1/* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20/* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24#include "ext4_jbd2.h" 25#include "mballoc.h" 26#include <linux/log2.h> 27#include <linux/module.h> 28#include <linux/slab.h> 29#include <trace/events/ext4.h> 30 31#ifdef CONFIG_EXT4_DEBUG 32ushort ext4_mballoc_debug __read_mostly; 33 34module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36#endif 37 38/* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58/* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175/* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312/* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349static struct kmem_cache *ext4_pspace_cachep; 350static struct kmem_cache *ext4_ac_cachep; 351static struct kmem_cache *ext4_free_data_cachep; 352 353/* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356#define NR_GRPINFO_CACHES 8 357static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363}; 364 365static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373{ 374#if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377#elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380#else 381#error "how many bits you are?!" 382#endif 383 return addr; 384} 385 386static inline int mb_test_bit(int bit, void *addr) 387{ 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394} 395 396static inline void mb_set_bit(int bit, void *addr) 397{ 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400} 401 402static inline void mb_clear_bit(int bit, void *addr) 403{ 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406} 407 408static inline int mb_test_and_clear_bit(int bit, void *addr) 409{ 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 return ext4_test_and_clear_bit(bit, addr); 412} 413 414static inline int mb_find_next_zero_bit(void *addr, int max, int start) 415{ 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425} 426 427static inline int mb_find_next_bit(void *addr, int max, int start) 428{ 429 int fix = 0, ret, tmpmax; 430 addr = mb_correct_addr_and_bit(&fix, addr); 431 tmpmax = max + fix; 432 start += fix; 433 434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 435 if (ret > max) 436 return max; 437 return ret; 438} 439 440static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 441{ 442 char *bb; 443 444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 445 BUG_ON(max == NULL); 446 447 if (order > e4b->bd_blkbits + 1) { 448 *max = 0; 449 return NULL; 450 } 451 452 /* at order 0 we see each particular block */ 453 if (order == 0) { 454 *max = 1 << (e4b->bd_blkbits + 3); 455 return e4b->bd_bitmap; 456 } 457 458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 460 461 return bb; 462} 463 464#ifdef DOUBLE_CHECK 465static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 466 int first, int count) 467{ 468 int i; 469 struct super_block *sb = e4b->bd_sb; 470 471 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 472 return; 473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 474 for (i = 0; i < count; i++) { 475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 476 ext4_fsblk_t blocknr; 477 478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 480 ext4_grp_locked_error(sb, e4b->bd_group, 481 inode ? inode->i_ino : 0, 482 blocknr, 483 "freeing block already freed " 484 "(bit %u)", 485 first + i); 486 } 487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489} 490 491static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 492{ 493 int i; 494 495 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 496 return; 497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 498 for (i = 0; i < count; i++) { 499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502} 503 504static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 505{ 506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 507 unsigned char *b1, *b2; 508 int i; 509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 510 b2 = (unsigned char *) bitmap; 511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 512 if (b1[i] != b2[i]) { 513 ext4_msg(e4b->bd_sb, KERN_ERR, 514 "corruption in group %u " 515 "at byte %u(%u): %x in copy != %x " 516 "on disk/prealloc", 517 e4b->bd_group, i, i * 8, b1[i], b2[i]); 518 BUG(); 519 } 520 } 521 } 522} 523 524#else 525static inline void mb_free_blocks_double(struct inode *inode, 526 struct ext4_buddy *e4b, int first, int count) 527{ 528 return; 529} 530static inline void mb_mark_used_double(struct ext4_buddy *e4b, 531 int first, int count) 532{ 533 return; 534} 535static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 536{ 537 return; 538} 539#endif 540 541#ifdef AGGRESSIVE_CHECK 542 543#define MB_CHECK_ASSERT(assert) \ 544do { \ 545 if (!(assert)) { \ 546 printk(KERN_EMERG \ 547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 548 function, file, line, # assert); \ 549 BUG(); \ 550 } \ 551} while (0) 552 553static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 554 const char *function, int line) 555{ 556 struct super_block *sb = e4b->bd_sb; 557 int order = e4b->bd_blkbits + 1; 558 int max; 559 int max2; 560 int i; 561 int j; 562 int k; 563 int count; 564 struct ext4_group_info *grp; 565 int fragments = 0; 566 int fstart; 567 struct list_head *cur; 568 void *buddy; 569 void *buddy2; 570 571 { 572 static int mb_check_counter; 573 if (mb_check_counter++ % 100 != 0) 574 return 0; 575 } 576 577 while (order > 1) { 578 buddy = mb_find_buddy(e4b, order, &max); 579 MB_CHECK_ASSERT(buddy); 580 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 581 MB_CHECK_ASSERT(buddy2); 582 MB_CHECK_ASSERT(buddy != buddy2); 583 MB_CHECK_ASSERT(max * 2 == max2); 584 585 count = 0; 586 for (i = 0; i < max; i++) { 587 588 if (mb_test_bit(i, buddy)) { 589 /* only single bit in buddy2 may be 1 */ 590 if (!mb_test_bit(i << 1, buddy2)) { 591 MB_CHECK_ASSERT( 592 mb_test_bit((i<<1)+1, buddy2)); 593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 594 MB_CHECK_ASSERT( 595 mb_test_bit(i << 1, buddy2)); 596 } 597 continue; 598 } 599 600 /* both bits in buddy2 must be 1 */ 601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 603 604 for (j = 0; j < (1 << order); j++) { 605 k = (i * (1 << order)) + j; 606 MB_CHECK_ASSERT( 607 !mb_test_bit(k, e4b->bd_bitmap)); 608 } 609 count++; 610 } 611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 612 order--; 613 } 614 615 fstart = -1; 616 buddy = mb_find_buddy(e4b, 0, &max); 617 for (i = 0; i < max; i++) { 618 if (!mb_test_bit(i, buddy)) { 619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 620 if (fstart == -1) { 621 fragments++; 622 fstart = i; 623 } 624 continue; 625 } 626 fstart = -1; 627 /* check used bits only */ 628 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 629 buddy2 = mb_find_buddy(e4b, j, &max2); 630 k = i >> j; 631 MB_CHECK_ASSERT(k < max2); 632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 633 } 634 } 635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 637 638 grp = ext4_get_group_info(sb, e4b->bd_group); 639 list_for_each(cur, &grp->bb_prealloc_list) { 640 ext4_group_t groupnr; 641 struct ext4_prealloc_space *pa; 642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 644 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 645 for (i = 0; i < pa->pa_len; i++) 646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 647 } 648 return 0; 649} 650#undef MB_CHECK_ASSERT 651#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 652 __FILE__, __func__, __LINE__) 653#else 654#define mb_check_buddy(e4b) 655#endif 656 657/* 658 * Divide blocks started from @first with length @len into 659 * smaller chunks with power of 2 blocks. 660 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 661 * then increase bb_counters[] for corresponded chunk size. 662 */ 663static void ext4_mb_mark_free_simple(struct super_block *sb, 664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 665 struct ext4_group_info *grp) 666{ 667 struct ext4_sb_info *sbi = EXT4_SB(sb); 668 ext4_grpblk_t min; 669 ext4_grpblk_t max; 670 ext4_grpblk_t chunk; 671 unsigned short border; 672 673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 674 675 border = 2 << sb->s_blocksize_bits; 676 677 while (len > 0) { 678 /* find how many blocks can be covered since this position */ 679 max = ffs(first | border) - 1; 680 681 /* find how many blocks of power 2 we need to mark */ 682 min = fls(len) - 1; 683 684 if (max < min) 685 min = max; 686 chunk = 1 << min; 687 688 /* mark multiblock chunks only */ 689 grp->bb_counters[min]++; 690 if (min > 0) 691 mb_clear_bit(first >> min, 692 buddy + sbi->s_mb_offsets[min]); 693 694 len -= chunk; 695 first += chunk; 696 } 697} 698 699/* 700 * Cache the order of the largest free extent we have available in this block 701 * group. 702 */ 703static void 704mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 705{ 706 int i; 707 int bits; 708 709 grp->bb_largest_free_order = -1; /* uninit */ 710 711 bits = sb->s_blocksize_bits + 1; 712 for (i = bits; i >= 0; i--) { 713 if (grp->bb_counters[i] > 0) { 714 grp->bb_largest_free_order = i; 715 break; 716 } 717 } 718} 719 720static noinline_for_stack 721void ext4_mb_generate_buddy(struct super_block *sb, 722 void *buddy, void *bitmap, ext4_group_t group) 723{ 724 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 725 struct ext4_sb_info *sbi = EXT4_SB(sb); 726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 727 ext4_grpblk_t i = 0; 728 ext4_grpblk_t first; 729 ext4_grpblk_t len; 730 unsigned free = 0; 731 unsigned fragments = 0; 732 unsigned long long period = get_cycles(); 733 734 /* initialize buddy from bitmap which is aggregation 735 * of on-disk bitmap and preallocations */ 736 i = mb_find_next_zero_bit(bitmap, max, 0); 737 grp->bb_first_free = i; 738 while (i < max) { 739 fragments++; 740 first = i; 741 i = mb_find_next_bit(bitmap, max, i); 742 len = i - first; 743 free += len; 744 if (len > 1) 745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 746 else 747 grp->bb_counters[0]++; 748 if (i < max) 749 i = mb_find_next_zero_bit(bitmap, max, i); 750 } 751 grp->bb_fragments = fragments; 752 753 if (free != grp->bb_free) { 754 ext4_grp_locked_error(sb, group, 0, 0, 755 "block bitmap and bg descriptor " 756 "inconsistent: %u vs %u free clusters", 757 free, grp->bb_free); 758 /* 759 * If we intend to continue, we consider group descriptor 760 * corrupt and update bb_free using bitmap value 761 */ 762 grp->bb_free = free; 763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 764 percpu_counter_sub(&sbi->s_freeclusters_counter, 765 grp->bb_free); 766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 767 } 768 mb_set_largest_free_order(sb, grp); 769 770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 771 772 period = get_cycles() - period; 773 spin_lock(&EXT4_SB(sb)->s_bal_lock); 774 EXT4_SB(sb)->s_mb_buddies_generated++; 775 EXT4_SB(sb)->s_mb_generation_time += period; 776 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 777} 778 779static void mb_regenerate_buddy(struct ext4_buddy *e4b) 780{ 781 int count; 782 int order = 1; 783 void *buddy; 784 785 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 786 ext4_set_bits(buddy, 0, count); 787 } 788 e4b->bd_info->bb_fragments = 0; 789 memset(e4b->bd_info->bb_counters, 0, 790 sizeof(*e4b->bd_info->bb_counters) * 791 (e4b->bd_sb->s_blocksize_bits + 2)); 792 793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 794 e4b->bd_bitmap, e4b->bd_group); 795} 796 797/* The buddy information is attached the buddy cache inode 798 * for convenience. The information regarding each group 799 * is loaded via ext4_mb_load_buddy. The information involve 800 * block bitmap and buddy information. The information are 801 * stored in the inode as 802 * 803 * { page } 804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 805 * 806 * 807 * one block each for bitmap and buddy information. 808 * So for each group we take up 2 blocks. A page can 809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 810 * So it can have information regarding groups_per_page which 811 * is blocks_per_page/2 812 * 813 * Locking note: This routine takes the block group lock of all groups 814 * for this page; do not hold this lock when calling this routine! 815 */ 816 817static int ext4_mb_init_cache(struct page *page, char *incore) 818{ 819 ext4_group_t ngroups; 820 int blocksize; 821 int blocks_per_page; 822 int groups_per_page; 823 int err = 0; 824 int i; 825 ext4_group_t first_group, group; 826 int first_block; 827 struct super_block *sb; 828 struct buffer_head *bhs; 829 struct buffer_head **bh = NULL; 830 struct inode *inode; 831 char *data; 832 char *bitmap; 833 struct ext4_group_info *grinfo; 834 835 mb_debug(1, "init page %lu\n", page->index); 836 837 inode = page->mapping->host; 838 sb = inode->i_sb; 839 ngroups = ext4_get_groups_count(sb); 840 blocksize = 1 << inode->i_blkbits; 841 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 842 843 groups_per_page = blocks_per_page >> 1; 844 if (groups_per_page == 0) 845 groups_per_page = 1; 846 847 /* allocate buffer_heads to read bitmaps */ 848 if (groups_per_page > 1) { 849 i = sizeof(struct buffer_head *) * groups_per_page; 850 bh = kzalloc(i, GFP_NOFS); 851 if (bh == NULL) { 852 err = -ENOMEM; 853 goto out; 854 } 855 } else 856 bh = &bhs; 857 858 first_group = page->index * blocks_per_page / 2; 859 860 /* read all groups the page covers into the cache */ 861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 862 if (group >= ngroups) 863 break; 864 865 grinfo = ext4_get_group_info(sb, group); 866 /* 867 * If page is uptodate then we came here after online resize 868 * which added some new uninitialized group info structs, so 869 * we must skip all initialized uptodate buddies on the page, 870 * which may be currently in use by an allocating task. 871 */ 872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 873 bh[i] = NULL; 874 continue; 875 } 876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 877 err = -ENOMEM; 878 goto out; 879 } 880 mb_debug(1, "read bitmap for group %u\n", group); 881 } 882 883 /* wait for I/O completion */ 884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 886 err = -EIO; 887 goto out; 888 } 889 } 890 891 first_block = page->index * blocks_per_page; 892 for (i = 0; i < blocks_per_page; i++) { 893 group = (first_block + i) >> 1; 894 if (group >= ngroups) 895 break; 896 897 if (!bh[group - first_group]) 898 /* skip initialized uptodate buddy */ 899 continue; 900 901 /* 902 * data carry information regarding this 903 * particular group in the format specified 904 * above 905 * 906 */ 907 data = page_address(page) + (i * blocksize); 908 bitmap = bh[group - first_group]->b_data; 909 910 /* 911 * We place the buddy block and bitmap block 912 * close together 913 */ 914 if ((first_block + i) & 1) { 915 /* this is block of buddy */ 916 BUG_ON(incore == NULL); 917 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 918 group, page->index, i * blocksize); 919 trace_ext4_mb_buddy_bitmap_load(sb, group); 920 grinfo = ext4_get_group_info(sb, group); 921 grinfo->bb_fragments = 0; 922 memset(grinfo->bb_counters, 0, 923 sizeof(*grinfo->bb_counters) * 924 (sb->s_blocksize_bits+2)); 925 /* 926 * incore got set to the group block bitmap below 927 */ 928 ext4_lock_group(sb, group); 929 /* init the buddy */ 930 memset(data, 0xff, blocksize); 931 ext4_mb_generate_buddy(sb, data, incore, group); 932 ext4_unlock_group(sb, group); 933 incore = NULL; 934 } else { 935 /* this is block of bitmap */ 936 BUG_ON(incore != NULL); 937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 938 group, page->index, i * blocksize); 939 trace_ext4_mb_bitmap_load(sb, group); 940 941 /* see comments in ext4_mb_put_pa() */ 942 ext4_lock_group(sb, group); 943 memcpy(data, bitmap, blocksize); 944 945 /* mark all preallocated blks used in in-core bitmap */ 946 ext4_mb_generate_from_pa(sb, data, group); 947 ext4_mb_generate_from_freelist(sb, data, group); 948 ext4_unlock_group(sb, group); 949 950 /* set incore so that the buddy information can be 951 * generated using this 952 */ 953 incore = data; 954 } 955 } 956 SetPageUptodate(page); 957 958out: 959 if (bh) { 960 for (i = 0; i < groups_per_page; i++) 961 brelse(bh[i]); 962 if (bh != &bhs) 963 kfree(bh); 964 } 965 return err; 966} 967 968/* 969 * Lock the buddy and bitmap pages. This make sure other parallel init_group 970 * on the same buddy page doesn't happen whild holding the buddy page lock. 971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 973 */ 974static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 975 ext4_group_t group, struct ext4_buddy *e4b) 976{ 977 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 978 int block, pnum, poff; 979 int blocks_per_page; 980 struct page *page; 981 982 e4b->bd_buddy_page = NULL; 983 e4b->bd_bitmap_page = NULL; 984 985 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 986 /* 987 * the buddy cache inode stores the block bitmap 988 * and buddy information in consecutive blocks. 989 * So for each group we need two blocks. 990 */ 991 block = group * 2; 992 pnum = block / blocks_per_page; 993 poff = block % blocks_per_page; 994 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 995 if (!page) 996 return -ENOMEM; 997 BUG_ON(page->mapping != inode->i_mapping); 998 e4b->bd_bitmap_page = page; 999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1000 1001 if (blocks_per_page >= 2) { 1002 /* buddy and bitmap are on the same page */ 1003 return 0; 1004 } 1005 1006 block++; 1007 pnum = block / blocks_per_page; 1008 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1009 if (!page) 1010 return -ENOMEM; 1011 BUG_ON(page->mapping != inode->i_mapping); 1012 e4b->bd_buddy_page = page; 1013 return 0; 1014} 1015 1016static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1017{ 1018 if (e4b->bd_bitmap_page) { 1019 unlock_page(e4b->bd_bitmap_page); 1020 page_cache_release(e4b->bd_bitmap_page); 1021 } 1022 if (e4b->bd_buddy_page) { 1023 unlock_page(e4b->bd_buddy_page); 1024 page_cache_release(e4b->bd_buddy_page); 1025 } 1026} 1027 1028/* 1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1030 * block group lock of all groups for this page; do not hold the BG lock when 1031 * calling this routine! 1032 */ 1033static noinline_for_stack 1034int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1035{ 1036 1037 struct ext4_group_info *this_grp; 1038 struct ext4_buddy e4b; 1039 struct page *page; 1040 int ret = 0; 1041 1042 might_sleep(); 1043 mb_debug(1, "init group %u\n", group); 1044 this_grp = ext4_get_group_info(sb, group); 1045 /* 1046 * This ensures that we don't reinit the buddy cache 1047 * page which map to the group from which we are already 1048 * allocating. If we are looking at the buddy cache we would 1049 * have taken a reference using ext4_mb_load_buddy and that 1050 * would have pinned buddy page to page cache. 1051 * The call to ext4_mb_get_buddy_page_lock will mark the 1052 * page accessed. 1053 */ 1054 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1055 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1056 /* 1057 * somebody initialized the group 1058 * return without doing anything 1059 */ 1060 goto err; 1061 } 1062 1063 page = e4b.bd_bitmap_page; 1064 ret = ext4_mb_init_cache(page, NULL); 1065 if (ret) 1066 goto err; 1067 if (!PageUptodate(page)) { 1068 ret = -EIO; 1069 goto err; 1070 } 1071 1072 if (e4b.bd_buddy_page == NULL) { 1073 /* 1074 * If both the bitmap and buddy are in 1075 * the same page we don't need to force 1076 * init the buddy 1077 */ 1078 ret = 0; 1079 goto err; 1080 } 1081 /* init buddy cache */ 1082 page = e4b.bd_buddy_page; 1083 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1084 if (ret) 1085 goto err; 1086 if (!PageUptodate(page)) { 1087 ret = -EIO; 1088 goto err; 1089 } 1090err: 1091 ext4_mb_put_buddy_page_lock(&e4b); 1092 return ret; 1093} 1094 1095/* 1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1097 * block group lock of all groups for this page; do not hold the BG lock when 1098 * calling this routine! 1099 */ 1100static noinline_for_stack int 1101ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1102 struct ext4_buddy *e4b) 1103{ 1104 int blocks_per_page; 1105 int block; 1106 int pnum; 1107 int poff; 1108 struct page *page; 1109 int ret; 1110 struct ext4_group_info *grp; 1111 struct ext4_sb_info *sbi = EXT4_SB(sb); 1112 struct inode *inode = sbi->s_buddy_cache; 1113 1114 might_sleep(); 1115 mb_debug(1, "load group %u\n", group); 1116 1117 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1118 grp = ext4_get_group_info(sb, group); 1119 1120 e4b->bd_blkbits = sb->s_blocksize_bits; 1121 e4b->bd_info = grp; 1122 e4b->bd_sb = sb; 1123 e4b->bd_group = group; 1124 e4b->bd_buddy_page = NULL; 1125 e4b->bd_bitmap_page = NULL; 1126 1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1128 /* 1129 * we need full data about the group 1130 * to make a good selection 1131 */ 1132 ret = ext4_mb_init_group(sb, group); 1133 if (ret) 1134 return ret; 1135 } 1136 1137 /* 1138 * the buddy cache inode stores the block bitmap 1139 * and buddy information in consecutive blocks. 1140 * So for each group we need two blocks. 1141 */ 1142 block = group * 2; 1143 pnum = block / blocks_per_page; 1144 poff = block % blocks_per_page; 1145 1146 /* we could use find_or_create_page(), but it locks page 1147 * what we'd like to avoid in fast path ... */ 1148 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1149 if (page == NULL || !PageUptodate(page)) { 1150 if (page) 1151 /* 1152 * drop the page reference and try 1153 * to get the page with lock. If we 1154 * are not uptodate that implies 1155 * somebody just created the page but 1156 * is yet to initialize the same. So 1157 * wait for it to initialize. 1158 */ 1159 page_cache_release(page); 1160 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1161 if (page) { 1162 BUG_ON(page->mapping != inode->i_mapping); 1163 if (!PageUptodate(page)) { 1164 ret = ext4_mb_init_cache(page, NULL); 1165 if (ret) { 1166 unlock_page(page); 1167 goto err; 1168 } 1169 mb_cmp_bitmaps(e4b, page_address(page) + 1170 (poff * sb->s_blocksize)); 1171 } 1172 unlock_page(page); 1173 } 1174 } 1175 if (page == NULL) { 1176 ret = -ENOMEM; 1177 goto err; 1178 } 1179 if (!PageUptodate(page)) { 1180 ret = -EIO; 1181 goto err; 1182 } 1183 1184 /* Pages marked accessed already */ 1185 e4b->bd_bitmap_page = page; 1186 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1187 1188 block++; 1189 pnum = block / blocks_per_page; 1190 poff = block % blocks_per_page; 1191 1192 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1193 if (page == NULL || !PageUptodate(page)) { 1194 if (page) 1195 page_cache_release(page); 1196 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1197 if (page) { 1198 BUG_ON(page->mapping != inode->i_mapping); 1199 if (!PageUptodate(page)) { 1200 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1201 if (ret) { 1202 unlock_page(page); 1203 goto err; 1204 } 1205 } 1206 unlock_page(page); 1207 } 1208 } 1209 if (page == NULL) { 1210 ret = -ENOMEM; 1211 goto err; 1212 } 1213 if (!PageUptodate(page)) { 1214 ret = -EIO; 1215 goto err; 1216 } 1217 1218 /* Pages marked accessed already */ 1219 e4b->bd_buddy_page = page; 1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1221 1222 BUG_ON(e4b->bd_bitmap_page == NULL); 1223 BUG_ON(e4b->bd_buddy_page == NULL); 1224 1225 return 0; 1226 1227err: 1228 if (page) 1229 page_cache_release(page); 1230 if (e4b->bd_bitmap_page) 1231 page_cache_release(e4b->bd_bitmap_page); 1232 if (e4b->bd_buddy_page) 1233 page_cache_release(e4b->bd_buddy_page); 1234 e4b->bd_buddy = NULL; 1235 e4b->bd_bitmap = NULL; 1236 return ret; 1237} 1238 1239static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1240{ 1241 if (e4b->bd_bitmap_page) 1242 page_cache_release(e4b->bd_bitmap_page); 1243 if (e4b->bd_buddy_page) 1244 page_cache_release(e4b->bd_buddy_page); 1245} 1246 1247 1248static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1249{ 1250 int order = 1; 1251 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1252 void *bb; 1253 1254 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1255 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1256 1257 bb = e4b->bd_buddy; 1258 while (order <= e4b->bd_blkbits + 1) { 1259 block = block >> 1; 1260 if (!mb_test_bit(block, bb)) { 1261 /* this block is part of buddy of order 'order' */ 1262 return order; 1263 } 1264 bb += bb_incr; 1265 bb_incr >>= 1; 1266 order++; 1267 } 1268 return 0; 1269} 1270 1271static void mb_clear_bits(void *bm, int cur, int len) 1272{ 1273 __u32 *addr; 1274 1275 len = cur + len; 1276 while (cur < len) { 1277 if ((cur & 31) == 0 && (len - cur) >= 32) { 1278 /* fast path: clear whole word at once */ 1279 addr = bm + (cur >> 3); 1280 *addr = 0; 1281 cur += 32; 1282 continue; 1283 } 1284 mb_clear_bit(cur, bm); 1285 cur++; 1286 } 1287} 1288 1289/* clear bits in given range 1290 * will return first found zero bit if any, -1 otherwise 1291 */ 1292static int mb_test_and_clear_bits(void *bm, int cur, int len) 1293{ 1294 __u32 *addr; 1295 int zero_bit = -1; 1296 1297 len = cur + len; 1298 while (cur < len) { 1299 if ((cur & 31) == 0 && (len - cur) >= 32) { 1300 /* fast path: clear whole word at once */ 1301 addr = bm + (cur >> 3); 1302 if (*addr != (__u32)(-1) && zero_bit == -1) 1303 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1304 *addr = 0; 1305 cur += 32; 1306 continue; 1307 } 1308 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1309 zero_bit = cur; 1310 cur++; 1311 } 1312 1313 return zero_bit; 1314} 1315 1316void ext4_set_bits(void *bm, int cur, int len) 1317{ 1318 __u32 *addr; 1319 1320 len = cur + len; 1321 while (cur < len) { 1322 if ((cur & 31) == 0 && (len - cur) >= 32) { 1323 /* fast path: set whole word at once */ 1324 addr = bm + (cur >> 3); 1325 *addr = 0xffffffff; 1326 cur += 32; 1327 continue; 1328 } 1329 mb_set_bit(cur, bm); 1330 cur++; 1331 } 1332} 1333 1334/* 1335 * _________________________________________________________________ */ 1336 1337static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1338{ 1339 if (mb_test_bit(*bit + side, bitmap)) { 1340 mb_clear_bit(*bit, bitmap); 1341 (*bit) -= side; 1342 return 1; 1343 } 1344 else { 1345 (*bit) += side; 1346 mb_set_bit(*bit, bitmap); 1347 return -1; 1348 } 1349} 1350 1351static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1352{ 1353 int max; 1354 int order = 1; 1355 void *buddy = mb_find_buddy(e4b, order, &max); 1356 1357 while (buddy) { 1358 void *buddy2; 1359 1360 /* Bits in range [first; last] are known to be set since 1361 * corresponding blocks were allocated. Bits in range 1362 * (first; last) will stay set because they form buddies on 1363 * upper layer. We just deal with borders if they don't 1364 * align with upper layer and then go up. 1365 * Releasing entire group is all about clearing 1366 * single bit of highest order buddy. 1367 */ 1368 1369 /* Example: 1370 * --------------------------------- 1371 * | 1 | 1 | 1 | 1 | 1372 * --------------------------------- 1373 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1374 * --------------------------------- 1375 * 0 1 2 3 4 5 6 7 1376 * \_____________________/ 1377 * 1378 * Neither [1] nor [6] is aligned to above layer. 1379 * Left neighbour [0] is free, so mark it busy, 1380 * decrease bb_counters and extend range to 1381 * [0; 6] 1382 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1383 * mark [6] free, increase bb_counters and shrink range to 1384 * [0; 5]. 1385 * Then shift range to [0; 2], go up and do the same. 1386 */ 1387 1388 1389 if (first & 1) 1390 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1391 if (!(last & 1)) 1392 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1393 if (first > last) 1394 break; 1395 order++; 1396 1397 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1398 mb_clear_bits(buddy, first, last - first + 1); 1399 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1400 break; 1401 } 1402 first >>= 1; 1403 last >>= 1; 1404 buddy = buddy2; 1405 } 1406} 1407 1408static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1409 int first, int count) 1410{ 1411 int left_is_free = 0; 1412 int right_is_free = 0; 1413 int block; 1414 int last = first + count - 1; 1415 struct super_block *sb = e4b->bd_sb; 1416 1417 if (WARN_ON(count == 0)) 1418 return; 1419 BUG_ON(last >= (sb->s_blocksize << 3)); 1420 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1421 /* Don't bother if the block group is corrupt. */ 1422 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1423 return; 1424 1425 mb_check_buddy(e4b); 1426 mb_free_blocks_double(inode, e4b, first, count); 1427 1428 e4b->bd_info->bb_free += count; 1429 if (first < e4b->bd_info->bb_first_free) 1430 e4b->bd_info->bb_first_free = first; 1431 1432 /* access memory sequentially: check left neighbour, 1433 * clear range and then check right neighbour 1434 */ 1435 if (first != 0) 1436 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1437 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1438 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1439 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1440 1441 if (unlikely(block != -1)) { 1442 struct ext4_sb_info *sbi = EXT4_SB(sb); 1443 ext4_fsblk_t blocknr; 1444 1445 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1446 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1447 ext4_grp_locked_error(sb, e4b->bd_group, 1448 inode ? inode->i_ino : 0, 1449 blocknr, 1450 "freeing already freed block " 1451 "(bit %u); block bitmap corrupt.", 1452 block); 1453 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1454 percpu_counter_sub(&sbi->s_freeclusters_counter, 1455 e4b->bd_info->bb_free); 1456 /* Mark the block group as corrupt. */ 1457 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1458 &e4b->bd_info->bb_state); 1459 mb_regenerate_buddy(e4b); 1460 goto done; 1461 } 1462 1463 /* let's maintain fragments counter */ 1464 if (left_is_free && right_is_free) 1465 e4b->bd_info->bb_fragments--; 1466 else if (!left_is_free && !right_is_free) 1467 e4b->bd_info->bb_fragments++; 1468 1469 /* buddy[0] == bd_bitmap is a special case, so handle 1470 * it right away and let mb_buddy_mark_free stay free of 1471 * zero order checks. 1472 * Check if neighbours are to be coaleasced, 1473 * adjust bitmap bb_counters and borders appropriately. 1474 */ 1475 if (first & 1) { 1476 first += !left_is_free; 1477 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1478 } 1479 if (!(last & 1)) { 1480 last -= !right_is_free; 1481 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1482 } 1483 1484 if (first <= last) 1485 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1486 1487done: 1488 mb_set_largest_free_order(sb, e4b->bd_info); 1489 mb_check_buddy(e4b); 1490} 1491 1492static int mb_find_extent(struct ext4_buddy *e4b, int block, 1493 int needed, struct ext4_free_extent *ex) 1494{ 1495 int next = block; 1496 int max, order; 1497 void *buddy; 1498 1499 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1500 BUG_ON(ex == NULL); 1501 1502 buddy = mb_find_buddy(e4b, 0, &max); 1503 BUG_ON(buddy == NULL); 1504 BUG_ON(block >= max); 1505 if (mb_test_bit(block, buddy)) { 1506 ex->fe_len = 0; 1507 ex->fe_start = 0; 1508 ex->fe_group = 0; 1509 return 0; 1510 } 1511 1512 /* find actual order */ 1513 order = mb_find_order_for_block(e4b, block); 1514 block = block >> order; 1515 1516 ex->fe_len = 1 << order; 1517 ex->fe_start = block << order; 1518 ex->fe_group = e4b->bd_group; 1519 1520 /* calc difference from given start */ 1521 next = next - ex->fe_start; 1522 ex->fe_len -= next; 1523 ex->fe_start += next; 1524 1525 while (needed > ex->fe_len && 1526 mb_find_buddy(e4b, order, &max)) { 1527 1528 if (block + 1 >= max) 1529 break; 1530 1531 next = (block + 1) * (1 << order); 1532 if (mb_test_bit(next, e4b->bd_bitmap)) 1533 break; 1534 1535 order = mb_find_order_for_block(e4b, next); 1536 1537 block = next >> order; 1538 ex->fe_len += 1 << order; 1539 } 1540 1541 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1542 return ex->fe_len; 1543} 1544 1545static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1546{ 1547 int ord; 1548 int mlen = 0; 1549 int max = 0; 1550 int cur; 1551 int start = ex->fe_start; 1552 int len = ex->fe_len; 1553 unsigned ret = 0; 1554 int len0 = len; 1555 void *buddy; 1556 1557 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1558 BUG_ON(e4b->bd_group != ex->fe_group); 1559 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1560 mb_check_buddy(e4b); 1561 mb_mark_used_double(e4b, start, len); 1562 1563 e4b->bd_info->bb_free -= len; 1564 if (e4b->bd_info->bb_first_free == start) 1565 e4b->bd_info->bb_first_free += len; 1566 1567 /* let's maintain fragments counter */ 1568 if (start != 0) 1569 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1570 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1571 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1572 if (mlen && max) 1573 e4b->bd_info->bb_fragments++; 1574 else if (!mlen && !max) 1575 e4b->bd_info->bb_fragments--; 1576 1577 /* let's maintain buddy itself */ 1578 while (len) { 1579 ord = mb_find_order_for_block(e4b, start); 1580 1581 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1582 /* the whole chunk may be allocated at once! */ 1583 mlen = 1 << ord; 1584 buddy = mb_find_buddy(e4b, ord, &max); 1585 BUG_ON((start >> ord) >= max); 1586 mb_set_bit(start >> ord, buddy); 1587 e4b->bd_info->bb_counters[ord]--; 1588 start += mlen; 1589 len -= mlen; 1590 BUG_ON(len < 0); 1591 continue; 1592 } 1593 1594 /* store for history */ 1595 if (ret == 0) 1596 ret = len | (ord << 16); 1597 1598 /* we have to split large buddy */ 1599 BUG_ON(ord <= 0); 1600 buddy = mb_find_buddy(e4b, ord, &max); 1601 mb_set_bit(start >> ord, buddy); 1602 e4b->bd_info->bb_counters[ord]--; 1603 1604 ord--; 1605 cur = (start >> ord) & ~1U; 1606 buddy = mb_find_buddy(e4b, ord, &max); 1607 mb_clear_bit(cur, buddy); 1608 mb_clear_bit(cur + 1, buddy); 1609 e4b->bd_info->bb_counters[ord]++; 1610 e4b->bd_info->bb_counters[ord]++; 1611 } 1612 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1613 1614 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1615 mb_check_buddy(e4b); 1616 1617 return ret; 1618} 1619 1620/* 1621 * Must be called under group lock! 1622 */ 1623static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1624 struct ext4_buddy *e4b) 1625{ 1626 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1627 int ret; 1628 1629 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1630 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1631 1632 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1633 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1634 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1635 1636 /* preallocation can change ac_b_ex, thus we store actually 1637 * allocated blocks for history */ 1638 ac->ac_f_ex = ac->ac_b_ex; 1639 1640 ac->ac_status = AC_STATUS_FOUND; 1641 ac->ac_tail = ret & 0xffff; 1642 ac->ac_buddy = ret >> 16; 1643 1644 /* 1645 * take the page reference. We want the page to be pinned 1646 * so that we don't get a ext4_mb_init_cache_call for this 1647 * group until we update the bitmap. That would mean we 1648 * double allocate blocks. The reference is dropped 1649 * in ext4_mb_release_context 1650 */ 1651 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1652 get_page(ac->ac_bitmap_page); 1653 ac->ac_buddy_page = e4b->bd_buddy_page; 1654 get_page(ac->ac_buddy_page); 1655 /* store last allocated for subsequent stream allocation */ 1656 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1657 spin_lock(&sbi->s_md_lock); 1658 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1659 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1660 spin_unlock(&sbi->s_md_lock); 1661 } 1662} 1663 1664/* 1665 * regular allocator, for general purposes allocation 1666 */ 1667 1668static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1669 struct ext4_buddy *e4b, 1670 int finish_group) 1671{ 1672 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1673 struct ext4_free_extent *bex = &ac->ac_b_ex; 1674 struct ext4_free_extent *gex = &ac->ac_g_ex; 1675 struct ext4_free_extent ex; 1676 int max; 1677 1678 if (ac->ac_status == AC_STATUS_FOUND) 1679 return; 1680 /* 1681 * We don't want to scan for a whole year 1682 */ 1683 if (ac->ac_found > sbi->s_mb_max_to_scan && 1684 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1685 ac->ac_status = AC_STATUS_BREAK; 1686 return; 1687 } 1688 1689 /* 1690 * Haven't found good chunk so far, let's continue 1691 */ 1692 if (bex->fe_len < gex->fe_len) 1693 return; 1694 1695 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1696 && bex->fe_group == e4b->bd_group) { 1697 /* recheck chunk's availability - we don't know 1698 * when it was found (within this lock-unlock 1699 * period or not) */ 1700 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1701 if (max >= gex->fe_len) { 1702 ext4_mb_use_best_found(ac, e4b); 1703 return; 1704 } 1705 } 1706} 1707 1708/* 1709 * The routine checks whether found extent is good enough. If it is, 1710 * then the extent gets marked used and flag is set to the context 1711 * to stop scanning. Otherwise, the extent is compared with the 1712 * previous found extent and if new one is better, then it's stored 1713 * in the context. Later, the best found extent will be used, if 1714 * mballoc can't find good enough extent. 1715 * 1716 * FIXME: real allocation policy is to be designed yet! 1717 */ 1718static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1719 struct ext4_free_extent *ex, 1720 struct ext4_buddy *e4b) 1721{ 1722 struct ext4_free_extent *bex = &ac->ac_b_ex; 1723 struct ext4_free_extent *gex = &ac->ac_g_ex; 1724 1725 BUG_ON(ex->fe_len <= 0); 1726 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1727 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1728 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1729 1730 ac->ac_found++; 1731 1732 /* 1733 * The special case - take what you catch first 1734 */ 1735 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1736 *bex = *ex; 1737 ext4_mb_use_best_found(ac, e4b); 1738 return; 1739 } 1740 1741 /* 1742 * Let's check whether the chuck is good enough 1743 */ 1744 if (ex->fe_len == gex->fe_len) { 1745 *bex = *ex; 1746 ext4_mb_use_best_found(ac, e4b); 1747 return; 1748 } 1749 1750 /* 1751 * If this is first found extent, just store it in the context 1752 */ 1753 if (bex->fe_len == 0) { 1754 *bex = *ex; 1755 return; 1756 } 1757 1758 /* 1759 * If new found extent is better, store it in the context 1760 */ 1761 if (bex->fe_len < gex->fe_len) { 1762 /* if the request isn't satisfied, any found extent 1763 * larger than previous best one is better */ 1764 if (ex->fe_len > bex->fe_len) 1765 *bex = *ex; 1766 } else if (ex->fe_len > gex->fe_len) { 1767 /* if the request is satisfied, then we try to find 1768 * an extent that still satisfy the request, but is 1769 * smaller than previous one */ 1770 if (ex->fe_len < bex->fe_len) 1771 *bex = *ex; 1772 } 1773 1774 ext4_mb_check_limits(ac, e4b, 0); 1775} 1776 1777static noinline_for_stack 1778int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1779 struct ext4_buddy *e4b) 1780{ 1781 struct ext4_free_extent ex = ac->ac_b_ex; 1782 ext4_group_t group = ex.fe_group; 1783 int max; 1784 int err; 1785 1786 BUG_ON(ex.fe_len <= 0); 1787 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1788 if (err) 1789 return err; 1790 1791 ext4_lock_group(ac->ac_sb, group); 1792 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1793 1794 if (max > 0) { 1795 ac->ac_b_ex = ex; 1796 ext4_mb_use_best_found(ac, e4b); 1797 } 1798 1799 ext4_unlock_group(ac->ac_sb, group); 1800 ext4_mb_unload_buddy(e4b); 1801 1802 return 0; 1803} 1804 1805static noinline_for_stack 1806int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1807 struct ext4_buddy *e4b) 1808{ 1809 ext4_group_t group = ac->ac_g_ex.fe_group; 1810 int max; 1811 int err; 1812 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1813 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1814 struct ext4_free_extent ex; 1815 1816 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1817 return 0; 1818 if (grp->bb_free == 0) 1819 return 0; 1820 1821 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1822 if (err) 1823 return err; 1824 1825 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1826 ext4_mb_unload_buddy(e4b); 1827 return 0; 1828 } 1829 1830 ext4_lock_group(ac->ac_sb, group); 1831 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1832 ac->ac_g_ex.fe_len, &ex); 1833 ex.fe_logical = 0xDEADFA11; /* debug value */ 1834 1835 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1836 ext4_fsblk_t start; 1837 1838 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1839 ex.fe_start; 1840 /* use do_div to get remainder (would be 64-bit modulo) */ 1841 if (do_div(start, sbi->s_stripe) == 0) { 1842 ac->ac_found++; 1843 ac->ac_b_ex = ex; 1844 ext4_mb_use_best_found(ac, e4b); 1845 } 1846 } else if (max >= ac->ac_g_ex.fe_len) { 1847 BUG_ON(ex.fe_len <= 0); 1848 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1849 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1850 ac->ac_found++; 1851 ac->ac_b_ex = ex; 1852 ext4_mb_use_best_found(ac, e4b); 1853 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1854 /* Sometimes, caller may want to merge even small 1855 * number of blocks to an existing extent */ 1856 BUG_ON(ex.fe_len <= 0); 1857 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1858 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1859 ac->ac_found++; 1860 ac->ac_b_ex = ex; 1861 ext4_mb_use_best_found(ac, e4b); 1862 } 1863 ext4_unlock_group(ac->ac_sb, group); 1864 ext4_mb_unload_buddy(e4b); 1865 1866 return 0; 1867} 1868 1869/* 1870 * The routine scans buddy structures (not bitmap!) from given order 1871 * to max order and tries to find big enough chunk to satisfy the req 1872 */ 1873static noinline_for_stack 1874void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1875 struct ext4_buddy *e4b) 1876{ 1877 struct super_block *sb = ac->ac_sb; 1878 struct ext4_group_info *grp = e4b->bd_info; 1879 void *buddy; 1880 int i; 1881 int k; 1882 int max; 1883 1884 BUG_ON(ac->ac_2order <= 0); 1885 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1886 if (grp->bb_counters[i] == 0) 1887 continue; 1888 1889 buddy = mb_find_buddy(e4b, i, &max); 1890 BUG_ON(buddy == NULL); 1891 1892 k = mb_find_next_zero_bit(buddy, max, 0); 1893 BUG_ON(k >= max); 1894 1895 ac->ac_found++; 1896 1897 ac->ac_b_ex.fe_len = 1 << i; 1898 ac->ac_b_ex.fe_start = k << i; 1899 ac->ac_b_ex.fe_group = e4b->bd_group; 1900 1901 ext4_mb_use_best_found(ac, e4b); 1902 1903 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1904 1905 if (EXT4_SB(sb)->s_mb_stats) 1906 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1907 1908 break; 1909 } 1910} 1911 1912/* 1913 * The routine scans the group and measures all found extents. 1914 * In order to optimize scanning, caller must pass number of 1915 * free blocks in the group, so the routine can know upper limit. 1916 */ 1917static noinline_for_stack 1918void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1919 struct ext4_buddy *e4b) 1920{ 1921 struct super_block *sb = ac->ac_sb; 1922 void *bitmap = e4b->bd_bitmap; 1923 struct ext4_free_extent ex; 1924 int i; 1925 int free; 1926 1927 free = e4b->bd_info->bb_free; 1928 BUG_ON(free <= 0); 1929 1930 i = e4b->bd_info->bb_first_free; 1931 1932 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1933 i = mb_find_next_zero_bit(bitmap, 1934 EXT4_CLUSTERS_PER_GROUP(sb), i); 1935 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1936 /* 1937 * IF we have corrupt bitmap, we won't find any 1938 * free blocks even though group info says we 1939 * we have free blocks 1940 */ 1941 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1942 "%d free clusters as per " 1943 "group info. But bitmap says 0", 1944 free); 1945 break; 1946 } 1947 1948 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1949 BUG_ON(ex.fe_len <= 0); 1950 if (free < ex.fe_len) { 1951 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1952 "%d free clusters as per " 1953 "group info. But got %d blocks", 1954 free, ex.fe_len); 1955 /* 1956 * The number of free blocks differs. This mostly 1957 * indicate that the bitmap is corrupt. So exit 1958 * without claiming the space. 1959 */ 1960 break; 1961 } 1962 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1963 ext4_mb_measure_extent(ac, &ex, e4b); 1964 1965 i += ex.fe_len; 1966 free -= ex.fe_len; 1967 } 1968 1969 ext4_mb_check_limits(ac, e4b, 1); 1970} 1971 1972/* 1973 * This is a special case for storages like raid5 1974 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1975 */ 1976static noinline_for_stack 1977void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1978 struct ext4_buddy *e4b) 1979{ 1980 struct super_block *sb = ac->ac_sb; 1981 struct ext4_sb_info *sbi = EXT4_SB(sb); 1982 void *bitmap = e4b->bd_bitmap; 1983 struct ext4_free_extent ex; 1984 ext4_fsblk_t first_group_block; 1985 ext4_fsblk_t a; 1986 ext4_grpblk_t i; 1987 int max; 1988 1989 BUG_ON(sbi->s_stripe == 0); 1990 1991 /* find first stripe-aligned block in group */ 1992 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1993 1994 a = first_group_block + sbi->s_stripe - 1; 1995 do_div(a, sbi->s_stripe); 1996 i = (a * sbi->s_stripe) - first_group_block; 1997 1998 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1999 if (!mb_test_bit(i, bitmap)) { 2000 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2001 if (max >= sbi->s_stripe) { 2002 ac->ac_found++; 2003 ex.fe_logical = 0xDEADF00D; /* debug value */ 2004 ac->ac_b_ex = ex; 2005 ext4_mb_use_best_found(ac, e4b); 2006 break; 2007 } 2008 } 2009 i += sbi->s_stripe; 2010 } 2011} 2012 2013/* This is now called BEFORE we load the buddy bitmap. */ 2014static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2015 ext4_group_t group, int cr) 2016{ 2017 unsigned free, fragments; 2018 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2019 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2020 2021 BUG_ON(cr < 0 || cr >= 4); 2022 2023 free = grp->bb_free; 2024 if (free == 0) 2025 return 0; 2026 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2027 return 0; 2028 2029 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2030 return 0; 2031 2032 /* We only do this if the grp has never been initialized */ 2033 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2034 int ret = ext4_mb_init_group(ac->ac_sb, group); 2035 if (ret) 2036 return 0; 2037 } 2038 2039 fragments = grp->bb_fragments; 2040 if (fragments == 0) 2041 return 0; 2042 2043 switch (cr) { 2044 case 0: 2045 BUG_ON(ac->ac_2order == 0); 2046 2047 /* Avoid using the first bg of a flexgroup for data files */ 2048 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2049 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2050 ((group % flex_size) == 0)) 2051 return 0; 2052 2053 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2054 (free / fragments) >= ac->ac_g_ex.fe_len) 2055 return 1; 2056 2057 if (grp->bb_largest_free_order < ac->ac_2order) 2058 return 0; 2059 2060 return 1; 2061 case 1: 2062 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2063 return 1; 2064 break; 2065 case 2: 2066 if (free >= ac->ac_g_ex.fe_len) 2067 return 1; 2068 break; 2069 case 3: 2070 return 1; 2071 default: 2072 BUG(); 2073 } 2074 2075 return 0; 2076} 2077 2078static noinline_for_stack int 2079ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2080{ 2081 ext4_group_t ngroups, group, i; 2082 int cr; 2083 int err = 0; 2084 struct ext4_sb_info *sbi; 2085 struct super_block *sb; 2086 struct ext4_buddy e4b; 2087 2088 sb = ac->ac_sb; 2089 sbi = EXT4_SB(sb); 2090 ngroups = ext4_get_groups_count(sb); 2091 /* non-extent files are limited to low blocks/groups */ 2092 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2093 ngroups = sbi->s_blockfile_groups; 2094 2095 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2096 2097 /* first, try the goal */ 2098 err = ext4_mb_find_by_goal(ac, &e4b); 2099 if (err || ac->ac_status == AC_STATUS_FOUND) 2100 goto out; 2101 2102 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2103 goto out; 2104 2105 /* 2106 * ac->ac2_order is set only if the fe_len is a power of 2 2107 * if ac2_order is set we also set criteria to 0 so that we 2108 * try exact allocation using buddy. 2109 */ 2110 i = fls(ac->ac_g_ex.fe_len); 2111 ac->ac_2order = 0; 2112 /* 2113 * We search using buddy data only if the order of the request 2114 * is greater than equal to the sbi_s_mb_order2_reqs 2115 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2116 */ 2117 if (i >= sbi->s_mb_order2_reqs) { 2118 /* 2119 * This should tell if fe_len is exactly power of 2 2120 */ 2121 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2122 ac->ac_2order = i - 1; 2123 } 2124 2125 /* if stream allocation is enabled, use global goal */ 2126 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2127 /* TBD: may be hot point */ 2128 spin_lock(&sbi->s_md_lock); 2129 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2130 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2131 spin_unlock(&sbi->s_md_lock); 2132 } 2133 2134 /* Let's just scan groups to find more-less suitable blocks */ 2135 cr = ac->ac_2order ? 0 : 1; 2136 /* 2137 * cr == 0 try to get exact allocation, 2138 * cr == 3 try to get anything 2139 */ 2140repeat: 2141 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2142 ac->ac_criteria = cr; 2143 /* 2144 * searching for the right group start 2145 * from the goal value specified 2146 */ 2147 group = ac->ac_g_ex.fe_group; 2148 2149 for (i = 0; i < ngroups; group++, i++) { 2150 cond_resched(); 2151 /* 2152 * Artificially restricted ngroups for non-extent 2153 * files makes group > ngroups possible on first loop. 2154 */ 2155 if (group >= ngroups) 2156 group = 0; 2157 2158 /* This now checks without needing the buddy page */ 2159 if (!ext4_mb_good_group(ac, group, cr)) 2160 continue; 2161 2162 err = ext4_mb_load_buddy(sb, group, &e4b); 2163 if (err) 2164 goto out; 2165 2166 ext4_lock_group(sb, group); 2167 2168 /* 2169 * We need to check again after locking the 2170 * block group 2171 */ 2172 if (!ext4_mb_good_group(ac, group, cr)) { 2173 ext4_unlock_group(sb, group); 2174 ext4_mb_unload_buddy(&e4b); 2175 continue; 2176 } 2177 2178 ac->ac_groups_scanned++; 2179 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2180 ext4_mb_simple_scan_group(ac, &e4b); 2181 else if (cr == 1 && sbi->s_stripe && 2182 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2183 ext4_mb_scan_aligned(ac, &e4b); 2184 else 2185 ext4_mb_complex_scan_group(ac, &e4b); 2186 2187 ext4_unlock_group(sb, group); 2188 ext4_mb_unload_buddy(&e4b); 2189 2190 if (ac->ac_status != AC_STATUS_CONTINUE) 2191 break; 2192 } 2193 } 2194 2195 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2196 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2197 /* 2198 * We've been searching too long. Let's try to allocate 2199 * the best chunk we've found so far 2200 */ 2201 2202 ext4_mb_try_best_found(ac, &e4b); 2203 if (ac->ac_status != AC_STATUS_FOUND) { 2204 /* 2205 * Someone more lucky has already allocated it. 2206 * The only thing we can do is just take first 2207 * found block(s) 2208 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2209 */ 2210 ac->ac_b_ex.fe_group = 0; 2211 ac->ac_b_ex.fe_start = 0; 2212 ac->ac_b_ex.fe_len = 0; 2213 ac->ac_status = AC_STATUS_CONTINUE; 2214 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2215 cr = 3; 2216 atomic_inc(&sbi->s_mb_lost_chunks); 2217 goto repeat; 2218 } 2219 } 2220out: 2221 return err; 2222} 2223 2224static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2225{ 2226 struct super_block *sb = seq->private; 2227 ext4_group_t group; 2228 2229 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2230 return NULL; 2231 group = *pos + 1; 2232 return (void *) ((unsigned long) group); 2233} 2234 2235static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2236{ 2237 struct super_block *sb = seq->private; 2238 ext4_group_t group; 2239 2240 ++*pos; 2241 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2242 return NULL; 2243 group = *pos + 1; 2244 return (void *) ((unsigned long) group); 2245} 2246 2247static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2248{ 2249 struct super_block *sb = seq->private; 2250 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2251 int i; 2252 int err, buddy_loaded = 0; 2253 struct ext4_buddy e4b; 2254 struct ext4_group_info *grinfo; 2255 struct sg { 2256 struct ext4_group_info info; 2257 ext4_grpblk_t counters[16]; 2258 } sg; 2259 2260 group--; 2261 if (group == 0) 2262 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2263 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2264 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2265 "group", "free", "frags", "first", 2266 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2267 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2268 2269 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2270 sizeof(struct ext4_group_info); 2271 grinfo = ext4_get_group_info(sb, group); 2272 /* Load the group info in memory only if not already loaded. */ 2273 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2274 err = ext4_mb_load_buddy(sb, group, &e4b); 2275 if (err) { 2276 seq_printf(seq, "#%-5u: I/O error\n", group); 2277 return 0; 2278 } 2279 buddy_loaded = 1; 2280 } 2281 2282 memcpy(&sg, ext4_get_group_info(sb, group), i); 2283 2284 if (buddy_loaded) 2285 ext4_mb_unload_buddy(&e4b); 2286 2287 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2288 sg.info.bb_fragments, sg.info.bb_first_free); 2289 for (i = 0; i <= 13; i++) 2290 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2291 sg.info.bb_counters[i] : 0); 2292 seq_printf(seq, " ]\n"); 2293 2294 return 0; 2295} 2296 2297static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2298{ 2299} 2300 2301static const struct seq_operations ext4_mb_seq_groups_ops = { 2302 .start = ext4_mb_seq_groups_start, 2303 .next = ext4_mb_seq_groups_next, 2304 .stop = ext4_mb_seq_groups_stop, 2305 .show = ext4_mb_seq_groups_show, 2306}; 2307 2308static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2309{ 2310 struct super_block *sb = PDE_DATA(inode); 2311 int rc; 2312 2313 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2314 if (rc == 0) { 2315 struct seq_file *m = file->private_data; 2316 m->private = sb; 2317 } 2318 return rc; 2319 2320} 2321 2322static const struct file_operations ext4_mb_seq_groups_fops = { 2323 .owner = THIS_MODULE, 2324 .open = ext4_mb_seq_groups_open, 2325 .read = seq_read, 2326 .llseek = seq_lseek, 2327 .release = seq_release, 2328}; 2329 2330static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2331{ 2332 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2333 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2334 2335 BUG_ON(!cachep); 2336 return cachep; 2337} 2338 2339/* 2340 * Allocate the top-level s_group_info array for the specified number 2341 * of groups 2342 */ 2343int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2344{ 2345 struct ext4_sb_info *sbi = EXT4_SB(sb); 2346 unsigned size; 2347 struct ext4_group_info ***new_groupinfo; 2348 2349 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2350 EXT4_DESC_PER_BLOCK_BITS(sb); 2351 if (size <= sbi->s_group_info_size) 2352 return 0; 2353 2354 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2355 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2356 if (!new_groupinfo) { 2357 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2358 return -ENOMEM; 2359 } 2360 if (sbi->s_group_info) { 2361 memcpy(new_groupinfo, sbi->s_group_info, 2362 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2363 kvfree(sbi->s_group_info); 2364 } 2365 sbi->s_group_info = new_groupinfo; 2366 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2367 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2368 sbi->s_group_info_size); 2369 return 0; 2370} 2371 2372/* Create and initialize ext4_group_info data for the given group. */ 2373int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2374 struct ext4_group_desc *desc) 2375{ 2376 int i; 2377 int metalen = 0; 2378 struct ext4_sb_info *sbi = EXT4_SB(sb); 2379 struct ext4_group_info **meta_group_info; 2380 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2381 2382 /* 2383 * First check if this group is the first of a reserved block. 2384 * If it's true, we have to allocate a new table of pointers 2385 * to ext4_group_info structures 2386 */ 2387 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2388 metalen = sizeof(*meta_group_info) << 2389 EXT4_DESC_PER_BLOCK_BITS(sb); 2390 meta_group_info = kmalloc(metalen, GFP_NOFS); 2391 if (meta_group_info == NULL) { 2392 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2393 "for a buddy group"); 2394 goto exit_meta_group_info; 2395 } 2396 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2397 meta_group_info; 2398 } 2399 2400 meta_group_info = 2401 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2402 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2403 2404 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2405 if (meta_group_info[i] == NULL) { 2406 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2407 goto exit_group_info; 2408 } 2409 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2410 &(meta_group_info[i]->bb_state)); 2411 2412 /* 2413 * initialize bb_free to be able to skip 2414 * empty groups without initialization 2415 */ 2416 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2417 meta_group_info[i]->bb_free = 2418 ext4_free_clusters_after_init(sb, group, desc); 2419 } else { 2420 meta_group_info[i]->bb_free = 2421 ext4_free_group_clusters(sb, desc); 2422 } 2423 2424 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2425 init_rwsem(&meta_group_info[i]->alloc_sem); 2426 meta_group_info[i]->bb_free_root = RB_ROOT; 2427 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2428 2429#ifdef DOUBLE_CHECK 2430 { 2431 struct buffer_head *bh; 2432 meta_group_info[i]->bb_bitmap = 2433 kmalloc(sb->s_blocksize, GFP_NOFS); 2434 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2435 bh = ext4_read_block_bitmap(sb, group); 2436 BUG_ON(bh == NULL); 2437 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2438 sb->s_blocksize); 2439 put_bh(bh); 2440 } 2441#endif 2442 2443 return 0; 2444 2445exit_group_info: 2446 /* If a meta_group_info table has been allocated, release it now */ 2447 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2448 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2449 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2450 } 2451exit_meta_group_info: 2452 return -ENOMEM; 2453} /* ext4_mb_add_groupinfo */ 2454 2455static int ext4_mb_init_backend(struct super_block *sb) 2456{ 2457 ext4_group_t ngroups = ext4_get_groups_count(sb); 2458 ext4_group_t i; 2459 struct ext4_sb_info *sbi = EXT4_SB(sb); 2460 int err; 2461 struct ext4_group_desc *desc; 2462 struct kmem_cache *cachep; 2463 2464 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2465 if (err) 2466 return err; 2467 2468 sbi->s_buddy_cache = new_inode(sb); 2469 if (sbi->s_buddy_cache == NULL) { 2470 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2471 goto err_freesgi; 2472 } 2473 /* To avoid potentially colliding with an valid on-disk inode number, 2474 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2475 * not in the inode hash, so it should never be found by iget(), but 2476 * this will avoid confusion if it ever shows up during debugging. */ 2477 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2478 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2479 for (i = 0; i < ngroups; i++) { 2480 desc = ext4_get_group_desc(sb, i, NULL); 2481 if (desc == NULL) { 2482 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2483 goto err_freebuddy; 2484 } 2485 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2486 goto err_freebuddy; 2487 } 2488 2489 return 0; 2490 2491err_freebuddy: 2492 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2493 while (i-- > 0) 2494 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2495 i = sbi->s_group_info_size; 2496 while (i-- > 0) 2497 kfree(sbi->s_group_info[i]); 2498 iput(sbi->s_buddy_cache); 2499err_freesgi: 2500 kvfree(sbi->s_group_info); 2501 return -ENOMEM; 2502} 2503 2504static void ext4_groupinfo_destroy_slabs(void) 2505{ 2506 int i; 2507 2508 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2509 if (ext4_groupinfo_caches[i]) 2510 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2511 ext4_groupinfo_caches[i] = NULL; 2512 } 2513} 2514 2515static int ext4_groupinfo_create_slab(size_t size) 2516{ 2517 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2518 int slab_size; 2519 int blocksize_bits = order_base_2(size); 2520 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2521 struct kmem_cache *cachep; 2522 2523 if (cache_index >= NR_GRPINFO_CACHES) 2524 return -EINVAL; 2525 2526 if (unlikely(cache_index < 0)) 2527 cache_index = 0; 2528 2529 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2530 if (ext4_groupinfo_caches[cache_index]) { 2531 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2532 return 0; /* Already created */ 2533 } 2534 2535 slab_size = offsetof(struct ext4_group_info, 2536 bb_counters[blocksize_bits + 2]); 2537 2538 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2539 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2540 NULL); 2541 2542 ext4_groupinfo_caches[cache_index] = cachep; 2543 2544 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2545 if (!cachep) { 2546 printk(KERN_EMERG 2547 "EXT4-fs: no memory for groupinfo slab cache\n"); 2548 return -ENOMEM; 2549 } 2550 2551 return 0; 2552} 2553 2554int ext4_mb_init(struct super_block *sb) 2555{ 2556 struct ext4_sb_info *sbi = EXT4_SB(sb); 2557 unsigned i, j; 2558 unsigned offset, offset_incr; 2559 unsigned max; 2560 int ret; 2561 2562 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2563 2564 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2565 if (sbi->s_mb_offsets == NULL) { 2566 ret = -ENOMEM; 2567 goto out; 2568 } 2569 2570 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2571 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2572 if (sbi->s_mb_maxs == NULL) { 2573 ret = -ENOMEM; 2574 goto out; 2575 } 2576 2577 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2578 if (ret < 0) 2579 goto out; 2580 2581 /* order 0 is regular bitmap */ 2582 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2583 sbi->s_mb_offsets[0] = 0; 2584 2585 i = 1; 2586 offset = 0; 2587 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2588 max = sb->s_blocksize << 2; 2589 do { 2590 sbi->s_mb_offsets[i] = offset; 2591 sbi->s_mb_maxs[i] = max; 2592 offset += offset_incr; 2593 offset_incr = offset_incr >> 1; 2594 max = max >> 1; 2595 i++; 2596 } while (i <= sb->s_blocksize_bits + 1); 2597 2598 spin_lock_init(&sbi->s_md_lock); 2599 spin_lock_init(&sbi->s_bal_lock); 2600 2601 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2602 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2603 sbi->s_mb_stats = MB_DEFAULT_STATS; 2604 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2605 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2606 /* 2607 * The default group preallocation is 512, which for 4k block 2608 * sizes translates to 2 megabytes. However for bigalloc file 2609 * systems, this is probably too big (i.e, if the cluster size 2610 * is 1 megabyte, then group preallocation size becomes half a 2611 * gigabyte!). As a default, we will keep a two megabyte 2612 * group pralloc size for cluster sizes up to 64k, and after 2613 * that, we will force a minimum group preallocation size of 2614 * 32 clusters. This translates to 8 megs when the cluster 2615 * size is 256k, and 32 megs when the cluster size is 1 meg, 2616 * which seems reasonable as a default. 2617 */ 2618 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2619 sbi->s_cluster_bits, 32); 2620 /* 2621 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2622 * to the lowest multiple of s_stripe which is bigger than 2623 * the s_mb_group_prealloc as determined above. We want 2624 * the preallocation size to be an exact multiple of the 2625 * RAID stripe size so that preallocations don't fragment 2626 * the stripes. 2627 */ 2628 if (sbi->s_stripe > 1) { 2629 sbi->s_mb_group_prealloc = roundup( 2630 sbi->s_mb_group_prealloc, sbi->s_stripe); 2631 } 2632 2633 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2634 if (sbi->s_locality_groups == NULL) { 2635 ret = -ENOMEM; 2636 goto out; 2637 } 2638 for_each_possible_cpu(i) { 2639 struct ext4_locality_group *lg; 2640 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2641 mutex_init(&lg->lg_mutex); 2642 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2643 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2644 spin_lock_init(&lg->lg_prealloc_lock); 2645 } 2646 2647 /* init file for buddy data */ 2648 ret = ext4_mb_init_backend(sb); 2649 if (ret != 0) 2650 goto out_free_locality_groups; 2651 2652 if (sbi->s_proc) 2653 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2654 &ext4_mb_seq_groups_fops, sb); 2655 2656 return 0; 2657 2658out_free_locality_groups: 2659 free_percpu(sbi->s_locality_groups); 2660 sbi->s_locality_groups = NULL; 2661out: 2662 kfree(sbi->s_mb_offsets); 2663 sbi->s_mb_offsets = NULL; 2664 kfree(sbi->s_mb_maxs); 2665 sbi->s_mb_maxs = NULL; 2666 return ret; 2667} 2668 2669/* need to called with the ext4 group lock held */ 2670static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2671{ 2672 struct ext4_prealloc_space *pa; 2673 struct list_head *cur, *tmp; 2674 int count = 0; 2675 2676 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2677 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2678 list_del(&pa->pa_group_list); 2679 count++; 2680 kmem_cache_free(ext4_pspace_cachep, pa); 2681 } 2682 if (count) 2683 mb_debug(1, "mballoc: %u PAs left\n", count); 2684 2685} 2686 2687int ext4_mb_release(struct super_block *sb) 2688{ 2689 ext4_group_t ngroups = ext4_get_groups_count(sb); 2690 ext4_group_t i; 2691 int num_meta_group_infos; 2692 struct ext4_group_info *grinfo; 2693 struct ext4_sb_info *sbi = EXT4_SB(sb); 2694 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2695 2696 if (sbi->s_proc) 2697 remove_proc_entry("mb_groups", sbi->s_proc); 2698 2699 if (sbi->s_group_info) { 2700 for (i = 0; i < ngroups; i++) { 2701 grinfo = ext4_get_group_info(sb, i); 2702#ifdef DOUBLE_CHECK 2703 kfree(grinfo->bb_bitmap); 2704#endif 2705 ext4_lock_group(sb, i); 2706 ext4_mb_cleanup_pa(grinfo); 2707 ext4_unlock_group(sb, i); 2708 kmem_cache_free(cachep, grinfo); 2709 } 2710 num_meta_group_infos = (ngroups + 2711 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2712 EXT4_DESC_PER_BLOCK_BITS(sb); 2713 for (i = 0; i < num_meta_group_infos; i++) 2714 kfree(sbi->s_group_info[i]); 2715 kvfree(sbi->s_group_info); 2716 } 2717 kfree(sbi->s_mb_offsets); 2718 kfree(sbi->s_mb_maxs); 2719 iput(sbi->s_buddy_cache); 2720 if (sbi->s_mb_stats) { 2721 ext4_msg(sb, KERN_INFO, 2722 "mballoc: %u blocks %u reqs (%u success)", 2723 atomic_read(&sbi->s_bal_allocated), 2724 atomic_read(&sbi->s_bal_reqs), 2725 atomic_read(&sbi->s_bal_success)); 2726 ext4_msg(sb, KERN_INFO, 2727 "mballoc: %u extents scanned, %u goal hits, " 2728 "%u 2^N hits, %u breaks, %u lost", 2729 atomic_read(&sbi->s_bal_ex_scanned), 2730 atomic_read(&sbi->s_bal_goals), 2731 atomic_read(&sbi->s_bal_2orders), 2732 atomic_read(&sbi->s_bal_breaks), 2733 atomic_read(&sbi->s_mb_lost_chunks)); 2734 ext4_msg(sb, KERN_INFO, 2735 "mballoc: %lu generated and it took %Lu", 2736 sbi->s_mb_buddies_generated, 2737 sbi->s_mb_generation_time); 2738 ext4_msg(sb, KERN_INFO, 2739 "mballoc: %u preallocated, %u discarded", 2740 atomic_read(&sbi->s_mb_preallocated), 2741 atomic_read(&sbi->s_mb_discarded)); 2742 } 2743 2744 free_percpu(sbi->s_locality_groups); 2745 2746 return 0; 2747} 2748 2749static inline int ext4_issue_discard(struct super_block *sb, 2750 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2751{ 2752 ext4_fsblk_t discard_block; 2753 2754 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2755 ext4_group_first_block_no(sb, block_group)); 2756 count = EXT4_C2B(EXT4_SB(sb), count); 2757 trace_ext4_discard_blocks(sb, 2758 (unsigned long long) discard_block, count); 2759 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2760} 2761 2762/* 2763 * This function is called by the jbd2 layer once the commit has finished, 2764 * so we know we can free the blocks that were released with that commit. 2765 */ 2766static void ext4_free_data_callback(struct super_block *sb, 2767 struct ext4_journal_cb_entry *jce, 2768 int rc) 2769{ 2770 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2771 struct ext4_buddy e4b; 2772 struct ext4_group_info *db; 2773 int err, count = 0, count2 = 0; 2774 2775 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2776 entry->efd_count, entry->efd_group, entry); 2777 2778 if (test_opt(sb, DISCARD)) { 2779 err = ext4_issue_discard(sb, entry->efd_group, 2780 entry->efd_start_cluster, 2781 entry->efd_count); 2782 if (err && err != -EOPNOTSUPP) 2783 ext4_msg(sb, KERN_WARNING, "discard request in" 2784 " group:%d block:%d count:%d failed" 2785 " with %d", entry->efd_group, 2786 entry->efd_start_cluster, 2787 entry->efd_count, err); 2788 } 2789 2790 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2791 /* we expect to find existing buddy because it's pinned */ 2792 BUG_ON(err != 0); 2793 2794 2795 db = e4b.bd_info; 2796 /* there are blocks to put in buddy to make them really free */ 2797 count += entry->efd_count; 2798 count2++; 2799 ext4_lock_group(sb, entry->efd_group); 2800 /* Take it out of per group rb tree */ 2801 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2802 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2803 2804 /* 2805 * Clear the trimmed flag for the group so that the next 2806 * ext4_trim_fs can trim it. 2807 * If the volume is mounted with -o discard, online discard 2808 * is supported and the free blocks will be trimmed online. 2809 */ 2810 if (!test_opt(sb, DISCARD)) 2811 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2812 2813 if (!db->bb_free_root.rb_node) { 2814 /* No more items in the per group rb tree 2815 * balance refcounts from ext4_mb_free_metadata() 2816 */ 2817 page_cache_release(e4b.bd_buddy_page); 2818 page_cache_release(e4b.bd_bitmap_page); 2819 } 2820 ext4_unlock_group(sb, entry->efd_group); 2821 kmem_cache_free(ext4_free_data_cachep, entry); 2822 ext4_mb_unload_buddy(&e4b); 2823 2824 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2825} 2826 2827int __init ext4_init_mballoc(void) 2828{ 2829 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2830 SLAB_RECLAIM_ACCOUNT); 2831 if (ext4_pspace_cachep == NULL) 2832 return -ENOMEM; 2833 2834 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2835 SLAB_RECLAIM_ACCOUNT); 2836 if (ext4_ac_cachep == NULL) { 2837 kmem_cache_destroy(ext4_pspace_cachep); 2838 return -ENOMEM; 2839 } 2840 2841 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2842 SLAB_RECLAIM_ACCOUNT); 2843 if (ext4_free_data_cachep == NULL) { 2844 kmem_cache_destroy(ext4_pspace_cachep); 2845 kmem_cache_destroy(ext4_ac_cachep); 2846 return -ENOMEM; 2847 } 2848 return 0; 2849} 2850 2851void ext4_exit_mballoc(void) 2852{ 2853 /* 2854 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2855 * before destroying the slab cache. 2856 */ 2857 rcu_barrier(); 2858 kmem_cache_destroy(ext4_pspace_cachep); 2859 kmem_cache_destroy(ext4_ac_cachep); 2860 kmem_cache_destroy(ext4_free_data_cachep); 2861 ext4_groupinfo_destroy_slabs(); 2862} 2863 2864 2865/* 2866 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2867 * Returns 0 if success or error code 2868 */ 2869static noinline_for_stack int 2870ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2871 handle_t *handle, unsigned int reserv_clstrs) 2872{ 2873 struct buffer_head *bitmap_bh = NULL; 2874 struct ext4_group_desc *gdp; 2875 struct buffer_head *gdp_bh; 2876 struct ext4_sb_info *sbi; 2877 struct super_block *sb; 2878 ext4_fsblk_t block; 2879 int err, len; 2880 2881 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2882 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2883 2884 sb = ac->ac_sb; 2885 sbi = EXT4_SB(sb); 2886 2887 err = -EIO; 2888 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2889 if (!bitmap_bh) 2890 goto out_err; 2891 2892 BUFFER_TRACE(bitmap_bh, "getting write access"); 2893 err = ext4_journal_get_write_access(handle, bitmap_bh); 2894 if (err) 2895 goto out_err; 2896 2897 err = -EIO; 2898 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2899 if (!gdp) 2900 goto out_err; 2901 2902 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2903 ext4_free_group_clusters(sb, gdp)); 2904 2905 BUFFER_TRACE(gdp_bh, "get_write_access"); 2906 err = ext4_journal_get_write_access(handle, gdp_bh); 2907 if (err) 2908 goto out_err; 2909 2910 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2911 2912 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2913 if (!ext4_data_block_valid(sbi, block, len)) { 2914 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2915 "fs metadata", block, block+len); 2916 /* File system mounted not to panic on error 2917 * Fix the bitmap and repeat the block allocation 2918 * We leak some of the blocks here. 2919 */ 2920 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2921 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2922 ac->ac_b_ex.fe_len); 2923 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2924 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2925 if (!err) 2926 err = -EAGAIN; 2927 goto out_err; 2928 } 2929 2930 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2931#ifdef AGGRESSIVE_CHECK 2932 { 2933 int i; 2934 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2935 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2936 bitmap_bh->b_data)); 2937 } 2938 } 2939#endif 2940 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2941 ac->ac_b_ex.fe_len); 2942 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2943 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2944 ext4_free_group_clusters_set(sb, gdp, 2945 ext4_free_clusters_after_init(sb, 2946 ac->ac_b_ex.fe_group, gdp)); 2947 } 2948 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2949 ext4_free_group_clusters_set(sb, gdp, len); 2950 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2951 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2952 2953 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2954 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2955 /* 2956 * Now reduce the dirty block count also. Should not go negative 2957 */ 2958 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2959 /* release all the reserved blocks if non delalloc */ 2960 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2961 reserv_clstrs); 2962 2963 if (sbi->s_log_groups_per_flex) { 2964 ext4_group_t flex_group = ext4_flex_group(sbi, 2965 ac->ac_b_ex.fe_group); 2966 atomic64_sub(ac->ac_b_ex.fe_len, 2967 &sbi->s_flex_groups[flex_group].free_clusters); 2968 } 2969 2970 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2971 if (err) 2972 goto out_err; 2973 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2974 2975out_err: 2976 brelse(bitmap_bh); 2977 return err; 2978} 2979 2980/* 2981 * here we normalize request for locality group 2982 * Group request are normalized to s_mb_group_prealloc, which goes to 2983 * s_strip if we set the same via mount option. 2984 * s_mb_group_prealloc can be configured via 2985 * /sys/fs/ext4/<partition>/mb_group_prealloc 2986 * 2987 * XXX: should we try to preallocate more than the group has now? 2988 */ 2989static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2990{ 2991 struct super_block *sb = ac->ac_sb; 2992 struct ext4_locality_group *lg = ac->ac_lg; 2993 2994 BUG_ON(lg == NULL); 2995 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2996 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2997 current->pid, ac->ac_g_ex.fe_len); 2998} 2999 3000/* 3001 * Normalization means making request better in terms of 3002 * size and alignment 3003 */ 3004static noinline_for_stack void 3005ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3006 struct ext4_allocation_request *ar) 3007{ 3008 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3009 int bsbits, max; 3010 ext4_lblk_t end; 3011 loff_t size, start_off; 3012 loff_t orig_size __maybe_unused; 3013 ext4_lblk_t start; 3014 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3015 struct ext4_prealloc_space *pa; 3016 3017 /* do normalize only data requests, metadata requests 3018 do not need preallocation */ 3019 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3020 return; 3021 3022 /* sometime caller may want exact blocks */ 3023 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3024 return; 3025 3026 /* caller may indicate that preallocation isn't 3027 * required (it's a tail, for example) */ 3028 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3029 return; 3030 3031 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3032 ext4_mb_normalize_group_request(ac); 3033 return ; 3034 } 3035 3036 bsbits = ac->ac_sb->s_blocksize_bits; 3037 3038 /* first, let's learn actual file size 3039 * given current request is allocated */ 3040 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3041 size = size << bsbits; 3042 if (size < i_size_read(ac->ac_inode)) 3043 size = i_size_read(ac->ac_inode); 3044 orig_size = size; 3045 3046 /* max size of free chunks */ 3047 max = 2 << bsbits; 3048 3049#define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3050 (req <= (size) || max <= (chunk_size)) 3051 3052 /* first, try to predict filesize */ 3053 /* XXX: should this table be tunable? */ 3054 start_off = 0; 3055 if (size <= 16 * 1024) { 3056 size = 16 * 1024; 3057 } else if (size <= 32 * 1024) { 3058 size = 32 * 1024; 3059 } else if (size <= 64 * 1024) { 3060 size = 64 * 1024; 3061 } else if (size <= 128 * 1024) { 3062 size = 128 * 1024; 3063 } else if (size <= 256 * 1024) { 3064 size = 256 * 1024; 3065 } else if (size <= 512 * 1024) { 3066 size = 512 * 1024; 3067 } else if (size <= 1024 * 1024) { 3068 size = 1024 * 1024; 3069 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3070 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3071 (21 - bsbits)) << 21; 3072 size = 2 * 1024 * 1024; 3073 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3074 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3075 (22 - bsbits)) << 22; 3076 size = 4 * 1024 * 1024; 3077 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3078 (8<<20)>>bsbits, max, 8 * 1024)) { 3079 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3080 (23 - bsbits)) << 23; 3081 size = 8 * 1024 * 1024; 3082 } else { 3083 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3084 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3085 ac->ac_o_ex.fe_len) << bsbits; 3086 } 3087 size = size >> bsbits; 3088 start = start_off >> bsbits; 3089 3090 /* don't cover already allocated blocks in selected range */ 3091 if (ar->pleft && start <= ar->lleft) { 3092 size -= ar->lleft + 1 - start; 3093 start = ar->lleft + 1; 3094 } 3095 if (ar->pright && start + size - 1 >= ar->lright) 3096 size -= start + size - ar->lright; 3097 3098 end = start + size; 3099 3100 /* check we don't cross already preallocated blocks */ 3101 rcu_read_lock(); 3102 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3103 ext4_lblk_t pa_end; 3104 3105 if (pa->pa_deleted) 3106 continue; 3107 spin_lock(&pa->pa_lock); 3108 if (pa->pa_deleted) { 3109 spin_unlock(&pa->pa_lock); 3110 continue; 3111 } 3112 3113 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3114 pa->pa_len); 3115 3116 /* PA must not overlap original request */ 3117 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3118 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3119 3120 /* skip PAs this normalized request doesn't overlap with */ 3121 if (pa->pa_lstart >= end || pa_end <= start) { 3122 spin_unlock(&pa->pa_lock); 3123 continue; 3124 } 3125 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3126 3127 /* adjust start or end to be adjacent to this pa */ 3128 if (pa_end <= ac->ac_o_ex.fe_logical) { 3129 BUG_ON(pa_end < start); 3130 start = pa_end; 3131 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3132 BUG_ON(pa->pa_lstart > end); 3133 end = pa->pa_lstart; 3134 } 3135 spin_unlock(&pa->pa_lock); 3136 } 3137 rcu_read_unlock(); 3138 size = end - start; 3139 3140 /* XXX: extra loop to check we really don't overlap preallocations */ 3141 rcu_read_lock(); 3142 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3143 ext4_lblk_t pa_end; 3144 3145 spin_lock(&pa->pa_lock); 3146 if (pa->pa_deleted == 0) { 3147 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3148 pa->pa_len); 3149 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3150 } 3151 spin_unlock(&pa->pa_lock); 3152 } 3153 rcu_read_unlock(); 3154 3155 if (start + size <= ac->ac_o_ex.fe_logical && 3156 start > ac->ac_o_ex.fe_logical) { 3157 ext4_msg(ac->ac_sb, KERN_ERR, 3158 "start %lu, size %lu, fe_logical %lu", 3159 (unsigned long) start, (unsigned long) size, 3160 (unsigned long) ac->ac_o_ex.fe_logical); 3161 BUG(); 3162 } 3163 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3164 3165 /* now prepare goal request */ 3166 3167 /* XXX: is it better to align blocks WRT to logical 3168 * placement or satisfy big request as is */ 3169 ac->ac_g_ex.fe_logical = start; 3170 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3171 3172 /* define goal start in order to merge */ 3173 if (ar->pright && (ar->lright == (start + size))) { 3174 /* merge to the right */ 3175 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3176 &ac->ac_f_ex.fe_group, 3177 &ac->ac_f_ex.fe_start); 3178 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3179 } 3180 if (ar->pleft && (ar->lleft + 1 == start)) { 3181 /* merge to the left */ 3182 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3183 &ac->ac_f_ex.fe_group, 3184 &ac->ac_f_ex.fe_start); 3185 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3186 } 3187 3188 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3189 (unsigned) orig_size, (unsigned) start); 3190} 3191 3192static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3193{ 3194 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3195 3196 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3197 atomic_inc(&sbi->s_bal_reqs); 3198 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3199 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3200 atomic_inc(&sbi->s_bal_success); 3201 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3202 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3203 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3204 atomic_inc(&sbi->s_bal_goals); 3205 if (ac->ac_found > sbi->s_mb_max_to_scan) 3206 atomic_inc(&sbi->s_bal_breaks); 3207 } 3208 3209 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3210 trace_ext4_mballoc_alloc(ac); 3211 else 3212 trace_ext4_mballoc_prealloc(ac); 3213} 3214 3215/* 3216 * Called on failure; free up any blocks from the inode PA for this 3217 * context. We don't need this for MB_GROUP_PA because we only change 3218 * pa_free in ext4_mb_release_context(), but on failure, we've already 3219 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3220 */ 3221static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3222{ 3223 struct ext4_prealloc_space *pa = ac->ac_pa; 3224 struct ext4_buddy e4b; 3225 int err; 3226 3227 if (pa == NULL) { 3228 if (ac->ac_f_ex.fe_len == 0) 3229 return; 3230 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3231 if (err) { 3232 /* 3233 * This should never happen since we pin the 3234 * pages in the ext4_allocation_context so 3235 * ext4_mb_load_buddy() should never fail. 3236 */ 3237 WARN(1, "mb_load_buddy failed (%d)", err); 3238 return; 3239 } 3240 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3241 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3242 ac->ac_f_ex.fe_len); 3243 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3244 ext4_mb_unload_buddy(&e4b); 3245 return; 3246 } 3247 if (pa->pa_type == MB_INODE_PA) 3248 pa->pa_free += ac->ac_b_ex.fe_len; 3249} 3250 3251/* 3252 * use blocks preallocated to inode 3253 */ 3254static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3255 struct ext4_prealloc_space *pa) 3256{ 3257 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3258 ext4_fsblk_t start; 3259 ext4_fsblk_t end; 3260 int len; 3261 3262 /* found preallocated blocks, use them */ 3263 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3264 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3265 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3266 len = EXT4_NUM_B2C(sbi, end - start); 3267 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3268 &ac->ac_b_ex.fe_start); 3269 ac->ac_b_ex.fe_len = len; 3270 ac->ac_status = AC_STATUS_FOUND; 3271 ac->ac_pa = pa; 3272 3273 BUG_ON(start < pa->pa_pstart); 3274 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3275 BUG_ON(pa->pa_free < len); 3276 pa->pa_free -= len; 3277 3278 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3279} 3280 3281/* 3282 * use blocks preallocated to locality group 3283 */ 3284static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3285 struct ext4_prealloc_space *pa) 3286{ 3287 unsigned int len = ac->ac_o_ex.fe_len; 3288 3289 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3290 &ac->ac_b_ex.fe_group, 3291 &ac->ac_b_ex.fe_start); 3292 ac->ac_b_ex.fe_len = len; 3293 ac->ac_status = AC_STATUS_FOUND; 3294 ac->ac_pa = pa; 3295 3296 /* we don't correct pa_pstart or pa_plen here to avoid 3297 * possible race when the group is being loaded concurrently 3298 * instead we correct pa later, after blocks are marked 3299 * in on-disk bitmap -- see ext4_mb_release_context() 3300 * Other CPUs are prevented from allocating from this pa by lg_mutex 3301 */ 3302 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3303} 3304 3305/* 3306 * Return the prealloc space that have minimal distance 3307 * from the goal block. @cpa is the prealloc 3308 * space that is having currently known minimal distance 3309 * from the goal block. 3310 */ 3311static struct ext4_prealloc_space * 3312ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3313 struct ext4_prealloc_space *pa, 3314 struct ext4_prealloc_space *cpa) 3315{ 3316 ext4_fsblk_t cur_distance, new_distance; 3317 3318 if (cpa == NULL) { 3319 atomic_inc(&pa->pa_count); 3320 return pa; 3321 } 3322 cur_distance = abs(goal_block - cpa->pa_pstart); 3323 new_distance = abs(goal_block - pa->pa_pstart); 3324 3325 if (cur_distance <= new_distance) 3326 return cpa; 3327 3328 /* drop the previous reference */ 3329 atomic_dec(&cpa->pa_count); 3330 atomic_inc(&pa->pa_count); 3331 return pa; 3332} 3333 3334/* 3335 * search goal blocks in preallocated space 3336 */ 3337static noinline_for_stack int 3338ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3339{ 3340 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3341 int order, i; 3342 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3343 struct ext4_locality_group *lg; 3344 struct ext4_prealloc_space *pa, *cpa = NULL; 3345 ext4_fsblk_t goal_block; 3346 3347 /* only data can be preallocated */ 3348 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3349 return 0; 3350 3351 /* first, try per-file preallocation */ 3352 rcu_read_lock(); 3353 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3354 3355 /* all fields in this condition don't change, 3356 * so we can skip locking for them */ 3357 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3358 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3359 EXT4_C2B(sbi, pa->pa_len))) 3360 continue; 3361 3362 /* non-extent files can't have physical blocks past 2^32 */ 3363 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3364 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3365 EXT4_MAX_BLOCK_FILE_PHYS)) 3366 continue; 3367 3368 /* found preallocated blocks, use them */ 3369 spin_lock(&pa->pa_lock); 3370 if (pa->pa_deleted == 0 && pa->pa_free) { 3371 atomic_inc(&pa->pa_count); 3372 ext4_mb_use_inode_pa(ac, pa); 3373 spin_unlock(&pa->pa_lock); 3374 ac->ac_criteria = 10; 3375 rcu_read_unlock(); 3376 return 1; 3377 } 3378 spin_unlock(&pa->pa_lock); 3379 } 3380 rcu_read_unlock(); 3381 3382 /* can we use group allocation? */ 3383 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3384 return 0; 3385 3386 /* inode may have no locality group for some reason */ 3387 lg = ac->ac_lg; 3388 if (lg == NULL) 3389 return 0; 3390 order = fls(ac->ac_o_ex.fe_len) - 1; 3391 if (order > PREALLOC_TB_SIZE - 1) 3392 /* The max size of hash table is PREALLOC_TB_SIZE */ 3393 order = PREALLOC_TB_SIZE - 1; 3394 3395 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3396 /* 3397 * search for the prealloc space that is having 3398 * minimal distance from the goal block. 3399 */ 3400 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3401 rcu_read_lock(); 3402 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3403 pa_inode_list) { 3404 spin_lock(&pa->pa_lock); 3405 if (pa->pa_deleted == 0 && 3406 pa->pa_free >= ac->ac_o_ex.fe_len) { 3407 3408 cpa = ext4_mb_check_group_pa(goal_block, 3409 pa, cpa); 3410 } 3411 spin_unlock(&pa->pa_lock); 3412 } 3413 rcu_read_unlock(); 3414 } 3415 if (cpa) { 3416 ext4_mb_use_group_pa(ac, cpa); 3417 ac->ac_criteria = 20; 3418 return 1; 3419 } 3420 return 0; 3421} 3422 3423/* 3424 * the function goes through all block freed in the group 3425 * but not yet committed and marks them used in in-core bitmap. 3426 * buddy must be generated from this bitmap 3427 * Need to be called with the ext4 group lock held 3428 */ 3429static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3430 ext4_group_t group) 3431{ 3432 struct rb_node *n; 3433 struct ext4_group_info *grp; 3434 struct ext4_free_data *entry; 3435 3436 grp = ext4_get_group_info(sb, group); 3437 n = rb_first(&(grp->bb_free_root)); 3438 3439 while (n) { 3440 entry = rb_entry(n, struct ext4_free_data, efd_node); 3441 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3442 n = rb_next(n); 3443 } 3444 return; 3445} 3446 3447/* 3448 * the function goes through all preallocation in this group and marks them 3449 * used in in-core bitmap. buddy must be generated from this bitmap 3450 * Need to be called with ext4 group lock held 3451 */ 3452static noinline_for_stack 3453void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3454 ext4_group_t group) 3455{ 3456 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3457 struct ext4_prealloc_space *pa; 3458 struct list_head *cur; 3459 ext4_group_t groupnr; 3460 ext4_grpblk_t start; 3461 int preallocated = 0; 3462 int len; 3463 3464 /* all form of preallocation discards first load group, 3465 * so the only competing code is preallocation use. 3466 * we don't need any locking here 3467 * notice we do NOT ignore preallocations with pa_deleted 3468 * otherwise we could leave used blocks available for 3469 * allocation in buddy when concurrent ext4_mb_put_pa() 3470 * is dropping preallocation 3471 */ 3472 list_for_each(cur, &grp->bb_prealloc_list) { 3473 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3474 spin_lock(&pa->pa_lock); 3475 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3476 &groupnr, &start); 3477 len = pa->pa_len; 3478 spin_unlock(&pa->pa_lock); 3479 if (unlikely(len == 0)) 3480 continue; 3481 BUG_ON(groupnr != group); 3482 ext4_set_bits(bitmap, start, len); 3483 preallocated += len; 3484 } 3485 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3486} 3487 3488static void ext4_mb_pa_callback(struct rcu_head *head) 3489{ 3490 struct ext4_prealloc_space *pa; 3491 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3492 3493 BUG_ON(atomic_read(&pa->pa_count)); 3494 BUG_ON(pa->pa_deleted == 0); 3495 kmem_cache_free(ext4_pspace_cachep, pa); 3496} 3497 3498/* 3499 * drops a reference to preallocated space descriptor 3500 * if this was the last reference and the space is consumed 3501 */ 3502static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3503 struct super_block *sb, struct ext4_prealloc_space *pa) 3504{ 3505 ext4_group_t grp; 3506 ext4_fsblk_t grp_blk; 3507 3508 /* in this short window concurrent discard can set pa_deleted */ 3509 spin_lock(&pa->pa_lock); 3510 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3511 spin_unlock(&pa->pa_lock); 3512 return; 3513 } 3514 3515 if (pa->pa_deleted == 1) { 3516 spin_unlock(&pa->pa_lock); 3517 return; 3518 } 3519 3520 pa->pa_deleted = 1; 3521 spin_unlock(&pa->pa_lock); 3522 3523 grp_blk = pa->pa_pstart; 3524 /* 3525 * If doing group-based preallocation, pa_pstart may be in the 3526 * next group when pa is used up 3527 */ 3528 if (pa->pa_type == MB_GROUP_PA) 3529 grp_blk--; 3530 3531 grp = ext4_get_group_number(sb, grp_blk); 3532 3533 /* 3534 * possible race: 3535 * 3536 * P1 (buddy init) P2 (regular allocation) 3537 * find block B in PA 3538 * copy on-disk bitmap to buddy 3539 * mark B in on-disk bitmap 3540 * drop PA from group 3541 * mark all PAs in buddy 3542 * 3543 * thus, P1 initializes buddy with B available. to prevent this 3544 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3545 * against that pair 3546 */ 3547 ext4_lock_group(sb, grp); 3548 list_del(&pa->pa_group_list); 3549 ext4_unlock_group(sb, grp); 3550 3551 spin_lock(pa->pa_obj_lock); 3552 list_del_rcu(&pa->pa_inode_list); 3553 spin_unlock(pa->pa_obj_lock); 3554 3555 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3556} 3557 3558/* 3559 * creates new preallocated space for given inode 3560 */ 3561static noinline_for_stack int 3562ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3563{ 3564 struct super_block *sb = ac->ac_sb; 3565 struct ext4_sb_info *sbi = EXT4_SB(sb); 3566 struct ext4_prealloc_space *pa; 3567 struct ext4_group_info *grp; 3568 struct ext4_inode_info *ei; 3569 3570 /* preallocate only when found space is larger then requested */ 3571 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3572 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3573 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3574 3575 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3576 if (pa == NULL) 3577 return -ENOMEM; 3578 3579 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3580 int winl; 3581 int wins; 3582 int win; 3583 int offs; 3584 3585 /* we can't allocate as much as normalizer wants. 3586 * so, found space must get proper lstart 3587 * to cover original request */ 3588 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3589 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3590 3591 /* we're limited by original request in that 3592 * logical block must be covered any way 3593 * winl is window we can move our chunk within */ 3594 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3595 3596 /* also, we should cover whole original request */ 3597 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3598 3599 /* the smallest one defines real window */ 3600 win = min(winl, wins); 3601 3602 offs = ac->ac_o_ex.fe_logical % 3603 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3604 if (offs && offs < win) 3605 win = offs; 3606 3607 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3608 EXT4_NUM_B2C(sbi, win); 3609 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3610 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3611 } 3612 3613 /* preallocation can change ac_b_ex, thus we store actually 3614 * allocated blocks for history */ 3615 ac->ac_f_ex = ac->ac_b_ex; 3616 3617 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3618 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3619 pa->pa_len = ac->ac_b_ex.fe_len; 3620 pa->pa_free = pa->pa_len; 3621 atomic_set(&pa->pa_count, 1); 3622 spin_lock_init(&pa->pa_lock); 3623 INIT_LIST_HEAD(&pa->pa_inode_list); 3624 INIT_LIST_HEAD(&pa->pa_group_list); 3625 pa->pa_deleted = 0; 3626 pa->pa_type = MB_INODE_PA; 3627 3628 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3629 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3630 trace_ext4_mb_new_inode_pa(ac, pa); 3631 3632 ext4_mb_use_inode_pa(ac, pa); 3633 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3634 3635 ei = EXT4_I(ac->ac_inode); 3636 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3637 3638 pa->pa_obj_lock = &ei->i_prealloc_lock; 3639 pa->pa_inode = ac->ac_inode; 3640 3641 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3642 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3643 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3644 3645 spin_lock(pa->pa_obj_lock); 3646 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3647 spin_unlock(pa->pa_obj_lock); 3648 3649 return 0; 3650} 3651 3652/* 3653 * creates new preallocated space for locality group inodes belongs to 3654 */ 3655static noinline_for_stack int 3656ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3657{ 3658 struct super_block *sb = ac->ac_sb; 3659 struct ext4_locality_group *lg; 3660 struct ext4_prealloc_space *pa; 3661 struct ext4_group_info *grp; 3662 3663 /* preallocate only when found space is larger then requested */ 3664 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3665 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3666 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3667 3668 BUG_ON(ext4_pspace_cachep == NULL); 3669 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3670 if (pa == NULL) 3671 return -ENOMEM; 3672 3673 /* preallocation can change ac_b_ex, thus we store actually 3674 * allocated blocks for history */ 3675 ac->ac_f_ex = ac->ac_b_ex; 3676 3677 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3678 pa->pa_lstart = pa->pa_pstart; 3679 pa->pa_len = ac->ac_b_ex.fe_len; 3680 pa->pa_free = pa->pa_len; 3681 atomic_set(&pa->pa_count, 1); 3682 spin_lock_init(&pa->pa_lock); 3683 INIT_LIST_HEAD(&pa->pa_inode_list); 3684 INIT_LIST_HEAD(&pa->pa_group_list); 3685 pa->pa_deleted = 0; 3686 pa->pa_type = MB_GROUP_PA; 3687 3688 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3689 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3690 trace_ext4_mb_new_group_pa(ac, pa); 3691 3692 ext4_mb_use_group_pa(ac, pa); 3693 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3694 3695 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3696 lg = ac->ac_lg; 3697 BUG_ON(lg == NULL); 3698 3699 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3700 pa->pa_inode = NULL; 3701 3702 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3703 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3704 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3705 3706 /* 3707 * We will later add the new pa to the right bucket 3708 * after updating the pa_free in ext4_mb_release_context 3709 */ 3710 return 0; 3711} 3712 3713static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3714{ 3715 int err; 3716 3717 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3718 err = ext4_mb_new_group_pa(ac); 3719 else 3720 err = ext4_mb_new_inode_pa(ac); 3721 return err; 3722} 3723 3724/* 3725 * finds all unused blocks in on-disk bitmap, frees them in 3726 * in-core bitmap and buddy. 3727 * @pa must be unlinked from inode and group lists, so that 3728 * nobody else can find/use it. 3729 * the caller MUST hold group/inode locks. 3730 * TODO: optimize the case when there are no in-core structures yet 3731 */ 3732static noinline_for_stack int 3733ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3734 struct ext4_prealloc_space *pa) 3735{ 3736 struct super_block *sb = e4b->bd_sb; 3737 struct ext4_sb_info *sbi = EXT4_SB(sb); 3738 unsigned int end; 3739 unsigned int next; 3740 ext4_group_t group; 3741 ext4_grpblk_t bit; 3742 unsigned long long grp_blk_start; 3743 int err = 0; 3744 int free = 0; 3745 3746 BUG_ON(pa->pa_deleted == 0); 3747 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3748 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3749 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3750 end = bit + pa->pa_len; 3751 3752 while (bit < end) { 3753 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3754 if (bit >= end) 3755 break; 3756 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3757 mb_debug(1, " free preallocated %u/%u in group %u\n", 3758 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3759 (unsigned) next - bit, (unsigned) group); 3760 free += next - bit; 3761 3762 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3763 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3764 EXT4_C2B(sbi, bit)), 3765 next - bit); 3766 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3767 bit = next + 1; 3768 } 3769 if (free != pa->pa_free) { 3770 ext4_msg(e4b->bd_sb, KERN_CRIT, 3771 "pa %p: logic %lu, phys. %lu, len %lu", 3772 pa, (unsigned long) pa->pa_lstart, 3773 (unsigned long) pa->pa_pstart, 3774 (unsigned long) pa->pa_len); 3775 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3776 free, pa->pa_free); 3777 /* 3778 * pa is already deleted so we use the value obtained 3779 * from the bitmap and continue. 3780 */ 3781 } 3782 atomic_add(free, &sbi->s_mb_discarded); 3783 3784 return err; 3785} 3786 3787static noinline_for_stack int 3788ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3789 struct ext4_prealloc_space *pa) 3790{ 3791 struct super_block *sb = e4b->bd_sb; 3792 ext4_group_t group; 3793 ext4_grpblk_t bit; 3794 3795 trace_ext4_mb_release_group_pa(sb, pa); 3796 BUG_ON(pa->pa_deleted == 0); 3797 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3798 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3799 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3800 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3801 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3802 3803 return 0; 3804} 3805 3806/* 3807 * releases all preallocations in given group 3808 * 3809 * first, we need to decide discard policy: 3810 * - when do we discard 3811 * 1) ENOSPC 3812 * - how many do we discard 3813 * 1) how many requested 3814 */ 3815static noinline_for_stack int 3816ext4_mb_discard_group_preallocations(struct super_block *sb, 3817 ext4_group_t group, int needed) 3818{ 3819 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3820 struct buffer_head *bitmap_bh = NULL; 3821 struct ext4_prealloc_space *pa, *tmp; 3822 struct list_head list; 3823 struct ext4_buddy e4b; 3824 int err; 3825 int busy = 0; 3826 int free = 0; 3827 3828 mb_debug(1, "discard preallocation for group %u\n", group); 3829 3830 if (list_empty(&grp->bb_prealloc_list)) 3831 return 0; 3832 3833 bitmap_bh = ext4_read_block_bitmap(sb, group); 3834 if (bitmap_bh == NULL) { 3835 ext4_error(sb, "Error reading block bitmap for %u", group); 3836 return 0; 3837 } 3838 3839 err = ext4_mb_load_buddy(sb, group, &e4b); 3840 if (err) { 3841 ext4_error(sb, "Error loading buddy information for %u", group); 3842 put_bh(bitmap_bh); 3843 return 0; 3844 } 3845 3846 if (needed == 0) 3847 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3848 3849 INIT_LIST_HEAD(&list); 3850repeat: 3851 ext4_lock_group(sb, group); 3852 list_for_each_entry_safe(pa, tmp, 3853 &grp->bb_prealloc_list, pa_group_list) { 3854 spin_lock(&pa->pa_lock); 3855 if (atomic_read(&pa->pa_count)) { 3856 spin_unlock(&pa->pa_lock); 3857 busy = 1; 3858 continue; 3859 } 3860 if (pa->pa_deleted) { 3861 spin_unlock(&pa->pa_lock); 3862 continue; 3863 } 3864 3865 /* seems this one can be freed ... */ 3866 pa->pa_deleted = 1; 3867 3868 /* we can trust pa_free ... */ 3869 free += pa->pa_free; 3870 3871 spin_unlock(&pa->pa_lock); 3872 3873 list_del(&pa->pa_group_list); 3874 list_add(&pa->u.pa_tmp_list, &list); 3875 } 3876 3877 /* if we still need more blocks and some PAs were used, try again */ 3878 if (free < needed && busy) { 3879 busy = 0; 3880 ext4_unlock_group(sb, group); 3881 cond_resched(); 3882 goto repeat; 3883 } 3884 3885 /* found anything to free? */ 3886 if (list_empty(&list)) { 3887 BUG_ON(free != 0); 3888 goto out; 3889 } 3890 3891 /* now free all selected PAs */ 3892 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3893 3894 /* remove from object (inode or locality group) */ 3895 spin_lock(pa->pa_obj_lock); 3896 list_del_rcu(&pa->pa_inode_list); 3897 spin_unlock(pa->pa_obj_lock); 3898 3899 if (pa->pa_type == MB_GROUP_PA) 3900 ext4_mb_release_group_pa(&e4b, pa); 3901 else 3902 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3903 3904 list_del(&pa->u.pa_tmp_list); 3905 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3906 } 3907 3908out: 3909 ext4_unlock_group(sb, group); 3910 ext4_mb_unload_buddy(&e4b); 3911 put_bh(bitmap_bh); 3912 return free; 3913} 3914 3915/* 3916 * releases all non-used preallocated blocks for given inode 3917 * 3918 * It's important to discard preallocations under i_data_sem 3919 * We don't want another block to be served from the prealloc 3920 * space when we are discarding the inode prealloc space. 3921 * 3922 * FIXME!! Make sure it is valid at all the call sites 3923 */ 3924void ext4_discard_preallocations(struct inode *inode) 3925{ 3926 struct ext4_inode_info *ei = EXT4_I(inode); 3927 struct super_block *sb = inode->i_sb; 3928 struct buffer_head *bitmap_bh = NULL; 3929 struct ext4_prealloc_space *pa, *tmp; 3930 ext4_group_t group = 0; 3931 struct list_head list; 3932 struct ext4_buddy e4b; 3933 int err; 3934 3935 if (!S_ISREG(inode->i_mode)) { 3936 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3937 return; 3938 } 3939 3940 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3941 trace_ext4_discard_preallocations(inode); 3942 3943 INIT_LIST_HEAD(&list); 3944 3945repeat: 3946 /* first, collect all pa's in the inode */ 3947 spin_lock(&ei->i_prealloc_lock); 3948 while (!list_empty(&ei->i_prealloc_list)) { 3949 pa = list_entry(ei->i_prealloc_list.next, 3950 struct ext4_prealloc_space, pa_inode_list); 3951 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3952 spin_lock(&pa->pa_lock); 3953 if (atomic_read(&pa->pa_count)) { 3954 /* this shouldn't happen often - nobody should 3955 * use preallocation while we're discarding it */ 3956 spin_unlock(&pa->pa_lock); 3957 spin_unlock(&ei->i_prealloc_lock); 3958 ext4_msg(sb, KERN_ERR, 3959 "uh-oh! used pa while discarding"); 3960 WARN_ON(1); 3961 schedule_timeout_uninterruptible(HZ); 3962 goto repeat; 3963 3964 } 3965 if (pa->pa_deleted == 0) { 3966 pa->pa_deleted = 1; 3967 spin_unlock(&pa->pa_lock); 3968 list_del_rcu(&pa->pa_inode_list); 3969 list_add(&pa->u.pa_tmp_list, &list); 3970 continue; 3971 } 3972 3973 /* someone is deleting pa right now */ 3974 spin_unlock(&pa->pa_lock); 3975 spin_unlock(&ei->i_prealloc_lock); 3976 3977 /* we have to wait here because pa_deleted 3978 * doesn't mean pa is already unlinked from 3979 * the list. as we might be called from 3980 * ->clear_inode() the inode will get freed 3981 * and concurrent thread which is unlinking 3982 * pa from inode's list may access already 3983 * freed memory, bad-bad-bad */ 3984 3985 /* XXX: if this happens too often, we can 3986 * add a flag to force wait only in case 3987 * of ->clear_inode(), but not in case of 3988 * regular truncate */ 3989 schedule_timeout_uninterruptible(HZ); 3990 goto repeat; 3991 } 3992 spin_unlock(&ei->i_prealloc_lock); 3993 3994 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3995 BUG_ON(pa->pa_type != MB_INODE_PA); 3996 group = ext4_get_group_number(sb, pa->pa_pstart); 3997 3998 err = ext4_mb_load_buddy(sb, group, &e4b); 3999 if (err) { 4000 ext4_error(sb, "Error loading buddy information for %u", 4001 group); 4002 continue; 4003 } 4004 4005 bitmap_bh = ext4_read_block_bitmap(sb, group); 4006 if (bitmap_bh == NULL) { 4007 ext4_error(sb, "Error reading block bitmap for %u", 4008 group); 4009 ext4_mb_unload_buddy(&e4b); 4010 continue; 4011 } 4012 4013 ext4_lock_group(sb, group); 4014 list_del(&pa->pa_group_list); 4015 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4016 ext4_unlock_group(sb, group); 4017 4018 ext4_mb_unload_buddy(&e4b); 4019 put_bh(bitmap_bh); 4020 4021 list_del(&pa->u.pa_tmp_list); 4022 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4023 } 4024} 4025 4026#ifdef CONFIG_EXT4_DEBUG 4027static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4028{ 4029 struct super_block *sb = ac->ac_sb; 4030 ext4_group_t ngroups, i; 4031 4032 if (!ext4_mballoc_debug || 4033 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4034 return; 4035 4036 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4037 " Allocation context details:"); 4038 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4039 ac->ac_status, ac->ac_flags); 4040 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4041 "goal %lu/%lu/%lu@%lu, " 4042 "best %lu/%lu/%lu@%lu cr %d", 4043 (unsigned long)ac->ac_o_ex.fe_group, 4044 (unsigned long)ac->ac_o_ex.fe_start, 4045 (unsigned long)ac->ac_o_ex.fe_len, 4046 (unsigned long)ac->ac_o_ex.fe_logical, 4047 (unsigned long)ac->ac_g_ex.fe_group, 4048 (unsigned long)ac->ac_g_ex.fe_start, 4049 (unsigned long)ac->ac_g_ex.fe_len, 4050 (unsigned long)ac->ac_g_ex.fe_logical, 4051 (unsigned long)ac->ac_b_ex.fe_group, 4052 (unsigned long)ac->ac_b_ex.fe_start, 4053 (unsigned long)ac->ac_b_ex.fe_len, 4054 (unsigned long)ac->ac_b_ex.fe_logical, 4055 (int)ac->ac_criteria); 4056 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4057 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4058 ngroups = ext4_get_groups_count(sb); 4059 for (i = 0; i < ngroups; i++) { 4060 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4061 struct ext4_prealloc_space *pa; 4062 ext4_grpblk_t start; 4063 struct list_head *cur; 4064 ext4_lock_group(sb, i); 4065 list_for_each(cur, &grp->bb_prealloc_list) { 4066 pa = list_entry(cur, struct ext4_prealloc_space, 4067 pa_group_list); 4068 spin_lock(&pa->pa_lock); 4069 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4070 NULL, &start); 4071 spin_unlock(&pa->pa_lock); 4072 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4073 start, pa->pa_len); 4074 } 4075 ext4_unlock_group(sb, i); 4076 4077 if (grp->bb_free == 0) 4078 continue; 4079 printk(KERN_ERR "%u: %d/%d \n", 4080 i, grp->bb_free, grp->bb_fragments); 4081 } 4082 printk(KERN_ERR "\n"); 4083} 4084#else 4085static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4086{ 4087 return; 4088} 4089#endif 4090 4091/* 4092 * We use locality group preallocation for small size file. The size of the 4093 * file is determined by the current size or the resulting size after 4094 * allocation which ever is larger 4095 * 4096 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4097 */ 4098static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4099{ 4100 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4101 int bsbits = ac->ac_sb->s_blocksize_bits; 4102 loff_t size, isize; 4103 4104 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4105 return; 4106 4107 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4108 return; 4109 4110 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4111 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4112 >> bsbits; 4113 4114 if ((size == isize) && 4115 !ext4_fs_is_busy(sbi) && 4116 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4117 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4118 return; 4119 } 4120 4121 if (sbi->s_mb_group_prealloc <= 0) { 4122 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4123 return; 4124 } 4125 4126 /* don't use group allocation for large files */ 4127 size = max(size, isize); 4128 if (size > sbi->s_mb_stream_request) { 4129 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4130 return; 4131 } 4132 4133 BUG_ON(ac->ac_lg != NULL); 4134 /* 4135 * locality group prealloc space are per cpu. The reason for having 4136 * per cpu locality group is to reduce the contention between block 4137 * request from multiple CPUs. 4138 */ 4139 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4140 4141 /* we're going to use group allocation */ 4142 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4143 4144 /* serialize all allocations in the group */ 4145 mutex_lock(&ac->ac_lg->lg_mutex); 4146} 4147 4148static noinline_for_stack int 4149ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4150 struct ext4_allocation_request *ar) 4151{ 4152 struct super_block *sb = ar->inode->i_sb; 4153 struct ext4_sb_info *sbi = EXT4_SB(sb); 4154 struct ext4_super_block *es = sbi->s_es; 4155 ext4_group_t group; 4156 unsigned int len; 4157 ext4_fsblk_t goal; 4158 ext4_grpblk_t block; 4159 4160 /* we can't allocate > group size */ 4161 len = ar->len; 4162 4163 /* just a dirty hack to filter too big requests */ 4164 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4165 len = EXT4_CLUSTERS_PER_GROUP(sb); 4166 4167 /* start searching from the goal */ 4168 goal = ar->goal; 4169 if (goal < le32_to_cpu(es->s_first_data_block) || 4170 goal >= ext4_blocks_count(es)) 4171 goal = le32_to_cpu(es->s_first_data_block); 4172 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4173 4174 /* set up allocation goals */ 4175 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4176 ac->ac_status = AC_STATUS_CONTINUE; 4177 ac->ac_sb = sb; 4178 ac->ac_inode = ar->inode; 4179 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4180 ac->ac_o_ex.fe_group = group; 4181 ac->ac_o_ex.fe_start = block; 4182 ac->ac_o_ex.fe_len = len; 4183 ac->ac_g_ex = ac->ac_o_ex; 4184 ac->ac_flags = ar->flags; 4185 4186 /* we have to define context: we'll we work with a file or 4187 * locality group. this is a policy, actually */ 4188 ext4_mb_group_or_file(ac); 4189 4190 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4191 "left: %u/%u, right %u/%u to %swritable\n", 4192 (unsigned) ar->len, (unsigned) ar->logical, 4193 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4194 (unsigned) ar->lleft, (unsigned) ar->pleft, 4195 (unsigned) ar->lright, (unsigned) ar->pright, 4196 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4197 return 0; 4198 4199} 4200 4201static noinline_for_stack void 4202ext4_mb_discard_lg_preallocations(struct super_block *sb, 4203 struct ext4_locality_group *lg, 4204 int order, int total_entries) 4205{ 4206 ext4_group_t group = 0; 4207 struct ext4_buddy e4b; 4208 struct list_head discard_list; 4209 struct ext4_prealloc_space *pa, *tmp; 4210 4211 mb_debug(1, "discard locality group preallocation\n"); 4212 4213 INIT_LIST_HEAD(&discard_list); 4214 4215 spin_lock(&lg->lg_prealloc_lock); 4216 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4217 pa_inode_list) { 4218 spin_lock(&pa->pa_lock); 4219 if (atomic_read(&pa->pa_count)) { 4220 /* 4221 * This is the pa that we just used 4222 * for block allocation. So don't 4223 * free that 4224 */ 4225 spin_unlock(&pa->pa_lock); 4226 continue; 4227 } 4228 if (pa->pa_deleted) { 4229 spin_unlock(&pa->pa_lock); 4230 continue; 4231 } 4232 /* only lg prealloc space */ 4233 BUG_ON(pa->pa_type != MB_GROUP_PA); 4234 4235 /* seems this one can be freed ... */ 4236 pa->pa_deleted = 1; 4237 spin_unlock(&pa->pa_lock); 4238 4239 list_del_rcu(&pa->pa_inode_list); 4240 list_add(&pa->u.pa_tmp_list, &discard_list); 4241 4242 total_entries--; 4243 if (total_entries <= 5) { 4244 /* 4245 * we want to keep only 5 entries 4246 * allowing it to grow to 8. This 4247 * mak sure we don't call discard 4248 * soon for this list. 4249 */ 4250 break; 4251 } 4252 } 4253 spin_unlock(&lg->lg_prealloc_lock); 4254 4255 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4256 4257 group = ext4_get_group_number(sb, pa->pa_pstart); 4258 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4259 ext4_error(sb, "Error loading buddy information for %u", 4260 group); 4261 continue; 4262 } 4263 ext4_lock_group(sb, group); 4264 list_del(&pa->pa_group_list); 4265 ext4_mb_release_group_pa(&e4b, pa); 4266 ext4_unlock_group(sb, group); 4267 4268 ext4_mb_unload_buddy(&e4b); 4269 list_del(&pa->u.pa_tmp_list); 4270 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4271 } 4272} 4273 4274/* 4275 * We have incremented pa_count. So it cannot be freed at this 4276 * point. Also we hold lg_mutex. So no parallel allocation is 4277 * possible from this lg. That means pa_free cannot be updated. 4278 * 4279 * A parallel ext4_mb_discard_group_preallocations is possible. 4280 * which can cause the lg_prealloc_list to be updated. 4281 */ 4282 4283static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4284{ 4285 int order, added = 0, lg_prealloc_count = 1; 4286 struct super_block *sb = ac->ac_sb; 4287 struct ext4_locality_group *lg = ac->ac_lg; 4288 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4289 4290 order = fls(pa->pa_free) - 1; 4291 if (order > PREALLOC_TB_SIZE - 1) 4292 /* The max size of hash table is PREALLOC_TB_SIZE */ 4293 order = PREALLOC_TB_SIZE - 1; 4294 /* Add the prealloc space to lg */ 4295 spin_lock(&lg->lg_prealloc_lock); 4296 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4297 pa_inode_list) { 4298 spin_lock(&tmp_pa->pa_lock); 4299 if (tmp_pa->pa_deleted) { 4300 spin_unlock(&tmp_pa->pa_lock); 4301 continue; 4302 } 4303 if (!added && pa->pa_free < tmp_pa->pa_free) { 4304 /* Add to the tail of the previous entry */ 4305 list_add_tail_rcu(&pa->pa_inode_list, 4306 &tmp_pa->pa_inode_list); 4307 added = 1; 4308 /* 4309 * we want to count the total 4310 * number of entries in the list 4311 */ 4312 } 4313 spin_unlock(&tmp_pa->pa_lock); 4314 lg_prealloc_count++; 4315 } 4316 if (!added) 4317 list_add_tail_rcu(&pa->pa_inode_list, 4318 &lg->lg_prealloc_list[order]); 4319 spin_unlock(&lg->lg_prealloc_lock); 4320 4321 /* Now trim the list to be not more than 8 elements */ 4322 if (lg_prealloc_count > 8) { 4323 ext4_mb_discard_lg_preallocations(sb, lg, 4324 order, lg_prealloc_count); 4325 return; 4326 } 4327 return ; 4328} 4329 4330/* 4331 * release all resource we used in allocation 4332 */ 4333static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4334{ 4335 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4336 struct ext4_prealloc_space *pa = ac->ac_pa; 4337 if (pa) { 4338 if (pa->pa_type == MB_GROUP_PA) { 4339 /* see comment in ext4_mb_use_group_pa() */ 4340 spin_lock(&pa->pa_lock); 4341 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4342 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4343 pa->pa_free -= ac->ac_b_ex.fe_len; 4344 pa->pa_len -= ac->ac_b_ex.fe_len; 4345 spin_unlock(&pa->pa_lock); 4346 } 4347 } 4348 if (pa) { 4349 /* 4350 * We want to add the pa to the right bucket. 4351 * Remove it from the list and while adding 4352 * make sure the list to which we are adding 4353 * doesn't grow big. 4354 */ 4355 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4356 spin_lock(pa->pa_obj_lock); 4357 list_del_rcu(&pa->pa_inode_list); 4358 spin_unlock(pa->pa_obj_lock); 4359 ext4_mb_add_n_trim(ac); 4360 } 4361 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4362 } 4363 if (ac->ac_bitmap_page) 4364 page_cache_release(ac->ac_bitmap_page); 4365 if (ac->ac_buddy_page) 4366 page_cache_release(ac->ac_buddy_page); 4367 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4368 mutex_unlock(&ac->ac_lg->lg_mutex); 4369 ext4_mb_collect_stats(ac); 4370 return 0; 4371} 4372 4373static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4374{ 4375 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4376 int ret; 4377 int freed = 0; 4378 4379 trace_ext4_mb_discard_preallocations(sb, needed); 4380 for (i = 0; i < ngroups && needed > 0; i++) { 4381 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4382 freed += ret; 4383 needed -= ret; 4384 } 4385 4386 return freed; 4387} 4388 4389/* 4390 * Main entry point into mballoc to allocate blocks 4391 * it tries to use preallocation first, then falls back 4392 * to usual allocation 4393 */ 4394ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4395 struct ext4_allocation_request *ar, int *errp) 4396{ 4397 int freed; 4398 struct ext4_allocation_context *ac = NULL; 4399 struct ext4_sb_info *sbi; 4400 struct super_block *sb; 4401 ext4_fsblk_t block = 0; 4402 unsigned int inquota = 0; 4403 unsigned int reserv_clstrs = 0; 4404 4405 might_sleep(); 4406 sb = ar->inode->i_sb; 4407 sbi = EXT4_SB(sb); 4408 4409 trace_ext4_request_blocks(ar); 4410 4411 /* Allow to use superuser reservation for quota file */ 4412 if (IS_NOQUOTA(ar->inode)) 4413 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4414 4415 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4416 /* Without delayed allocation we need to verify 4417 * there is enough free blocks to do block allocation 4418 * and verify allocation doesn't exceed the quota limits. 4419 */ 4420 while (ar->len && 4421 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4422 4423 /* let others to free the space */ 4424 cond_resched(); 4425 ar->len = ar->len >> 1; 4426 } 4427 if (!ar->len) { 4428 *errp = -ENOSPC; 4429 return 0; 4430 } 4431 reserv_clstrs = ar->len; 4432 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4433 dquot_alloc_block_nofail(ar->inode, 4434 EXT4_C2B(sbi, ar->len)); 4435 } else { 4436 while (ar->len && 4437 dquot_alloc_block(ar->inode, 4438 EXT4_C2B(sbi, ar->len))) { 4439 4440 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4441 ar->len--; 4442 } 4443 } 4444 inquota = ar->len; 4445 if (ar->len == 0) { 4446 *errp = -EDQUOT; 4447 goto out; 4448 } 4449 } 4450 4451 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4452 if (!ac) { 4453 ar->len = 0; 4454 *errp = -ENOMEM; 4455 goto out; 4456 } 4457 4458 *errp = ext4_mb_initialize_context(ac, ar); 4459 if (*errp) { 4460 ar->len = 0; 4461 goto out; 4462 } 4463 4464 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4465 if (!ext4_mb_use_preallocated(ac)) { 4466 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4467 ext4_mb_normalize_request(ac, ar); 4468repeat: 4469 /* allocate space in core */ 4470 *errp = ext4_mb_regular_allocator(ac); 4471 if (*errp) 4472 goto discard_and_exit; 4473 4474 /* as we've just preallocated more space than 4475 * user requested originally, we store allocated 4476 * space in a special descriptor */ 4477 if (ac->ac_status == AC_STATUS_FOUND && 4478 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4479 *errp = ext4_mb_new_preallocation(ac); 4480 if (*errp) { 4481 discard_and_exit: 4482 ext4_discard_allocated_blocks(ac); 4483 goto errout; 4484 } 4485 } 4486 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4487 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4488 if (*errp == -EAGAIN) { 4489 /* 4490 * drop the reference that we took 4491 * in ext4_mb_use_best_found 4492 */ 4493 ext4_mb_release_context(ac); 4494 ac->ac_b_ex.fe_group = 0; 4495 ac->ac_b_ex.fe_start = 0; 4496 ac->ac_b_ex.fe_len = 0; 4497 ac->ac_status = AC_STATUS_CONTINUE; 4498 goto repeat; 4499 } else if (*errp) { 4500 ext4_discard_allocated_blocks(ac); 4501 goto errout; 4502 } else { 4503 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4504 ar->len = ac->ac_b_ex.fe_len; 4505 } 4506 } else { 4507 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4508 if (freed) 4509 goto repeat; 4510 *errp = -ENOSPC; 4511 } 4512 4513errout: 4514 if (*errp) { 4515 ac->ac_b_ex.fe_len = 0; 4516 ar->len = 0; 4517 ext4_mb_show_ac(ac); 4518 } 4519 ext4_mb_release_context(ac); 4520out: 4521 if (ac) 4522 kmem_cache_free(ext4_ac_cachep, ac); 4523 if (inquota && ar->len < inquota) 4524 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4525 if (!ar->len) { 4526 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4527 /* release all the reserved blocks if non delalloc */ 4528 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4529 reserv_clstrs); 4530 } 4531 4532 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4533 4534 return block; 4535} 4536 4537/* 4538 * We can merge two free data extents only if the physical blocks 4539 * are contiguous, AND the extents were freed by the same transaction, 4540 * AND the blocks are associated with the same group. 4541 */ 4542static int can_merge(struct ext4_free_data *entry1, 4543 struct ext4_free_data *entry2) 4544{ 4545 if ((entry1->efd_tid == entry2->efd_tid) && 4546 (entry1->efd_group == entry2->efd_group) && 4547 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4548 return 1; 4549 return 0; 4550} 4551 4552static noinline_for_stack int 4553ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4554 struct ext4_free_data *new_entry) 4555{ 4556 ext4_group_t group = e4b->bd_group; 4557 ext4_grpblk_t cluster; 4558 struct ext4_free_data *entry; 4559 struct ext4_group_info *db = e4b->bd_info; 4560 struct super_block *sb = e4b->bd_sb; 4561 struct ext4_sb_info *sbi = EXT4_SB(sb); 4562 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4563 struct rb_node *parent = NULL, *new_node; 4564 4565 BUG_ON(!ext4_handle_valid(handle)); 4566 BUG_ON(e4b->bd_bitmap_page == NULL); 4567 BUG_ON(e4b->bd_buddy_page == NULL); 4568 4569 new_node = &new_entry->efd_node; 4570 cluster = new_entry->efd_start_cluster; 4571 4572 if (!*n) { 4573 /* first free block exent. We need to 4574 protect buddy cache from being freed, 4575 * otherwise we'll refresh it from 4576 * on-disk bitmap and lose not-yet-available 4577 * blocks */ 4578 page_cache_get(e4b->bd_buddy_page); 4579 page_cache_get(e4b->bd_bitmap_page); 4580 } 4581 while (*n) { 4582 parent = *n; 4583 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4584 if (cluster < entry->efd_start_cluster) 4585 n = &(*n)->rb_left; 4586 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4587 n = &(*n)->rb_right; 4588 else { 4589 ext4_grp_locked_error(sb, group, 0, 4590 ext4_group_first_block_no(sb, group) + 4591 EXT4_C2B(sbi, cluster), 4592 "Block already on to-be-freed list"); 4593 return 0; 4594 } 4595 } 4596 4597 rb_link_node(new_node, parent, n); 4598 rb_insert_color(new_node, &db->bb_free_root); 4599 4600 /* Now try to see the extent can be merged to left and right */ 4601 node = rb_prev(new_node); 4602 if (node) { 4603 entry = rb_entry(node, struct ext4_free_data, efd_node); 4604 if (can_merge(entry, new_entry) && 4605 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4606 new_entry->efd_start_cluster = entry->efd_start_cluster; 4607 new_entry->efd_count += entry->efd_count; 4608 rb_erase(node, &(db->bb_free_root)); 4609 kmem_cache_free(ext4_free_data_cachep, entry); 4610 } 4611 } 4612 4613 node = rb_next(new_node); 4614 if (node) { 4615 entry = rb_entry(node, struct ext4_free_data, efd_node); 4616 if (can_merge(new_entry, entry) && 4617 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4618 new_entry->efd_count += entry->efd_count; 4619 rb_erase(node, &(db->bb_free_root)); 4620 kmem_cache_free(ext4_free_data_cachep, entry); 4621 } 4622 } 4623 /* Add the extent to transaction's private list */ 4624 ext4_journal_callback_add(handle, ext4_free_data_callback, 4625 &new_entry->efd_jce); 4626 return 0; 4627} 4628 4629/** 4630 * ext4_free_blocks() -- Free given blocks and update quota 4631 * @handle: handle for this transaction 4632 * @inode: inode 4633 * @block: start physical block to free 4634 * @count: number of blocks to count 4635 * @flags: flags used by ext4_free_blocks 4636 */ 4637void ext4_free_blocks(handle_t *handle, struct inode *inode, 4638 struct buffer_head *bh, ext4_fsblk_t block, 4639 unsigned long count, int flags) 4640{ 4641 struct buffer_head *bitmap_bh = NULL; 4642 struct super_block *sb = inode->i_sb; 4643 struct ext4_group_desc *gdp; 4644 unsigned int overflow; 4645 ext4_grpblk_t bit; 4646 struct buffer_head *gd_bh; 4647 ext4_group_t block_group; 4648 struct ext4_sb_info *sbi; 4649 struct ext4_buddy e4b; 4650 unsigned int count_clusters; 4651 int err = 0; 4652 int ret; 4653 4654 might_sleep(); 4655 if (bh) { 4656 if (block) 4657 BUG_ON(block != bh->b_blocknr); 4658 else 4659 block = bh->b_blocknr; 4660 } 4661 4662 sbi = EXT4_SB(sb); 4663 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4664 !ext4_data_block_valid(sbi, block, count)) { 4665 ext4_error(sb, "Freeing blocks not in datazone - " 4666 "block = %llu, count = %lu", block, count); 4667 goto error_return; 4668 } 4669 4670 ext4_debug("freeing block %llu\n", block); 4671 trace_ext4_free_blocks(inode, block, count, flags); 4672 4673 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4674 struct buffer_head *tbh = bh; 4675 int i; 4676 4677 BUG_ON(bh && (count > 1)); 4678 4679 for (i = 0; i < count; i++) { 4680 cond_resched(); 4681 if (!bh) 4682 tbh = sb_find_get_block(inode->i_sb, 4683 block + i); 4684 if (!tbh) 4685 continue; 4686 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4687 inode, tbh, block + i); 4688 } 4689 } 4690 4691 /* 4692 * We need to make sure we don't reuse the freed block until 4693 * after the transaction is committed, which we can do by 4694 * treating the block as metadata, below. We make an 4695 * exception if the inode is to be written in writeback mode 4696 * since writeback mode has weak data consistency guarantees. 4697 */ 4698 if (!ext4_should_writeback_data(inode)) 4699 flags |= EXT4_FREE_BLOCKS_METADATA; 4700 4701 /* 4702 * If the extent to be freed does not begin on a cluster 4703 * boundary, we need to deal with partial clusters at the 4704 * beginning and end of the extent. Normally we will free 4705 * blocks at the beginning or the end unless we are explicitly 4706 * requested to avoid doing so. 4707 */ 4708 overflow = EXT4_PBLK_COFF(sbi, block); 4709 if (overflow) { 4710 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4711 overflow = sbi->s_cluster_ratio - overflow; 4712 block += overflow; 4713 if (count > overflow) 4714 count -= overflow; 4715 else 4716 return; 4717 } else { 4718 block -= overflow; 4719 count += overflow; 4720 } 4721 } 4722 overflow = EXT4_LBLK_COFF(sbi, count); 4723 if (overflow) { 4724 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4725 if (count > overflow) 4726 count -= overflow; 4727 else 4728 return; 4729 } else 4730 count += sbi->s_cluster_ratio - overflow; 4731 } 4732 4733do_more: 4734 overflow = 0; 4735 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4736 4737 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4738 ext4_get_group_info(sb, block_group)))) 4739 return; 4740 4741 /* 4742 * Check to see if we are freeing blocks across a group 4743 * boundary. 4744 */ 4745 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4746 overflow = EXT4_C2B(sbi, bit) + count - 4747 EXT4_BLOCKS_PER_GROUP(sb); 4748 count -= overflow; 4749 } 4750 count_clusters = EXT4_NUM_B2C(sbi, count); 4751 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4752 if (!bitmap_bh) { 4753 err = -EIO; 4754 goto error_return; 4755 } 4756 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4757 if (!gdp) { 4758 err = -EIO; 4759 goto error_return; 4760 } 4761 4762 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4763 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4764 in_range(block, ext4_inode_table(sb, gdp), 4765 EXT4_SB(sb)->s_itb_per_group) || 4766 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4767 EXT4_SB(sb)->s_itb_per_group)) { 4768 4769 ext4_error(sb, "Freeing blocks in system zone - " 4770 "Block = %llu, count = %lu", block, count); 4771 /* err = 0. ext4_std_error should be a no op */ 4772 goto error_return; 4773 } 4774 4775 BUFFER_TRACE(bitmap_bh, "getting write access"); 4776 err = ext4_journal_get_write_access(handle, bitmap_bh); 4777 if (err) 4778 goto error_return; 4779 4780 /* 4781 * We are about to modify some metadata. Call the journal APIs 4782 * to unshare ->b_data if a currently-committing transaction is 4783 * using it 4784 */ 4785 BUFFER_TRACE(gd_bh, "get_write_access"); 4786 err = ext4_journal_get_write_access(handle, gd_bh); 4787 if (err) 4788 goto error_return; 4789#ifdef AGGRESSIVE_CHECK 4790 { 4791 int i; 4792 for (i = 0; i < count_clusters; i++) 4793 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4794 } 4795#endif 4796 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4797 4798 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4799 if (err) 4800 goto error_return; 4801 4802 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4803 struct ext4_free_data *new_entry; 4804 /* 4805 * blocks being freed are metadata. these blocks shouldn't 4806 * be used until this transaction is committed 4807 * 4808 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4809 * to fail. 4810 */ 4811 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4812 GFP_NOFS|__GFP_NOFAIL); 4813 new_entry->efd_start_cluster = bit; 4814 new_entry->efd_group = block_group; 4815 new_entry->efd_count = count_clusters; 4816 new_entry->efd_tid = handle->h_transaction->t_tid; 4817 4818 ext4_lock_group(sb, block_group); 4819 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4820 ext4_mb_free_metadata(handle, &e4b, new_entry); 4821 } else { 4822 /* need to update group_info->bb_free and bitmap 4823 * with group lock held. generate_buddy look at 4824 * them with group lock_held 4825 */ 4826 if (test_opt(sb, DISCARD)) { 4827 err = ext4_issue_discard(sb, block_group, bit, count); 4828 if (err && err != -EOPNOTSUPP) 4829 ext4_msg(sb, KERN_WARNING, "discard request in" 4830 " group:%d block:%d count:%lu failed" 4831 " with %d", block_group, bit, count, 4832 err); 4833 } else 4834 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4835 4836 ext4_lock_group(sb, block_group); 4837 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4838 mb_free_blocks(inode, &e4b, bit, count_clusters); 4839 } 4840 4841 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4842 ext4_free_group_clusters_set(sb, gdp, ret); 4843 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4844 ext4_group_desc_csum_set(sb, block_group, gdp); 4845 ext4_unlock_group(sb, block_group); 4846 4847 if (sbi->s_log_groups_per_flex) { 4848 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4849 atomic64_add(count_clusters, 4850 &sbi->s_flex_groups[flex_group].free_clusters); 4851 } 4852 4853 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4854 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4855 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4856 4857 ext4_mb_unload_buddy(&e4b); 4858 4859 /* We dirtied the bitmap block */ 4860 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4861 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4862 4863 /* And the group descriptor block */ 4864 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4865 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4866 if (!err) 4867 err = ret; 4868 4869 if (overflow && !err) { 4870 block += count; 4871 count = overflow; 4872 put_bh(bitmap_bh); 4873 goto do_more; 4874 } 4875error_return: 4876 brelse(bitmap_bh); 4877 ext4_std_error(sb, err); 4878 return; 4879} 4880 4881/** 4882 * ext4_group_add_blocks() -- Add given blocks to an existing group 4883 * @handle: handle to this transaction 4884 * @sb: super block 4885 * @block: start physical block to add to the block group 4886 * @count: number of blocks to free 4887 * 4888 * This marks the blocks as free in the bitmap and buddy. 4889 */ 4890int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4891 ext4_fsblk_t block, unsigned long count) 4892{ 4893 struct buffer_head *bitmap_bh = NULL; 4894 struct buffer_head *gd_bh; 4895 ext4_group_t block_group; 4896 ext4_grpblk_t bit; 4897 unsigned int i; 4898 struct ext4_group_desc *desc; 4899 struct ext4_sb_info *sbi = EXT4_SB(sb); 4900 struct ext4_buddy e4b; 4901 int err = 0, ret, blk_free_count; 4902 ext4_grpblk_t blocks_freed; 4903 4904 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4905 4906 if (count == 0) 4907 return 0; 4908 4909 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4910 /* 4911 * Check to see if we are freeing blocks across a group 4912 * boundary. 4913 */ 4914 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4915 ext4_warning(sb, "too much blocks added to group %u\n", 4916 block_group); 4917 err = -EINVAL; 4918 goto error_return; 4919 } 4920 4921 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4922 if (!bitmap_bh) { 4923 err = -EIO; 4924 goto error_return; 4925 } 4926 4927 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4928 if (!desc) { 4929 err = -EIO; 4930 goto error_return; 4931 } 4932 4933 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4934 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4935 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4936 in_range(block + count - 1, ext4_inode_table(sb, desc), 4937 sbi->s_itb_per_group)) { 4938 ext4_error(sb, "Adding blocks in system zones - " 4939 "Block = %llu, count = %lu", 4940 block, count); 4941 err = -EINVAL; 4942 goto error_return; 4943 } 4944 4945 BUFFER_TRACE(bitmap_bh, "getting write access"); 4946 err = ext4_journal_get_write_access(handle, bitmap_bh); 4947 if (err) 4948 goto error_return; 4949 4950 /* 4951 * We are about to modify some metadata. Call the journal APIs 4952 * to unshare ->b_data if a currently-committing transaction is 4953 * using it 4954 */ 4955 BUFFER_TRACE(gd_bh, "get_write_access"); 4956 err = ext4_journal_get_write_access(handle, gd_bh); 4957 if (err) 4958 goto error_return; 4959 4960 for (i = 0, blocks_freed = 0; i < count; i++) { 4961 BUFFER_TRACE(bitmap_bh, "clear bit"); 4962 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4963 ext4_error(sb, "bit already cleared for block %llu", 4964 (ext4_fsblk_t)(block + i)); 4965 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4966 } else { 4967 blocks_freed++; 4968 } 4969 } 4970 4971 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4972 if (err) 4973 goto error_return; 4974 4975 /* 4976 * need to update group_info->bb_free and bitmap 4977 * with group lock held. generate_buddy look at 4978 * them with group lock_held 4979 */ 4980 ext4_lock_group(sb, block_group); 4981 mb_clear_bits(bitmap_bh->b_data, bit, count); 4982 mb_free_blocks(NULL, &e4b, bit, count); 4983 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4984 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4985 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4986 ext4_group_desc_csum_set(sb, block_group, desc); 4987 ext4_unlock_group(sb, block_group); 4988 percpu_counter_add(&sbi->s_freeclusters_counter, 4989 EXT4_NUM_B2C(sbi, blocks_freed)); 4990 4991 if (sbi->s_log_groups_per_flex) { 4992 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4993 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 4994 &sbi->s_flex_groups[flex_group].free_clusters); 4995 } 4996 4997 ext4_mb_unload_buddy(&e4b); 4998 4999 /* We dirtied the bitmap block */ 5000 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5001 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5002 5003 /* And the group descriptor block */ 5004 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5005 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5006 if (!err) 5007 err = ret; 5008 5009error_return: 5010 brelse(bitmap_bh); 5011 ext4_std_error(sb, err); 5012 return err; 5013} 5014 5015/** 5016 * ext4_trim_extent -- function to TRIM one single free extent in the group 5017 * @sb: super block for the file system 5018 * @start: starting block of the free extent in the alloc. group 5019 * @count: number of blocks to TRIM 5020 * @group: alloc. group we are working with 5021 * @e4b: ext4 buddy for the group 5022 * 5023 * Trim "count" blocks starting at "start" in the "group". To assure that no 5024 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5025 * be called with under the group lock. 5026 */ 5027static int ext4_trim_extent(struct super_block *sb, int start, int count, 5028 ext4_group_t group, struct ext4_buddy *e4b) 5029__releases(bitlock) 5030__acquires(bitlock) 5031{ 5032 struct ext4_free_extent ex; 5033 int ret = 0; 5034 5035 trace_ext4_trim_extent(sb, group, start, count); 5036 5037 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5038 5039 ex.fe_start = start; 5040 ex.fe_group = group; 5041 ex.fe_len = count; 5042 5043 /* 5044 * Mark blocks used, so no one can reuse them while 5045 * being trimmed. 5046 */ 5047 mb_mark_used(e4b, &ex); 5048 ext4_unlock_group(sb, group); 5049 ret = ext4_issue_discard(sb, group, start, count); 5050 ext4_lock_group(sb, group); 5051 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5052 return ret; 5053} 5054 5055/** 5056 * ext4_trim_all_free -- function to trim all free space in alloc. group 5057 * @sb: super block for file system 5058 * @group: group to be trimmed 5059 * @start: first group block to examine 5060 * @max: last group block to examine 5061 * @minblocks: minimum extent block count 5062 * 5063 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5064 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5065 * the extent. 5066 * 5067 * 5068 * ext4_trim_all_free walks through group's block bitmap searching for free 5069 * extents. When the free extent is found, mark it as used in group buddy 5070 * bitmap. Then issue a TRIM command on this extent and free the extent in 5071 * the group buddy bitmap. This is done until whole group is scanned. 5072 */ 5073static ext4_grpblk_t 5074ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5075 ext4_grpblk_t start, ext4_grpblk_t max, 5076 ext4_grpblk_t minblocks) 5077{ 5078 void *bitmap; 5079 ext4_grpblk_t next, count = 0, free_count = 0; 5080 struct ext4_buddy e4b; 5081 int ret = 0; 5082 5083 trace_ext4_trim_all_free(sb, group, start, max); 5084 5085 ret = ext4_mb_load_buddy(sb, group, &e4b); 5086 if (ret) { 5087 ext4_error(sb, "Error in loading buddy " 5088 "information for %u", group); 5089 return ret; 5090 } 5091 bitmap = e4b.bd_bitmap; 5092 5093 ext4_lock_group(sb, group); 5094 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5095 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5096 goto out; 5097 5098 start = (e4b.bd_info->bb_first_free > start) ? 5099 e4b.bd_info->bb_first_free : start; 5100 5101 while (start <= max) { 5102 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5103 if (start > max) 5104 break; 5105 next = mb_find_next_bit(bitmap, max + 1, start); 5106 5107 if ((next - start) >= minblocks) { 5108 ret = ext4_trim_extent(sb, start, 5109 next - start, group, &e4b); 5110 if (ret && ret != -EOPNOTSUPP) 5111 break; 5112 ret = 0; 5113 count += next - start; 5114 } 5115 free_count += next - start; 5116 start = next + 1; 5117 5118 if (fatal_signal_pending(current)) { 5119 count = -ERESTARTSYS; 5120 break; 5121 } 5122 5123 if (need_resched()) { 5124 ext4_unlock_group(sb, group); 5125 cond_resched(); 5126 ext4_lock_group(sb, group); 5127 } 5128 5129 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5130 break; 5131 } 5132 5133 if (!ret) { 5134 ret = count; 5135 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5136 } 5137out: 5138 ext4_unlock_group(sb, group); 5139 ext4_mb_unload_buddy(&e4b); 5140 5141 ext4_debug("trimmed %d blocks in the group %d\n", 5142 count, group); 5143 5144 return ret; 5145} 5146 5147/** 5148 * ext4_trim_fs() -- trim ioctl handle function 5149 * @sb: superblock for filesystem 5150 * @range: fstrim_range structure 5151 * 5152 * start: First Byte to trim 5153 * len: number of Bytes to trim from start 5154 * minlen: minimum extent length in Bytes 5155 * ext4_trim_fs goes through all allocation groups containing Bytes from 5156 * start to start+len. For each such a group ext4_trim_all_free function 5157 * is invoked to trim all free space. 5158 */ 5159int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5160{ 5161 struct ext4_group_info *grp; 5162 ext4_group_t group, first_group, last_group; 5163 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5164 uint64_t start, end, minlen, trimmed = 0; 5165 ext4_fsblk_t first_data_blk = 5166 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5167 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5168 int ret = 0; 5169 5170 start = range->start >> sb->s_blocksize_bits; 5171 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5172 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5173 range->minlen >> sb->s_blocksize_bits); 5174 5175 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5176 start >= max_blks || 5177 range->len < sb->s_blocksize) 5178 return -EINVAL; 5179 if (end >= max_blks) 5180 end = max_blks - 1; 5181 if (end <= first_data_blk) 5182 goto out; 5183 if (start < first_data_blk) 5184 start = first_data_blk; 5185 5186 /* Determine first and last group to examine based on start and end */ 5187 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5188 &first_group, &first_cluster); 5189 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5190 &last_group, &last_cluster); 5191 5192 /* end now represents the last cluster to discard in this group */ 5193 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5194 5195 for (group = first_group; group <= last_group; group++) { 5196 grp = ext4_get_group_info(sb, group); 5197 /* We only do this if the grp has never been initialized */ 5198 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5199 ret = ext4_mb_init_group(sb, group); 5200 if (ret) 5201 break; 5202 } 5203 5204 /* 5205 * For all the groups except the last one, last cluster will 5206 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5207 * change it for the last group, note that last_cluster is 5208 * already computed earlier by ext4_get_group_no_and_offset() 5209 */ 5210 if (group == last_group) 5211 end = last_cluster; 5212 5213 if (grp->bb_free >= minlen) { 5214 cnt = ext4_trim_all_free(sb, group, first_cluster, 5215 end, minlen); 5216 if (cnt < 0) { 5217 ret = cnt; 5218 break; 5219 } 5220 trimmed += cnt; 5221 } 5222 5223 /* 5224 * For every group except the first one, we are sure 5225 * that the first cluster to discard will be cluster #0. 5226 */ 5227 first_cluster = 0; 5228 } 5229 5230 if (!ret) 5231 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5232 5233out: 5234 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5235 return ret; 5236} 5237