1/* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23#include <linux/pci.h> 24#include <linux/irq.h> 25#include <linux/log2.h> 26#include <linux/module.h> 27#include <linux/moduleparam.h> 28#include <linux/slab.h> 29#include <linux/dmi.h> 30#include <linux/dma-mapping.h> 31 32#include "xhci.h" 33#include "xhci-trace.h" 34 35#define DRIVER_AUTHOR "Sarah Sharp" 36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 39 40/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 41static int link_quirk; 42module_param(link_quirk, int, S_IRUGO | S_IWUSR); 43MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 44 45static unsigned int quirks; 46module_param(quirks, uint, S_IRUGO); 47MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 48 49/* TODO: copied from ehci-hcd.c - can this be refactored? */ 50/* 51 * xhci_handshake - spin reading hc until handshake completes or fails 52 * @ptr: address of hc register to be read 53 * @mask: bits to look at in result of read 54 * @done: value of those bits when handshake succeeds 55 * @usec: timeout in microseconds 56 * 57 * Returns negative errno, or zero on success 58 * 59 * Success happens when the "mask" bits have the specified value (hardware 60 * handshake done). There are two failure modes: "usec" have passed (major 61 * hardware flakeout), or the register reads as all-ones (hardware removed). 62 */ 63int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 64{ 65 u32 result; 66 67 do { 68 result = readl(ptr); 69 if (result == ~(u32)0) /* card removed */ 70 return -ENODEV; 71 result &= mask; 72 if (result == done) 73 return 0; 74 udelay(1); 75 usec--; 76 } while (usec > 0); 77 return -ETIMEDOUT; 78} 79 80/* 81 * Disable interrupts and begin the xHCI halting process. 82 */ 83void xhci_quiesce(struct xhci_hcd *xhci) 84{ 85 u32 halted; 86 u32 cmd; 87 u32 mask; 88 89 mask = ~(XHCI_IRQS); 90 halted = readl(&xhci->op_regs->status) & STS_HALT; 91 if (!halted) 92 mask &= ~CMD_RUN; 93 94 cmd = readl(&xhci->op_regs->command); 95 cmd &= mask; 96 writel(cmd, &xhci->op_regs->command); 97} 98 99/* 100 * Force HC into halt state. 101 * 102 * Disable any IRQs and clear the run/stop bit. 103 * HC will complete any current and actively pipelined transactions, and 104 * should halt within 16 ms of the run/stop bit being cleared. 105 * Read HC Halted bit in the status register to see when the HC is finished. 106 */ 107int xhci_halt(struct xhci_hcd *xhci) 108{ 109 int ret; 110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 111 xhci_quiesce(xhci); 112 113 ret = xhci_handshake(&xhci->op_regs->status, 114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 115 if (!ret) { 116 xhci->xhc_state |= XHCI_STATE_HALTED; 117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 118 } else 119 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 120 XHCI_MAX_HALT_USEC); 121 return ret; 122} 123 124/* 125 * Set the run bit and wait for the host to be running. 126 */ 127static int xhci_start(struct xhci_hcd *xhci) 128{ 129 u32 temp; 130 int ret; 131 132 temp = readl(&xhci->op_regs->command); 133 temp |= (CMD_RUN); 134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 135 temp); 136 writel(temp, &xhci->op_regs->command); 137 138 /* 139 * Wait for the HCHalted Status bit to be 0 to indicate the host is 140 * running. 141 */ 142 ret = xhci_handshake(&xhci->op_regs->status, 143 STS_HALT, 0, XHCI_MAX_HALT_USEC); 144 if (ret == -ETIMEDOUT) 145 xhci_err(xhci, "Host took too long to start, " 146 "waited %u microseconds.\n", 147 XHCI_MAX_HALT_USEC); 148 if (!ret) 149 /* clear state flags. Including dying, halted or removing */ 150 xhci->xhc_state = 0; 151 152 return ret; 153} 154 155/* 156 * Reset a halted HC. 157 * 158 * This resets pipelines, timers, counters, state machines, etc. 159 * Transactions will be terminated immediately, and operational registers 160 * will be set to their defaults. 161 */ 162int xhci_reset(struct xhci_hcd *xhci) 163{ 164 u32 command; 165 u32 state; 166 int ret, i; 167 168 state = readl(&xhci->op_regs->status); 169 if ((state & STS_HALT) == 0) { 170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 171 return 0; 172 } 173 174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 175 command = readl(&xhci->op_regs->command); 176 command |= CMD_RESET; 177 writel(command, &xhci->op_regs->command); 178 179 /* Existing Intel xHCI controllers require a delay of 1 mS, 180 * after setting the CMD_RESET bit, and before accessing any 181 * HC registers. This allows the HC to complete the 182 * reset operation and be ready for HC register access. 183 * Without this delay, the subsequent HC register access, 184 * may result in a system hang very rarely. 185 */ 186 if (xhci->quirks & XHCI_INTEL_HOST) 187 udelay(1000); 188 189 ret = xhci_handshake(&xhci->op_regs->command, 190 CMD_RESET, 0, 10 * 1000 * 1000); 191 if (ret) 192 return ret; 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; ++i) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210} 211 212#ifdef CONFIG_PCI 213static int xhci_free_msi(struct xhci_hcd *xhci) 214{ 215 int i; 216 217 if (!xhci->msix_entries) 218 return -EINVAL; 219 220 for (i = 0; i < xhci->msix_count; i++) 221 if (xhci->msix_entries[i].vector) 222 free_irq(xhci->msix_entries[i].vector, 223 xhci_to_hcd(xhci)); 224 return 0; 225} 226 227/* 228 * Set up MSI 229 */ 230static int xhci_setup_msi(struct xhci_hcd *xhci) 231{ 232 int ret; 233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 234 235 ret = pci_enable_msi(pdev); 236 if (ret) { 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "failed to allocate MSI entry"); 239 return ret; 240 } 241 242 ret = request_irq(pdev->irq, xhci_msi_irq, 243 0, "xhci_hcd", xhci_to_hcd(xhci)); 244 if (ret) { 245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 246 "disable MSI interrupt"); 247 pci_disable_msi(pdev); 248 } 249 250 return ret; 251} 252 253/* 254 * Free IRQs 255 * free all IRQs request 256 */ 257static void xhci_free_irq(struct xhci_hcd *xhci) 258{ 259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 260 int ret; 261 262 /* return if using legacy interrupt */ 263 if (xhci_to_hcd(xhci)->irq > 0) 264 return; 265 266 ret = xhci_free_msi(xhci); 267 if (!ret) 268 return; 269 if (pdev->irq > 0) 270 free_irq(pdev->irq, xhci_to_hcd(xhci)); 271 272 return; 273} 274 275/* 276 * Set up MSI-X 277 */ 278static int xhci_setup_msix(struct xhci_hcd *xhci) 279{ 280 int i, ret = 0; 281 struct usb_hcd *hcd = xhci_to_hcd(xhci); 282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 283 284 /* 285 * calculate number of msi-x vectors supported. 286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 287 * with max number of interrupters based on the xhci HCSPARAMS1. 288 * - num_online_cpus: maximum msi-x vectors per CPUs core. 289 * Add additional 1 vector to ensure always available interrupt. 290 */ 291 xhci->msix_count = min(num_online_cpus() + 1, 292 HCS_MAX_INTRS(xhci->hcs_params1)); 293 294 xhci->msix_entries = 295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 296 GFP_KERNEL); 297 if (!xhci->msix_entries) { 298 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 299 return -ENOMEM; 300 } 301 302 for (i = 0; i < xhci->msix_count; i++) { 303 xhci->msix_entries[i].entry = i; 304 xhci->msix_entries[i].vector = 0; 305 } 306 307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 308 if (ret) { 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 310 "Failed to enable MSI-X"); 311 goto free_entries; 312 } 313 314 for (i = 0; i < xhci->msix_count; i++) { 315 ret = request_irq(xhci->msix_entries[i].vector, 316 xhci_msi_irq, 317 0, "xhci_hcd", xhci_to_hcd(xhci)); 318 if (ret) 319 goto disable_msix; 320 } 321 322 hcd->msix_enabled = 1; 323 return ret; 324 325disable_msix: 326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 327 xhci_free_irq(xhci); 328 pci_disable_msix(pdev); 329free_entries: 330 kfree(xhci->msix_entries); 331 xhci->msix_entries = NULL; 332 return ret; 333} 334 335/* Free any IRQs and disable MSI-X */ 336static void xhci_cleanup_msix(struct xhci_hcd *xhci) 337{ 338 struct usb_hcd *hcd = xhci_to_hcd(xhci); 339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 340 341 if (xhci->quirks & XHCI_PLAT) 342 return; 343 344 xhci_free_irq(xhci); 345 346 if (xhci->msix_entries) { 347 pci_disable_msix(pdev); 348 kfree(xhci->msix_entries); 349 xhci->msix_entries = NULL; 350 } else { 351 pci_disable_msi(pdev); 352 } 353 354 hcd->msix_enabled = 0; 355 return; 356} 357 358static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 359{ 360 int i; 361 362 if (xhci->msix_entries) { 363 for (i = 0; i < xhci->msix_count; i++) 364 synchronize_irq(xhci->msix_entries[i].vector); 365 } 366} 367 368static int xhci_try_enable_msi(struct usb_hcd *hcd) 369{ 370 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 371 struct pci_dev *pdev; 372 int ret; 373 374 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 375 if (xhci->quirks & XHCI_PLAT) 376 return 0; 377 378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 379 /* 380 * Some Fresco Logic host controllers advertise MSI, but fail to 381 * generate interrupts. Don't even try to enable MSI. 382 */ 383 if (xhci->quirks & XHCI_BROKEN_MSI) 384 goto legacy_irq; 385 386 /* unregister the legacy interrupt */ 387 if (hcd->irq) 388 free_irq(hcd->irq, hcd); 389 hcd->irq = 0; 390 391 ret = xhci_setup_msix(xhci); 392 if (ret) 393 /* fall back to msi*/ 394 ret = xhci_setup_msi(xhci); 395 396 if (!ret) 397 /* hcd->irq is 0, we have MSI */ 398 return 0; 399 400 if (!pdev->irq) { 401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 402 return -EINVAL; 403 } 404 405 legacy_irq: 406 if (!strlen(hcd->irq_descr)) 407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 408 hcd->driver->description, hcd->self.busnum); 409 410 /* fall back to legacy interrupt*/ 411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 412 hcd->irq_descr, hcd); 413 if (ret) { 414 xhci_err(xhci, "request interrupt %d failed\n", 415 pdev->irq); 416 return ret; 417 } 418 hcd->irq = pdev->irq; 419 return 0; 420} 421 422#else 423 424static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 425{ 426 return 0; 427} 428 429static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 430{ 431} 432 433static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 434{ 435} 436 437#endif 438 439static void compliance_mode_recovery(unsigned long arg) 440{ 441 struct xhci_hcd *xhci; 442 struct usb_hcd *hcd; 443 u32 temp; 444 int i; 445 446 xhci = (struct xhci_hcd *)arg; 447 448 for (i = 0; i < xhci->num_usb3_ports; i++) { 449 temp = readl(xhci->usb3_ports[i]); 450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 451 /* 452 * Compliance Mode Detected. Letting USB Core 453 * handle the Warm Reset 454 */ 455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 456 "Compliance mode detected->port %d", 457 i + 1); 458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 459 "Attempting compliance mode recovery"); 460 hcd = xhci->shared_hcd; 461 462 if (hcd->state == HC_STATE_SUSPENDED) 463 usb_hcd_resume_root_hub(hcd); 464 465 usb_hcd_poll_rh_status(hcd); 466 } 467 } 468 469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 470 mod_timer(&xhci->comp_mode_recovery_timer, 471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 472} 473 474/* 475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 476 * that causes ports behind that hardware to enter compliance mode sometimes. 477 * The quirk creates a timer that polls every 2 seconds the link state of 478 * each host controller's port and recovers it by issuing a Warm reset 479 * if Compliance mode is detected, otherwise the port will become "dead" (no 480 * device connections or disconnections will be detected anymore). Becasue no 481 * status event is generated when entering compliance mode (per xhci spec), 482 * this quirk is needed on systems that have the failing hardware installed. 483 */ 484static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 485{ 486 xhci->port_status_u0 = 0; 487 setup_timer(&xhci->comp_mode_recovery_timer, 488 compliance_mode_recovery, (unsigned long)xhci); 489 xhci->comp_mode_recovery_timer.expires = jiffies + 490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 491 492 set_timer_slack(&xhci->comp_mode_recovery_timer, 493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 494 add_timer(&xhci->comp_mode_recovery_timer); 495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 496 "Compliance mode recovery timer initialized"); 497} 498 499/* 500 * This function identifies the systems that have installed the SN65LVPE502CP 501 * USB3.0 re-driver and that need the Compliance Mode Quirk. 502 * Systems: 503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 504 */ 505static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 506{ 507 const char *dmi_product_name, *dmi_sys_vendor; 508 509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 511 if (!dmi_product_name || !dmi_sys_vendor) 512 return false; 513 514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 515 return false; 516 517 if (strstr(dmi_product_name, "Z420") || 518 strstr(dmi_product_name, "Z620") || 519 strstr(dmi_product_name, "Z820") || 520 strstr(dmi_product_name, "Z1 Workstation")) 521 return true; 522 523 return false; 524} 525 526static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 527{ 528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 529} 530 531 532/* 533 * Initialize memory for HCD and xHC (one-time init). 534 * 535 * Program the PAGESIZE register, initialize the device context array, create 536 * device contexts (?), set up a command ring segment (or two?), create event 537 * ring (one for now). 538 */ 539int xhci_init(struct usb_hcd *hcd) 540{ 541 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 542 int retval = 0; 543 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 545 spin_lock_init(&xhci->lock); 546 if (xhci->hci_version == 0x95 && link_quirk) { 547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 548 "QUIRK: Not clearing Link TRB chain bits."); 549 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 550 } else { 551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 552 "xHCI doesn't need link TRB QUIRK"); 553 } 554 retval = xhci_mem_init(xhci, GFP_KERNEL); 555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 556 557 /* Initializing Compliance Mode Recovery Data If Needed */ 558 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 559 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 560 compliance_mode_recovery_timer_init(xhci); 561 } 562 563 return retval; 564} 565 566/*-------------------------------------------------------------------------*/ 567 568 569static int xhci_run_finished(struct xhci_hcd *xhci) 570{ 571 if (xhci_start(xhci)) { 572 xhci_halt(xhci); 573 return -ENODEV; 574 } 575 xhci->shared_hcd->state = HC_STATE_RUNNING; 576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 577 578 if (xhci->quirks & XHCI_NEC_HOST) 579 xhci_ring_cmd_db(xhci); 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 582 "Finished xhci_run for USB3 roothub"); 583 return 0; 584} 585 586/* 587 * Start the HC after it was halted. 588 * 589 * This function is called by the USB core when the HC driver is added. 590 * Its opposite is xhci_stop(). 591 * 592 * xhci_init() must be called once before this function can be called. 593 * Reset the HC, enable device slot contexts, program DCBAAP, and 594 * set command ring pointer and event ring pointer. 595 * 596 * Setup MSI-X vectors and enable interrupts. 597 */ 598int xhci_run(struct usb_hcd *hcd) 599{ 600 u32 temp; 601 u64 temp_64; 602 int ret; 603 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 604 605 /* Start the xHCI host controller running only after the USB 2.0 roothub 606 * is setup. 607 */ 608 609 hcd->uses_new_polling = 1; 610 if (!usb_hcd_is_primary_hcd(hcd)) 611 return xhci_run_finished(xhci); 612 613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 614 615 ret = xhci_try_enable_msi(hcd); 616 if (ret) 617 return ret; 618 619 xhci_dbg(xhci, "Command ring memory map follows:\n"); 620 xhci_debug_ring(xhci, xhci->cmd_ring); 621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 622 xhci_dbg_cmd_ptrs(xhci); 623 624 xhci_dbg(xhci, "ERST memory map follows:\n"); 625 xhci_dbg_erst(xhci, &xhci->erst); 626 xhci_dbg(xhci, "Event ring:\n"); 627 xhci_debug_ring(xhci, xhci->event_ring); 628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 630 temp_64 &= ~ERST_PTR_MASK; 631 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 633 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "// Set the interrupt modulation register"); 636 temp = readl(&xhci->ir_set->irq_control); 637 temp &= ~ER_IRQ_INTERVAL_MASK; 638 temp |= (u32) 160; 639 writel(temp, &xhci->ir_set->irq_control); 640 641 /* Set the HCD state before we enable the irqs */ 642 temp = readl(&xhci->op_regs->command); 643 temp |= (CMD_EIE); 644 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 645 "// Enable interrupts, cmd = 0x%x.", temp); 646 writel(temp, &xhci->op_regs->command); 647 648 temp = readl(&xhci->ir_set->irq_pending); 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 650 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 651 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 652 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 653 xhci_print_ir_set(xhci, 0); 654 655 if (xhci->quirks & XHCI_NEC_HOST) { 656 struct xhci_command *command; 657 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 658 if (!command) 659 return -ENOMEM; 660 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 661 TRB_TYPE(TRB_NEC_GET_FW)); 662 } 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "Finished xhci_run for USB2 roothub"); 665 return 0; 666} 667EXPORT_SYMBOL_GPL(xhci_run); 668 669static void xhci_only_stop_hcd(struct usb_hcd *hcd) 670{ 671 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 672 673 spin_lock_irq(&xhci->lock); 674 xhci_halt(xhci); 675 676 /* The shared_hcd is going to be deallocated shortly (the USB core only 677 * calls this function when allocation fails in usb_add_hcd(), or 678 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 679 */ 680 xhci->shared_hcd = NULL; 681 spin_unlock_irq(&xhci->lock); 682} 683 684/* 685 * Stop xHCI driver. 686 * 687 * This function is called by the USB core when the HC driver is removed. 688 * Its opposite is xhci_run(). 689 * 690 * Disable device contexts, disable IRQs, and quiesce the HC. 691 * Reset the HC, finish any completed transactions, and cleanup memory. 692 */ 693void xhci_stop(struct usb_hcd *hcd) 694{ 695 u32 temp; 696 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 697 698 mutex_lock(&xhci->mutex); 699 700 if (!usb_hcd_is_primary_hcd(hcd)) { 701 xhci_only_stop_hcd(xhci->shared_hcd); 702 mutex_unlock(&xhci->mutex); 703 return; 704 } 705 706 spin_lock_irq(&xhci->lock); 707 /* Make sure the xHC is halted for a USB3 roothub 708 * (xhci_stop() could be called as part of failed init). 709 */ 710 xhci_halt(xhci); 711 xhci_reset(xhci); 712 spin_unlock_irq(&xhci->lock); 713 714 xhci_cleanup_msix(xhci); 715 716 /* Deleting Compliance Mode Recovery Timer */ 717 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 718 (!(xhci_all_ports_seen_u0(xhci)))) { 719 del_timer_sync(&xhci->comp_mode_recovery_timer); 720 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 721 "%s: compliance mode recovery timer deleted", 722 __func__); 723 } 724 725 if (xhci->quirks & XHCI_AMD_PLL_FIX) 726 usb_amd_dev_put(); 727 728 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 729 "// Disabling event ring interrupts"); 730 temp = readl(&xhci->op_regs->status); 731 writel(temp & ~STS_EINT, &xhci->op_regs->status); 732 temp = readl(&xhci->ir_set->irq_pending); 733 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 734 xhci_print_ir_set(xhci, 0); 735 736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 737 xhci_mem_cleanup(xhci); 738 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 739 "xhci_stop completed - status = %x", 740 readl(&xhci->op_regs->status)); 741 mutex_unlock(&xhci->mutex); 742} 743 744/* 745 * Shutdown HC (not bus-specific) 746 * 747 * This is called when the machine is rebooting or halting. We assume that the 748 * machine will be powered off, and the HC's internal state will be reset. 749 * Don't bother to free memory. 750 * 751 * This will only ever be called with the main usb_hcd (the USB3 roothub). 752 */ 753void xhci_shutdown(struct usb_hcd *hcd) 754{ 755 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 756 757 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 758 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 759 760 spin_lock_irq(&xhci->lock); 761 xhci_halt(xhci); 762 /* Workaround for spurious wakeups at shutdown with HSW */ 763 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 764 xhci_reset(xhci); 765 spin_unlock_irq(&xhci->lock); 766 767 xhci_cleanup_msix(xhci); 768 769 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 770 "xhci_shutdown completed - status = %x", 771 readl(&xhci->op_regs->status)); 772 773 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 774 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 775 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 776} 777 778#ifdef CONFIG_PM 779static void xhci_save_registers(struct xhci_hcd *xhci) 780{ 781 xhci->s3.command = readl(&xhci->op_regs->command); 782 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 783 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 784 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 785 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 786 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 787 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 788 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 789 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 790} 791 792static void xhci_restore_registers(struct xhci_hcd *xhci) 793{ 794 writel(xhci->s3.command, &xhci->op_regs->command); 795 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 796 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 797 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 798 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 799 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 800 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 801 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 802 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 803} 804 805static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 806{ 807 u64 val_64; 808 809 /* step 2: initialize command ring buffer */ 810 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 811 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 812 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 813 xhci->cmd_ring->dequeue) & 814 (u64) ~CMD_RING_RSVD_BITS) | 815 xhci->cmd_ring->cycle_state; 816 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 817 "// Setting command ring address to 0x%llx", 818 (long unsigned long) val_64); 819 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 820} 821 822/* 823 * The whole command ring must be cleared to zero when we suspend the host. 824 * 825 * The host doesn't save the command ring pointer in the suspend well, so we 826 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 827 * aligned, because of the reserved bits in the command ring dequeue pointer 828 * register. Therefore, we can't just set the dequeue pointer back in the 829 * middle of the ring (TRBs are 16-byte aligned). 830 */ 831static void xhci_clear_command_ring(struct xhci_hcd *xhci) 832{ 833 struct xhci_ring *ring; 834 struct xhci_segment *seg; 835 836 ring = xhci->cmd_ring; 837 seg = ring->deq_seg; 838 do { 839 memset(seg->trbs, 0, 840 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 841 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 842 cpu_to_le32(~TRB_CYCLE); 843 seg = seg->next; 844 } while (seg != ring->deq_seg); 845 846 /* Reset the software enqueue and dequeue pointers */ 847 ring->deq_seg = ring->first_seg; 848 ring->dequeue = ring->first_seg->trbs; 849 ring->enq_seg = ring->deq_seg; 850 ring->enqueue = ring->dequeue; 851 852 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 853 /* 854 * Ring is now zeroed, so the HW should look for change of ownership 855 * when the cycle bit is set to 1. 856 */ 857 ring->cycle_state = 1; 858 859 /* 860 * Reset the hardware dequeue pointer. 861 * Yes, this will need to be re-written after resume, but we're paranoid 862 * and want to make sure the hardware doesn't access bogus memory 863 * because, say, the BIOS or an SMI started the host without changing 864 * the command ring pointers. 865 */ 866 xhci_set_cmd_ring_deq(xhci); 867} 868 869static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 870{ 871 int port_index; 872 __le32 __iomem **port_array; 873 unsigned long flags; 874 u32 t1, t2; 875 876 spin_lock_irqsave(&xhci->lock, flags); 877 878 /* disble usb3 ports Wake bits*/ 879 port_index = xhci->num_usb3_ports; 880 port_array = xhci->usb3_ports; 881 while (port_index--) { 882 t1 = readl(port_array[port_index]); 883 t1 = xhci_port_state_to_neutral(t1); 884 t2 = t1 & ~PORT_WAKE_BITS; 885 if (t1 != t2) 886 writel(t2, port_array[port_index]); 887 } 888 889 /* disble usb2 ports Wake bits*/ 890 port_index = xhci->num_usb2_ports; 891 port_array = xhci->usb2_ports; 892 while (port_index--) { 893 t1 = readl(port_array[port_index]); 894 t1 = xhci_port_state_to_neutral(t1); 895 t2 = t1 & ~PORT_WAKE_BITS; 896 if (t1 != t2) 897 writel(t2, port_array[port_index]); 898 } 899 900 spin_unlock_irqrestore(&xhci->lock, flags); 901} 902 903/* 904 * Stop HC (not bus-specific) 905 * 906 * This is called when the machine transition into S3/S4 mode. 907 * 908 */ 909int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 910{ 911 int rc = 0; 912 unsigned int delay = XHCI_MAX_HALT_USEC; 913 struct usb_hcd *hcd = xhci_to_hcd(xhci); 914 u32 command; 915 916 if (hcd->state != HC_STATE_SUSPENDED || 917 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 918 return -EINVAL; 919 920 /* Clear root port wake on bits if wakeup not allowed. */ 921 if (!do_wakeup) 922 xhci_disable_port_wake_on_bits(xhci); 923 924 /* Don't poll the roothubs on bus suspend. */ 925 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 926 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 927 del_timer_sync(&hcd->rh_timer); 928 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 929 del_timer_sync(&xhci->shared_hcd->rh_timer); 930 931 spin_lock_irq(&xhci->lock); 932 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 933 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 934 /* step 1: stop endpoint */ 935 /* skipped assuming that port suspend has done */ 936 937 /* step 2: clear Run/Stop bit */ 938 command = readl(&xhci->op_regs->command); 939 command &= ~CMD_RUN; 940 writel(command, &xhci->op_regs->command); 941 942 /* Some chips from Fresco Logic need an extraordinary delay */ 943 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 944 945 if (xhci_handshake(&xhci->op_regs->status, 946 STS_HALT, STS_HALT, delay)) { 947 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 948 spin_unlock_irq(&xhci->lock); 949 return -ETIMEDOUT; 950 } 951 xhci_clear_command_ring(xhci); 952 953 /* step 3: save registers */ 954 xhci_save_registers(xhci); 955 956 /* step 4: set CSS flag */ 957 command = readl(&xhci->op_regs->command); 958 command |= CMD_CSS; 959 writel(command, &xhci->op_regs->command); 960 if (xhci_handshake(&xhci->op_regs->status, 961 STS_SAVE, 0, 10 * 1000)) { 962 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 963 spin_unlock_irq(&xhci->lock); 964 return -ETIMEDOUT; 965 } 966 spin_unlock_irq(&xhci->lock); 967 968 /* 969 * Deleting Compliance Mode Recovery Timer because the xHCI Host 970 * is about to be suspended. 971 */ 972 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 973 (!(xhci_all_ports_seen_u0(xhci)))) { 974 del_timer_sync(&xhci->comp_mode_recovery_timer); 975 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 976 "%s: compliance mode recovery timer deleted", 977 __func__); 978 } 979 980 /* step 5: remove core well power */ 981 /* synchronize irq when using MSI-X */ 982 xhci_msix_sync_irqs(xhci); 983 984 return rc; 985} 986EXPORT_SYMBOL_GPL(xhci_suspend); 987 988/* 989 * start xHC (not bus-specific) 990 * 991 * This is called when the machine transition from S3/S4 mode. 992 * 993 */ 994int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 995{ 996 u32 command, temp = 0, status; 997 struct usb_hcd *hcd = xhci_to_hcd(xhci); 998 struct usb_hcd *secondary_hcd; 999 int retval = 0; 1000 bool comp_timer_running = false; 1001 1002 /* Wait a bit if either of the roothubs need to settle from the 1003 * transition into bus suspend. 1004 */ 1005 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1006 time_before(jiffies, 1007 xhci->bus_state[1].next_statechange)) 1008 msleep(100); 1009 1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1011 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1012 1013 spin_lock_irq(&xhci->lock); 1014 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1015 hibernated = true; 1016 1017 if (!hibernated) { 1018 /* step 1: restore register */ 1019 xhci_restore_registers(xhci); 1020 /* step 2: initialize command ring buffer */ 1021 xhci_set_cmd_ring_deq(xhci); 1022 /* step 3: restore state and start state*/ 1023 /* step 3: set CRS flag */ 1024 command = readl(&xhci->op_regs->command); 1025 command |= CMD_CRS; 1026 writel(command, &xhci->op_regs->command); 1027 if (xhci_handshake(&xhci->op_regs->status, 1028 STS_RESTORE, 0, 10 * 1000)) { 1029 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1030 spin_unlock_irq(&xhci->lock); 1031 return -ETIMEDOUT; 1032 } 1033 temp = readl(&xhci->op_regs->status); 1034 } 1035 1036 /* If restore operation fails, re-initialize the HC during resume */ 1037 if ((temp & STS_SRE) || hibernated) { 1038 1039 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1040 !(xhci_all_ports_seen_u0(xhci))) { 1041 del_timer_sync(&xhci->comp_mode_recovery_timer); 1042 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1043 "Compliance Mode Recovery Timer deleted!"); 1044 } 1045 1046 /* Let the USB core know _both_ roothubs lost power. */ 1047 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1048 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1049 1050 xhci_dbg(xhci, "Stop HCD\n"); 1051 xhci_halt(xhci); 1052 xhci_reset(xhci); 1053 spin_unlock_irq(&xhci->lock); 1054 xhci_cleanup_msix(xhci); 1055 1056 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1057 temp = readl(&xhci->op_regs->status); 1058 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1059 temp = readl(&xhci->ir_set->irq_pending); 1060 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1061 xhci_print_ir_set(xhci, 0); 1062 1063 xhci_dbg(xhci, "cleaning up memory\n"); 1064 xhci_mem_cleanup(xhci); 1065 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1066 readl(&xhci->op_regs->status)); 1067 1068 /* USB core calls the PCI reinit and start functions twice: 1069 * first with the primary HCD, and then with the secondary HCD. 1070 * If we don't do the same, the host will never be started. 1071 */ 1072 if (!usb_hcd_is_primary_hcd(hcd)) 1073 secondary_hcd = hcd; 1074 else 1075 secondary_hcd = xhci->shared_hcd; 1076 1077 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1078 retval = xhci_init(hcd->primary_hcd); 1079 if (retval) 1080 return retval; 1081 comp_timer_running = true; 1082 1083 xhci_dbg(xhci, "Start the primary HCD\n"); 1084 retval = xhci_run(hcd->primary_hcd); 1085 if (!retval) { 1086 xhci_dbg(xhci, "Start the secondary HCD\n"); 1087 retval = xhci_run(secondary_hcd); 1088 } 1089 hcd->state = HC_STATE_SUSPENDED; 1090 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1091 goto done; 1092 } 1093 1094 /* step 4: set Run/Stop bit */ 1095 command = readl(&xhci->op_regs->command); 1096 command |= CMD_RUN; 1097 writel(command, &xhci->op_regs->command); 1098 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1099 0, 250 * 1000); 1100 1101 /* step 5: walk topology and initialize portsc, 1102 * portpmsc and portli 1103 */ 1104 /* this is done in bus_resume */ 1105 1106 /* step 6: restart each of the previously 1107 * Running endpoints by ringing their doorbells 1108 */ 1109 1110 spin_unlock_irq(&xhci->lock); 1111 1112 done: 1113 if (retval == 0) { 1114 /* Resume root hubs only when have pending events. */ 1115 status = readl(&xhci->op_regs->status); 1116 if (status & STS_EINT) { 1117 usb_hcd_resume_root_hub(xhci->shared_hcd); 1118 usb_hcd_resume_root_hub(hcd); 1119 } 1120 } 1121 1122 /* 1123 * If system is subject to the Quirk, Compliance Mode Timer needs to 1124 * be re-initialized Always after a system resume. Ports are subject 1125 * to suffer the Compliance Mode issue again. It doesn't matter if 1126 * ports have entered previously to U0 before system's suspension. 1127 */ 1128 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1129 compliance_mode_recovery_timer_init(xhci); 1130 1131 /* Re-enable port polling. */ 1132 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1133 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1134 usb_hcd_poll_rh_status(xhci->shared_hcd); 1135 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1136 usb_hcd_poll_rh_status(hcd); 1137 1138 return retval; 1139} 1140EXPORT_SYMBOL_GPL(xhci_resume); 1141#endif /* CONFIG_PM */ 1142 1143/*-------------------------------------------------------------------------*/ 1144 1145/** 1146 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1147 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1148 * value to right shift 1 for the bitmask. 1149 * 1150 * Index = (epnum * 2) + direction - 1, 1151 * where direction = 0 for OUT, 1 for IN. 1152 * For control endpoints, the IN index is used (OUT index is unused), so 1153 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1154 */ 1155unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1156{ 1157 unsigned int index; 1158 if (usb_endpoint_xfer_control(desc)) 1159 index = (unsigned int) (usb_endpoint_num(desc)*2); 1160 else 1161 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1162 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1163 return index; 1164} 1165 1166/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1167 * address from the XHCI endpoint index. 1168 */ 1169unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1170{ 1171 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1172 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1173 return direction | number; 1174} 1175 1176/* Find the flag for this endpoint (for use in the control context). Use the 1177 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1178 * bit 1, etc. 1179 */ 1180unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1181{ 1182 return 1 << (xhci_get_endpoint_index(desc) + 1); 1183} 1184 1185/* Find the flag for this endpoint (for use in the control context). Use the 1186 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1187 * bit 1, etc. 1188 */ 1189unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1190{ 1191 return 1 << (ep_index + 1); 1192} 1193 1194/* Compute the last valid endpoint context index. Basically, this is the 1195 * endpoint index plus one. For slot contexts with more than valid endpoint, 1196 * we find the most significant bit set in the added contexts flags. 1197 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1198 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1199 */ 1200unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1201{ 1202 return fls(added_ctxs) - 1; 1203} 1204 1205/* Returns 1 if the arguments are OK; 1206 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1207 */ 1208static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1209 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1210 const char *func) { 1211 struct xhci_hcd *xhci; 1212 struct xhci_virt_device *virt_dev; 1213 1214 if (!hcd || (check_ep && !ep) || !udev) { 1215 pr_debug("xHCI %s called with invalid args\n", func); 1216 return -EINVAL; 1217 } 1218 if (!udev->parent) { 1219 pr_debug("xHCI %s called for root hub\n", func); 1220 return 0; 1221 } 1222 1223 xhci = hcd_to_xhci(hcd); 1224 if (check_virt_dev) { 1225 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1226 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1227 func); 1228 return -EINVAL; 1229 } 1230 1231 virt_dev = xhci->devs[udev->slot_id]; 1232 if (virt_dev->udev != udev) { 1233 xhci_dbg(xhci, "xHCI %s called with udev and " 1234 "virt_dev does not match\n", func); 1235 return -EINVAL; 1236 } 1237 } 1238 1239 if (xhci->xhc_state & XHCI_STATE_HALTED) 1240 return -ENODEV; 1241 1242 return 1; 1243} 1244 1245static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1246 struct usb_device *udev, struct xhci_command *command, 1247 bool ctx_change, bool must_succeed); 1248 1249/* 1250 * Full speed devices may have a max packet size greater than 8 bytes, but the 1251 * USB core doesn't know that until it reads the first 8 bytes of the 1252 * descriptor. If the usb_device's max packet size changes after that point, 1253 * we need to issue an evaluate context command and wait on it. 1254 */ 1255static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1256 unsigned int ep_index, struct urb *urb) 1257{ 1258 struct xhci_container_ctx *out_ctx; 1259 struct xhci_input_control_ctx *ctrl_ctx; 1260 struct xhci_ep_ctx *ep_ctx; 1261 struct xhci_command *command; 1262 int max_packet_size; 1263 int hw_max_packet_size; 1264 int ret = 0; 1265 1266 out_ctx = xhci->devs[slot_id]->out_ctx; 1267 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1268 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1269 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1270 if (hw_max_packet_size != max_packet_size) { 1271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1272 "Max Packet Size for ep 0 changed."); 1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1274 "Max packet size in usb_device = %d", 1275 max_packet_size); 1276 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1277 "Max packet size in xHCI HW = %d", 1278 hw_max_packet_size); 1279 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1280 "Issuing evaluate context command."); 1281 1282 /* Set up the input context flags for the command */ 1283 /* FIXME: This won't work if a non-default control endpoint 1284 * changes max packet sizes. 1285 */ 1286 1287 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1288 if (!command) 1289 return -ENOMEM; 1290 1291 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1292 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1293 if (!ctrl_ctx) { 1294 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1295 __func__); 1296 ret = -ENOMEM; 1297 goto command_cleanup; 1298 } 1299 /* Set up the modified control endpoint 0 */ 1300 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1301 xhci->devs[slot_id]->out_ctx, ep_index); 1302 1303 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1304 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1305 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1306 1307 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1308 ctrl_ctx->drop_flags = 0; 1309 1310 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1311 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1312 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1313 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1314 1315 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1316 true, false); 1317 1318 /* Clean up the input context for later use by bandwidth 1319 * functions. 1320 */ 1321 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1322command_cleanup: 1323 kfree(command->completion); 1324 kfree(command); 1325 } 1326 return ret; 1327} 1328 1329/* 1330 * non-error returns are a promise to giveback() the urb later 1331 * we drop ownership so next owner (or urb unlink) can get it 1332 */ 1333int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1334{ 1335 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1336 struct xhci_td *buffer; 1337 unsigned long flags; 1338 int ret = 0; 1339 unsigned int slot_id, ep_index; 1340 struct urb_priv *urb_priv; 1341 int size, i; 1342 1343 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1344 true, true, __func__) <= 0) 1345 return -EINVAL; 1346 1347 slot_id = urb->dev->slot_id; 1348 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1349 1350 if (!HCD_HW_ACCESSIBLE(hcd)) { 1351 if (!in_interrupt()) 1352 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1353 ret = -ESHUTDOWN; 1354 goto exit; 1355 } 1356 1357 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1358 size = urb->number_of_packets; 1359 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1360 urb->transfer_buffer_length > 0 && 1361 urb->transfer_flags & URB_ZERO_PACKET && 1362 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1363 size = 2; 1364 else 1365 size = 1; 1366 1367 urb_priv = kzalloc(sizeof(struct urb_priv) + 1368 size * sizeof(struct xhci_td *), mem_flags); 1369 if (!urb_priv) 1370 return -ENOMEM; 1371 1372 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1373 if (!buffer) { 1374 kfree(urb_priv); 1375 return -ENOMEM; 1376 } 1377 1378 for (i = 0; i < size; i++) { 1379 urb_priv->td[i] = buffer; 1380 buffer++; 1381 } 1382 1383 urb_priv->length = size; 1384 urb_priv->td_cnt = 0; 1385 urb->hcpriv = urb_priv; 1386 1387 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1388 /* Check to see if the max packet size for the default control 1389 * endpoint changed during FS device enumeration 1390 */ 1391 if (urb->dev->speed == USB_SPEED_FULL) { 1392 ret = xhci_check_maxpacket(xhci, slot_id, 1393 ep_index, urb); 1394 if (ret < 0) { 1395 xhci_urb_free_priv(urb_priv); 1396 urb->hcpriv = NULL; 1397 return ret; 1398 } 1399 } 1400 1401 /* We have a spinlock and interrupts disabled, so we must pass 1402 * atomic context to this function, which may allocate memory. 1403 */ 1404 spin_lock_irqsave(&xhci->lock, flags); 1405 if (xhci->xhc_state & XHCI_STATE_DYING) 1406 goto dying; 1407 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1408 slot_id, ep_index); 1409 if (ret) 1410 goto free_priv; 1411 spin_unlock_irqrestore(&xhci->lock, flags); 1412 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1413 spin_lock_irqsave(&xhci->lock, flags); 1414 if (xhci->xhc_state & XHCI_STATE_DYING) 1415 goto dying; 1416 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1417 EP_GETTING_STREAMS) { 1418 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1419 "is transitioning to using streams.\n"); 1420 ret = -EINVAL; 1421 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1422 EP_GETTING_NO_STREAMS) { 1423 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1424 "is transitioning to " 1425 "not having streams.\n"); 1426 ret = -EINVAL; 1427 } else { 1428 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1429 slot_id, ep_index); 1430 } 1431 if (ret) 1432 goto free_priv; 1433 spin_unlock_irqrestore(&xhci->lock, flags); 1434 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1435 spin_lock_irqsave(&xhci->lock, flags); 1436 if (xhci->xhc_state & XHCI_STATE_DYING) 1437 goto dying; 1438 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1439 slot_id, ep_index); 1440 if (ret) 1441 goto free_priv; 1442 spin_unlock_irqrestore(&xhci->lock, flags); 1443 } else { 1444 spin_lock_irqsave(&xhci->lock, flags); 1445 if (xhci->xhc_state & XHCI_STATE_DYING) 1446 goto dying; 1447 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1448 slot_id, ep_index); 1449 if (ret) 1450 goto free_priv; 1451 spin_unlock_irqrestore(&xhci->lock, flags); 1452 } 1453exit: 1454 return ret; 1455dying: 1456 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1457 "non-responsive xHCI host.\n", 1458 urb->ep->desc.bEndpointAddress, urb); 1459 ret = -ESHUTDOWN; 1460free_priv: 1461 xhci_urb_free_priv(urb_priv); 1462 urb->hcpriv = NULL; 1463 spin_unlock_irqrestore(&xhci->lock, flags); 1464 return ret; 1465} 1466 1467/* Get the right ring for the given URB. 1468 * If the endpoint supports streams, boundary check the URB's stream ID. 1469 * If the endpoint doesn't support streams, return the singular endpoint ring. 1470 */ 1471static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1472 struct urb *urb) 1473{ 1474 unsigned int slot_id; 1475 unsigned int ep_index; 1476 unsigned int stream_id; 1477 struct xhci_virt_ep *ep; 1478 1479 slot_id = urb->dev->slot_id; 1480 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1481 stream_id = urb->stream_id; 1482 ep = &xhci->devs[slot_id]->eps[ep_index]; 1483 /* Common case: no streams */ 1484 if (!(ep->ep_state & EP_HAS_STREAMS)) 1485 return ep->ring; 1486 1487 if (stream_id == 0) { 1488 xhci_warn(xhci, 1489 "WARN: Slot ID %u, ep index %u has streams, " 1490 "but URB has no stream ID.\n", 1491 slot_id, ep_index); 1492 return NULL; 1493 } 1494 1495 if (stream_id < ep->stream_info->num_streams) 1496 return ep->stream_info->stream_rings[stream_id]; 1497 1498 xhci_warn(xhci, 1499 "WARN: Slot ID %u, ep index %u has " 1500 "stream IDs 1 to %u allocated, " 1501 "but stream ID %u is requested.\n", 1502 slot_id, ep_index, 1503 ep->stream_info->num_streams - 1, 1504 stream_id); 1505 return NULL; 1506} 1507 1508/* 1509 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1510 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1511 * should pick up where it left off in the TD, unless a Set Transfer Ring 1512 * Dequeue Pointer is issued. 1513 * 1514 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1515 * the ring. Since the ring is a contiguous structure, they can't be physically 1516 * removed. Instead, there are two options: 1517 * 1518 * 1) If the HC is in the middle of processing the URB to be canceled, we 1519 * simply move the ring's dequeue pointer past those TRBs using the Set 1520 * Transfer Ring Dequeue Pointer command. This will be the common case, 1521 * when drivers timeout on the last submitted URB and attempt to cancel. 1522 * 1523 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1524 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1525 * HC will need to invalidate the any TRBs it has cached after the stop 1526 * endpoint command, as noted in the xHCI 0.95 errata. 1527 * 1528 * 3) The TD may have completed by the time the Stop Endpoint Command 1529 * completes, so software needs to handle that case too. 1530 * 1531 * This function should protect against the TD enqueueing code ringing the 1532 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1533 * It also needs to account for multiple cancellations on happening at the same 1534 * time for the same endpoint. 1535 * 1536 * Note that this function can be called in any context, or so says 1537 * usb_hcd_unlink_urb() 1538 */ 1539int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1540{ 1541 unsigned long flags; 1542 int ret, i; 1543 u32 temp; 1544 struct xhci_hcd *xhci; 1545 struct urb_priv *urb_priv; 1546 struct xhci_td *td; 1547 unsigned int ep_index; 1548 struct xhci_ring *ep_ring; 1549 struct xhci_virt_ep *ep; 1550 struct xhci_command *command; 1551 1552 xhci = hcd_to_xhci(hcd); 1553 spin_lock_irqsave(&xhci->lock, flags); 1554 /* Make sure the URB hasn't completed or been unlinked already */ 1555 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1556 if (ret || !urb->hcpriv) 1557 goto done; 1558 temp = readl(&xhci->op_regs->status); 1559 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1560 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1561 "HW died, freeing TD."); 1562 urb_priv = urb->hcpriv; 1563 for (i = urb_priv->td_cnt; 1564 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1565 i++) { 1566 td = urb_priv->td[i]; 1567 if (!list_empty(&td->td_list)) 1568 list_del_init(&td->td_list); 1569 if (!list_empty(&td->cancelled_td_list)) 1570 list_del_init(&td->cancelled_td_list); 1571 } 1572 1573 usb_hcd_unlink_urb_from_ep(hcd, urb); 1574 spin_unlock_irqrestore(&xhci->lock, flags); 1575 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1576 xhci_urb_free_priv(urb_priv); 1577 return ret; 1578 } 1579 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1580 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1581 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1582 "Ep 0x%x: URB %p to be canceled on " 1583 "non-responsive xHCI host.", 1584 urb->ep->desc.bEndpointAddress, urb); 1585 /* Let the stop endpoint command watchdog timer (which set this 1586 * state) finish cleaning up the endpoint TD lists. We must 1587 * have caught it in the middle of dropping a lock and giving 1588 * back an URB. 1589 */ 1590 goto done; 1591 } 1592 1593 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1594 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1595 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1596 if (!ep_ring) { 1597 ret = -EINVAL; 1598 goto done; 1599 } 1600 1601 urb_priv = urb->hcpriv; 1602 i = urb_priv->td_cnt; 1603 if (i < urb_priv->length) 1604 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1605 "Cancel URB %p, dev %s, ep 0x%x, " 1606 "starting at offset 0x%llx", 1607 urb, urb->dev->devpath, 1608 urb->ep->desc.bEndpointAddress, 1609 (unsigned long long) xhci_trb_virt_to_dma( 1610 urb_priv->td[i]->start_seg, 1611 urb_priv->td[i]->first_trb)); 1612 1613 for (; i < urb_priv->length; i++) { 1614 td = urb_priv->td[i]; 1615 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1616 } 1617 1618 /* Queue a stop endpoint command, but only if this is 1619 * the first cancellation to be handled. 1620 */ 1621 if (!(ep->ep_state & EP_HALT_PENDING)) { 1622 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1623 if (!command) { 1624 ret = -ENOMEM; 1625 goto done; 1626 } 1627 ep->ep_state |= EP_HALT_PENDING; 1628 ep->stop_cmds_pending++; 1629 ep->stop_cmd_timer.expires = jiffies + 1630 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1631 add_timer(&ep->stop_cmd_timer); 1632 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1633 ep_index, 0); 1634 xhci_ring_cmd_db(xhci); 1635 } 1636done: 1637 spin_unlock_irqrestore(&xhci->lock, flags); 1638 return ret; 1639} 1640 1641/* Drop an endpoint from a new bandwidth configuration for this device. 1642 * Only one call to this function is allowed per endpoint before 1643 * check_bandwidth() or reset_bandwidth() must be called. 1644 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1645 * add the endpoint to the schedule with possibly new parameters denoted by a 1646 * different endpoint descriptor in usb_host_endpoint. 1647 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1648 * not allowed. 1649 * 1650 * The USB core will not allow URBs to be queued to an endpoint that is being 1651 * disabled, so there's no need for mutual exclusion to protect 1652 * the xhci->devs[slot_id] structure. 1653 */ 1654int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1655 struct usb_host_endpoint *ep) 1656{ 1657 struct xhci_hcd *xhci; 1658 struct xhci_container_ctx *in_ctx, *out_ctx; 1659 struct xhci_input_control_ctx *ctrl_ctx; 1660 unsigned int ep_index; 1661 struct xhci_ep_ctx *ep_ctx; 1662 u32 drop_flag; 1663 u32 new_add_flags, new_drop_flags; 1664 int ret; 1665 1666 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1667 if (ret <= 0) 1668 return ret; 1669 xhci = hcd_to_xhci(hcd); 1670 if (xhci->xhc_state & XHCI_STATE_DYING) 1671 return -ENODEV; 1672 1673 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1674 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1675 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1676 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1677 __func__, drop_flag); 1678 return 0; 1679 } 1680 1681 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1682 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1683 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1684 if (!ctrl_ctx) { 1685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1686 __func__); 1687 return 0; 1688 } 1689 1690 ep_index = xhci_get_endpoint_index(&ep->desc); 1691 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1692 /* If the HC already knows the endpoint is disabled, 1693 * or the HCD has noted it is disabled, ignore this request 1694 */ 1695 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1696 cpu_to_le32(EP_STATE_DISABLED)) || 1697 le32_to_cpu(ctrl_ctx->drop_flags) & 1698 xhci_get_endpoint_flag(&ep->desc)) { 1699 /* Do not warn when called after a usb_device_reset */ 1700 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1701 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1702 __func__, ep); 1703 return 0; 1704 } 1705 1706 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1707 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1708 1709 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1710 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1711 1712 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1713 1714 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1715 (unsigned int) ep->desc.bEndpointAddress, 1716 udev->slot_id, 1717 (unsigned int) new_drop_flags, 1718 (unsigned int) new_add_flags); 1719 return 0; 1720} 1721 1722/* Add an endpoint to a new possible bandwidth configuration for this device. 1723 * Only one call to this function is allowed per endpoint before 1724 * check_bandwidth() or reset_bandwidth() must be called. 1725 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1726 * add the endpoint to the schedule with possibly new parameters denoted by a 1727 * different endpoint descriptor in usb_host_endpoint. 1728 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1729 * not allowed. 1730 * 1731 * The USB core will not allow URBs to be queued to an endpoint until the 1732 * configuration or alt setting is installed in the device, so there's no need 1733 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1734 */ 1735int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1736 struct usb_host_endpoint *ep) 1737{ 1738 struct xhci_hcd *xhci; 1739 struct xhci_container_ctx *in_ctx; 1740 unsigned int ep_index; 1741 struct xhci_input_control_ctx *ctrl_ctx; 1742 u32 added_ctxs; 1743 u32 new_add_flags, new_drop_flags; 1744 struct xhci_virt_device *virt_dev; 1745 int ret = 0; 1746 1747 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1748 if (ret <= 0) { 1749 /* So we won't queue a reset ep command for a root hub */ 1750 ep->hcpriv = NULL; 1751 return ret; 1752 } 1753 xhci = hcd_to_xhci(hcd); 1754 if (xhci->xhc_state & XHCI_STATE_DYING) 1755 return -ENODEV; 1756 1757 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1758 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1759 /* FIXME when we have to issue an evaluate endpoint command to 1760 * deal with ep0 max packet size changing once we get the 1761 * descriptors 1762 */ 1763 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1764 __func__, added_ctxs); 1765 return 0; 1766 } 1767 1768 virt_dev = xhci->devs[udev->slot_id]; 1769 in_ctx = virt_dev->in_ctx; 1770 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1771 if (!ctrl_ctx) { 1772 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1773 __func__); 1774 return 0; 1775 } 1776 1777 ep_index = xhci_get_endpoint_index(&ep->desc); 1778 /* If this endpoint is already in use, and the upper layers are trying 1779 * to add it again without dropping it, reject the addition. 1780 */ 1781 if (virt_dev->eps[ep_index].ring && 1782 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1783 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1784 "without dropping it.\n", 1785 (unsigned int) ep->desc.bEndpointAddress); 1786 return -EINVAL; 1787 } 1788 1789 /* If the HCD has already noted the endpoint is enabled, 1790 * ignore this request. 1791 */ 1792 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1793 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1794 __func__, ep); 1795 return 0; 1796 } 1797 1798 /* 1799 * Configuration and alternate setting changes must be done in 1800 * process context, not interrupt context (or so documenation 1801 * for usb_set_interface() and usb_set_configuration() claim). 1802 */ 1803 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1804 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1805 __func__, ep->desc.bEndpointAddress); 1806 return -ENOMEM; 1807 } 1808 1809 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1810 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1811 1812 /* If xhci_endpoint_disable() was called for this endpoint, but the 1813 * xHC hasn't been notified yet through the check_bandwidth() call, 1814 * this re-adds a new state for the endpoint from the new endpoint 1815 * descriptors. We must drop and re-add this endpoint, so we leave the 1816 * drop flags alone. 1817 */ 1818 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1819 1820 /* Store the usb_device pointer for later use */ 1821 ep->hcpriv = udev; 1822 1823 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1824 (unsigned int) ep->desc.bEndpointAddress, 1825 udev->slot_id, 1826 (unsigned int) new_drop_flags, 1827 (unsigned int) new_add_flags); 1828 return 0; 1829} 1830 1831static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1832{ 1833 struct xhci_input_control_ctx *ctrl_ctx; 1834 struct xhci_ep_ctx *ep_ctx; 1835 struct xhci_slot_ctx *slot_ctx; 1836 int i; 1837 1838 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1839 if (!ctrl_ctx) { 1840 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1841 __func__); 1842 return; 1843 } 1844 1845 /* When a device's add flag and drop flag are zero, any subsequent 1846 * configure endpoint command will leave that endpoint's state 1847 * untouched. Make sure we don't leave any old state in the input 1848 * endpoint contexts. 1849 */ 1850 ctrl_ctx->drop_flags = 0; 1851 ctrl_ctx->add_flags = 0; 1852 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1853 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1854 /* Endpoint 0 is always valid */ 1855 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1856 for (i = 1; i < 31; ++i) { 1857 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1858 ep_ctx->ep_info = 0; 1859 ep_ctx->ep_info2 = 0; 1860 ep_ctx->deq = 0; 1861 ep_ctx->tx_info = 0; 1862 } 1863} 1864 1865static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1866 struct usb_device *udev, u32 *cmd_status) 1867{ 1868 int ret; 1869 1870 switch (*cmd_status) { 1871 case COMP_CMD_ABORT: 1872 case COMP_CMD_STOP: 1873 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1874 ret = -ETIME; 1875 break; 1876 case COMP_ENOMEM: 1877 dev_warn(&udev->dev, 1878 "Not enough host controller resources for new device state.\n"); 1879 ret = -ENOMEM; 1880 /* FIXME: can we allocate more resources for the HC? */ 1881 break; 1882 case COMP_BW_ERR: 1883 case COMP_2ND_BW_ERR: 1884 dev_warn(&udev->dev, 1885 "Not enough bandwidth for new device state.\n"); 1886 ret = -ENOSPC; 1887 /* FIXME: can we go back to the old state? */ 1888 break; 1889 case COMP_TRB_ERR: 1890 /* the HCD set up something wrong */ 1891 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1892 "add flag = 1, " 1893 "and endpoint is not disabled.\n"); 1894 ret = -EINVAL; 1895 break; 1896 case COMP_DEV_ERR: 1897 dev_warn(&udev->dev, 1898 "ERROR: Incompatible device for endpoint configure command.\n"); 1899 ret = -ENODEV; 1900 break; 1901 case COMP_SUCCESS: 1902 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1903 "Successful Endpoint Configure command"); 1904 ret = 0; 1905 break; 1906 default: 1907 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1908 *cmd_status); 1909 ret = -EINVAL; 1910 break; 1911 } 1912 return ret; 1913} 1914 1915static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1916 struct usb_device *udev, u32 *cmd_status) 1917{ 1918 int ret; 1919 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1920 1921 switch (*cmd_status) { 1922 case COMP_CMD_ABORT: 1923 case COMP_CMD_STOP: 1924 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1925 ret = -ETIME; 1926 break; 1927 case COMP_EINVAL: 1928 dev_warn(&udev->dev, 1929 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1930 ret = -EINVAL; 1931 break; 1932 case COMP_EBADSLT: 1933 dev_warn(&udev->dev, 1934 "WARN: slot not enabled for evaluate context command.\n"); 1935 ret = -EINVAL; 1936 break; 1937 case COMP_CTX_STATE: 1938 dev_warn(&udev->dev, 1939 "WARN: invalid context state for evaluate context command.\n"); 1940 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1941 ret = -EINVAL; 1942 break; 1943 case COMP_DEV_ERR: 1944 dev_warn(&udev->dev, 1945 "ERROR: Incompatible device for evaluate context command.\n"); 1946 ret = -ENODEV; 1947 break; 1948 case COMP_MEL_ERR: 1949 /* Max Exit Latency too large error */ 1950 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1951 ret = -EINVAL; 1952 break; 1953 case COMP_SUCCESS: 1954 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1955 "Successful evaluate context command"); 1956 ret = 0; 1957 break; 1958 default: 1959 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1960 *cmd_status); 1961 ret = -EINVAL; 1962 break; 1963 } 1964 return ret; 1965} 1966 1967static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1968 struct xhci_input_control_ctx *ctrl_ctx) 1969{ 1970 u32 valid_add_flags; 1971 u32 valid_drop_flags; 1972 1973 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1974 * (bit 1). The default control endpoint is added during the Address 1975 * Device command and is never removed until the slot is disabled. 1976 */ 1977 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1978 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1979 1980 /* Use hweight32 to count the number of ones in the add flags, or 1981 * number of endpoints added. Don't count endpoints that are changed 1982 * (both added and dropped). 1983 */ 1984 return hweight32(valid_add_flags) - 1985 hweight32(valid_add_flags & valid_drop_flags); 1986} 1987 1988static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1989 struct xhci_input_control_ctx *ctrl_ctx) 1990{ 1991 u32 valid_add_flags; 1992 u32 valid_drop_flags; 1993 1994 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1995 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1996 1997 return hweight32(valid_drop_flags) - 1998 hweight32(valid_add_flags & valid_drop_flags); 1999} 2000 2001/* 2002 * We need to reserve the new number of endpoints before the configure endpoint 2003 * command completes. We can't subtract the dropped endpoints from the number 2004 * of active endpoints until the command completes because we can oversubscribe 2005 * the host in this case: 2006 * 2007 * - the first configure endpoint command drops more endpoints than it adds 2008 * - a second configure endpoint command that adds more endpoints is queued 2009 * - the first configure endpoint command fails, so the config is unchanged 2010 * - the second command may succeed, even though there isn't enough resources 2011 * 2012 * Must be called with xhci->lock held. 2013 */ 2014static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2015 struct xhci_input_control_ctx *ctrl_ctx) 2016{ 2017 u32 added_eps; 2018 2019 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2020 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2021 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2022 "Not enough ep ctxs: " 2023 "%u active, need to add %u, limit is %u.", 2024 xhci->num_active_eps, added_eps, 2025 xhci->limit_active_eps); 2026 return -ENOMEM; 2027 } 2028 xhci->num_active_eps += added_eps; 2029 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2030 "Adding %u ep ctxs, %u now active.", added_eps, 2031 xhci->num_active_eps); 2032 return 0; 2033} 2034 2035/* 2036 * The configure endpoint was failed by the xHC for some other reason, so we 2037 * need to revert the resources that failed configuration would have used. 2038 * 2039 * Must be called with xhci->lock held. 2040 */ 2041static void xhci_free_host_resources(struct xhci_hcd *xhci, 2042 struct xhci_input_control_ctx *ctrl_ctx) 2043{ 2044 u32 num_failed_eps; 2045 2046 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2047 xhci->num_active_eps -= num_failed_eps; 2048 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2049 "Removing %u failed ep ctxs, %u now active.", 2050 num_failed_eps, 2051 xhci->num_active_eps); 2052} 2053 2054/* 2055 * Now that the command has completed, clean up the active endpoint count by 2056 * subtracting out the endpoints that were dropped (but not changed). 2057 * 2058 * Must be called with xhci->lock held. 2059 */ 2060static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2061 struct xhci_input_control_ctx *ctrl_ctx) 2062{ 2063 u32 num_dropped_eps; 2064 2065 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2066 xhci->num_active_eps -= num_dropped_eps; 2067 if (num_dropped_eps) 2068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2069 "Removing %u dropped ep ctxs, %u now active.", 2070 num_dropped_eps, 2071 xhci->num_active_eps); 2072} 2073 2074static unsigned int xhci_get_block_size(struct usb_device *udev) 2075{ 2076 switch (udev->speed) { 2077 case USB_SPEED_LOW: 2078 case USB_SPEED_FULL: 2079 return FS_BLOCK; 2080 case USB_SPEED_HIGH: 2081 return HS_BLOCK; 2082 case USB_SPEED_SUPER: 2083 return SS_BLOCK; 2084 case USB_SPEED_UNKNOWN: 2085 case USB_SPEED_WIRELESS: 2086 default: 2087 /* Should never happen */ 2088 return 1; 2089 } 2090} 2091 2092static unsigned int 2093xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2094{ 2095 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2096 return LS_OVERHEAD; 2097 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2098 return FS_OVERHEAD; 2099 return HS_OVERHEAD; 2100} 2101 2102/* If we are changing a LS/FS device under a HS hub, 2103 * make sure (if we are activating a new TT) that the HS bus has enough 2104 * bandwidth for this new TT. 2105 */ 2106static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2107 struct xhci_virt_device *virt_dev, 2108 int old_active_eps) 2109{ 2110 struct xhci_interval_bw_table *bw_table; 2111 struct xhci_tt_bw_info *tt_info; 2112 2113 /* Find the bandwidth table for the root port this TT is attached to. */ 2114 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2115 tt_info = virt_dev->tt_info; 2116 /* If this TT already had active endpoints, the bandwidth for this TT 2117 * has already been added. Removing all periodic endpoints (and thus 2118 * making the TT enactive) will only decrease the bandwidth used. 2119 */ 2120 if (old_active_eps) 2121 return 0; 2122 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2123 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2124 return -ENOMEM; 2125 return 0; 2126 } 2127 /* Not sure why we would have no new active endpoints... 2128 * 2129 * Maybe because of an Evaluate Context change for a hub update or a 2130 * control endpoint 0 max packet size change? 2131 * FIXME: skip the bandwidth calculation in that case. 2132 */ 2133 return 0; 2134} 2135 2136static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2137 struct xhci_virt_device *virt_dev) 2138{ 2139 unsigned int bw_reserved; 2140 2141 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2142 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2143 return -ENOMEM; 2144 2145 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2146 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2147 return -ENOMEM; 2148 2149 return 0; 2150} 2151 2152/* 2153 * This algorithm is a very conservative estimate of the worst-case scheduling 2154 * scenario for any one interval. The hardware dynamically schedules the 2155 * packets, so we can't tell which microframe could be the limiting factor in 2156 * the bandwidth scheduling. This only takes into account periodic endpoints. 2157 * 2158 * Obviously, we can't solve an NP complete problem to find the minimum worst 2159 * case scenario. Instead, we come up with an estimate that is no less than 2160 * the worst case bandwidth used for any one microframe, but may be an 2161 * over-estimate. 2162 * 2163 * We walk the requirements for each endpoint by interval, starting with the 2164 * smallest interval, and place packets in the schedule where there is only one 2165 * possible way to schedule packets for that interval. In order to simplify 2166 * this algorithm, we record the largest max packet size for each interval, and 2167 * assume all packets will be that size. 2168 * 2169 * For interval 0, we obviously must schedule all packets for each interval. 2170 * The bandwidth for interval 0 is just the amount of data to be transmitted 2171 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2172 * the number of packets). 2173 * 2174 * For interval 1, we have two possible microframes to schedule those packets 2175 * in. For this algorithm, if we can schedule the same number of packets for 2176 * each possible scheduling opportunity (each microframe), we will do so. The 2177 * remaining number of packets will be saved to be transmitted in the gaps in 2178 * the next interval's scheduling sequence. 2179 * 2180 * As we move those remaining packets to be scheduled with interval 2 packets, 2181 * we have to double the number of remaining packets to transmit. This is 2182 * because the intervals are actually powers of 2, and we would be transmitting 2183 * the previous interval's packets twice in this interval. We also have to be 2184 * sure that when we look at the largest max packet size for this interval, we 2185 * also look at the largest max packet size for the remaining packets and take 2186 * the greater of the two. 2187 * 2188 * The algorithm continues to evenly distribute packets in each scheduling 2189 * opportunity, and push the remaining packets out, until we get to the last 2190 * interval. Then those packets and their associated overhead are just added 2191 * to the bandwidth used. 2192 */ 2193static int xhci_check_bw_table(struct xhci_hcd *xhci, 2194 struct xhci_virt_device *virt_dev, 2195 int old_active_eps) 2196{ 2197 unsigned int bw_reserved; 2198 unsigned int max_bandwidth; 2199 unsigned int bw_used; 2200 unsigned int block_size; 2201 struct xhci_interval_bw_table *bw_table; 2202 unsigned int packet_size = 0; 2203 unsigned int overhead = 0; 2204 unsigned int packets_transmitted = 0; 2205 unsigned int packets_remaining = 0; 2206 unsigned int i; 2207 2208 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2209 return xhci_check_ss_bw(xhci, virt_dev); 2210 2211 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2212 max_bandwidth = HS_BW_LIMIT; 2213 /* Convert percent of bus BW reserved to blocks reserved */ 2214 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2215 } else { 2216 max_bandwidth = FS_BW_LIMIT; 2217 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2218 } 2219 2220 bw_table = virt_dev->bw_table; 2221 /* We need to translate the max packet size and max ESIT payloads into 2222 * the units the hardware uses. 2223 */ 2224 block_size = xhci_get_block_size(virt_dev->udev); 2225 2226 /* If we are manipulating a LS/FS device under a HS hub, double check 2227 * that the HS bus has enough bandwidth if we are activing a new TT. 2228 */ 2229 if (virt_dev->tt_info) { 2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2231 "Recalculating BW for rootport %u", 2232 virt_dev->real_port); 2233 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2234 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2235 "newly activated TT.\n"); 2236 return -ENOMEM; 2237 } 2238 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2239 "Recalculating BW for TT slot %u port %u", 2240 virt_dev->tt_info->slot_id, 2241 virt_dev->tt_info->ttport); 2242 } else { 2243 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2244 "Recalculating BW for rootport %u", 2245 virt_dev->real_port); 2246 } 2247 2248 /* Add in how much bandwidth will be used for interval zero, or the 2249 * rounded max ESIT payload + number of packets * largest overhead. 2250 */ 2251 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2252 bw_table->interval_bw[0].num_packets * 2253 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2254 2255 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2256 unsigned int bw_added; 2257 unsigned int largest_mps; 2258 unsigned int interval_overhead; 2259 2260 /* 2261 * How many packets could we transmit in this interval? 2262 * If packets didn't fit in the previous interval, we will need 2263 * to transmit that many packets twice within this interval. 2264 */ 2265 packets_remaining = 2 * packets_remaining + 2266 bw_table->interval_bw[i].num_packets; 2267 2268 /* Find the largest max packet size of this or the previous 2269 * interval. 2270 */ 2271 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2272 largest_mps = 0; 2273 else { 2274 struct xhci_virt_ep *virt_ep; 2275 struct list_head *ep_entry; 2276 2277 ep_entry = bw_table->interval_bw[i].endpoints.next; 2278 virt_ep = list_entry(ep_entry, 2279 struct xhci_virt_ep, bw_endpoint_list); 2280 /* Convert to blocks, rounding up */ 2281 largest_mps = DIV_ROUND_UP( 2282 virt_ep->bw_info.max_packet_size, 2283 block_size); 2284 } 2285 if (largest_mps > packet_size) 2286 packet_size = largest_mps; 2287 2288 /* Use the larger overhead of this or the previous interval. */ 2289 interval_overhead = xhci_get_largest_overhead( 2290 &bw_table->interval_bw[i]); 2291 if (interval_overhead > overhead) 2292 overhead = interval_overhead; 2293 2294 /* How many packets can we evenly distribute across 2295 * (1 << (i + 1)) possible scheduling opportunities? 2296 */ 2297 packets_transmitted = packets_remaining >> (i + 1); 2298 2299 /* Add in the bandwidth used for those scheduled packets */ 2300 bw_added = packets_transmitted * (overhead + packet_size); 2301 2302 /* How many packets do we have remaining to transmit? */ 2303 packets_remaining = packets_remaining % (1 << (i + 1)); 2304 2305 /* What largest max packet size should those packets have? */ 2306 /* If we've transmitted all packets, don't carry over the 2307 * largest packet size. 2308 */ 2309 if (packets_remaining == 0) { 2310 packet_size = 0; 2311 overhead = 0; 2312 } else if (packets_transmitted > 0) { 2313 /* Otherwise if we do have remaining packets, and we've 2314 * scheduled some packets in this interval, take the 2315 * largest max packet size from endpoints with this 2316 * interval. 2317 */ 2318 packet_size = largest_mps; 2319 overhead = interval_overhead; 2320 } 2321 /* Otherwise carry over packet_size and overhead from the last 2322 * time we had a remainder. 2323 */ 2324 bw_used += bw_added; 2325 if (bw_used > max_bandwidth) { 2326 xhci_warn(xhci, "Not enough bandwidth. " 2327 "Proposed: %u, Max: %u\n", 2328 bw_used, max_bandwidth); 2329 return -ENOMEM; 2330 } 2331 } 2332 /* 2333 * Ok, we know we have some packets left over after even-handedly 2334 * scheduling interval 15. We don't know which microframes they will 2335 * fit into, so we over-schedule and say they will be scheduled every 2336 * microframe. 2337 */ 2338 if (packets_remaining > 0) 2339 bw_used += overhead + packet_size; 2340 2341 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2342 unsigned int port_index = virt_dev->real_port - 1; 2343 2344 /* OK, we're manipulating a HS device attached to a 2345 * root port bandwidth domain. Include the number of active TTs 2346 * in the bandwidth used. 2347 */ 2348 bw_used += TT_HS_OVERHEAD * 2349 xhci->rh_bw[port_index].num_active_tts; 2350 } 2351 2352 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2353 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2354 "Available: %u " "percent", 2355 bw_used, max_bandwidth, bw_reserved, 2356 (max_bandwidth - bw_used - bw_reserved) * 100 / 2357 max_bandwidth); 2358 2359 bw_used += bw_reserved; 2360 if (bw_used > max_bandwidth) { 2361 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2362 bw_used, max_bandwidth); 2363 return -ENOMEM; 2364 } 2365 2366 bw_table->bw_used = bw_used; 2367 return 0; 2368} 2369 2370static bool xhci_is_async_ep(unsigned int ep_type) 2371{ 2372 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2373 ep_type != ISOC_IN_EP && 2374 ep_type != INT_IN_EP); 2375} 2376 2377static bool xhci_is_sync_in_ep(unsigned int ep_type) 2378{ 2379 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2380} 2381 2382static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2383{ 2384 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2385 2386 if (ep_bw->ep_interval == 0) 2387 return SS_OVERHEAD_BURST + 2388 (ep_bw->mult * ep_bw->num_packets * 2389 (SS_OVERHEAD + mps)); 2390 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2391 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2392 1 << ep_bw->ep_interval); 2393 2394} 2395 2396void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2397 struct xhci_bw_info *ep_bw, 2398 struct xhci_interval_bw_table *bw_table, 2399 struct usb_device *udev, 2400 struct xhci_virt_ep *virt_ep, 2401 struct xhci_tt_bw_info *tt_info) 2402{ 2403 struct xhci_interval_bw *interval_bw; 2404 int normalized_interval; 2405 2406 if (xhci_is_async_ep(ep_bw->type)) 2407 return; 2408 2409 if (udev->speed == USB_SPEED_SUPER) { 2410 if (xhci_is_sync_in_ep(ep_bw->type)) 2411 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2412 xhci_get_ss_bw_consumed(ep_bw); 2413 else 2414 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2415 xhci_get_ss_bw_consumed(ep_bw); 2416 return; 2417 } 2418 2419 /* SuperSpeed endpoints never get added to intervals in the table, so 2420 * this check is only valid for HS/FS/LS devices. 2421 */ 2422 if (list_empty(&virt_ep->bw_endpoint_list)) 2423 return; 2424 /* For LS/FS devices, we need to translate the interval expressed in 2425 * microframes to frames. 2426 */ 2427 if (udev->speed == USB_SPEED_HIGH) 2428 normalized_interval = ep_bw->ep_interval; 2429 else 2430 normalized_interval = ep_bw->ep_interval - 3; 2431 2432 if (normalized_interval == 0) 2433 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2434 interval_bw = &bw_table->interval_bw[normalized_interval]; 2435 interval_bw->num_packets -= ep_bw->num_packets; 2436 switch (udev->speed) { 2437 case USB_SPEED_LOW: 2438 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2439 break; 2440 case USB_SPEED_FULL: 2441 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2442 break; 2443 case USB_SPEED_HIGH: 2444 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2445 break; 2446 case USB_SPEED_SUPER: 2447 case USB_SPEED_UNKNOWN: 2448 case USB_SPEED_WIRELESS: 2449 /* Should never happen because only LS/FS/HS endpoints will get 2450 * added to the endpoint list. 2451 */ 2452 return; 2453 } 2454 if (tt_info) 2455 tt_info->active_eps -= 1; 2456 list_del_init(&virt_ep->bw_endpoint_list); 2457} 2458 2459static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2460 struct xhci_bw_info *ep_bw, 2461 struct xhci_interval_bw_table *bw_table, 2462 struct usb_device *udev, 2463 struct xhci_virt_ep *virt_ep, 2464 struct xhci_tt_bw_info *tt_info) 2465{ 2466 struct xhci_interval_bw *interval_bw; 2467 struct xhci_virt_ep *smaller_ep; 2468 int normalized_interval; 2469 2470 if (xhci_is_async_ep(ep_bw->type)) 2471 return; 2472 2473 if (udev->speed == USB_SPEED_SUPER) { 2474 if (xhci_is_sync_in_ep(ep_bw->type)) 2475 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2476 xhci_get_ss_bw_consumed(ep_bw); 2477 else 2478 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2479 xhci_get_ss_bw_consumed(ep_bw); 2480 return; 2481 } 2482 2483 /* For LS/FS devices, we need to translate the interval expressed in 2484 * microframes to frames. 2485 */ 2486 if (udev->speed == USB_SPEED_HIGH) 2487 normalized_interval = ep_bw->ep_interval; 2488 else 2489 normalized_interval = ep_bw->ep_interval - 3; 2490 2491 if (normalized_interval == 0) 2492 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2493 interval_bw = &bw_table->interval_bw[normalized_interval]; 2494 interval_bw->num_packets += ep_bw->num_packets; 2495 switch (udev->speed) { 2496 case USB_SPEED_LOW: 2497 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2498 break; 2499 case USB_SPEED_FULL: 2500 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2501 break; 2502 case USB_SPEED_HIGH: 2503 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2504 break; 2505 case USB_SPEED_SUPER: 2506 case USB_SPEED_UNKNOWN: 2507 case USB_SPEED_WIRELESS: 2508 /* Should never happen because only LS/FS/HS endpoints will get 2509 * added to the endpoint list. 2510 */ 2511 return; 2512 } 2513 2514 if (tt_info) 2515 tt_info->active_eps += 1; 2516 /* Insert the endpoint into the list, largest max packet size first. */ 2517 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2518 bw_endpoint_list) { 2519 if (ep_bw->max_packet_size >= 2520 smaller_ep->bw_info.max_packet_size) { 2521 /* Add the new ep before the smaller endpoint */ 2522 list_add_tail(&virt_ep->bw_endpoint_list, 2523 &smaller_ep->bw_endpoint_list); 2524 return; 2525 } 2526 } 2527 /* Add the new endpoint at the end of the list. */ 2528 list_add_tail(&virt_ep->bw_endpoint_list, 2529 &interval_bw->endpoints); 2530} 2531 2532void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2533 struct xhci_virt_device *virt_dev, 2534 int old_active_eps) 2535{ 2536 struct xhci_root_port_bw_info *rh_bw_info; 2537 if (!virt_dev->tt_info) 2538 return; 2539 2540 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2541 if (old_active_eps == 0 && 2542 virt_dev->tt_info->active_eps != 0) { 2543 rh_bw_info->num_active_tts += 1; 2544 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2545 } else if (old_active_eps != 0 && 2546 virt_dev->tt_info->active_eps == 0) { 2547 rh_bw_info->num_active_tts -= 1; 2548 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2549 } 2550} 2551 2552static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2553 struct xhci_virt_device *virt_dev, 2554 struct xhci_container_ctx *in_ctx) 2555{ 2556 struct xhci_bw_info ep_bw_info[31]; 2557 int i; 2558 struct xhci_input_control_ctx *ctrl_ctx; 2559 int old_active_eps = 0; 2560 2561 if (virt_dev->tt_info) 2562 old_active_eps = virt_dev->tt_info->active_eps; 2563 2564 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2565 if (!ctrl_ctx) { 2566 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2567 __func__); 2568 return -ENOMEM; 2569 } 2570 2571 for (i = 0; i < 31; i++) { 2572 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2573 continue; 2574 2575 /* Make a copy of the BW info in case we need to revert this */ 2576 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2577 sizeof(ep_bw_info[i])); 2578 /* Drop the endpoint from the interval table if the endpoint is 2579 * being dropped or changed. 2580 */ 2581 if (EP_IS_DROPPED(ctrl_ctx, i)) 2582 xhci_drop_ep_from_interval_table(xhci, 2583 &virt_dev->eps[i].bw_info, 2584 virt_dev->bw_table, 2585 virt_dev->udev, 2586 &virt_dev->eps[i], 2587 virt_dev->tt_info); 2588 } 2589 /* Overwrite the information stored in the endpoints' bw_info */ 2590 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2591 for (i = 0; i < 31; i++) { 2592 /* Add any changed or added endpoints to the interval table */ 2593 if (EP_IS_ADDED(ctrl_ctx, i)) 2594 xhci_add_ep_to_interval_table(xhci, 2595 &virt_dev->eps[i].bw_info, 2596 virt_dev->bw_table, 2597 virt_dev->udev, 2598 &virt_dev->eps[i], 2599 virt_dev->tt_info); 2600 } 2601 2602 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2603 /* Ok, this fits in the bandwidth we have. 2604 * Update the number of active TTs. 2605 */ 2606 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2607 return 0; 2608 } 2609 2610 /* We don't have enough bandwidth for this, revert the stored info. */ 2611 for (i = 0; i < 31; i++) { 2612 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2613 continue; 2614 2615 /* Drop the new copies of any added or changed endpoints from 2616 * the interval table. 2617 */ 2618 if (EP_IS_ADDED(ctrl_ctx, i)) { 2619 xhci_drop_ep_from_interval_table(xhci, 2620 &virt_dev->eps[i].bw_info, 2621 virt_dev->bw_table, 2622 virt_dev->udev, 2623 &virt_dev->eps[i], 2624 virt_dev->tt_info); 2625 } 2626 /* Revert the endpoint back to its old information */ 2627 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2628 sizeof(ep_bw_info[i])); 2629 /* Add any changed or dropped endpoints back into the table */ 2630 if (EP_IS_DROPPED(ctrl_ctx, i)) 2631 xhci_add_ep_to_interval_table(xhci, 2632 &virt_dev->eps[i].bw_info, 2633 virt_dev->bw_table, 2634 virt_dev->udev, 2635 &virt_dev->eps[i], 2636 virt_dev->tt_info); 2637 } 2638 return -ENOMEM; 2639} 2640 2641 2642/* Issue a configure endpoint command or evaluate context command 2643 * and wait for it to finish. 2644 */ 2645static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2646 struct usb_device *udev, 2647 struct xhci_command *command, 2648 bool ctx_change, bool must_succeed) 2649{ 2650 int ret; 2651 unsigned long flags; 2652 struct xhci_input_control_ctx *ctrl_ctx; 2653 struct xhci_virt_device *virt_dev; 2654 2655 if (!command) 2656 return -EINVAL; 2657 2658 spin_lock_irqsave(&xhci->lock, flags); 2659 virt_dev = xhci->devs[udev->slot_id]; 2660 2661 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2662 if (!ctrl_ctx) { 2663 spin_unlock_irqrestore(&xhci->lock, flags); 2664 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2665 __func__); 2666 return -ENOMEM; 2667 } 2668 2669 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2670 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2671 spin_unlock_irqrestore(&xhci->lock, flags); 2672 xhci_warn(xhci, "Not enough host resources, " 2673 "active endpoint contexts = %u\n", 2674 xhci->num_active_eps); 2675 return -ENOMEM; 2676 } 2677 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2678 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2679 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2680 xhci_free_host_resources(xhci, ctrl_ctx); 2681 spin_unlock_irqrestore(&xhci->lock, flags); 2682 xhci_warn(xhci, "Not enough bandwidth\n"); 2683 return -ENOMEM; 2684 } 2685 2686 if (!ctx_change) 2687 ret = xhci_queue_configure_endpoint(xhci, command, 2688 command->in_ctx->dma, 2689 udev->slot_id, must_succeed); 2690 else 2691 ret = xhci_queue_evaluate_context(xhci, command, 2692 command->in_ctx->dma, 2693 udev->slot_id, must_succeed); 2694 if (ret < 0) { 2695 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2696 xhci_free_host_resources(xhci, ctrl_ctx); 2697 spin_unlock_irqrestore(&xhci->lock, flags); 2698 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2699 "FIXME allocate a new ring segment"); 2700 return -ENOMEM; 2701 } 2702 xhci_ring_cmd_db(xhci); 2703 spin_unlock_irqrestore(&xhci->lock, flags); 2704 2705 /* Wait for the configure endpoint command to complete */ 2706 wait_for_completion(command->completion); 2707 2708 if (!ctx_change) 2709 ret = xhci_configure_endpoint_result(xhci, udev, 2710 &command->status); 2711 else 2712 ret = xhci_evaluate_context_result(xhci, udev, 2713 &command->status); 2714 2715 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2716 spin_lock_irqsave(&xhci->lock, flags); 2717 /* If the command failed, remove the reserved resources. 2718 * Otherwise, clean up the estimate to include dropped eps. 2719 */ 2720 if (ret) 2721 xhci_free_host_resources(xhci, ctrl_ctx); 2722 else 2723 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2724 spin_unlock_irqrestore(&xhci->lock, flags); 2725 } 2726 return ret; 2727} 2728 2729static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2730 struct xhci_virt_device *vdev, int i) 2731{ 2732 struct xhci_virt_ep *ep = &vdev->eps[i]; 2733 2734 if (ep->ep_state & EP_HAS_STREAMS) { 2735 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2736 xhci_get_endpoint_address(i)); 2737 xhci_free_stream_info(xhci, ep->stream_info); 2738 ep->stream_info = NULL; 2739 ep->ep_state &= ~EP_HAS_STREAMS; 2740 } 2741} 2742 2743/* Called after one or more calls to xhci_add_endpoint() or 2744 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2745 * to call xhci_reset_bandwidth(). 2746 * 2747 * Since we are in the middle of changing either configuration or 2748 * installing a new alt setting, the USB core won't allow URBs to be 2749 * enqueued for any endpoint on the old config or interface. Nothing 2750 * else should be touching the xhci->devs[slot_id] structure, so we 2751 * don't need to take the xhci->lock for manipulating that. 2752 */ 2753int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2754{ 2755 int i; 2756 int ret = 0; 2757 struct xhci_hcd *xhci; 2758 struct xhci_virt_device *virt_dev; 2759 struct xhci_input_control_ctx *ctrl_ctx; 2760 struct xhci_slot_ctx *slot_ctx; 2761 struct xhci_command *command; 2762 2763 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2764 if (ret <= 0) 2765 return ret; 2766 xhci = hcd_to_xhci(hcd); 2767 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2768 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2769 return -ENODEV; 2770 2771 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2772 virt_dev = xhci->devs[udev->slot_id]; 2773 2774 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2775 if (!command) 2776 return -ENOMEM; 2777 2778 command->in_ctx = virt_dev->in_ctx; 2779 2780 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2781 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2782 if (!ctrl_ctx) { 2783 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2784 __func__); 2785 ret = -ENOMEM; 2786 goto command_cleanup; 2787 } 2788 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2789 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2790 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2791 2792 /* Don't issue the command if there's no endpoints to update. */ 2793 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2794 ctrl_ctx->drop_flags == 0) { 2795 ret = 0; 2796 goto command_cleanup; 2797 } 2798 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2799 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2800 for (i = 31; i >= 1; i--) { 2801 __le32 le32 = cpu_to_le32(BIT(i)); 2802 2803 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2804 || (ctrl_ctx->add_flags & le32) || i == 1) { 2805 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2806 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2807 break; 2808 } 2809 } 2810 xhci_dbg(xhci, "New Input Control Context:\n"); 2811 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2812 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2813 2814 ret = xhci_configure_endpoint(xhci, udev, command, 2815 false, false); 2816 if (ret) 2817 /* Callee should call reset_bandwidth() */ 2818 goto command_cleanup; 2819 2820 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2821 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2822 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2823 2824 /* Free any rings that were dropped, but not changed. */ 2825 for (i = 1; i < 31; ++i) { 2826 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2827 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2828 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2829 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2830 } 2831 } 2832 xhci_zero_in_ctx(xhci, virt_dev); 2833 /* 2834 * Install any rings for completely new endpoints or changed endpoints, 2835 * and free or cache any old rings from changed endpoints. 2836 */ 2837 for (i = 1; i < 31; ++i) { 2838 if (!virt_dev->eps[i].new_ring) 2839 continue; 2840 /* Only cache or free the old ring if it exists. 2841 * It may not if this is the first add of an endpoint. 2842 */ 2843 if (virt_dev->eps[i].ring) { 2844 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2845 } 2846 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2847 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2848 virt_dev->eps[i].new_ring = NULL; 2849 } 2850command_cleanup: 2851 kfree(command->completion); 2852 kfree(command); 2853 2854 return ret; 2855} 2856 2857void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2858{ 2859 struct xhci_hcd *xhci; 2860 struct xhci_virt_device *virt_dev; 2861 int i, ret; 2862 2863 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2864 if (ret <= 0) 2865 return; 2866 xhci = hcd_to_xhci(hcd); 2867 2868 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2869 virt_dev = xhci->devs[udev->slot_id]; 2870 /* Free any rings allocated for added endpoints */ 2871 for (i = 0; i < 31; ++i) { 2872 if (virt_dev->eps[i].new_ring) { 2873 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2874 virt_dev->eps[i].new_ring = NULL; 2875 } 2876 } 2877 xhci_zero_in_ctx(xhci, virt_dev); 2878} 2879 2880static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2881 struct xhci_container_ctx *in_ctx, 2882 struct xhci_container_ctx *out_ctx, 2883 struct xhci_input_control_ctx *ctrl_ctx, 2884 u32 add_flags, u32 drop_flags) 2885{ 2886 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2887 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2888 xhci_slot_copy(xhci, in_ctx, out_ctx); 2889 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2890 2891 xhci_dbg(xhci, "Input Context:\n"); 2892 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2893} 2894 2895static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2896 unsigned int slot_id, unsigned int ep_index, 2897 struct xhci_dequeue_state *deq_state) 2898{ 2899 struct xhci_input_control_ctx *ctrl_ctx; 2900 struct xhci_container_ctx *in_ctx; 2901 struct xhci_ep_ctx *ep_ctx; 2902 u32 added_ctxs; 2903 dma_addr_t addr; 2904 2905 in_ctx = xhci->devs[slot_id]->in_ctx; 2906 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2907 if (!ctrl_ctx) { 2908 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2909 __func__); 2910 return; 2911 } 2912 2913 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2914 xhci->devs[slot_id]->out_ctx, ep_index); 2915 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2916 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2917 deq_state->new_deq_ptr); 2918 if (addr == 0) { 2919 xhci_warn(xhci, "WARN Cannot submit config ep after " 2920 "reset ep command\n"); 2921 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2922 deq_state->new_deq_seg, 2923 deq_state->new_deq_ptr); 2924 return; 2925 } 2926 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2927 2928 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2929 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2930 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2931 added_ctxs, added_ctxs); 2932} 2933 2934void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2935 unsigned int ep_index, struct xhci_td *td) 2936{ 2937 struct xhci_dequeue_state deq_state; 2938 struct xhci_virt_ep *ep; 2939 struct usb_device *udev = td->urb->dev; 2940 2941 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2942 "Cleaning up stalled endpoint ring"); 2943 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2944 /* We need to move the HW's dequeue pointer past this TD, 2945 * or it will attempt to resend it on the next doorbell ring. 2946 */ 2947 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2948 ep_index, ep->stopped_stream, td, &deq_state); 2949 2950 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2951 return; 2952 2953 /* HW with the reset endpoint quirk will use the saved dequeue state to 2954 * issue a configure endpoint command later. 2955 */ 2956 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2957 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2958 "Queueing new dequeue state"); 2959 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2960 ep_index, ep->stopped_stream, &deq_state); 2961 } else { 2962 /* Better hope no one uses the input context between now and the 2963 * reset endpoint completion! 2964 * XXX: No idea how this hardware will react when stream rings 2965 * are enabled. 2966 */ 2967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2968 "Setting up input context for " 2969 "configure endpoint command"); 2970 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2971 ep_index, &deq_state); 2972 } 2973} 2974 2975/* Called when clearing halted device. The core should have sent the control 2976 * message to clear the device halt condition. The host side of the halt should 2977 * already be cleared with a reset endpoint command issued when the STALL tx 2978 * event was received. 2979 * 2980 * Context: in_interrupt 2981 */ 2982 2983void xhci_endpoint_reset(struct usb_hcd *hcd, 2984 struct usb_host_endpoint *ep) 2985{ 2986 struct xhci_hcd *xhci; 2987 2988 xhci = hcd_to_xhci(hcd); 2989 2990 /* 2991 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2992 * The Reset Endpoint Command may only be issued to endpoints in the 2993 * Halted state. If software wishes reset the Data Toggle or Sequence 2994 * Number of an endpoint that isn't in the Halted state, then software 2995 * may issue a Configure Endpoint Command with the Drop and Add bits set 2996 * for the target endpoint. that is in the Stopped state. 2997 */ 2998 2999 /* For now just print debug to follow the situation */ 3000 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 3001 ep->desc.bEndpointAddress); 3002} 3003 3004static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3005 struct usb_device *udev, struct usb_host_endpoint *ep, 3006 unsigned int slot_id) 3007{ 3008 int ret; 3009 unsigned int ep_index; 3010 unsigned int ep_state; 3011 3012 if (!ep) 3013 return -EINVAL; 3014 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3015 if (ret <= 0) 3016 return -EINVAL; 3017 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3018 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3019 " descriptor for ep 0x%x does not support streams\n", 3020 ep->desc.bEndpointAddress); 3021 return -EINVAL; 3022 } 3023 3024 ep_index = xhci_get_endpoint_index(&ep->desc); 3025 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3026 if (ep_state & EP_HAS_STREAMS || 3027 ep_state & EP_GETTING_STREAMS) { 3028 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3029 "already has streams set up.\n", 3030 ep->desc.bEndpointAddress); 3031 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3032 "dynamic stream context array reallocation.\n"); 3033 return -EINVAL; 3034 } 3035 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3036 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3037 "endpoint 0x%x; URBs are pending.\n", 3038 ep->desc.bEndpointAddress); 3039 return -EINVAL; 3040 } 3041 return 0; 3042} 3043 3044static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3045 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3046{ 3047 unsigned int max_streams; 3048 3049 /* The stream context array size must be a power of two */ 3050 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3051 /* 3052 * Find out how many primary stream array entries the host controller 3053 * supports. Later we may use secondary stream arrays (similar to 2nd 3054 * level page entries), but that's an optional feature for xHCI host 3055 * controllers. xHCs must support at least 4 stream IDs. 3056 */ 3057 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3058 if (*num_stream_ctxs > max_streams) { 3059 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3060 max_streams); 3061 *num_stream_ctxs = max_streams; 3062 *num_streams = max_streams; 3063 } 3064} 3065 3066/* Returns an error code if one of the endpoint already has streams. 3067 * This does not change any data structures, it only checks and gathers 3068 * information. 3069 */ 3070static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3071 struct usb_device *udev, 3072 struct usb_host_endpoint **eps, unsigned int num_eps, 3073 unsigned int *num_streams, u32 *changed_ep_bitmask) 3074{ 3075 unsigned int max_streams; 3076 unsigned int endpoint_flag; 3077 int i; 3078 int ret; 3079 3080 for (i = 0; i < num_eps; i++) { 3081 ret = xhci_check_streams_endpoint(xhci, udev, 3082 eps[i], udev->slot_id); 3083 if (ret < 0) 3084 return ret; 3085 3086 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3087 if (max_streams < (*num_streams - 1)) { 3088 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3089 eps[i]->desc.bEndpointAddress, 3090 max_streams); 3091 *num_streams = max_streams+1; 3092 } 3093 3094 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3095 if (*changed_ep_bitmask & endpoint_flag) 3096 return -EINVAL; 3097 *changed_ep_bitmask |= endpoint_flag; 3098 } 3099 return 0; 3100} 3101 3102static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3103 struct usb_device *udev, 3104 struct usb_host_endpoint **eps, unsigned int num_eps) 3105{ 3106 u32 changed_ep_bitmask = 0; 3107 unsigned int slot_id; 3108 unsigned int ep_index; 3109 unsigned int ep_state; 3110 int i; 3111 3112 slot_id = udev->slot_id; 3113 if (!xhci->devs[slot_id]) 3114 return 0; 3115 3116 for (i = 0; i < num_eps; i++) { 3117 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3118 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3119 /* Are streams already being freed for the endpoint? */ 3120 if (ep_state & EP_GETTING_NO_STREAMS) { 3121 xhci_warn(xhci, "WARN Can't disable streams for " 3122 "endpoint 0x%x, " 3123 "streams are being disabled already\n", 3124 eps[i]->desc.bEndpointAddress); 3125 return 0; 3126 } 3127 /* Are there actually any streams to free? */ 3128 if (!(ep_state & EP_HAS_STREAMS) && 3129 !(ep_state & EP_GETTING_STREAMS)) { 3130 xhci_warn(xhci, "WARN Can't disable streams for " 3131 "endpoint 0x%x, " 3132 "streams are already disabled!\n", 3133 eps[i]->desc.bEndpointAddress); 3134 xhci_warn(xhci, "WARN xhci_free_streams() called " 3135 "with non-streams endpoint\n"); 3136 return 0; 3137 } 3138 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3139 } 3140 return changed_ep_bitmask; 3141} 3142 3143/* 3144 * The USB device drivers use this function (though the HCD interface in USB 3145 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3146 * coordinate mass storage command queueing across multiple endpoints (basically 3147 * a stream ID == a task ID). 3148 * 3149 * Setting up streams involves allocating the same size stream context array 3150 * for each endpoint and issuing a configure endpoint command for all endpoints. 3151 * 3152 * Don't allow the call to succeed if one endpoint only supports one stream 3153 * (which means it doesn't support streams at all). 3154 * 3155 * Drivers may get less stream IDs than they asked for, if the host controller 3156 * hardware or endpoints claim they can't support the number of requested 3157 * stream IDs. 3158 */ 3159int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3160 struct usb_host_endpoint **eps, unsigned int num_eps, 3161 unsigned int num_streams, gfp_t mem_flags) 3162{ 3163 int i, ret; 3164 struct xhci_hcd *xhci; 3165 struct xhci_virt_device *vdev; 3166 struct xhci_command *config_cmd; 3167 struct xhci_input_control_ctx *ctrl_ctx; 3168 unsigned int ep_index; 3169 unsigned int num_stream_ctxs; 3170 unsigned long flags; 3171 u32 changed_ep_bitmask = 0; 3172 3173 if (!eps) 3174 return -EINVAL; 3175 3176 /* Add one to the number of streams requested to account for 3177 * stream 0 that is reserved for xHCI usage. 3178 */ 3179 num_streams += 1; 3180 xhci = hcd_to_xhci(hcd); 3181 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3182 num_streams); 3183 3184 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3185 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3186 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3187 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3188 return -ENOSYS; 3189 } 3190 3191 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3192 if (!config_cmd) { 3193 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3194 return -ENOMEM; 3195 } 3196 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3197 if (!ctrl_ctx) { 3198 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3199 __func__); 3200 xhci_free_command(xhci, config_cmd); 3201 return -ENOMEM; 3202 } 3203 3204 /* Check to make sure all endpoints are not already configured for 3205 * streams. While we're at it, find the maximum number of streams that 3206 * all the endpoints will support and check for duplicate endpoints. 3207 */ 3208 spin_lock_irqsave(&xhci->lock, flags); 3209 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3210 num_eps, &num_streams, &changed_ep_bitmask); 3211 if (ret < 0) { 3212 xhci_free_command(xhci, config_cmd); 3213 spin_unlock_irqrestore(&xhci->lock, flags); 3214 return ret; 3215 } 3216 if (num_streams <= 1) { 3217 xhci_warn(xhci, "WARN: endpoints can't handle " 3218 "more than one stream.\n"); 3219 xhci_free_command(xhci, config_cmd); 3220 spin_unlock_irqrestore(&xhci->lock, flags); 3221 return -EINVAL; 3222 } 3223 vdev = xhci->devs[udev->slot_id]; 3224 /* Mark each endpoint as being in transition, so 3225 * xhci_urb_enqueue() will reject all URBs. 3226 */ 3227 for (i = 0; i < num_eps; i++) { 3228 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3229 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3230 } 3231 spin_unlock_irqrestore(&xhci->lock, flags); 3232 3233 /* Setup internal data structures and allocate HW data structures for 3234 * streams (but don't install the HW structures in the input context 3235 * until we're sure all memory allocation succeeded). 3236 */ 3237 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3238 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3239 num_stream_ctxs, num_streams); 3240 3241 for (i = 0; i < num_eps; i++) { 3242 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3243 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3244 num_stream_ctxs, 3245 num_streams, mem_flags); 3246 if (!vdev->eps[ep_index].stream_info) 3247 goto cleanup; 3248 /* Set maxPstreams in endpoint context and update deq ptr to 3249 * point to stream context array. FIXME 3250 */ 3251 } 3252 3253 /* Set up the input context for a configure endpoint command. */ 3254 for (i = 0; i < num_eps; i++) { 3255 struct xhci_ep_ctx *ep_ctx; 3256 3257 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3258 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3259 3260 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3261 vdev->out_ctx, ep_index); 3262 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3263 vdev->eps[ep_index].stream_info); 3264 } 3265 /* Tell the HW to drop its old copy of the endpoint context info 3266 * and add the updated copy from the input context. 3267 */ 3268 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3269 vdev->out_ctx, ctrl_ctx, 3270 changed_ep_bitmask, changed_ep_bitmask); 3271 3272 /* Issue and wait for the configure endpoint command */ 3273 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3274 false, false); 3275 3276 /* xHC rejected the configure endpoint command for some reason, so we 3277 * leave the old ring intact and free our internal streams data 3278 * structure. 3279 */ 3280 if (ret < 0) 3281 goto cleanup; 3282 3283 spin_lock_irqsave(&xhci->lock, flags); 3284 for (i = 0; i < num_eps; i++) { 3285 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3286 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3287 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3288 udev->slot_id, ep_index); 3289 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3290 } 3291 xhci_free_command(xhci, config_cmd); 3292 spin_unlock_irqrestore(&xhci->lock, flags); 3293 3294 /* Subtract 1 for stream 0, which drivers can't use */ 3295 return num_streams - 1; 3296 3297cleanup: 3298 /* If it didn't work, free the streams! */ 3299 for (i = 0; i < num_eps; i++) { 3300 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3301 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3302 vdev->eps[ep_index].stream_info = NULL; 3303 /* FIXME Unset maxPstreams in endpoint context and 3304 * update deq ptr to point to normal string ring. 3305 */ 3306 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3307 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3308 xhci_endpoint_zero(xhci, vdev, eps[i]); 3309 } 3310 xhci_free_command(xhci, config_cmd); 3311 return -ENOMEM; 3312} 3313 3314/* Transition the endpoint from using streams to being a "normal" endpoint 3315 * without streams. 3316 * 3317 * Modify the endpoint context state, submit a configure endpoint command, 3318 * and free all endpoint rings for streams if that completes successfully. 3319 */ 3320int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3321 struct usb_host_endpoint **eps, unsigned int num_eps, 3322 gfp_t mem_flags) 3323{ 3324 int i, ret; 3325 struct xhci_hcd *xhci; 3326 struct xhci_virt_device *vdev; 3327 struct xhci_command *command; 3328 struct xhci_input_control_ctx *ctrl_ctx; 3329 unsigned int ep_index; 3330 unsigned long flags; 3331 u32 changed_ep_bitmask; 3332 3333 xhci = hcd_to_xhci(hcd); 3334 vdev = xhci->devs[udev->slot_id]; 3335 3336 /* Set up a configure endpoint command to remove the streams rings */ 3337 spin_lock_irqsave(&xhci->lock, flags); 3338 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3339 udev, eps, num_eps); 3340 if (changed_ep_bitmask == 0) { 3341 spin_unlock_irqrestore(&xhci->lock, flags); 3342 return -EINVAL; 3343 } 3344 3345 /* Use the xhci_command structure from the first endpoint. We may have 3346 * allocated too many, but the driver may call xhci_free_streams() for 3347 * each endpoint it grouped into one call to xhci_alloc_streams(). 3348 */ 3349 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3350 command = vdev->eps[ep_index].stream_info->free_streams_command; 3351 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3352 if (!ctrl_ctx) { 3353 spin_unlock_irqrestore(&xhci->lock, flags); 3354 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3355 __func__); 3356 return -EINVAL; 3357 } 3358 3359 for (i = 0; i < num_eps; i++) { 3360 struct xhci_ep_ctx *ep_ctx; 3361 3362 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3363 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3364 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3365 EP_GETTING_NO_STREAMS; 3366 3367 xhci_endpoint_copy(xhci, command->in_ctx, 3368 vdev->out_ctx, ep_index); 3369 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3370 &vdev->eps[ep_index]); 3371 } 3372 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3373 vdev->out_ctx, ctrl_ctx, 3374 changed_ep_bitmask, changed_ep_bitmask); 3375 spin_unlock_irqrestore(&xhci->lock, flags); 3376 3377 /* Issue and wait for the configure endpoint command, 3378 * which must succeed. 3379 */ 3380 ret = xhci_configure_endpoint(xhci, udev, command, 3381 false, true); 3382 3383 /* xHC rejected the configure endpoint command for some reason, so we 3384 * leave the streams rings intact. 3385 */ 3386 if (ret < 0) 3387 return ret; 3388 3389 spin_lock_irqsave(&xhci->lock, flags); 3390 for (i = 0; i < num_eps; i++) { 3391 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3392 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3393 vdev->eps[ep_index].stream_info = NULL; 3394 /* FIXME Unset maxPstreams in endpoint context and 3395 * update deq ptr to point to normal string ring. 3396 */ 3397 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3398 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3399 } 3400 spin_unlock_irqrestore(&xhci->lock, flags); 3401 3402 return 0; 3403} 3404 3405/* 3406 * Deletes endpoint resources for endpoints that were active before a Reset 3407 * Device command, or a Disable Slot command. The Reset Device command leaves 3408 * the control endpoint intact, whereas the Disable Slot command deletes it. 3409 * 3410 * Must be called with xhci->lock held. 3411 */ 3412void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3413 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3414{ 3415 int i; 3416 unsigned int num_dropped_eps = 0; 3417 unsigned int drop_flags = 0; 3418 3419 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3420 if (virt_dev->eps[i].ring) { 3421 drop_flags |= 1 << i; 3422 num_dropped_eps++; 3423 } 3424 } 3425 xhci->num_active_eps -= num_dropped_eps; 3426 if (num_dropped_eps) 3427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3428 "Dropped %u ep ctxs, flags = 0x%x, " 3429 "%u now active.", 3430 num_dropped_eps, drop_flags, 3431 xhci->num_active_eps); 3432} 3433 3434/* 3435 * This submits a Reset Device Command, which will set the device state to 0, 3436 * set the device address to 0, and disable all the endpoints except the default 3437 * control endpoint. The USB core should come back and call 3438 * xhci_address_device(), and then re-set up the configuration. If this is 3439 * called because of a usb_reset_and_verify_device(), then the old alternate 3440 * settings will be re-installed through the normal bandwidth allocation 3441 * functions. 3442 * 3443 * Wait for the Reset Device command to finish. Remove all structures 3444 * associated with the endpoints that were disabled. Clear the input device 3445 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3446 * 3447 * If the virt_dev to be reset does not exist or does not match the udev, 3448 * it means the device is lost, possibly due to the xHC restore error and 3449 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3450 * re-allocate the device. 3451 */ 3452int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3453{ 3454 int ret, i; 3455 unsigned long flags; 3456 struct xhci_hcd *xhci; 3457 unsigned int slot_id; 3458 struct xhci_virt_device *virt_dev; 3459 struct xhci_command *reset_device_cmd; 3460 int last_freed_endpoint; 3461 struct xhci_slot_ctx *slot_ctx; 3462 int old_active_eps = 0; 3463 3464 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3465 if (ret <= 0) 3466 return ret; 3467 xhci = hcd_to_xhci(hcd); 3468 slot_id = udev->slot_id; 3469 virt_dev = xhci->devs[slot_id]; 3470 if (!virt_dev) { 3471 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3472 "not exist. Re-allocate the device\n", slot_id); 3473 ret = xhci_alloc_dev(hcd, udev); 3474 if (ret == 1) 3475 return 0; 3476 else 3477 return -EINVAL; 3478 } 3479 3480 if (virt_dev->tt_info) 3481 old_active_eps = virt_dev->tt_info->active_eps; 3482 3483 if (virt_dev->udev != udev) { 3484 /* If the virt_dev and the udev does not match, this virt_dev 3485 * may belong to another udev. 3486 * Re-allocate the device. 3487 */ 3488 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3489 "not match the udev. Re-allocate the device\n", 3490 slot_id); 3491 ret = xhci_alloc_dev(hcd, udev); 3492 if (ret == 1) 3493 return 0; 3494 else 3495 return -EINVAL; 3496 } 3497 3498 /* If device is not setup, there is no point in resetting it */ 3499 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3500 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3501 SLOT_STATE_DISABLED) 3502 return 0; 3503 3504 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3505 /* Allocate the command structure that holds the struct completion. 3506 * Assume we're in process context, since the normal device reset 3507 * process has to wait for the device anyway. Storage devices are 3508 * reset as part of error handling, so use GFP_NOIO instead of 3509 * GFP_KERNEL. 3510 */ 3511 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3512 if (!reset_device_cmd) { 3513 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3514 return -ENOMEM; 3515 } 3516 3517 /* Attempt to submit the Reset Device command to the command ring */ 3518 spin_lock_irqsave(&xhci->lock, flags); 3519 3520 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3521 if (ret) { 3522 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3523 spin_unlock_irqrestore(&xhci->lock, flags); 3524 goto command_cleanup; 3525 } 3526 xhci_ring_cmd_db(xhci); 3527 spin_unlock_irqrestore(&xhci->lock, flags); 3528 3529 /* Wait for the Reset Device command to finish */ 3530 wait_for_completion(reset_device_cmd->completion); 3531 3532 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3533 * unless we tried to reset a slot ID that wasn't enabled, 3534 * or the device wasn't in the addressed or configured state. 3535 */ 3536 ret = reset_device_cmd->status; 3537 switch (ret) { 3538 case COMP_CMD_ABORT: 3539 case COMP_CMD_STOP: 3540 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3541 ret = -ETIME; 3542 goto command_cleanup; 3543 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3544 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3545 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3546 slot_id, 3547 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3548 xhci_dbg(xhci, "Not freeing device rings.\n"); 3549 /* Don't treat this as an error. May change my mind later. */ 3550 ret = 0; 3551 goto command_cleanup; 3552 case COMP_SUCCESS: 3553 xhci_dbg(xhci, "Successful reset device command.\n"); 3554 break; 3555 default: 3556 if (xhci_is_vendor_info_code(xhci, ret)) 3557 break; 3558 xhci_warn(xhci, "Unknown completion code %u for " 3559 "reset device command.\n", ret); 3560 ret = -EINVAL; 3561 goto command_cleanup; 3562 } 3563 3564 /* Free up host controller endpoint resources */ 3565 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3566 spin_lock_irqsave(&xhci->lock, flags); 3567 /* Don't delete the default control endpoint resources */ 3568 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3569 spin_unlock_irqrestore(&xhci->lock, flags); 3570 } 3571 3572 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3573 last_freed_endpoint = 1; 3574 for (i = 1; i < 31; ++i) { 3575 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3576 3577 if (ep->ep_state & EP_HAS_STREAMS) { 3578 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3579 xhci_get_endpoint_address(i)); 3580 xhci_free_stream_info(xhci, ep->stream_info); 3581 ep->stream_info = NULL; 3582 ep->ep_state &= ~EP_HAS_STREAMS; 3583 } 3584 3585 if (ep->ring) { 3586 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3587 last_freed_endpoint = i; 3588 } 3589 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3590 xhci_drop_ep_from_interval_table(xhci, 3591 &virt_dev->eps[i].bw_info, 3592 virt_dev->bw_table, 3593 udev, 3594 &virt_dev->eps[i], 3595 virt_dev->tt_info); 3596 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3597 } 3598 /* If necessary, update the number of active TTs on this root port */ 3599 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3600 3601 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3602 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3603 ret = 0; 3604 3605command_cleanup: 3606 xhci_free_command(xhci, reset_device_cmd); 3607 return ret; 3608} 3609 3610/* 3611 * At this point, the struct usb_device is about to go away, the device has 3612 * disconnected, and all traffic has been stopped and the endpoints have been 3613 * disabled. Free any HC data structures associated with that device. 3614 */ 3615void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3616{ 3617 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3618 struct xhci_virt_device *virt_dev; 3619 unsigned long flags; 3620 u32 state; 3621 int i, ret; 3622 struct xhci_command *command; 3623 3624 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3625 if (!command) 3626 return; 3627 3628#ifndef CONFIG_USB_DEFAULT_PERSIST 3629 /* 3630 * We called pm_runtime_get_noresume when the device was attached. 3631 * Decrement the counter here to allow controller to runtime suspend 3632 * if no devices remain. 3633 */ 3634 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3635 pm_runtime_put_noidle(hcd->self.controller); 3636#endif 3637 3638 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3639 /* If the host is halted due to driver unload, we still need to free the 3640 * device. 3641 */ 3642 if (ret <= 0 && ret != -ENODEV) { 3643 kfree(command); 3644 return; 3645 } 3646 3647 virt_dev = xhci->devs[udev->slot_id]; 3648 3649 /* Stop any wayward timer functions (which may grab the lock) */ 3650 for (i = 0; i < 31; ++i) { 3651 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3652 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3653 } 3654 3655 spin_lock_irqsave(&xhci->lock, flags); 3656 /* Don't disable the slot if the host controller is dead. */ 3657 state = readl(&xhci->op_regs->status); 3658 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3659 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3660 xhci_free_virt_device(xhci, udev->slot_id); 3661 spin_unlock_irqrestore(&xhci->lock, flags); 3662 kfree(command); 3663 return; 3664 } 3665 3666 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3667 udev->slot_id)) { 3668 spin_unlock_irqrestore(&xhci->lock, flags); 3669 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3670 return; 3671 } 3672 xhci_ring_cmd_db(xhci); 3673 spin_unlock_irqrestore(&xhci->lock, flags); 3674 3675 /* 3676 * Event command completion handler will free any data structures 3677 * associated with the slot. XXX Can free sleep? 3678 */ 3679} 3680 3681/* 3682 * Checks if we have enough host controller resources for the default control 3683 * endpoint. 3684 * 3685 * Must be called with xhci->lock held. 3686 */ 3687static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3688{ 3689 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3690 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3691 "Not enough ep ctxs: " 3692 "%u active, need to add 1, limit is %u.", 3693 xhci->num_active_eps, xhci->limit_active_eps); 3694 return -ENOMEM; 3695 } 3696 xhci->num_active_eps += 1; 3697 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3698 "Adding 1 ep ctx, %u now active.", 3699 xhci->num_active_eps); 3700 return 0; 3701} 3702 3703 3704/* 3705 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3706 * timed out, or allocating memory failed. Returns 1 on success. 3707 */ 3708int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3709{ 3710 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3711 unsigned long flags; 3712 int ret, slot_id; 3713 struct xhci_command *command; 3714 3715 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3716 if (!command) 3717 return 0; 3718 3719 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3720 mutex_lock(&xhci->mutex); 3721 spin_lock_irqsave(&xhci->lock, flags); 3722 command->completion = &xhci->addr_dev; 3723 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3724 if (ret) { 3725 spin_unlock_irqrestore(&xhci->lock, flags); 3726 mutex_unlock(&xhci->mutex); 3727 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3728 kfree(command); 3729 return 0; 3730 } 3731 xhci_ring_cmd_db(xhci); 3732 spin_unlock_irqrestore(&xhci->lock, flags); 3733 3734 wait_for_completion(command->completion); 3735 slot_id = xhci->slot_id; 3736 mutex_unlock(&xhci->mutex); 3737 3738 if (!slot_id || command->status != COMP_SUCCESS) { 3739 xhci_err(xhci, "Error while assigning device slot ID\n"); 3740 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3741 HCS_MAX_SLOTS( 3742 readl(&xhci->cap_regs->hcs_params1))); 3743 kfree(command); 3744 return 0; 3745 } 3746 3747 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3748 spin_lock_irqsave(&xhci->lock, flags); 3749 ret = xhci_reserve_host_control_ep_resources(xhci); 3750 if (ret) { 3751 spin_unlock_irqrestore(&xhci->lock, flags); 3752 xhci_warn(xhci, "Not enough host resources, " 3753 "active endpoint contexts = %u\n", 3754 xhci->num_active_eps); 3755 goto disable_slot; 3756 } 3757 spin_unlock_irqrestore(&xhci->lock, flags); 3758 } 3759 /* Use GFP_NOIO, since this function can be called from 3760 * xhci_discover_or_reset_device(), which may be called as part of 3761 * mass storage driver error handling. 3762 */ 3763 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3764 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3765 goto disable_slot; 3766 } 3767 udev->slot_id = slot_id; 3768 3769#ifndef CONFIG_USB_DEFAULT_PERSIST 3770 /* 3771 * If resetting upon resume, we can't put the controller into runtime 3772 * suspend if there is a device attached. 3773 */ 3774 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3775 pm_runtime_get_noresume(hcd->self.controller); 3776#endif 3777 3778 3779 kfree(command); 3780 /* Is this a LS or FS device under a HS hub? */ 3781 /* Hub or peripherial? */ 3782 return 1; 3783 3784disable_slot: 3785 /* Disable slot, if we can do it without mem alloc */ 3786 spin_lock_irqsave(&xhci->lock, flags); 3787 command->completion = NULL; 3788 command->status = 0; 3789 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3790 udev->slot_id)) 3791 xhci_ring_cmd_db(xhci); 3792 spin_unlock_irqrestore(&xhci->lock, flags); 3793 return 0; 3794} 3795 3796/* 3797 * Issue an Address Device command and optionally send a corresponding 3798 * SetAddress request to the device. 3799 * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init, 3800 * so we should only issue and wait on one address command at the same time. 3801 */ 3802static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3803 enum xhci_setup_dev setup) 3804{ 3805 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3806 unsigned long flags; 3807 struct xhci_virt_device *virt_dev; 3808 int ret = 0; 3809 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3810 struct xhci_slot_ctx *slot_ctx; 3811 struct xhci_input_control_ctx *ctrl_ctx; 3812 u64 temp_64; 3813 struct xhci_command *command = NULL; 3814 3815 mutex_lock(&xhci->mutex); 3816 3817 if (xhci->xhc_state) /* dying, removing or halted */ 3818 goto out; 3819 3820 if (!udev->slot_id) { 3821 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3822 "Bad Slot ID %d", udev->slot_id); 3823 ret = -EINVAL; 3824 goto out; 3825 } 3826 3827 virt_dev = xhci->devs[udev->slot_id]; 3828 3829 if (WARN_ON(!virt_dev)) { 3830 /* 3831 * In plug/unplug torture test with an NEC controller, 3832 * a zero-dereference was observed once due to virt_dev = 0. 3833 * Print useful debug rather than crash if it is observed again! 3834 */ 3835 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3836 udev->slot_id); 3837 ret = -EINVAL; 3838 goto out; 3839 } 3840 3841 if (setup == SETUP_CONTEXT_ONLY) { 3842 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3843 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3844 SLOT_STATE_DEFAULT) { 3845 xhci_dbg(xhci, "Slot already in default state\n"); 3846 goto out; 3847 } 3848 } 3849 3850 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3851 if (!command) { 3852 ret = -ENOMEM; 3853 goto out; 3854 } 3855 3856 command->in_ctx = virt_dev->in_ctx; 3857 command->completion = &xhci->addr_dev; 3858 3859 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3860 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3861 if (!ctrl_ctx) { 3862 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3863 __func__); 3864 ret = -EINVAL; 3865 goto out; 3866 } 3867 /* 3868 * If this is the first Set Address since device plug-in or 3869 * virt_device realloaction after a resume with an xHCI power loss, 3870 * then set up the slot context. 3871 */ 3872 if (!slot_ctx->dev_info) 3873 xhci_setup_addressable_virt_dev(xhci, udev); 3874 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3875 else 3876 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3877 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3878 ctrl_ctx->drop_flags = 0; 3879 3880 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3881 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3882 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3883 le32_to_cpu(slot_ctx->dev_info) >> 27); 3884 3885 spin_lock_irqsave(&xhci->lock, flags); 3886 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3887 udev->slot_id, setup); 3888 if (ret) { 3889 spin_unlock_irqrestore(&xhci->lock, flags); 3890 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3891 "FIXME: allocate a command ring segment"); 3892 goto out; 3893 } 3894 xhci_ring_cmd_db(xhci); 3895 spin_unlock_irqrestore(&xhci->lock, flags); 3896 3897 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3898 wait_for_completion(command->completion); 3899 3900 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3901 * the SetAddress() "recovery interval" required by USB and aborting the 3902 * command on a timeout. 3903 */ 3904 switch (command->status) { 3905 case COMP_CMD_ABORT: 3906 case COMP_CMD_STOP: 3907 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3908 ret = -ETIME; 3909 break; 3910 case COMP_CTX_STATE: 3911 case COMP_EBADSLT: 3912 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3913 act, udev->slot_id); 3914 ret = -EINVAL; 3915 break; 3916 case COMP_TX_ERR: 3917 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3918 ret = -EPROTO; 3919 break; 3920 case COMP_DEV_ERR: 3921 dev_warn(&udev->dev, 3922 "ERROR: Incompatible device for setup %s command\n", act); 3923 ret = -ENODEV; 3924 break; 3925 case COMP_SUCCESS: 3926 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3927 "Successful setup %s command", act); 3928 break; 3929 default: 3930 xhci_err(xhci, 3931 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3932 act, command->status); 3933 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3934 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3935 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3936 ret = -EINVAL; 3937 break; 3938 } 3939 if (ret) 3940 goto out; 3941 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3942 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3943 "Op regs DCBAA ptr = %#016llx", temp_64); 3944 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3945 "Slot ID %d dcbaa entry @%p = %#016llx", 3946 udev->slot_id, 3947 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3948 (unsigned long long) 3949 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3950 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3951 "Output Context DMA address = %#08llx", 3952 (unsigned long long)virt_dev->out_ctx->dma); 3953 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3954 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3955 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3956 le32_to_cpu(slot_ctx->dev_info) >> 27); 3957 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3958 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3959 /* 3960 * USB core uses address 1 for the roothubs, so we add one to the 3961 * address given back to us by the HC. 3962 */ 3963 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3964 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3965 le32_to_cpu(slot_ctx->dev_info) >> 27); 3966 /* Zero the input context control for later use */ 3967 ctrl_ctx->add_flags = 0; 3968 ctrl_ctx->drop_flags = 0; 3969 3970 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3971 "Internal device address = %d", 3972 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3973out: 3974 mutex_unlock(&xhci->mutex); 3975 kfree(command); 3976 return ret; 3977} 3978 3979int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3980{ 3981 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3982} 3983 3984int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3985{ 3986 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3987} 3988 3989/* 3990 * Transfer the port index into real index in the HW port status 3991 * registers. Caculate offset between the port's PORTSC register 3992 * and port status base. Divide the number of per port register 3993 * to get the real index. The raw port number bases 1. 3994 */ 3995int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3996{ 3997 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3998 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3999 __le32 __iomem *addr; 4000 int raw_port; 4001 4002 if (hcd->speed != HCD_USB3) 4003 addr = xhci->usb2_ports[port1 - 1]; 4004 else 4005 addr = xhci->usb3_ports[port1 - 1]; 4006 4007 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 4008 return raw_port; 4009} 4010 4011/* 4012 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4013 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4014 */ 4015static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4016 struct usb_device *udev, u16 max_exit_latency) 4017{ 4018 struct xhci_virt_device *virt_dev; 4019 struct xhci_command *command; 4020 struct xhci_input_control_ctx *ctrl_ctx; 4021 struct xhci_slot_ctx *slot_ctx; 4022 unsigned long flags; 4023 int ret; 4024 4025 spin_lock_irqsave(&xhci->lock, flags); 4026 4027 virt_dev = xhci->devs[udev->slot_id]; 4028 4029 /* 4030 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4031 * xHC was re-initialized. Exit latency will be set later after 4032 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4033 */ 4034 4035 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4036 spin_unlock_irqrestore(&xhci->lock, flags); 4037 return 0; 4038 } 4039 4040 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4041 command = xhci->lpm_command; 4042 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4043 if (!ctrl_ctx) { 4044 spin_unlock_irqrestore(&xhci->lock, flags); 4045 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4046 __func__); 4047 return -ENOMEM; 4048 } 4049 4050 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4051 spin_unlock_irqrestore(&xhci->lock, flags); 4052 4053 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4054 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4055 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4056 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4057 slot_ctx->dev_state = 0; 4058 4059 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4060 "Set up evaluate context for LPM MEL change."); 4061 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4062 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4063 4064 /* Issue and wait for the evaluate context command. */ 4065 ret = xhci_configure_endpoint(xhci, udev, command, 4066 true, true); 4067 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4068 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4069 4070 if (!ret) { 4071 spin_lock_irqsave(&xhci->lock, flags); 4072 virt_dev->current_mel = max_exit_latency; 4073 spin_unlock_irqrestore(&xhci->lock, flags); 4074 } 4075 return ret; 4076} 4077 4078#ifdef CONFIG_PM 4079 4080/* BESL to HIRD Encoding array for USB2 LPM */ 4081static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4082 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4083 4084/* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4085static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4086 struct usb_device *udev) 4087{ 4088 int u2del, besl, besl_host; 4089 int besl_device = 0; 4090 u32 field; 4091 4092 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4093 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4094 4095 if (field & USB_BESL_SUPPORT) { 4096 for (besl_host = 0; besl_host < 16; besl_host++) { 4097 if (xhci_besl_encoding[besl_host] >= u2del) 4098 break; 4099 } 4100 /* Use baseline BESL value as default */ 4101 if (field & USB_BESL_BASELINE_VALID) 4102 besl_device = USB_GET_BESL_BASELINE(field); 4103 else if (field & USB_BESL_DEEP_VALID) 4104 besl_device = USB_GET_BESL_DEEP(field); 4105 } else { 4106 if (u2del <= 50) 4107 besl_host = 0; 4108 else 4109 besl_host = (u2del - 51) / 75 + 1; 4110 } 4111 4112 besl = besl_host + besl_device; 4113 if (besl > 15) 4114 besl = 15; 4115 4116 return besl; 4117} 4118 4119/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4120static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4121{ 4122 u32 field; 4123 int l1; 4124 int besld = 0; 4125 int hirdm = 0; 4126 4127 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4128 4129 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4130 l1 = udev->l1_params.timeout / 256; 4131 4132 /* device has preferred BESLD */ 4133 if (field & USB_BESL_DEEP_VALID) { 4134 besld = USB_GET_BESL_DEEP(field); 4135 hirdm = 1; 4136 } 4137 4138 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4139} 4140 4141int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4142 struct usb_device *udev, int enable) 4143{ 4144 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4145 __le32 __iomem **port_array; 4146 __le32 __iomem *pm_addr, *hlpm_addr; 4147 u32 pm_val, hlpm_val, field; 4148 unsigned int port_num; 4149 unsigned long flags; 4150 int hird, exit_latency; 4151 int ret; 4152 4153 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4154 !udev->lpm_capable) 4155 return -EPERM; 4156 4157 if (!udev->parent || udev->parent->parent || 4158 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4159 return -EPERM; 4160 4161 if (udev->usb2_hw_lpm_capable != 1) 4162 return -EPERM; 4163 4164 spin_lock_irqsave(&xhci->lock, flags); 4165 4166 port_array = xhci->usb2_ports; 4167 port_num = udev->portnum - 1; 4168 pm_addr = port_array[port_num] + PORTPMSC; 4169 pm_val = readl(pm_addr); 4170 hlpm_addr = port_array[port_num] + PORTHLPMC; 4171 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4172 4173 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4174 enable ? "enable" : "disable", port_num + 1); 4175 4176 if (enable) { 4177 /* Host supports BESL timeout instead of HIRD */ 4178 if (udev->usb2_hw_lpm_besl_capable) { 4179 /* if device doesn't have a preferred BESL value use a 4180 * default one which works with mixed HIRD and BESL 4181 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4182 */ 4183 if ((field & USB_BESL_SUPPORT) && 4184 (field & USB_BESL_BASELINE_VALID)) 4185 hird = USB_GET_BESL_BASELINE(field); 4186 else 4187 hird = udev->l1_params.besl; 4188 4189 exit_latency = xhci_besl_encoding[hird]; 4190 spin_unlock_irqrestore(&xhci->lock, flags); 4191 4192 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4193 * input context for link powermanagement evaluate 4194 * context commands. It is protected by hcd->bandwidth 4195 * mutex and is shared by all devices. We need to set 4196 * the max ext latency in USB 2 BESL LPM as well, so 4197 * use the same mutex and xhci_change_max_exit_latency() 4198 */ 4199 mutex_lock(hcd->bandwidth_mutex); 4200 ret = xhci_change_max_exit_latency(xhci, udev, 4201 exit_latency); 4202 mutex_unlock(hcd->bandwidth_mutex); 4203 4204 if (ret < 0) 4205 return ret; 4206 spin_lock_irqsave(&xhci->lock, flags); 4207 4208 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4209 writel(hlpm_val, hlpm_addr); 4210 /* flush write */ 4211 readl(hlpm_addr); 4212 } else { 4213 hird = xhci_calculate_hird_besl(xhci, udev); 4214 } 4215 4216 pm_val &= ~PORT_HIRD_MASK; 4217 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4218 writel(pm_val, pm_addr); 4219 pm_val = readl(pm_addr); 4220 pm_val |= PORT_HLE; 4221 writel(pm_val, pm_addr); 4222 /* flush write */ 4223 readl(pm_addr); 4224 } else { 4225 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4226 writel(pm_val, pm_addr); 4227 /* flush write */ 4228 readl(pm_addr); 4229 if (udev->usb2_hw_lpm_besl_capable) { 4230 spin_unlock_irqrestore(&xhci->lock, flags); 4231 mutex_lock(hcd->bandwidth_mutex); 4232 xhci_change_max_exit_latency(xhci, udev, 0); 4233 mutex_unlock(hcd->bandwidth_mutex); 4234 return 0; 4235 } 4236 } 4237 4238 spin_unlock_irqrestore(&xhci->lock, flags); 4239 return 0; 4240} 4241 4242/* check if a usb2 port supports a given extened capability protocol 4243 * only USB2 ports extended protocol capability values are cached. 4244 * Return 1 if capability is supported 4245 */ 4246static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4247 unsigned capability) 4248{ 4249 u32 port_offset, port_count; 4250 int i; 4251 4252 for (i = 0; i < xhci->num_ext_caps; i++) { 4253 if (xhci->ext_caps[i] & capability) { 4254 /* port offsets starts at 1 */ 4255 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4256 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4257 if (port >= port_offset && 4258 port < port_offset + port_count) 4259 return 1; 4260 } 4261 } 4262 return 0; 4263} 4264 4265int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4266{ 4267 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4268 int portnum = udev->portnum - 1; 4269 4270 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4271 !udev->lpm_capable) 4272 return 0; 4273 4274 /* we only support lpm for non-hub device connected to root hub yet */ 4275 if (!udev->parent || udev->parent->parent || 4276 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4277 return 0; 4278 4279 if (xhci->hw_lpm_support == 1 && 4280 xhci_check_usb2_port_capability( 4281 xhci, portnum, XHCI_HLC)) { 4282 udev->usb2_hw_lpm_capable = 1; 4283 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4284 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4285 if (xhci_check_usb2_port_capability(xhci, portnum, 4286 XHCI_BLC)) 4287 udev->usb2_hw_lpm_besl_capable = 1; 4288 } 4289 4290 return 0; 4291} 4292 4293/*---------------------- USB 3.0 Link PM functions ------------------------*/ 4294 4295/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4296static unsigned long long xhci_service_interval_to_ns( 4297 struct usb_endpoint_descriptor *desc) 4298{ 4299 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4300} 4301 4302static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4303 enum usb3_link_state state) 4304{ 4305 unsigned long long sel; 4306 unsigned long long pel; 4307 unsigned int max_sel_pel; 4308 char *state_name; 4309 4310 switch (state) { 4311 case USB3_LPM_U1: 4312 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4313 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4314 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4315 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4316 state_name = "U1"; 4317 break; 4318 case USB3_LPM_U2: 4319 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4320 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4321 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4322 state_name = "U2"; 4323 break; 4324 default: 4325 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4326 __func__); 4327 return USB3_LPM_DISABLED; 4328 } 4329 4330 if (sel <= max_sel_pel && pel <= max_sel_pel) 4331 return USB3_LPM_DEVICE_INITIATED; 4332 4333 if (sel > max_sel_pel) 4334 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4335 "due to long SEL %llu ms\n", 4336 state_name, sel); 4337 else 4338 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4339 "due to long PEL %llu ms\n", 4340 state_name, pel); 4341 return USB3_LPM_DISABLED; 4342} 4343 4344/* The U1 timeout should be the maximum of the following values: 4345 * - For control endpoints, U1 system exit latency (SEL) * 3 4346 * - For bulk endpoints, U1 SEL * 5 4347 * - For interrupt endpoints: 4348 * - Notification EPs, U1 SEL * 3 4349 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4350 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4351 */ 4352static unsigned long long xhci_calculate_intel_u1_timeout( 4353 struct usb_device *udev, 4354 struct usb_endpoint_descriptor *desc) 4355{ 4356 unsigned long long timeout_ns; 4357 int ep_type; 4358 int intr_type; 4359 4360 ep_type = usb_endpoint_type(desc); 4361 switch (ep_type) { 4362 case USB_ENDPOINT_XFER_CONTROL: 4363 timeout_ns = udev->u1_params.sel * 3; 4364 break; 4365 case USB_ENDPOINT_XFER_BULK: 4366 timeout_ns = udev->u1_params.sel * 5; 4367 break; 4368 case USB_ENDPOINT_XFER_INT: 4369 intr_type = usb_endpoint_interrupt_type(desc); 4370 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4371 timeout_ns = udev->u1_params.sel * 3; 4372 break; 4373 } 4374 /* Otherwise the calculation is the same as isoc eps */ 4375 case USB_ENDPOINT_XFER_ISOC: 4376 timeout_ns = xhci_service_interval_to_ns(desc); 4377 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4378 if (timeout_ns < udev->u1_params.sel * 2) 4379 timeout_ns = udev->u1_params.sel * 2; 4380 break; 4381 default: 4382 return 0; 4383 } 4384 4385 return timeout_ns; 4386} 4387 4388/* Returns the hub-encoded U1 timeout value. */ 4389static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4390 struct usb_device *udev, 4391 struct usb_endpoint_descriptor *desc) 4392{ 4393 unsigned long long timeout_ns; 4394 4395 if (xhci->quirks & XHCI_INTEL_HOST) 4396 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4397 else 4398 timeout_ns = udev->u1_params.sel; 4399 4400 /* The U1 timeout is encoded in 1us intervals. 4401 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4402 */ 4403 if (timeout_ns == USB3_LPM_DISABLED) 4404 timeout_ns = 1; 4405 else 4406 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4407 4408 /* If the necessary timeout value is bigger than what we can set in the 4409 * USB 3.0 hub, we have to disable hub-initiated U1. 4410 */ 4411 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4412 return timeout_ns; 4413 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4414 "due to long timeout %llu ms\n", timeout_ns); 4415 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4416} 4417 4418/* The U2 timeout should be the maximum of: 4419 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4420 * - largest bInterval of any active periodic endpoint (to avoid going 4421 * into lower power link states between intervals). 4422 * - the U2 Exit Latency of the device 4423 */ 4424static unsigned long long xhci_calculate_intel_u2_timeout( 4425 struct usb_device *udev, 4426 struct usb_endpoint_descriptor *desc) 4427{ 4428 unsigned long long timeout_ns; 4429 unsigned long long u2_del_ns; 4430 4431 timeout_ns = 10 * 1000 * 1000; 4432 4433 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4434 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4435 timeout_ns = xhci_service_interval_to_ns(desc); 4436 4437 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4438 if (u2_del_ns > timeout_ns) 4439 timeout_ns = u2_del_ns; 4440 4441 return timeout_ns; 4442} 4443 4444/* Returns the hub-encoded U2 timeout value. */ 4445static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4446 struct usb_device *udev, 4447 struct usb_endpoint_descriptor *desc) 4448{ 4449 unsigned long long timeout_ns; 4450 4451 if (xhci->quirks & XHCI_INTEL_HOST) 4452 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4453 else 4454 timeout_ns = udev->u2_params.sel; 4455 4456 /* The U2 timeout is encoded in 256us intervals */ 4457 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4458 /* If the necessary timeout value is bigger than what we can set in the 4459 * USB 3.0 hub, we have to disable hub-initiated U2. 4460 */ 4461 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4462 return timeout_ns; 4463 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4464 "due to long timeout %llu ms\n", timeout_ns); 4465 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4466} 4467 4468static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4469 struct usb_device *udev, 4470 struct usb_endpoint_descriptor *desc, 4471 enum usb3_link_state state, 4472 u16 *timeout) 4473{ 4474 if (state == USB3_LPM_U1) 4475 return xhci_calculate_u1_timeout(xhci, udev, desc); 4476 else if (state == USB3_LPM_U2) 4477 return xhci_calculate_u2_timeout(xhci, udev, desc); 4478 4479 return USB3_LPM_DISABLED; 4480} 4481 4482static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4483 struct usb_device *udev, 4484 struct usb_endpoint_descriptor *desc, 4485 enum usb3_link_state state, 4486 u16 *timeout) 4487{ 4488 u16 alt_timeout; 4489 4490 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4491 desc, state, timeout); 4492 4493 /* If we found we can't enable hub-initiated LPM, or 4494 * the U1 or U2 exit latency was too high to allow 4495 * device-initiated LPM as well, just stop searching. 4496 */ 4497 if (alt_timeout == USB3_LPM_DISABLED || 4498 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4499 *timeout = alt_timeout; 4500 return -E2BIG; 4501 } 4502 if (alt_timeout > *timeout) 4503 *timeout = alt_timeout; 4504 return 0; 4505} 4506 4507static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4508 struct usb_device *udev, 4509 struct usb_host_interface *alt, 4510 enum usb3_link_state state, 4511 u16 *timeout) 4512{ 4513 int j; 4514 4515 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4516 if (xhci_update_timeout_for_endpoint(xhci, udev, 4517 &alt->endpoint[j].desc, state, timeout)) 4518 return -E2BIG; 4519 continue; 4520 } 4521 return 0; 4522} 4523 4524static int xhci_check_intel_tier_policy(struct usb_device *udev, 4525 enum usb3_link_state state) 4526{ 4527 struct usb_device *parent; 4528 unsigned int num_hubs; 4529 4530 if (state == USB3_LPM_U2) 4531 return 0; 4532 4533 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4534 for (parent = udev->parent, num_hubs = 0; parent->parent; 4535 parent = parent->parent) 4536 num_hubs++; 4537 4538 if (num_hubs < 2) 4539 return 0; 4540 4541 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4542 " below second-tier hub.\n"); 4543 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4544 "to decrease power consumption.\n"); 4545 return -E2BIG; 4546} 4547 4548static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4549 struct usb_device *udev, 4550 enum usb3_link_state state) 4551{ 4552 if (xhci->quirks & XHCI_INTEL_HOST) 4553 return xhci_check_intel_tier_policy(udev, state); 4554 else 4555 return 0; 4556} 4557 4558/* Returns the U1 or U2 timeout that should be enabled. 4559 * If the tier check or timeout setting functions return with a non-zero exit 4560 * code, that means the timeout value has been finalized and we shouldn't look 4561 * at any more endpoints. 4562 */ 4563static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4564 struct usb_device *udev, enum usb3_link_state state) 4565{ 4566 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4567 struct usb_host_config *config; 4568 char *state_name; 4569 int i; 4570 u16 timeout = USB3_LPM_DISABLED; 4571 4572 if (state == USB3_LPM_U1) 4573 state_name = "U1"; 4574 else if (state == USB3_LPM_U2) 4575 state_name = "U2"; 4576 else { 4577 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4578 state); 4579 return timeout; 4580 } 4581 4582 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4583 return timeout; 4584 4585 /* Gather some information about the currently installed configuration 4586 * and alternate interface settings. 4587 */ 4588 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4589 state, &timeout)) 4590 return timeout; 4591 4592 config = udev->actconfig; 4593 if (!config) 4594 return timeout; 4595 4596 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4597 struct usb_driver *driver; 4598 struct usb_interface *intf = config->interface[i]; 4599 4600 if (!intf) 4601 continue; 4602 4603 /* Check if any currently bound drivers want hub-initiated LPM 4604 * disabled. 4605 */ 4606 if (intf->dev.driver) { 4607 driver = to_usb_driver(intf->dev.driver); 4608 if (driver && driver->disable_hub_initiated_lpm) { 4609 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4610 "at request of driver %s\n", 4611 state_name, driver->name); 4612 return xhci_get_timeout_no_hub_lpm(udev, state); 4613 } 4614 } 4615 4616 /* Not sure how this could happen... */ 4617 if (!intf->cur_altsetting) 4618 continue; 4619 4620 if (xhci_update_timeout_for_interface(xhci, udev, 4621 intf->cur_altsetting, 4622 state, &timeout)) 4623 return timeout; 4624 } 4625 return timeout; 4626} 4627 4628static int calculate_max_exit_latency(struct usb_device *udev, 4629 enum usb3_link_state state_changed, 4630 u16 hub_encoded_timeout) 4631{ 4632 unsigned long long u1_mel_us = 0; 4633 unsigned long long u2_mel_us = 0; 4634 unsigned long long mel_us = 0; 4635 bool disabling_u1; 4636 bool disabling_u2; 4637 bool enabling_u1; 4638 bool enabling_u2; 4639 4640 disabling_u1 = (state_changed == USB3_LPM_U1 && 4641 hub_encoded_timeout == USB3_LPM_DISABLED); 4642 disabling_u2 = (state_changed == USB3_LPM_U2 && 4643 hub_encoded_timeout == USB3_LPM_DISABLED); 4644 4645 enabling_u1 = (state_changed == USB3_LPM_U1 && 4646 hub_encoded_timeout != USB3_LPM_DISABLED); 4647 enabling_u2 = (state_changed == USB3_LPM_U2 && 4648 hub_encoded_timeout != USB3_LPM_DISABLED); 4649 4650 /* If U1 was already enabled and we're not disabling it, 4651 * or we're going to enable U1, account for the U1 max exit latency. 4652 */ 4653 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4654 enabling_u1) 4655 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4656 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4657 enabling_u2) 4658 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4659 4660 if (u1_mel_us > u2_mel_us) 4661 mel_us = u1_mel_us; 4662 else 4663 mel_us = u2_mel_us; 4664 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4665 if (mel_us > MAX_EXIT) { 4666 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4667 "is too big.\n", mel_us); 4668 return -E2BIG; 4669 } 4670 return mel_us; 4671} 4672 4673/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4674int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4675 struct usb_device *udev, enum usb3_link_state state) 4676{ 4677 struct xhci_hcd *xhci; 4678 u16 hub_encoded_timeout; 4679 int mel; 4680 int ret; 4681 4682 xhci = hcd_to_xhci(hcd); 4683 /* The LPM timeout values are pretty host-controller specific, so don't 4684 * enable hub-initiated timeouts unless the vendor has provided 4685 * information about their timeout algorithm. 4686 */ 4687 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4688 !xhci->devs[udev->slot_id]) 4689 return USB3_LPM_DISABLED; 4690 4691 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4692 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4693 if (mel < 0) { 4694 /* Max Exit Latency is too big, disable LPM. */ 4695 hub_encoded_timeout = USB3_LPM_DISABLED; 4696 mel = 0; 4697 } 4698 4699 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4700 if (ret) 4701 return ret; 4702 return hub_encoded_timeout; 4703} 4704 4705int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4706 struct usb_device *udev, enum usb3_link_state state) 4707{ 4708 struct xhci_hcd *xhci; 4709 u16 mel; 4710 int ret; 4711 4712 xhci = hcd_to_xhci(hcd); 4713 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4714 !xhci->devs[udev->slot_id]) 4715 return 0; 4716 4717 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4718 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4719 if (ret) 4720 return ret; 4721 return 0; 4722} 4723#else /* CONFIG_PM */ 4724 4725int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4726 struct usb_device *udev, int enable) 4727{ 4728 return 0; 4729} 4730 4731int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4732{ 4733 return 0; 4734} 4735 4736int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4737 struct usb_device *udev, enum usb3_link_state state) 4738{ 4739 return USB3_LPM_DISABLED; 4740} 4741 4742int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4743 struct usb_device *udev, enum usb3_link_state state) 4744{ 4745 return 0; 4746} 4747#endif /* CONFIG_PM */ 4748 4749/*-------------------------------------------------------------------------*/ 4750 4751/* Once a hub descriptor is fetched for a device, we need to update the xHC's 4752 * internal data structures for the device. 4753 */ 4754int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4755 struct usb_tt *tt, gfp_t mem_flags) 4756{ 4757 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4758 struct xhci_virt_device *vdev; 4759 struct xhci_command *config_cmd; 4760 struct xhci_input_control_ctx *ctrl_ctx; 4761 struct xhci_slot_ctx *slot_ctx; 4762 unsigned long flags; 4763 unsigned think_time; 4764 int ret; 4765 4766 /* Ignore root hubs */ 4767 if (!hdev->parent) 4768 return 0; 4769 4770 vdev = xhci->devs[hdev->slot_id]; 4771 if (!vdev) { 4772 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4773 return -EINVAL; 4774 } 4775 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4776 if (!config_cmd) { 4777 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4778 return -ENOMEM; 4779 } 4780 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4781 if (!ctrl_ctx) { 4782 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4783 __func__); 4784 xhci_free_command(xhci, config_cmd); 4785 return -ENOMEM; 4786 } 4787 4788 spin_lock_irqsave(&xhci->lock, flags); 4789 if (hdev->speed == USB_SPEED_HIGH && 4790 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4791 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4792 xhci_free_command(xhci, config_cmd); 4793 spin_unlock_irqrestore(&xhci->lock, flags); 4794 return -ENOMEM; 4795 } 4796 4797 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4798 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4799 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4800 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4801 /* 4802 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4803 * but it may be already set to 1 when setup an xHCI virtual 4804 * device, so clear it anyway. 4805 */ 4806 if (tt->multi) 4807 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4808 else if (hdev->speed == USB_SPEED_FULL) 4809 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4810 4811 if (xhci->hci_version > 0x95) { 4812 xhci_dbg(xhci, "xHCI version %x needs hub " 4813 "TT think time and number of ports\n", 4814 (unsigned int) xhci->hci_version); 4815 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4816 /* Set TT think time - convert from ns to FS bit times. 4817 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4818 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4819 * 4820 * xHCI 1.0: this field shall be 0 if the device is not a 4821 * High-spped hub. 4822 */ 4823 think_time = tt->think_time; 4824 if (think_time != 0) 4825 think_time = (think_time / 666) - 1; 4826 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4827 slot_ctx->tt_info |= 4828 cpu_to_le32(TT_THINK_TIME(think_time)); 4829 } else { 4830 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4831 "TT think time or number of ports\n", 4832 (unsigned int) xhci->hci_version); 4833 } 4834 slot_ctx->dev_state = 0; 4835 spin_unlock_irqrestore(&xhci->lock, flags); 4836 4837 xhci_dbg(xhci, "Set up %s for hub device.\n", 4838 (xhci->hci_version > 0x95) ? 4839 "configure endpoint" : "evaluate context"); 4840 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4841 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4842 4843 /* Issue and wait for the configure endpoint or 4844 * evaluate context command. 4845 */ 4846 if (xhci->hci_version > 0x95) 4847 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4848 false, false); 4849 else 4850 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4851 true, false); 4852 4853 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4854 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4855 4856 xhci_free_command(xhci, config_cmd); 4857 return ret; 4858} 4859 4860int xhci_get_frame(struct usb_hcd *hcd) 4861{ 4862 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4863 /* EHCI mods by the periodic size. Why? */ 4864 return readl(&xhci->run_regs->microframe_index) >> 3; 4865} 4866 4867int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4868{ 4869 struct xhci_hcd *xhci; 4870 struct device *dev = hcd->self.controller; 4871 int retval; 4872 4873 /* Accept arbitrarily long scatter-gather lists */ 4874 hcd->self.sg_tablesize = ~0; 4875 4876 /* support to build packet from discontinuous buffers */ 4877 hcd->self.no_sg_constraint = 1; 4878 4879 /* XHCI controllers don't stop the ep queue on short packets :| */ 4880 hcd->self.no_stop_on_short = 1; 4881 4882 if (usb_hcd_is_primary_hcd(hcd)) { 4883 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4884 if (!xhci) 4885 return -ENOMEM; 4886 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4887 xhci->main_hcd = hcd; 4888 /* Mark the first roothub as being USB 2.0. 4889 * The xHCI driver will register the USB 3.0 roothub. 4890 */ 4891 hcd->speed = HCD_USB2; 4892 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4893 /* 4894 * USB 2.0 roothub under xHCI has an integrated TT, 4895 * (rate matching hub) as opposed to having an OHCI/UHCI 4896 * companion controller. 4897 */ 4898 hcd->has_tt = 1; 4899 } else { 4900 /* xHCI private pointer was set in xhci_pci_probe for the second 4901 * registered roothub. 4902 */ 4903 return 0; 4904 } 4905 4906 mutex_init(&xhci->mutex); 4907 xhci->cap_regs = hcd->regs; 4908 xhci->op_regs = hcd->regs + 4909 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4910 xhci->run_regs = hcd->regs + 4911 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4912 /* Cache read-only capability registers */ 4913 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4914 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4915 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4916 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4917 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4918 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4919 xhci_print_registers(xhci); 4920 4921 xhci->quirks = quirks; 4922 4923 get_quirks(dev, xhci); 4924 4925 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4926 * success event after a short transfer. This quirk will ignore such 4927 * spurious event. 4928 */ 4929 if (xhci->hci_version > 0x96) 4930 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4931 4932 /* Make sure the HC is halted. */ 4933 retval = xhci_halt(xhci); 4934 if (retval) 4935 goto error; 4936 4937 xhci_dbg(xhci, "Resetting HCD\n"); 4938 /* Reset the internal HC memory state and registers. */ 4939 retval = xhci_reset(xhci); 4940 if (retval) 4941 goto error; 4942 xhci_dbg(xhci, "Reset complete\n"); 4943 4944 /* 4945 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4946 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4947 * address memory pointers actually. So, this driver clears the AC64 4948 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4949 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4950 */ 4951 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4952 xhci->hcc_params &= ~BIT(0); 4953 4954 /* Set dma_mask and coherent_dma_mask to 64-bits, 4955 * if xHC supports 64-bit addressing */ 4956 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4957 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4958 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4959 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4960 } 4961 4962 xhci_dbg(xhci, "Calling HCD init\n"); 4963 /* Initialize HCD and host controller data structures. */ 4964 retval = xhci_init(hcd); 4965 if (retval) 4966 goto error; 4967 xhci_dbg(xhci, "Called HCD init\n"); 4968 4969 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4970 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4971 4972 return 0; 4973error: 4974 kfree(xhci); 4975 return retval; 4976} 4977EXPORT_SYMBOL_GPL(xhci_gen_setup); 4978 4979static const struct hc_driver xhci_hc_driver = { 4980 .description = "xhci-hcd", 4981 .product_desc = "xHCI Host Controller", 4982 .hcd_priv_size = sizeof(struct xhci_hcd *), 4983 4984 /* 4985 * generic hardware linkage 4986 */ 4987 .irq = xhci_irq, 4988 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4989 4990 /* 4991 * basic lifecycle operations 4992 */ 4993 .reset = NULL, /* set in xhci_init_driver() */ 4994 .start = xhci_run, 4995 .stop = xhci_stop, 4996 .shutdown = xhci_shutdown, 4997 4998 /* 4999 * managing i/o requests and associated device resources 5000 */ 5001 .urb_enqueue = xhci_urb_enqueue, 5002 .urb_dequeue = xhci_urb_dequeue, 5003 .alloc_dev = xhci_alloc_dev, 5004 .free_dev = xhci_free_dev, 5005 .alloc_streams = xhci_alloc_streams, 5006 .free_streams = xhci_free_streams, 5007 .add_endpoint = xhci_add_endpoint, 5008 .drop_endpoint = xhci_drop_endpoint, 5009 .endpoint_reset = xhci_endpoint_reset, 5010 .check_bandwidth = xhci_check_bandwidth, 5011 .reset_bandwidth = xhci_reset_bandwidth, 5012 .address_device = xhci_address_device, 5013 .enable_device = xhci_enable_device, 5014 .update_hub_device = xhci_update_hub_device, 5015 .reset_device = xhci_discover_or_reset_device, 5016 5017 /* 5018 * scheduling support 5019 */ 5020 .get_frame_number = xhci_get_frame, 5021 5022 /* 5023 * root hub support 5024 */ 5025 .hub_control = xhci_hub_control, 5026 .hub_status_data = xhci_hub_status_data, 5027 .bus_suspend = xhci_bus_suspend, 5028 .bus_resume = xhci_bus_resume, 5029 5030 /* 5031 * call back when device connected and addressed 5032 */ 5033 .update_device = xhci_update_device, 5034 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5035 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5036 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5037 .find_raw_port_number = xhci_find_raw_port_number, 5038}; 5039 5040void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *)) 5041{ 5042 BUG_ON(!setup_fn); 5043 *drv = xhci_hc_driver; 5044 drv->reset = setup_fn; 5045} 5046EXPORT_SYMBOL_GPL(xhci_init_driver); 5047 5048MODULE_DESCRIPTION(DRIVER_DESC); 5049MODULE_AUTHOR(DRIVER_AUTHOR); 5050MODULE_LICENSE("GPL"); 5051 5052static int __init xhci_hcd_init(void) 5053{ 5054 /* 5055 * Check the compiler generated sizes of structures that must be laid 5056 * out in specific ways for hardware access. 5057 */ 5058 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5059 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5060 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5061 /* xhci_device_control has eight fields, and also 5062 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5063 */ 5064 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5065 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5066 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5067 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 5068 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5069 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5070 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5071 5072 if (usb_disabled()) 5073 return -ENODEV; 5074 5075 return 0; 5076} 5077 5078/* 5079 * If an init function is provided, an exit function must also be provided 5080 * to allow module unload. 5081 */ 5082static void __exit xhci_hcd_fini(void) { } 5083 5084module_init(xhci_hcd_init); 5085module_exit(xhci_hcd_fini); 5086