
501/* Check if QH is non-periodic */
502#define dwc2_qh_is_non_per(_qh_ptr_) \
503	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
504	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
505
506#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
507static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
508static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
509static inline bool dbg_urb(struct urb *urb) { return true; }
510static inline bool dbg_perio(void) { return true; }
511#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
512static inline bool dbg_hc(struct dwc2_host_chan *hc)
513{
514	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
515	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
516}
517
518static inline bool dbg_qh(struct dwc2_qh *qh)
519{
520	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
521	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
522}
523
524static inline bool dbg_urb(struct urb *urb)
525{
526	return usb_pipetype(urb->pipe) == PIPE_BULK ||
527	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
528}
529
530static inline bool dbg_perio(void) { return false; }
531#endif
532
533/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
534#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
535
536/* Packet size for any kind of endpoint descriptor */
537#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
538
539/*
540 * Returns true if frame1 is less than or equal to frame2. The comparison is
541 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
542 * frame number when the max frame number is reached.
543 */
544static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
545{
546	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
547}
548
549/*
550 * Returns true if frame1 is greater than frame2. The comparison is done
551 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
552 * number when the max frame number is reached.
553 */
554static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
555{
556	return (frame1 != frame2) &&
557	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
558}
559
560/*
561 * Increments frame by the amount specified by inc. The addition is done
562 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
563 */
564static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
565{
566	return (frame + inc) & HFNUM_MAX_FRNUM;
567}
568
569static inline u16 dwc2_full_frame_num(u16 frame)
570{
571	return (frame & HFNUM_MAX_FRNUM) >> 3;
572}
573
574static inline u16 dwc2_micro_frame_num(u16 frame)
575{
576	return frame & 0x7;
577}
578
579/*
580 * Returns the Core Interrupt Status register contents, ANDed with the Core
581 * Interrupt Mask register contents
582 */
583static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
584{
585	return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
586}
587
588static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
589{
590	return dwc2_urb->status;
591}
592
593static inline u32 dwc2_hcd_urb_get_actual_length(
594		struct dwc2_hcd_urb *dwc2_urb)
595{
596	return dwc2_urb->actual_length;
597}
598
599static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
600{
601	return dwc2_urb->error_count;
602}
603
604static inline void dwc2_hcd_urb_set_iso_desc_params(
605		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
606		u32 length)
607{
608	dwc2_urb->iso_descs[desc_num].offset = offset;
609	dwc2_urb->iso_descs[desc_num].length = length;
610}
611
612static inline u32 dwc2_hcd_urb_get_iso_desc_status(
613		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
614{
615	return dwc2_urb->iso_descs[desc_num].status;
616}
617
618static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
619		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
620{
621	return dwc2_urb->iso_descs[desc_num].actual_length;
622}
623
624static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
625						  struct usb_host_endpoint *ep)
626{
627	struct dwc2_qh *qh = ep->hcpriv;
628
629	if (qh && !list_empty(&qh->qh_list_entry))
630		return 1;
631
632	return 0;
633}
634
635static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
636					    struct usb_host_endpoint *ep)
637{
638	struct dwc2_qh *qh = ep->hcpriv;
639
640	if (!qh) {
641		WARN_ON(1);
642		return 0;
643	}
644
645	return qh->usecs;
646}
647
648extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
649				      struct dwc2_host_chan *chan, int chnum,
650				      struct dwc2_qtd *qtd);
651
652/* HCD Core API */
653
654/**
655 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
656 *
657 * @hsotg: The DWC2 HCD
658 *
659 * Returns IRQ_HANDLED if interrupt is handled
660 * Return IRQ_NONE if interrupt is not handled
661 */
662extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
663
664/**
665 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
666 *
667 * @hsotg: The DWC2 HCD
668 */
669extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
670
671/**
672 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
673 * and 0 otherwise
674 *
675 * @hsotg: The DWC2 HCD
676 */
677extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
678
679/**
680 * dwc2_hcd_dump_state() - Dumps hsotg state
681 *
682 * @hsotg: The DWC2 HCD
683 *
684 * NOTE: This function will be removed once the peripheral controller code
685 * is integrated and the driver is stable
686 */
687extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
688
689/**
690 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
691 *
692 * @hsotg: The DWC2 HCD
693 *
694 * This can be used to determine average interrupt latency. Frame remaining is
695 * also shown for start transfer and two additional sample points.
696 *
697 * NOTE: This function will be removed once the peripheral controller code
698 * is integrated and the driver is stable
699 */
700extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
701
702/* URB interface */
703
704/* Transfer flags */
705#define URB_GIVEBACK_ASAP	0x1
706#define URB_SEND_ZERO_PACKET	0x2
707
708/* Host driver callbacks */
709
710extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
711extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
712extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
713			       int *hub_addr, int *hub_port);
714extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
715extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
716			       int status);
717
718#ifdef DEBUG
719/*
720 * Macro to sample the remaining PHY clocks left in the current frame. This
721 * may be used during debugging to determine the average time it takes to
722 * execute sections of code. There are two possible sample points, "a" and
723 * "b", so the _letter_ argument must be one of these values.
724 *
725 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
726 * example, "cat /sys/devices/lm0/hcd_frrem".
727 */
728#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
729do {									\
730	struct hfnum_data _hfnum_;					\
731	struct dwc2_qtd *_qtd_;						\
732									\
733	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
734			   qtd_list_entry);				\
735	if (usb_pipeint(_qtd_->urb->pipe) &&				\
736	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
737		_hfnum_.d32 = readl((_hcd_)->regs + HFNUM);		\
738		switch (_hfnum_.b.frnum & 0x7) {			\
739		case 7:							\
740			(_hcd_)->hfnum_7_samples_##_letter_++;		\
741			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
742				_hfnum_.b.frrem;			\
743			break;						\
744		case 0:							\
745			(_hcd_)->hfnum_0_samples_##_letter_++;		\
746			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
747				_hfnum_.b.frrem;			\
748			break;						\
749		default:						\
750			(_hcd_)->hfnum_other_samples_##_letter_++;	\
751			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
752				_hfnum_.b.frrem;			\
753			break;						\
754		}							\
755	}								\
756} while (0)
757#else
758#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
759#endif
760
761#endif /* __DWC2_HCD_H__ */
762