1/*
2 *  linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  from
10 *
11 *  linux/fs/minix/inode.c
12 *
13 *  Copyright (C) 1991, 1992  Linus Torvalds
14 *
15 *  Goal-directed block allocation by Stephen Tweedie
16 * 	(sct@dcs.ed.ac.uk), 1993, 1998
17 *  Big-endian to little-endian byte-swapping/bitmaps by
18 *        David S. Miller (davem@caip.rutgers.edu), 1995
19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
20 * 	(jj@sunsite.ms.mff.cuni.cz)
21 *
22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/writeback.h>
30#include <linux/buffer_head.h>
31#include <linux/mpage.h>
32#include <linux/fiemap.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include "ext2.h"
36#include "acl.h"
37#include "xattr.h"
38
39static int __ext2_write_inode(struct inode *inode, int do_sync);
40
41/*
42 * Test whether an inode is a fast symlink.
43 */
44static inline int ext2_inode_is_fast_symlink(struct inode *inode)
45{
46	int ea_blocks = EXT2_I(inode)->i_file_acl ?
47		(inode->i_sb->s_blocksize >> 9) : 0;
48
49	return (S_ISLNK(inode->i_mode) &&
50		inode->i_blocks - ea_blocks == 0);
51}
52
53static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
54
55static void ext2_write_failed(struct address_space *mapping, loff_t to)
56{
57	struct inode *inode = mapping->host;
58
59	if (to > inode->i_size) {
60		truncate_pagecache(inode, inode->i_size);
61		ext2_truncate_blocks(inode, inode->i_size);
62	}
63}
64
65/*
66 * Called at the last iput() if i_nlink is zero.
67 */
68void ext2_evict_inode(struct inode * inode)
69{
70	struct ext2_block_alloc_info *rsv;
71	int want_delete = 0;
72
73	if (!inode->i_nlink && !is_bad_inode(inode)) {
74		want_delete = 1;
75		dquot_initialize(inode);
76	} else {
77		dquot_drop(inode);
78	}
79
80	truncate_inode_pages_final(&inode->i_data);
81
82	if (want_delete) {
83		sb_start_intwrite(inode->i_sb);
84		/* set dtime */
85		EXT2_I(inode)->i_dtime	= get_seconds();
86		mark_inode_dirty(inode);
87		__ext2_write_inode(inode, inode_needs_sync(inode));
88		/* truncate to 0 */
89		inode->i_size = 0;
90		if (inode->i_blocks)
91			ext2_truncate_blocks(inode, 0);
92		ext2_xattr_delete_inode(inode);
93	}
94
95	invalidate_inode_buffers(inode);
96	clear_inode(inode);
97
98	ext2_discard_reservation(inode);
99	rsv = EXT2_I(inode)->i_block_alloc_info;
100	EXT2_I(inode)->i_block_alloc_info = NULL;
101	if (unlikely(rsv))
102		kfree(rsv);
103
104	if (want_delete) {
105		ext2_free_inode(inode);
106		sb_end_intwrite(inode->i_sb);
107	}
108}
109
110typedef struct {
111	__le32	*p;
112	__le32	key;
113	struct buffer_head *bh;
114} Indirect;
115
116static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
117{
118	p->key = *(p->p = v);
119	p->bh = bh;
120}
121
122static inline int verify_chain(Indirect *from, Indirect *to)
123{
124	while (from <= to && from->key == *from->p)
125		from++;
126	return (from > to);
127}
128
129/**
130 *	ext2_block_to_path - parse the block number into array of offsets
131 *	@inode: inode in question (we are only interested in its superblock)
132 *	@i_block: block number to be parsed
133 *	@offsets: array to store the offsets in
134 *      @boundary: set this non-zero if the referred-to block is likely to be
135 *             followed (on disk) by an indirect block.
136 *	To store the locations of file's data ext2 uses a data structure common
137 *	for UNIX filesystems - tree of pointers anchored in the inode, with
138 *	data blocks at leaves and indirect blocks in intermediate nodes.
139 *	This function translates the block number into path in that tree -
140 *	return value is the path length and @offsets[n] is the offset of
141 *	pointer to (n+1)th node in the nth one. If @block is out of range
142 *	(negative or too large) warning is printed and zero returned.
143 *
144 *	Note: function doesn't find node addresses, so no IO is needed. All
145 *	we need to know is the capacity of indirect blocks (taken from the
146 *	inode->i_sb).
147 */
148
149/*
150 * Portability note: the last comparison (check that we fit into triple
151 * indirect block) is spelled differently, because otherwise on an
152 * architecture with 32-bit longs and 8Kb pages we might get into trouble
153 * if our filesystem had 8Kb blocks. We might use long long, but that would
154 * kill us on x86. Oh, well, at least the sign propagation does not matter -
155 * i_block would have to be negative in the very beginning, so we would not
156 * get there at all.
157 */
158
159static int ext2_block_to_path(struct inode *inode,
160			long i_block, int offsets[4], int *boundary)
161{
162	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
163	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
164	const long direct_blocks = EXT2_NDIR_BLOCKS,
165		indirect_blocks = ptrs,
166		double_blocks = (1 << (ptrs_bits * 2));
167	int n = 0;
168	int final = 0;
169
170	if (i_block < 0) {
171		ext2_msg(inode->i_sb, KERN_WARNING,
172			"warning: %s: block < 0", __func__);
173	} else if (i_block < direct_blocks) {
174		offsets[n++] = i_block;
175		final = direct_blocks;
176	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
177		offsets[n++] = EXT2_IND_BLOCK;
178		offsets[n++] = i_block;
179		final = ptrs;
180	} else if ((i_block -= indirect_blocks) < double_blocks) {
181		offsets[n++] = EXT2_DIND_BLOCK;
182		offsets[n++] = i_block >> ptrs_bits;
183		offsets[n++] = i_block & (ptrs - 1);
184		final = ptrs;
185	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
186		offsets[n++] = EXT2_TIND_BLOCK;
187		offsets[n++] = i_block >> (ptrs_bits * 2);
188		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
189		offsets[n++] = i_block & (ptrs - 1);
190		final = ptrs;
191	} else {
192		ext2_msg(inode->i_sb, KERN_WARNING,
193			"warning: %s: block is too big", __func__);
194	}
195	if (boundary)
196		*boundary = final - 1 - (i_block & (ptrs - 1));
197
198	return n;
199}
200
201/**
202 *	ext2_get_branch - read the chain of indirect blocks leading to data
203 *	@inode: inode in question
204 *	@depth: depth of the chain (1 - direct pointer, etc.)
205 *	@offsets: offsets of pointers in inode/indirect blocks
206 *	@chain: place to store the result
207 *	@err: here we store the error value
208 *
209 *	Function fills the array of triples <key, p, bh> and returns %NULL
210 *	if everything went OK or the pointer to the last filled triple
211 *	(incomplete one) otherwise. Upon the return chain[i].key contains
212 *	the number of (i+1)-th block in the chain (as it is stored in memory,
213 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
214 *	number (it points into struct inode for i==0 and into the bh->b_data
215 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
216 *	block for i>0 and NULL for i==0. In other words, it holds the block
217 *	numbers of the chain, addresses they were taken from (and where we can
218 *	verify that chain did not change) and buffer_heads hosting these
219 *	numbers.
220 *
221 *	Function stops when it stumbles upon zero pointer (absent block)
222 *		(pointer to last triple returned, *@err == 0)
223 *	or when it gets an IO error reading an indirect block
224 *		(ditto, *@err == -EIO)
225 *	or when it notices that chain had been changed while it was reading
226 *		(ditto, *@err == -EAGAIN)
227 *	or when it reads all @depth-1 indirect blocks successfully and finds
228 *	the whole chain, all way to the data (returns %NULL, *err == 0).
229 */
230static Indirect *ext2_get_branch(struct inode *inode,
231				 int depth,
232				 int *offsets,
233				 Indirect chain[4],
234				 int *err)
235{
236	struct super_block *sb = inode->i_sb;
237	Indirect *p = chain;
238	struct buffer_head *bh;
239
240	*err = 0;
241	/* i_data is not going away, no lock needed */
242	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
243	if (!p->key)
244		goto no_block;
245	while (--depth) {
246		bh = sb_bread(sb, le32_to_cpu(p->key));
247		if (!bh)
248			goto failure;
249		read_lock(&EXT2_I(inode)->i_meta_lock);
250		if (!verify_chain(chain, p))
251			goto changed;
252		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
253		read_unlock(&EXT2_I(inode)->i_meta_lock);
254		if (!p->key)
255			goto no_block;
256	}
257	return NULL;
258
259changed:
260	read_unlock(&EXT2_I(inode)->i_meta_lock);
261	brelse(bh);
262	*err = -EAGAIN;
263	goto no_block;
264failure:
265	*err = -EIO;
266no_block:
267	return p;
268}
269
270/**
271 *	ext2_find_near - find a place for allocation with sufficient locality
272 *	@inode: owner
273 *	@ind: descriptor of indirect block.
274 *
275 *	This function returns the preferred place for block allocation.
276 *	It is used when heuristic for sequential allocation fails.
277 *	Rules are:
278 *	  + if there is a block to the left of our position - allocate near it.
279 *	  + if pointer will live in indirect block - allocate near that block.
280 *	  + if pointer will live in inode - allocate in the same cylinder group.
281 *
282 * In the latter case we colour the starting block by the callers PID to
283 * prevent it from clashing with concurrent allocations for a different inode
284 * in the same block group.   The PID is used here so that functionally related
285 * files will be close-by on-disk.
286 *
287 *	Caller must make sure that @ind is valid and will stay that way.
288 */
289
290static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
291{
292	struct ext2_inode_info *ei = EXT2_I(inode);
293	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
294	__le32 *p;
295	ext2_fsblk_t bg_start;
296	ext2_fsblk_t colour;
297
298	/* Try to find previous block */
299	for (p = ind->p - 1; p >= start; p--)
300		if (*p)
301			return le32_to_cpu(*p);
302
303	/* No such thing, so let's try location of indirect block */
304	if (ind->bh)
305		return ind->bh->b_blocknr;
306
307	/*
308	 * It is going to be referred from inode itself? OK, just put it into
309	 * the same cylinder group then.
310	 */
311	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
312	colour = (current->pid % 16) *
313			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
314	return bg_start + colour;
315}
316
317/**
318 *	ext2_find_goal - find a preferred place for allocation.
319 *	@inode: owner
320 *	@block:  block we want
321 *	@partial: pointer to the last triple within a chain
322 *
323 *	Returns preferred place for a block (the goal).
324 */
325
326static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
327					  Indirect *partial)
328{
329	struct ext2_block_alloc_info *block_i;
330
331	block_i = EXT2_I(inode)->i_block_alloc_info;
332
333	/*
334	 * try the heuristic for sequential allocation,
335	 * failing that at least try to get decent locality.
336	 */
337	if (block_i && (block == block_i->last_alloc_logical_block + 1)
338		&& (block_i->last_alloc_physical_block != 0)) {
339		return block_i->last_alloc_physical_block + 1;
340	}
341
342	return ext2_find_near(inode, partial);
343}
344
345/**
346 *	ext2_blks_to_allocate: Look up the block map and count the number
347 *	of direct blocks need to be allocated for the given branch.
348 *
349 * 	@branch: chain of indirect blocks
350 *	@k: number of blocks need for indirect blocks
351 *	@blks: number of data blocks to be mapped.
352 *	@blocks_to_boundary:  the offset in the indirect block
353 *
354 *	return the total number of blocks to be allocate, including the
355 *	direct and indirect blocks.
356 */
357static int
358ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
359		int blocks_to_boundary)
360{
361	unsigned long count = 0;
362
363	/*
364	 * Simple case, [t,d]Indirect block(s) has not allocated yet
365	 * then it's clear blocks on that path have not allocated
366	 */
367	if (k > 0) {
368		/* right now don't hanel cross boundary allocation */
369		if (blks < blocks_to_boundary + 1)
370			count += blks;
371		else
372			count += blocks_to_boundary + 1;
373		return count;
374	}
375
376	count++;
377	while (count < blks && count <= blocks_to_boundary
378		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
379		count++;
380	}
381	return count;
382}
383
384/**
385 *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
386 *	@indirect_blks: the number of blocks need to allocate for indirect
387 *			blocks
388 *
389 *	@new_blocks: on return it will store the new block numbers for
390 *	the indirect blocks(if needed) and the first direct block,
391 *	@blks:	on return it will store the total number of allocated
392 *		direct blocks
393 */
394static int ext2_alloc_blocks(struct inode *inode,
395			ext2_fsblk_t goal, int indirect_blks, int blks,
396			ext2_fsblk_t new_blocks[4], int *err)
397{
398	int target, i;
399	unsigned long count = 0;
400	int index = 0;
401	ext2_fsblk_t current_block = 0;
402	int ret = 0;
403
404	/*
405	 * Here we try to allocate the requested multiple blocks at once,
406	 * on a best-effort basis.
407	 * To build a branch, we should allocate blocks for
408	 * the indirect blocks(if not allocated yet), and at least
409	 * the first direct block of this branch.  That's the
410	 * minimum number of blocks need to allocate(required)
411	 */
412	target = blks + indirect_blks;
413
414	while (1) {
415		count = target;
416		/* allocating blocks for indirect blocks and direct blocks */
417		current_block = ext2_new_blocks(inode,goal,&count,err);
418		if (*err)
419			goto failed_out;
420
421		target -= count;
422		/* allocate blocks for indirect blocks */
423		while (index < indirect_blks && count) {
424			new_blocks[index++] = current_block++;
425			count--;
426		}
427
428		if (count > 0)
429			break;
430	}
431
432	/* save the new block number for the first direct block */
433	new_blocks[index] = current_block;
434
435	/* total number of blocks allocated for direct blocks */
436	ret = count;
437	*err = 0;
438	return ret;
439failed_out:
440	for (i = 0; i <index; i++)
441		ext2_free_blocks(inode, new_blocks[i], 1);
442	if (index)
443		mark_inode_dirty(inode);
444	return ret;
445}
446
447/**
448 *	ext2_alloc_branch - allocate and set up a chain of blocks.
449 *	@inode: owner
450 *	@num: depth of the chain (number of blocks to allocate)
451 *	@offsets: offsets (in the blocks) to store the pointers to next.
452 *	@branch: place to store the chain in.
453 *
454 *	This function allocates @num blocks, zeroes out all but the last one,
455 *	links them into chain and (if we are synchronous) writes them to disk.
456 *	In other words, it prepares a branch that can be spliced onto the
457 *	inode. It stores the information about that chain in the branch[], in
458 *	the same format as ext2_get_branch() would do. We are calling it after
459 *	we had read the existing part of chain and partial points to the last
460 *	triple of that (one with zero ->key). Upon the exit we have the same
461 *	picture as after the successful ext2_get_block(), except that in one
462 *	place chain is disconnected - *branch->p is still zero (we did not
463 *	set the last link), but branch->key contains the number that should
464 *	be placed into *branch->p to fill that gap.
465 *
466 *	If allocation fails we free all blocks we've allocated (and forget
467 *	their buffer_heads) and return the error value the from failed
468 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
469 *	as described above and return 0.
470 */
471
472static int ext2_alloc_branch(struct inode *inode,
473			int indirect_blks, int *blks, ext2_fsblk_t goal,
474			int *offsets, Indirect *branch)
475{
476	int blocksize = inode->i_sb->s_blocksize;
477	int i, n = 0;
478	int err = 0;
479	struct buffer_head *bh;
480	int num;
481	ext2_fsblk_t new_blocks[4];
482	ext2_fsblk_t current_block;
483
484	num = ext2_alloc_blocks(inode, goal, indirect_blks,
485				*blks, new_blocks, &err);
486	if (err)
487		return err;
488
489	branch[0].key = cpu_to_le32(new_blocks[0]);
490	/*
491	 * metadata blocks and data blocks are allocated.
492	 */
493	for (n = 1; n <= indirect_blks;  n++) {
494		/*
495		 * Get buffer_head for parent block, zero it out
496		 * and set the pointer to new one, then send
497		 * parent to disk.
498		 */
499		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
500		if (unlikely(!bh)) {
501			err = -ENOMEM;
502			goto failed;
503		}
504		branch[n].bh = bh;
505		lock_buffer(bh);
506		memset(bh->b_data, 0, blocksize);
507		branch[n].p = (__le32 *) bh->b_data + offsets[n];
508		branch[n].key = cpu_to_le32(new_blocks[n]);
509		*branch[n].p = branch[n].key;
510		if ( n == indirect_blks) {
511			current_block = new_blocks[n];
512			/*
513			 * End of chain, update the last new metablock of
514			 * the chain to point to the new allocated
515			 * data blocks numbers
516			 */
517			for (i=1; i < num; i++)
518				*(branch[n].p + i) = cpu_to_le32(++current_block);
519		}
520		set_buffer_uptodate(bh);
521		unlock_buffer(bh);
522		mark_buffer_dirty_inode(bh, inode);
523		/* We used to sync bh here if IS_SYNC(inode).
524		 * But we now rely upon generic_write_sync()
525		 * and b_inode_buffers.  But not for directories.
526		 */
527		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
528			sync_dirty_buffer(bh);
529	}
530	*blks = num;
531	return err;
532
533failed:
534	for (i = 1; i < n; i++)
535		bforget(branch[i].bh);
536	for (i = 0; i < indirect_blks; i++)
537		ext2_free_blocks(inode, new_blocks[i], 1);
538	ext2_free_blocks(inode, new_blocks[i], num);
539	return err;
540}
541
542/**
543 * ext2_splice_branch - splice the allocated branch onto inode.
544 * @inode: owner
545 * @block: (logical) number of block we are adding
546 * @where: location of missing link
547 * @num:   number of indirect blocks we are adding
548 * @blks:  number of direct blocks we are adding
549 *
550 * This function fills the missing link and does all housekeeping needed in
551 * inode (->i_blocks, etc.). In case of success we end up with the full
552 * chain to new block and return 0.
553 */
554static void ext2_splice_branch(struct inode *inode,
555			long block, Indirect *where, int num, int blks)
556{
557	int i;
558	struct ext2_block_alloc_info *block_i;
559	ext2_fsblk_t current_block;
560
561	block_i = EXT2_I(inode)->i_block_alloc_info;
562
563	/* XXX LOCKING probably should have i_meta_lock ?*/
564	/* That's it */
565
566	*where->p = where->key;
567
568	/*
569	 * Update the host buffer_head or inode to point to more just allocated
570	 * direct blocks blocks
571	 */
572	if (num == 0 && blks > 1) {
573		current_block = le32_to_cpu(where->key) + 1;
574		for (i = 1; i < blks; i++)
575			*(where->p + i ) = cpu_to_le32(current_block++);
576	}
577
578	/*
579	 * update the most recently allocated logical & physical block
580	 * in i_block_alloc_info, to assist find the proper goal block for next
581	 * allocation
582	 */
583	if (block_i) {
584		block_i->last_alloc_logical_block = block + blks - 1;
585		block_i->last_alloc_physical_block =
586				le32_to_cpu(where[num].key) + blks - 1;
587	}
588
589	/* We are done with atomic stuff, now do the rest of housekeeping */
590
591	/* had we spliced it onto indirect block? */
592	if (where->bh)
593		mark_buffer_dirty_inode(where->bh, inode);
594
595	inode->i_ctime = CURRENT_TIME_SEC;
596	mark_inode_dirty(inode);
597}
598
599/*
600 * Allocation strategy is simple: if we have to allocate something, we will
601 * have to go the whole way to leaf. So let's do it before attaching anything
602 * to tree, set linkage between the newborn blocks, write them if sync is
603 * required, recheck the path, free and repeat if check fails, otherwise
604 * set the last missing link (that will protect us from any truncate-generated
605 * removals - all blocks on the path are immune now) and possibly force the
606 * write on the parent block.
607 * That has a nice additional property: no special recovery from the failed
608 * allocations is needed - we simply release blocks and do not touch anything
609 * reachable from inode.
610 *
611 * `handle' can be NULL if create == 0.
612 *
613 * return > 0, # of blocks mapped or allocated.
614 * return = 0, if plain lookup failed.
615 * return < 0, error case.
616 */
617static int ext2_get_blocks(struct inode *inode,
618			   sector_t iblock, unsigned long maxblocks,
619			   struct buffer_head *bh_result,
620			   int create)
621{
622	int err = -EIO;
623	int offsets[4];
624	Indirect chain[4];
625	Indirect *partial;
626	ext2_fsblk_t goal;
627	int indirect_blks;
628	int blocks_to_boundary = 0;
629	int depth;
630	struct ext2_inode_info *ei = EXT2_I(inode);
631	int count = 0;
632	ext2_fsblk_t first_block = 0;
633
634	BUG_ON(maxblocks == 0);
635
636	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
637
638	if (depth == 0)
639		return (err);
640
641	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
642	/* Simplest case - block found, no allocation needed */
643	if (!partial) {
644		first_block = le32_to_cpu(chain[depth - 1].key);
645		clear_buffer_new(bh_result); /* What's this do? */
646		count++;
647		/*map more blocks*/
648		while (count < maxblocks && count <= blocks_to_boundary) {
649			ext2_fsblk_t blk;
650
651			if (!verify_chain(chain, chain + depth - 1)) {
652				/*
653				 * Indirect block might be removed by
654				 * truncate while we were reading it.
655				 * Handling of that case: forget what we've
656				 * got now, go to reread.
657				 */
658				err = -EAGAIN;
659				count = 0;
660				break;
661			}
662			blk = le32_to_cpu(*(chain[depth-1].p + count));
663			if (blk == first_block + count)
664				count++;
665			else
666				break;
667		}
668		if (err != -EAGAIN)
669			goto got_it;
670	}
671
672	/* Next simple case - plain lookup or failed read of indirect block */
673	if (!create || err == -EIO)
674		goto cleanup;
675
676	mutex_lock(&ei->truncate_mutex);
677	/*
678	 * If the indirect block is missing while we are reading
679	 * the chain(ext2_get_branch() returns -EAGAIN err), or
680	 * if the chain has been changed after we grab the semaphore,
681	 * (either because another process truncated this branch, or
682	 * another get_block allocated this branch) re-grab the chain to see if
683	 * the request block has been allocated or not.
684	 *
685	 * Since we already block the truncate/other get_block
686	 * at this point, we will have the current copy of the chain when we
687	 * splice the branch into the tree.
688	 */
689	if (err == -EAGAIN || !verify_chain(chain, partial)) {
690		while (partial > chain) {
691			brelse(partial->bh);
692			partial--;
693		}
694		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
695		if (!partial) {
696			count++;
697			mutex_unlock(&ei->truncate_mutex);
698			if (err)
699				goto cleanup;
700			clear_buffer_new(bh_result);
701			goto got_it;
702		}
703	}
704
705	/*
706	 * Okay, we need to do block allocation.  Lazily initialize the block
707	 * allocation info here if necessary
708	*/
709	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
710		ext2_init_block_alloc_info(inode);
711
712	goal = ext2_find_goal(inode, iblock, partial);
713
714	/* the number of blocks need to allocate for [d,t]indirect blocks */
715	indirect_blks = (chain + depth) - partial - 1;
716	/*
717	 * Next look up the indirect map to count the totoal number of
718	 * direct blocks to allocate for this branch.
719	 */
720	count = ext2_blks_to_allocate(partial, indirect_blks,
721					maxblocks, blocks_to_boundary);
722	/*
723	 * XXX ???? Block out ext2_truncate while we alter the tree
724	 */
725	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
726				offsets + (partial - chain), partial);
727
728	if (err) {
729		mutex_unlock(&ei->truncate_mutex);
730		goto cleanup;
731	}
732
733	if (IS_DAX(inode)) {
734		/*
735		 * block must be initialised before we put it in the tree
736		 * so that it's not found by another thread before it's
737		 * initialised
738		 */
739		err = dax_clear_blocks(inode, le32_to_cpu(chain[depth-1].key),
740						1 << inode->i_blkbits);
741		if (err) {
742			mutex_unlock(&ei->truncate_mutex);
743			goto cleanup;
744		}
745	}
746
747	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
748	mutex_unlock(&ei->truncate_mutex);
749	set_buffer_new(bh_result);
750got_it:
751	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
752	if (count > blocks_to_boundary)
753		set_buffer_boundary(bh_result);
754	err = count;
755	/* Clean up and exit */
756	partial = chain + depth - 1;	/* the whole chain */
757cleanup:
758	while (partial > chain) {
759		brelse(partial->bh);
760		partial--;
761	}
762	return err;
763}
764
765int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
766{
767	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
768	int ret = ext2_get_blocks(inode, iblock, max_blocks,
769			      bh_result, create);
770	if (ret > 0) {
771		bh_result->b_size = (ret << inode->i_blkbits);
772		ret = 0;
773	}
774	return ret;
775
776}
777
778int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
779		u64 start, u64 len)
780{
781	return generic_block_fiemap(inode, fieinfo, start, len,
782				    ext2_get_block);
783}
784
785static int ext2_writepage(struct page *page, struct writeback_control *wbc)
786{
787	return block_write_full_page(page, ext2_get_block, wbc);
788}
789
790static int ext2_readpage(struct file *file, struct page *page)
791{
792	return mpage_readpage(page, ext2_get_block);
793}
794
795static int
796ext2_readpages(struct file *file, struct address_space *mapping,
797		struct list_head *pages, unsigned nr_pages)
798{
799	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
800}
801
802static int
803ext2_write_begin(struct file *file, struct address_space *mapping,
804		loff_t pos, unsigned len, unsigned flags,
805		struct page **pagep, void **fsdata)
806{
807	int ret;
808
809	ret = block_write_begin(mapping, pos, len, flags, pagep,
810				ext2_get_block);
811	if (ret < 0)
812		ext2_write_failed(mapping, pos + len);
813	return ret;
814}
815
816static int ext2_write_end(struct file *file, struct address_space *mapping,
817			loff_t pos, unsigned len, unsigned copied,
818			struct page *page, void *fsdata)
819{
820	int ret;
821
822	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
823	if (ret < len)
824		ext2_write_failed(mapping, pos + len);
825	return ret;
826}
827
828static int
829ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
830		loff_t pos, unsigned len, unsigned flags,
831		struct page **pagep, void **fsdata)
832{
833	int ret;
834
835	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
836			       ext2_get_block);
837	if (ret < 0)
838		ext2_write_failed(mapping, pos + len);
839	return ret;
840}
841
842static int ext2_nobh_writepage(struct page *page,
843			struct writeback_control *wbc)
844{
845	return nobh_writepage(page, ext2_get_block, wbc);
846}
847
848static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
849{
850	return generic_block_bmap(mapping,block,ext2_get_block);
851}
852
853static ssize_t
854ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
855{
856	struct file *file = iocb->ki_filp;
857	struct address_space *mapping = file->f_mapping;
858	struct inode *inode = mapping->host;
859	size_t count = iov_iter_count(iter);
860	ssize_t ret;
861
862	if (IS_DAX(inode))
863		ret = dax_do_io(iocb, inode, iter, offset, ext2_get_block, NULL,
864				DIO_LOCKING);
865	else
866		ret = blockdev_direct_IO(iocb, inode, iter, offset,
867					 ext2_get_block);
868	if (ret < 0 && iov_iter_rw(iter) == WRITE)
869		ext2_write_failed(mapping, offset + count);
870	return ret;
871}
872
873static int
874ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
875{
876	return mpage_writepages(mapping, wbc, ext2_get_block);
877}
878
879const struct address_space_operations ext2_aops = {
880	.readpage		= ext2_readpage,
881	.readpages		= ext2_readpages,
882	.writepage		= ext2_writepage,
883	.write_begin		= ext2_write_begin,
884	.write_end		= ext2_write_end,
885	.bmap			= ext2_bmap,
886	.direct_IO		= ext2_direct_IO,
887	.writepages		= ext2_writepages,
888	.migratepage		= buffer_migrate_page,
889	.is_partially_uptodate	= block_is_partially_uptodate,
890	.error_remove_page	= generic_error_remove_page,
891};
892
893const struct address_space_operations ext2_nobh_aops = {
894	.readpage		= ext2_readpage,
895	.readpages		= ext2_readpages,
896	.writepage		= ext2_nobh_writepage,
897	.write_begin		= ext2_nobh_write_begin,
898	.write_end		= nobh_write_end,
899	.bmap			= ext2_bmap,
900	.direct_IO		= ext2_direct_IO,
901	.writepages		= ext2_writepages,
902	.migratepage		= buffer_migrate_page,
903	.error_remove_page	= generic_error_remove_page,
904};
905
906/*
907 * Probably it should be a library function... search for first non-zero word
908 * or memcmp with zero_page, whatever is better for particular architecture.
909 * Linus?
910 */
911static inline int all_zeroes(__le32 *p, __le32 *q)
912{
913	while (p < q)
914		if (*p++)
915			return 0;
916	return 1;
917}
918
919/**
920 *	ext2_find_shared - find the indirect blocks for partial truncation.
921 *	@inode:	  inode in question
922 *	@depth:	  depth of the affected branch
923 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
924 *	@chain:	  place to store the pointers to partial indirect blocks
925 *	@top:	  place to the (detached) top of branch
926 *
927 *	This is a helper function used by ext2_truncate().
928 *
929 *	When we do truncate() we may have to clean the ends of several indirect
930 *	blocks but leave the blocks themselves alive. Block is partially
931 *	truncated if some data below the new i_size is referred from it (and
932 *	it is on the path to the first completely truncated data block, indeed).
933 *	We have to free the top of that path along with everything to the right
934 *	of the path. Since no allocation past the truncation point is possible
935 *	until ext2_truncate() finishes, we may safely do the latter, but top
936 *	of branch may require special attention - pageout below the truncation
937 *	point might try to populate it.
938 *
939 *	We atomically detach the top of branch from the tree, store the block
940 *	number of its root in *@top, pointers to buffer_heads of partially
941 *	truncated blocks - in @chain[].bh and pointers to their last elements
942 *	that should not be removed - in @chain[].p. Return value is the pointer
943 *	to last filled element of @chain.
944 *
945 *	The work left to caller to do the actual freeing of subtrees:
946 *		a) free the subtree starting from *@top
947 *		b) free the subtrees whose roots are stored in
948 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
949 *		c) free the subtrees growing from the inode past the @chain[0].p
950 *			(no partially truncated stuff there).
951 */
952
953static Indirect *ext2_find_shared(struct inode *inode,
954				int depth,
955				int offsets[4],
956				Indirect chain[4],
957				__le32 *top)
958{
959	Indirect *partial, *p;
960	int k, err;
961
962	*top = 0;
963	for (k = depth; k > 1 && !offsets[k-1]; k--)
964		;
965	partial = ext2_get_branch(inode, k, offsets, chain, &err);
966	if (!partial)
967		partial = chain + k-1;
968	/*
969	 * If the branch acquired continuation since we've looked at it -
970	 * fine, it should all survive and (new) top doesn't belong to us.
971	 */
972	write_lock(&EXT2_I(inode)->i_meta_lock);
973	if (!partial->key && *partial->p) {
974		write_unlock(&EXT2_I(inode)->i_meta_lock);
975		goto no_top;
976	}
977	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
978		;
979	/*
980	 * OK, we've found the last block that must survive. The rest of our
981	 * branch should be detached before unlocking. However, if that rest
982	 * of branch is all ours and does not grow immediately from the inode
983	 * it's easier to cheat and just decrement partial->p.
984	 */
985	if (p == chain + k - 1 && p > chain) {
986		p->p--;
987	} else {
988		*top = *p->p;
989		*p->p = 0;
990	}
991	write_unlock(&EXT2_I(inode)->i_meta_lock);
992
993	while(partial > p)
994	{
995		brelse(partial->bh);
996		partial--;
997	}
998no_top:
999	return partial;
1000}
1001
1002/**
1003 *	ext2_free_data - free a list of data blocks
1004 *	@inode:	inode we are dealing with
1005 *	@p:	array of block numbers
1006 *	@q:	points immediately past the end of array
1007 *
1008 *	We are freeing all blocks referred from that array (numbers are
1009 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1010 *	appropriately.
1011 */
1012static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1013{
1014	unsigned long block_to_free = 0, count = 0;
1015	unsigned long nr;
1016
1017	for ( ; p < q ; p++) {
1018		nr = le32_to_cpu(*p);
1019		if (nr) {
1020			*p = 0;
1021			/* accumulate blocks to free if they're contiguous */
1022			if (count == 0)
1023				goto free_this;
1024			else if (block_to_free == nr - count)
1025				count++;
1026			else {
1027				ext2_free_blocks (inode, block_to_free, count);
1028				mark_inode_dirty(inode);
1029			free_this:
1030				block_to_free = nr;
1031				count = 1;
1032			}
1033		}
1034	}
1035	if (count > 0) {
1036		ext2_free_blocks (inode, block_to_free, count);
1037		mark_inode_dirty(inode);
1038	}
1039}
1040
1041/**
1042 *	ext2_free_branches - free an array of branches
1043 *	@inode:	inode we are dealing with
1044 *	@p:	array of block numbers
1045 *	@q:	pointer immediately past the end of array
1046 *	@depth:	depth of the branches to free
1047 *
1048 *	We are freeing all blocks referred from these branches (numbers are
1049 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1050 *	appropriately.
1051 */
1052static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1053{
1054	struct buffer_head * bh;
1055	unsigned long nr;
1056
1057	if (depth--) {
1058		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1059		for ( ; p < q ; p++) {
1060			nr = le32_to_cpu(*p);
1061			if (!nr)
1062				continue;
1063			*p = 0;
1064			bh = sb_bread(inode->i_sb, nr);
1065			/*
1066			 * A read failure? Report error and clear slot
1067			 * (should be rare).
1068			 */
1069			if (!bh) {
1070				ext2_error(inode->i_sb, "ext2_free_branches",
1071					"Read failure, inode=%ld, block=%ld",
1072					inode->i_ino, nr);
1073				continue;
1074			}
1075			ext2_free_branches(inode,
1076					   (__le32*)bh->b_data,
1077					   (__le32*)bh->b_data + addr_per_block,
1078					   depth);
1079			bforget(bh);
1080			ext2_free_blocks(inode, nr, 1);
1081			mark_inode_dirty(inode);
1082		}
1083	} else
1084		ext2_free_data(inode, p, q);
1085}
1086
1087static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1088{
1089	__le32 *i_data = EXT2_I(inode)->i_data;
1090	struct ext2_inode_info *ei = EXT2_I(inode);
1091	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1092	int offsets[4];
1093	Indirect chain[4];
1094	Indirect *partial;
1095	__le32 nr = 0;
1096	int n;
1097	long iblock;
1098	unsigned blocksize;
1099	blocksize = inode->i_sb->s_blocksize;
1100	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1101
1102	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1103	if (n == 0)
1104		return;
1105
1106	/*
1107	 * From here we block out all ext2_get_block() callers who want to
1108	 * modify the block allocation tree.
1109	 */
1110	mutex_lock(&ei->truncate_mutex);
1111
1112	if (n == 1) {
1113		ext2_free_data(inode, i_data+offsets[0],
1114					i_data + EXT2_NDIR_BLOCKS);
1115		goto do_indirects;
1116	}
1117
1118	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1119	/* Kill the top of shared branch (already detached) */
1120	if (nr) {
1121		if (partial == chain)
1122			mark_inode_dirty(inode);
1123		else
1124			mark_buffer_dirty_inode(partial->bh, inode);
1125		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1126	}
1127	/* Clear the ends of indirect blocks on the shared branch */
1128	while (partial > chain) {
1129		ext2_free_branches(inode,
1130				   partial->p + 1,
1131				   (__le32*)partial->bh->b_data+addr_per_block,
1132				   (chain+n-1) - partial);
1133		mark_buffer_dirty_inode(partial->bh, inode);
1134		brelse (partial->bh);
1135		partial--;
1136	}
1137do_indirects:
1138	/* Kill the remaining (whole) subtrees */
1139	switch (offsets[0]) {
1140		default:
1141			nr = i_data[EXT2_IND_BLOCK];
1142			if (nr) {
1143				i_data[EXT2_IND_BLOCK] = 0;
1144				mark_inode_dirty(inode);
1145				ext2_free_branches(inode, &nr, &nr+1, 1);
1146			}
1147		case EXT2_IND_BLOCK:
1148			nr = i_data[EXT2_DIND_BLOCK];
1149			if (nr) {
1150				i_data[EXT2_DIND_BLOCK] = 0;
1151				mark_inode_dirty(inode);
1152				ext2_free_branches(inode, &nr, &nr+1, 2);
1153			}
1154		case EXT2_DIND_BLOCK:
1155			nr = i_data[EXT2_TIND_BLOCK];
1156			if (nr) {
1157				i_data[EXT2_TIND_BLOCK] = 0;
1158				mark_inode_dirty(inode);
1159				ext2_free_branches(inode, &nr, &nr+1, 3);
1160			}
1161		case EXT2_TIND_BLOCK:
1162			;
1163	}
1164
1165	ext2_discard_reservation(inode);
1166
1167	mutex_unlock(&ei->truncate_mutex);
1168}
1169
1170static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1171{
1172	/*
1173	 * XXX: it seems like a bug here that we don't allow
1174	 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1175	 * review and fix this.
1176	 *
1177	 * Also would be nice to be able to handle IO errors and such,
1178	 * but that's probably too much to ask.
1179	 */
1180	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181	    S_ISLNK(inode->i_mode)))
1182		return;
1183	if (ext2_inode_is_fast_symlink(inode))
1184		return;
1185	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1186		return;
1187	__ext2_truncate_blocks(inode, offset);
1188}
1189
1190static int ext2_setsize(struct inode *inode, loff_t newsize)
1191{
1192	int error;
1193
1194	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1195	    S_ISLNK(inode->i_mode)))
1196		return -EINVAL;
1197	if (ext2_inode_is_fast_symlink(inode))
1198		return -EINVAL;
1199	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1200		return -EPERM;
1201
1202	inode_dio_wait(inode);
1203
1204	if (IS_DAX(inode))
1205		error = dax_truncate_page(inode, newsize, ext2_get_block);
1206	else if (test_opt(inode->i_sb, NOBH))
1207		error = nobh_truncate_page(inode->i_mapping,
1208				newsize, ext2_get_block);
1209	else
1210		error = block_truncate_page(inode->i_mapping,
1211				newsize, ext2_get_block);
1212	if (error)
1213		return error;
1214
1215	truncate_setsize(inode, newsize);
1216	__ext2_truncate_blocks(inode, newsize);
1217
1218	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1219	if (inode_needs_sync(inode)) {
1220		sync_mapping_buffers(inode->i_mapping);
1221		sync_inode_metadata(inode, 1);
1222	} else {
1223		mark_inode_dirty(inode);
1224	}
1225
1226	return 0;
1227}
1228
1229static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1230					struct buffer_head **p)
1231{
1232	struct buffer_head * bh;
1233	unsigned long block_group;
1234	unsigned long block;
1235	unsigned long offset;
1236	struct ext2_group_desc * gdp;
1237
1238	*p = NULL;
1239	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1240	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1241		goto Einval;
1242
1243	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1244	gdp = ext2_get_group_desc(sb, block_group, NULL);
1245	if (!gdp)
1246		goto Egdp;
1247	/*
1248	 * Figure out the offset within the block group inode table
1249	 */
1250	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1251	block = le32_to_cpu(gdp->bg_inode_table) +
1252		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1253	if (!(bh = sb_bread(sb, block)))
1254		goto Eio;
1255
1256	*p = bh;
1257	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1258	return (struct ext2_inode *) (bh->b_data + offset);
1259
1260Einval:
1261	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1262		   (unsigned long) ino);
1263	return ERR_PTR(-EINVAL);
1264Eio:
1265	ext2_error(sb, "ext2_get_inode",
1266		   "unable to read inode block - inode=%lu, block=%lu",
1267		   (unsigned long) ino, block);
1268Egdp:
1269	return ERR_PTR(-EIO);
1270}
1271
1272void ext2_set_inode_flags(struct inode *inode)
1273{
1274	unsigned int flags = EXT2_I(inode)->i_flags;
1275
1276	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1277				S_DIRSYNC | S_DAX);
1278	if (flags & EXT2_SYNC_FL)
1279		inode->i_flags |= S_SYNC;
1280	if (flags & EXT2_APPEND_FL)
1281		inode->i_flags |= S_APPEND;
1282	if (flags & EXT2_IMMUTABLE_FL)
1283		inode->i_flags |= S_IMMUTABLE;
1284	if (flags & EXT2_NOATIME_FL)
1285		inode->i_flags |= S_NOATIME;
1286	if (flags & EXT2_DIRSYNC_FL)
1287		inode->i_flags |= S_DIRSYNC;
1288	if (test_opt(inode->i_sb, DAX))
1289		inode->i_flags |= S_DAX;
1290}
1291
1292/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1293void ext2_get_inode_flags(struct ext2_inode_info *ei)
1294{
1295	unsigned int flags = ei->vfs_inode.i_flags;
1296
1297	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1298			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1299	if (flags & S_SYNC)
1300		ei->i_flags |= EXT2_SYNC_FL;
1301	if (flags & S_APPEND)
1302		ei->i_flags |= EXT2_APPEND_FL;
1303	if (flags & S_IMMUTABLE)
1304		ei->i_flags |= EXT2_IMMUTABLE_FL;
1305	if (flags & S_NOATIME)
1306		ei->i_flags |= EXT2_NOATIME_FL;
1307	if (flags & S_DIRSYNC)
1308		ei->i_flags |= EXT2_DIRSYNC_FL;
1309}
1310
1311struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1312{
1313	struct ext2_inode_info *ei;
1314	struct buffer_head * bh;
1315	struct ext2_inode *raw_inode;
1316	struct inode *inode;
1317	long ret = -EIO;
1318	int n;
1319	uid_t i_uid;
1320	gid_t i_gid;
1321
1322	inode = iget_locked(sb, ino);
1323	if (!inode)
1324		return ERR_PTR(-ENOMEM);
1325	if (!(inode->i_state & I_NEW))
1326		return inode;
1327
1328	ei = EXT2_I(inode);
1329	ei->i_block_alloc_info = NULL;
1330
1331	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1332	if (IS_ERR(raw_inode)) {
1333		ret = PTR_ERR(raw_inode);
1334 		goto bad_inode;
1335	}
1336
1337	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1338	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1339	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1340	if (!(test_opt (inode->i_sb, NO_UID32))) {
1341		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1342		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1343	}
1344	i_uid_write(inode, i_uid);
1345	i_gid_write(inode, i_gid);
1346	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1347	inode->i_size = le32_to_cpu(raw_inode->i_size);
1348	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1349	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1350	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1351	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1352	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1353	/* We now have enough fields to check if the inode was active or not.
1354	 * This is needed because nfsd might try to access dead inodes
1355	 * the test is that same one that e2fsck uses
1356	 * NeilBrown 1999oct15
1357	 */
1358	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1359		/* this inode is deleted */
1360		brelse (bh);
1361		ret = -ESTALE;
1362		goto bad_inode;
1363	}
1364	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1365	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1366	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1367	ei->i_frag_no = raw_inode->i_frag;
1368	ei->i_frag_size = raw_inode->i_fsize;
1369	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1370	ei->i_dir_acl = 0;
1371	if (S_ISREG(inode->i_mode))
1372		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1373	else
1374		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1375	ei->i_dtime = 0;
1376	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1377	ei->i_state = 0;
1378	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1379	ei->i_dir_start_lookup = 0;
1380
1381	/*
1382	 * NOTE! The in-memory inode i_data array is in little-endian order
1383	 * even on big-endian machines: we do NOT byteswap the block numbers!
1384	 */
1385	for (n = 0; n < EXT2_N_BLOCKS; n++)
1386		ei->i_data[n] = raw_inode->i_block[n];
1387
1388	if (S_ISREG(inode->i_mode)) {
1389		inode->i_op = &ext2_file_inode_operations;
1390		if (test_opt(inode->i_sb, NOBH)) {
1391			inode->i_mapping->a_ops = &ext2_nobh_aops;
1392			inode->i_fop = &ext2_file_operations;
1393		} else {
1394			inode->i_mapping->a_ops = &ext2_aops;
1395			inode->i_fop = &ext2_file_operations;
1396		}
1397	} else if (S_ISDIR(inode->i_mode)) {
1398		inode->i_op = &ext2_dir_inode_operations;
1399		inode->i_fop = &ext2_dir_operations;
1400		if (test_opt(inode->i_sb, NOBH))
1401			inode->i_mapping->a_ops = &ext2_nobh_aops;
1402		else
1403			inode->i_mapping->a_ops = &ext2_aops;
1404	} else if (S_ISLNK(inode->i_mode)) {
1405		if (ext2_inode_is_fast_symlink(inode)) {
1406			inode->i_op = &ext2_fast_symlink_inode_operations;
1407			nd_terminate_link(ei->i_data, inode->i_size,
1408				sizeof(ei->i_data) - 1);
1409		} else {
1410			inode->i_op = &ext2_symlink_inode_operations;
1411			if (test_opt(inode->i_sb, NOBH))
1412				inode->i_mapping->a_ops = &ext2_nobh_aops;
1413			else
1414				inode->i_mapping->a_ops = &ext2_aops;
1415		}
1416	} else {
1417		inode->i_op = &ext2_special_inode_operations;
1418		if (raw_inode->i_block[0])
1419			init_special_inode(inode, inode->i_mode,
1420			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1421		else
1422			init_special_inode(inode, inode->i_mode,
1423			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1424	}
1425	brelse (bh);
1426	ext2_set_inode_flags(inode);
1427	unlock_new_inode(inode);
1428	return inode;
1429
1430bad_inode:
1431	iget_failed(inode);
1432	return ERR_PTR(ret);
1433}
1434
1435static int __ext2_write_inode(struct inode *inode, int do_sync)
1436{
1437	struct ext2_inode_info *ei = EXT2_I(inode);
1438	struct super_block *sb = inode->i_sb;
1439	ino_t ino = inode->i_ino;
1440	uid_t uid = i_uid_read(inode);
1441	gid_t gid = i_gid_read(inode);
1442	struct buffer_head * bh;
1443	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1444	int n;
1445	int err = 0;
1446
1447	if (IS_ERR(raw_inode))
1448 		return -EIO;
1449
1450	/* For fields not not tracking in the in-memory inode,
1451	 * initialise them to zero for new inodes. */
1452	if (ei->i_state & EXT2_STATE_NEW)
1453		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1454
1455	ext2_get_inode_flags(ei);
1456	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1457	if (!(test_opt(sb, NO_UID32))) {
1458		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1459		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1460/*
1461 * Fix up interoperability with old kernels. Otherwise, old inodes get
1462 * re-used with the upper 16 bits of the uid/gid intact
1463 */
1464		if (!ei->i_dtime) {
1465			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1466			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1467		} else {
1468			raw_inode->i_uid_high = 0;
1469			raw_inode->i_gid_high = 0;
1470		}
1471	} else {
1472		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1473		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1474		raw_inode->i_uid_high = 0;
1475		raw_inode->i_gid_high = 0;
1476	}
1477	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1478	raw_inode->i_size = cpu_to_le32(inode->i_size);
1479	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1480	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1481	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1482
1483	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1484	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1485	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1486	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1487	raw_inode->i_frag = ei->i_frag_no;
1488	raw_inode->i_fsize = ei->i_frag_size;
1489	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1490	if (!S_ISREG(inode->i_mode))
1491		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1492	else {
1493		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1494		if (inode->i_size > 0x7fffffffULL) {
1495			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1496					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1497			    EXT2_SB(sb)->s_es->s_rev_level ==
1498					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1499			       /* If this is the first large file
1500				* created, add a flag to the superblock.
1501				*/
1502				spin_lock(&EXT2_SB(sb)->s_lock);
1503				ext2_update_dynamic_rev(sb);
1504				EXT2_SET_RO_COMPAT_FEATURE(sb,
1505					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1506				spin_unlock(&EXT2_SB(sb)->s_lock);
1507				ext2_write_super(sb);
1508			}
1509		}
1510	}
1511
1512	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1513	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1514		if (old_valid_dev(inode->i_rdev)) {
1515			raw_inode->i_block[0] =
1516				cpu_to_le32(old_encode_dev(inode->i_rdev));
1517			raw_inode->i_block[1] = 0;
1518		} else {
1519			raw_inode->i_block[0] = 0;
1520			raw_inode->i_block[1] =
1521				cpu_to_le32(new_encode_dev(inode->i_rdev));
1522			raw_inode->i_block[2] = 0;
1523		}
1524	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1525		raw_inode->i_block[n] = ei->i_data[n];
1526	mark_buffer_dirty(bh);
1527	if (do_sync) {
1528		sync_dirty_buffer(bh);
1529		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1530			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1531				sb->s_id, (unsigned long) ino);
1532			err = -EIO;
1533		}
1534	}
1535	ei->i_state &= ~EXT2_STATE_NEW;
1536	brelse (bh);
1537	return err;
1538}
1539
1540int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1541{
1542	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1543}
1544
1545int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1546{
1547	struct inode *inode = d_inode(dentry);
1548	int error;
1549
1550	error = inode_change_ok(inode, iattr);
1551	if (error)
1552		return error;
1553
1554	if (is_quota_modification(inode, iattr))
1555		dquot_initialize(inode);
1556	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1557	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1558		error = dquot_transfer(inode, iattr);
1559		if (error)
1560			return error;
1561	}
1562	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1563		error = ext2_setsize(inode, iattr->ia_size);
1564		if (error)
1565			return error;
1566	}
1567	setattr_copy(inode, iattr);
1568	if (iattr->ia_valid & ATTR_MODE)
1569		error = posix_acl_chmod(inode, inode->i_mode);
1570	mark_inode_dirty(inode);
1571
1572	return error;
1573}
1574