1/*
2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions, and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 *    to endorse or promote products derived from this software without
17 *    specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37/*
38 * This file contains the functions to manage Queue Heads and Queue
39 * Transfer Descriptors for Host mode
40 */
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/spinlock.h>
44#include <linux/interrupt.h>
45#include <linux/dma-mapping.h>
46#include <linux/io.h>
47#include <linux/slab.h>
48#include <linux/usb.h>
49
50#include <linux/usb/hcd.h>
51#include <linux/usb/ch11.h>
52
53#include "core.h"
54#include "hcd.h"
55
56/**
57 * dwc2_qh_init() - Initializes a QH structure
58 *
59 * @hsotg: The HCD state structure for the DWC OTG controller
60 * @qh:    The QH to init
61 * @urb:   Holds the information about the device/endpoint needed to initialize
62 *         the QH
63 */
64#define SCHEDULE_SLOP 10
65static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
66			 struct dwc2_hcd_urb *urb)
67{
68	int dev_speed, hub_addr, hub_port;
69	char *speed, *type;
70
71	dev_vdbg(hsotg->dev, "%s()\n", __func__);
72
73	/* Initialize QH */
74	qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
75	qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
76
77	qh->data_toggle = DWC2_HC_PID_DATA0;
78	qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info);
79	INIT_LIST_HEAD(&qh->qtd_list);
80	INIT_LIST_HEAD(&qh->qh_list_entry);
81
82	/* FS/LS Endpoint on HS Hub, NOT virtual root hub */
83	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
84
85	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
86
87	if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) &&
88	    hub_addr != 0 && hub_addr != 1) {
89		dev_vdbg(hsotg->dev,
90			 "QH init: EP %d: TT found at hub addr %d, for port %d\n",
91			 dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr,
92			 hub_port);
93		qh->do_split = 1;
94	}
95
96	if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
97	    qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
98		/* Compute scheduling parameters once and save them */
99		u32 hprt, prtspd;
100
101		/* Todo: Account for split transfers in the bus time */
102		int bytecount =
103			dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
104
105		qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ?
106				USB_SPEED_HIGH : dev_speed, qh->ep_is_in,
107				qh->ep_type == USB_ENDPOINT_XFER_ISOC,
108				bytecount));
109		/* Start in a slightly future (micro)frame */
110		qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number,
111						     SCHEDULE_SLOP);
112		qh->interval = urb->interval;
113#if 0
114		/* Increase interrupt polling rate for debugging */
115		if (qh->ep_type == USB_ENDPOINT_XFER_INT)
116			qh->interval = 8;
117#endif
118		hprt = readl(hsotg->regs + HPRT0);
119		prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
120		if (prtspd == HPRT0_SPD_HIGH_SPEED &&
121		    (dev_speed == USB_SPEED_LOW ||
122		     dev_speed == USB_SPEED_FULL)) {
123			qh->interval *= 8;
124			qh->sched_frame |= 0x7;
125			qh->start_split_frame = qh->sched_frame;
126		}
127		dev_dbg(hsotg->dev, "interval=%d\n", qh->interval);
128	}
129
130	dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n");
131	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh);
132	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n",
133		 dwc2_hcd_get_dev_addr(&urb->pipe_info));
134	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n",
135		 dwc2_hcd_get_ep_num(&urb->pipe_info),
136		 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
137
138	qh->dev_speed = dev_speed;
139
140	switch (dev_speed) {
141	case USB_SPEED_LOW:
142		speed = "low";
143		break;
144	case USB_SPEED_FULL:
145		speed = "full";
146		break;
147	case USB_SPEED_HIGH:
148		speed = "high";
149		break;
150	default:
151		speed = "?";
152		break;
153	}
154	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed);
155
156	switch (qh->ep_type) {
157	case USB_ENDPOINT_XFER_ISOC:
158		type = "isochronous";
159		break;
160	case USB_ENDPOINT_XFER_INT:
161		type = "interrupt";
162		break;
163	case USB_ENDPOINT_XFER_CONTROL:
164		type = "control";
165		break;
166	case USB_ENDPOINT_XFER_BULK:
167		type = "bulk";
168		break;
169	default:
170		type = "?";
171		break;
172	}
173
174	dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type);
175
176	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
177		dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n",
178			 qh->usecs);
179		dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n",
180			 qh->interval);
181	}
182}
183
184/**
185 * dwc2_hcd_qh_create() - Allocates and initializes a QH
186 *
187 * @hsotg:        The HCD state structure for the DWC OTG controller
188 * @urb:          Holds the information about the device/endpoint needed
189 *                to initialize the QH
190 * @atomic_alloc: Flag to do atomic allocation if needed
191 *
192 * Return: Pointer to the newly allocated QH, or NULL on error
193 */
194static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
195					  struct dwc2_hcd_urb *urb,
196					  gfp_t mem_flags)
197{
198	struct dwc2_qh *qh;
199
200	if (!urb->priv)
201		return NULL;
202
203	/* Allocate memory */
204	qh = kzalloc(sizeof(*qh), mem_flags);
205	if (!qh)
206		return NULL;
207
208	dwc2_qh_init(hsotg, qh, urb);
209
210	if (hsotg->core_params->dma_desc_enable > 0 &&
211	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
212		dwc2_hcd_qh_free(hsotg, qh);
213		return NULL;
214	}
215
216	return qh;
217}
218
219/**
220 * dwc2_hcd_qh_free() - Frees the QH
221 *
222 * @hsotg: HCD instance
223 * @qh:    The QH to free
224 *
225 * QH should already be removed from the list. QTD list should already be empty
226 * if called from URB Dequeue.
227 *
228 * Must NOT be called with interrupt disabled or spinlock held
229 */
230void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
231{
232	if (hsotg->core_params->dma_desc_enable > 0)
233		dwc2_hcd_qh_free_ddma(hsotg, qh);
234	else if (qh->dw_align_buf)
235		dma_free_coherent(hsotg->dev, qh->dw_align_buf_size,
236				  qh->dw_align_buf, qh->dw_align_buf_dma);
237	kfree(qh);
238}
239
240/**
241 * dwc2_periodic_channel_available() - Checks that a channel is available for a
242 * periodic transfer
243 *
244 * @hsotg: The HCD state structure for the DWC OTG controller
245 *
246 * Return: 0 if successful, negative error code otherwise
247 */
248static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
249{
250	/*
251	 * Currently assuming that there is a dedicated host channel for
252	 * each periodic transaction plus at least one host channel for
253	 * non-periodic transactions
254	 */
255	int status;
256	int num_channels;
257
258	num_channels = hsotg->core_params->host_channels;
259	if (hsotg->periodic_channels + hsotg->non_periodic_channels <
260								num_channels
261	    && hsotg->periodic_channels < num_channels - 1) {
262		status = 0;
263	} else {
264		dev_dbg(hsotg->dev,
265			"%s: Total channels: %d, Periodic: %d, "
266			"Non-periodic: %d\n", __func__, num_channels,
267			hsotg->periodic_channels, hsotg->non_periodic_channels);
268		status = -ENOSPC;
269	}
270
271	return status;
272}
273
274/**
275 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
276 * for the specified QH in the periodic schedule
277 *
278 * @hsotg: The HCD state structure for the DWC OTG controller
279 * @qh:    QH containing periodic bandwidth required
280 *
281 * Return: 0 if successful, negative error code otherwise
282 *
283 * For simplicity, this calculation assumes that all the transfers in the
284 * periodic schedule may occur in the same (micro)frame
285 */
286static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
287					 struct dwc2_qh *qh)
288{
289	int status;
290	s16 max_claimed_usecs;
291
292	status = 0;
293
294	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
295		/*
296		 * High speed mode
297		 * Max periodic usecs is 80% x 125 usec = 100 usec
298		 */
299		max_claimed_usecs = 100 - qh->usecs;
300	} else {
301		/*
302		 * Full speed mode
303		 * Max periodic usecs is 90% x 1000 usec = 900 usec
304		 */
305		max_claimed_usecs = 900 - qh->usecs;
306	}
307
308	if (hsotg->periodic_usecs > max_claimed_usecs) {
309		dev_err(hsotg->dev,
310			"%s: already claimed usecs %d, required usecs %d\n",
311			__func__, hsotg->periodic_usecs, qh->usecs);
312		status = -ENOSPC;
313	}
314
315	return status;
316}
317
318/**
319 * Microframe scheduler
320 * track the total use in hsotg->frame_usecs
321 * keep each qh use in qh->frame_usecs
322 * when surrendering the qh then donate the time back
323 */
324static const unsigned short max_uframe_usecs[] = {
325	100, 100, 100, 100, 100, 100, 30, 0
326};
327
328void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg)
329{
330	int i;
331
332	for (i = 0; i < 8; i++)
333		hsotg->frame_usecs[i] = max_uframe_usecs[i];
334}
335
336static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
337{
338	unsigned short utime = qh->usecs;
339	int i;
340
341	for (i = 0; i < 8; i++) {
342		/* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */
343		if (utime <= hsotg->frame_usecs[i]) {
344			hsotg->frame_usecs[i] -= utime;
345			qh->frame_usecs[i] += utime;
346			return i;
347		}
348	}
349	return -ENOSPC;
350}
351
352/*
353 * use this for FS apps that can span multiple uframes
354 */
355static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
356{
357	unsigned short utime = qh->usecs;
358	unsigned short xtime;
359	int t_left;
360	int i;
361	int j;
362	int k;
363
364	for (i = 0; i < 8; i++) {
365		if (hsotg->frame_usecs[i] <= 0)
366			continue;
367
368		/*
369		 * we need n consecutive slots so use j as a start slot
370		 * j plus j+1 must be enough time (for now)
371		 */
372		xtime = hsotg->frame_usecs[i];
373		for (j = i + 1; j < 8; j++) {
374			/*
375			 * if we add this frame remaining time to xtime we may
376			 * be OK, if not we need to test j for a complete frame
377			 */
378			if (xtime + hsotg->frame_usecs[j] < utime) {
379				if (hsotg->frame_usecs[j] <
380							max_uframe_usecs[j])
381					continue;
382			}
383			if (xtime >= utime) {
384				t_left = utime;
385				for (k = i; k < 8; k++) {
386					t_left -= hsotg->frame_usecs[k];
387					if (t_left <= 0) {
388						qh->frame_usecs[k] +=
389							hsotg->frame_usecs[k]
390								+ t_left;
391						hsotg->frame_usecs[k] = -t_left;
392						return i;
393					} else {
394						qh->frame_usecs[k] +=
395							hsotg->frame_usecs[k];
396						hsotg->frame_usecs[k] = 0;
397					}
398				}
399			}
400			/* add the frame time to x time */
401			xtime += hsotg->frame_usecs[j];
402			/* we must have a fully available next frame or break */
403			if (xtime < utime &&
404			   hsotg->frame_usecs[j] == max_uframe_usecs[j])
405				continue;
406		}
407	}
408	return -ENOSPC;
409}
410
411static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
412{
413	int ret;
414
415	if (qh->dev_speed == USB_SPEED_HIGH) {
416		/* if this is a hs transaction we need a full frame */
417		ret = dwc2_find_single_uframe(hsotg, qh);
418	} else {
419		/*
420		 * if this is a fs transaction we may need a sequence
421		 * of frames
422		 */
423		ret = dwc2_find_multi_uframe(hsotg, qh);
424	}
425	return ret;
426}
427
428/**
429 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
430 * host channel is large enough to handle the maximum data transfer in a single
431 * (micro)frame for a periodic transfer
432 *
433 * @hsotg: The HCD state structure for the DWC OTG controller
434 * @qh:    QH for a periodic endpoint
435 *
436 * Return: 0 if successful, negative error code otherwise
437 */
438static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
439				    struct dwc2_qh *qh)
440{
441	u32 max_xfer_size;
442	u32 max_channel_xfer_size;
443	int status = 0;
444
445	max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
446	max_channel_xfer_size = hsotg->core_params->max_transfer_size;
447
448	if (max_xfer_size > max_channel_xfer_size) {
449		dev_err(hsotg->dev,
450			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
451			__func__, max_xfer_size, max_channel_xfer_size);
452		status = -ENOSPC;
453	}
454
455	return status;
456}
457
458/**
459 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
460 * the periodic schedule
461 *
462 * @hsotg: The HCD state structure for the DWC OTG controller
463 * @qh:    QH for the periodic transfer. The QH should already contain the
464 *         scheduling information.
465 *
466 * Return: 0 if successful, negative error code otherwise
467 */
468static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
469{
470	int status;
471
472	if (hsotg->core_params->uframe_sched > 0) {
473		int frame = -1;
474
475		status = dwc2_find_uframe(hsotg, qh);
476		if (status == 0)
477			frame = 7;
478		else if (status > 0)
479			frame = status - 1;
480
481		/* Set the new frame up */
482		if (frame >= 0) {
483			qh->sched_frame &= ~0x7;
484			qh->sched_frame |= (frame & 7);
485		}
486
487		if (status > 0)
488			status = 0;
489	} else {
490		status = dwc2_periodic_channel_available(hsotg);
491		if (status) {
492			dev_info(hsotg->dev,
493				 "%s: No host channel available for periodic transfer\n",
494				 __func__);
495			return status;
496		}
497
498		status = dwc2_check_periodic_bandwidth(hsotg, qh);
499	}
500
501	if (status) {
502		dev_dbg(hsotg->dev,
503			"%s: Insufficient periodic bandwidth for periodic transfer\n",
504			__func__);
505		return status;
506	}
507
508	status = dwc2_check_max_xfer_size(hsotg, qh);
509	if (status) {
510		dev_dbg(hsotg->dev,
511			"%s: Channel max transfer size too small for periodic transfer\n",
512			__func__);
513		return status;
514	}
515
516	if (hsotg->core_params->dma_desc_enable > 0)
517		/* Don't rely on SOF and start in ready schedule */
518		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
519	else
520		/* Always start in inactive schedule */
521		list_add_tail(&qh->qh_list_entry,
522			      &hsotg->periodic_sched_inactive);
523
524	if (hsotg->core_params->uframe_sched <= 0)
525		/* Reserve periodic channel */
526		hsotg->periodic_channels++;
527
528	/* Update claimed usecs per (micro)frame */
529	hsotg->periodic_usecs += qh->usecs;
530
531	return status;
532}
533
534/**
535 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
536 * from the periodic schedule
537 *
538 * @hsotg: The HCD state structure for the DWC OTG controller
539 * @qh:	   QH for the periodic transfer
540 */
541static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
542				     struct dwc2_qh *qh)
543{
544	int i;
545
546	list_del_init(&qh->qh_list_entry);
547
548	/* Update claimed usecs per (micro)frame */
549	hsotg->periodic_usecs -= qh->usecs;
550
551	if (hsotg->core_params->uframe_sched > 0) {
552		for (i = 0; i < 8; i++) {
553			hsotg->frame_usecs[i] += qh->frame_usecs[i];
554			qh->frame_usecs[i] = 0;
555		}
556	} else {
557		/* Release periodic channel reservation */
558		hsotg->periodic_channels--;
559	}
560}
561
562/**
563 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
564 * schedule if it is not already in the schedule. If the QH is already in
565 * the schedule, no action is taken.
566 *
567 * @hsotg: The HCD state structure for the DWC OTG controller
568 * @qh:    The QH to add
569 *
570 * Return: 0 if successful, negative error code otherwise
571 */
572int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
573{
574	int status;
575	u32 intr_mask;
576
577	if (dbg_qh(qh))
578		dev_vdbg(hsotg->dev, "%s()\n", __func__);
579
580	if (!list_empty(&qh->qh_list_entry))
581		/* QH already in a schedule */
582		return 0;
583
584	/* Add the new QH to the appropriate schedule */
585	if (dwc2_qh_is_non_per(qh)) {
586		/* Always start in inactive schedule */
587		list_add_tail(&qh->qh_list_entry,
588			      &hsotg->non_periodic_sched_inactive);
589		return 0;
590	}
591
592	status = dwc2_schedule_periodic(hsotg, qh);
593	if (status)
594		return status;
595	if (!hsotg->periodic_qh_count) {
596		intr_mask = readl(hsotg->regs + GINTMSK);
597		intr_mask |= GINTSTS_SOF;
598		writel(intr_mask, hsotg->regs + GINTMSK);
599	}
600	hsotg->periodic_qh_count++;
601
602	return 0;
603}
604
605/**
606 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
607 * schedule. Memory is not freed.
608 *
609 * @hsotg: The HCD state structure
610 * @qh:    QH to remove from schedule
611 */
612void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
613{
614	u32 intr_mask;
615
616	dev_vdbg(hsotg->dev, "%s()\n", __func__);
617
618	if (list_empty(&qh->qh_list_entry))
619		/* QH is not in a schedule */
620		return;
621
622	if (dwc2_qh_is_non_per(qh)) {
623		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
624			hsotg->non_periodic_qh_ptr =
625					hsotg->non_periodic_qh_ptr->next;
626		list_del_init(&qh->qh_list_entry);
627		return;
628	}
629
630	dwc2_deschedule_periodic(hsotg, qh);
631	hsotg->periodic_qh_count--;
632	if (!hsotg->periodic_qh_count) {
633		intr_mask = readl(hsotg->regs + GINTMSK);
634		intr_mask &= ~GINTSTS_SOF;
635		writel(intr_mask, hsotg->regs + GINTMSK);
636	}
637}
638
639/*
640 * Schedule the next continuing periodic split transfer
641 */
642static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg,
643				      struct dwc2_qh *qh, u16 frame_number,
644				      int sched_next_periodic_split)
645{
646	u16 incr;
647
648	if (sched_next_periodic_split) {
649		qh->sched_frame = frame_number;
650		incr = dwc2_frame_num_inc(qh->start_split_frame, 1);
651		if (dwc2_frame_num_le(frame_number, incr)) {
652			/*
653			 * Allow one frame to elapse after start split
654			 * microframe before scheduling complete split, but
655			 * DON'T if we are doing the next start split in the
656			 * same frame for an ISOC out
657			 */
658			if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
659			    qh->ep_is_in != 0) {
660				qh->sched_frame =
661					dwc2_frame_num_inc(qh->sched_frame, 1);
662			}
663		}
664	} else {
665		qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame,
666						     qh->interval);
667		if (dwc2_frame_num_le(qh->sched_frame, frame_number))
668			qh->sched_frame = frame_number;
669		qh->sched_frame |= 0x7;
670		qh->start_split_frame = qh->sched_frame;
671	}
672}
673
674/*
675 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
676 * non-periodic schedule. The QH is added to the inactive non-periodic
677 * schedule if any QTDs are still attached to the QH.
678 *
679 * For periodic QHs, the QH is removed from the periodic queued schedule. If
680 * there are any QTDs still attached to the QH, the QH is added to either the
681 * periodic inactive schedule or the periodic ready schedule and its next
682 * scheduled frame is calculated. The QH is placed in the ready schedule if
683 * the scheduled frame has been reached already. Otherwise it's placed in the
684 * inactive schedule. If there are no QTDs attached to the QH, the QH is
685 * completely removed from the periodic schedule.
686 */
687void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
688			    int sched_next_periodic_split)
689{
690	u16 frame_number;
691
692	if (dbg_qh(qh))
693		dev_vdbg(hsotg->dev, "%s()\n", __func__);
694
695	if (dwc2_qh_is_non_per(qh)) {
696		dwc2_hcd_qh_unlink(hsotg, qh);
697		if (!list_empty(&qh->qtd_list))
698			/* Add back to inactive non-periodic schedule */
699			dwc2_hcd_qh_add(hsotg, qh);
700		return;
701	}
702
703	frame_number = dwc2_hcd_get_frame_number(hsotg);
704
705	if (qh->do_split) {
706		dwc2_sched_periodic_split(hsotg, qh, frame_number,
707					  sched_next_periodic_split);
708	} else {
709		qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame,
710						     qh->interval);
711		if (dwc2_frame_num_le(qh->sched_frame, frame_number))
712			qh->sched_frame = frame_number;
713	}
714
715	if (list_empty(&qh->qtd_list)) {
716		dwc2_hcd_qh_unlink(hsotg, qh);
717		return;
718	}
719	/*
720	 * Remove from periodic_sched_queued and move to
721	 * appropriate queue
722	 */
723	if ((hsotg->core_params->uframe_sched > 0 &&
724	     dwc2_frame_num_le(qh->sched_frame, frame_number)) ||
725	    (hsotg->core_params->uframe_sched <= 0 &&
726	     qh->sched_frame == frame_number))
727		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
728	else
729		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive);
730}
731
732/**
733 * dwc2_hcd_qtd_init() - Initializes a QTD structure
734 *
735 * @qtd: The QTD to initialize
736 * @urb: The associated URB
737 */
738void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
739{
740	qtd->urb = urb;
741	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
742			USB_ENDPOINT_XFER_CONTROL) {
743		/*
744		 * The only time the QTD data toggle is used is on the data
745		 * phase of control transfers. This phase always starts with
746		 * DATA1.
747		 */
748		qtd->data_toggle = DWC2_HC_PID_DATA1;
749		qtd->control_phase = DWC2_CONTROL_SETUP;
750	}
751
752	/* Start split */
753	qtd->complete_split = 0;
754	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
755	qtd->isoc_split_offset = 0;
756	qtd->in_process = 0;
757
758	/* Store the qtd ptr in the urb to reference the QTD */
759	urb->qtd = qtd;
760}
761
762/**
763 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
764 *
765 * @hsotg:        The DWC HCD structure
766 * @qtd:          The QTD to add
767 * @qh:           Out parameter to return queue head
768 * @atomic_alloc: Flag to do atomic alloc if needed
769 *
770 * Return: 0 if successful, negative error code otherwise
771 *
772 * Finds the correct QH to place the QTD into. If it does not find a QH, it
773 * will create a new QH. If the QH to which the QTD is added is not currently
774 * scheduled, it is placed into the proper schedule based on its EP type.
775 */
776int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
777		     struct dwc2_qh **qh, gfp_t mem_flags)
778{
779	struct dwc2_hcd_urb *urb = qtd->urb;
780	unsigned long flags;
781	int allocated = 0;
782	int retval;
783
784	/*
785	 * Get the QH which holds the QTD-list to insert to. Create QH if it
786	 * doesn't exist.
787	 */
788	if (*qh == NULL) {
789		*qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags);
790		if (*qh == NULL)
791			return -ENOMEM;
792		allocated = 1;
793	}
794
795	spin_lock_irqsave(&hsotg->lock, flags);
796
797	retval = dwc2_hcd_qh_add(hsotg, *qh);
798	if (retval)
799		goto fail;
800
801	qtd->qh = *qh;
802	list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list);
803	spin_unlock_irqrestore(&hsotg->lock, flags);
804
805	return 0;
806
807fail:
808	if (allocated) {
809		struct dwc2_qtd *qtd2, *qtd2_tmp;
810		struct dwc2_qh *qh_tmp = *qh;
811
812		*qh = NULL;
813		dwc2_hcd_qh_unlink(hsotg, qh_tmp);
814
815		/* Free each QTD in the QH's QTD list */
816		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list,
817					 qtd_list_entry)
818			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp);
819
820		spin_unlock_irqrestore(&hsotg->lock, flags);
821		dwc2_hcd_qh_free(hsotg, qh_tmp);
822	} else {
823		spin_unlock_irqrestore(&hsotg->lock, flags);
824	}
825
826	return retval;
827}
828