1/*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/statfs.h>
15#include <linux/buffer_head.h>
16#include <linux/backing-dev.h>
17#include <linux/kthread.h>
18#include <linux/parser.h>
19#include <linux/mount.h>
20#include <linux/seq_file.h>
21#include <linux/proc_fs.h>
22#include <linux/random.h>
23#include <linux/exportfs.h>
24#include <linux/blkdev.h>
25#include <linux/f2fs_fs.h>
26#include <linux/sysfs.h>
27
28#include "f2fs.h"
29#include "node.h"
30#include "segment.h"
31#include "xattr.h"
32#include "gc.h"
33#include "trace.h"
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/f2fs.h>
37
38static struct proc_dir_entry *f2fs_proc_root;
39static struct kmem_cache *f2fs_inode_cachep;
40static struct kset *f2fs_kset;
41
42enum {
43	Opt_gc_background,
44	Opt_disable_roll_forward,
45	Opt_norecovery,
46	Opt_discard,
47	Opt_noheap,
48	Opt_user_xattr,
49	Opt_nouser_xattr,
50	Opt_acl,
51	Opt_noacl,
52	Opt_active_logs,
53	Opt_disable_ext_identify,
54	Opt_inline_xattr,
55	Opt_inline_data,
56	Opt_inline_dentry,
57	Opt_flush_merge,
58	Opt_nobarrier,
59	Opt_fastboot,
60	Opt_extent_cache,
61	Opt_noinline_data,
62	Opt_err,
63};
64
65static match_table_t f2fs_tokens = {
66	{Opt_gc_background, "background_gc=%s"},
67	{Opt_disable_roll_forward, "disable_roll_forward"},
68	{Opt_norecovery, "norecovery"},
69	{Opt_discard, "discard"},
70	{Opt_noheap, "no_heap"},
71	{Opt_user_xattr, "user_xattr"},
72	{Opt_nouser_xattr, "nouser_xattr"},
73	{Opt_acl, "acl"},
74	{Opt_noacl, "noacl"},
75	{Opt_active_logs, "active_logs=%u"},
76	{Opt_disable_ext_identify, "disable_ext_identify"},
77	{Opt_inline_xattr, "inline_xattr"},
78	{Opt_inline_data, "inline_data"},
79	{Opt_inline_dentry, "inline_dentry"},
80	{Opt_flush_merge, "flush_merge"},
81	{Opt_nobarrier, "nobarrier"},
82	{Opt_fastboot, "fastboot"},
83	{Opt_extent_cache, "extent_cache"},
84	{Opt_noinline_data, "noinline_data"},
85	{Opt_err, NULL},
86};
87
88/* Sysfs support for f2fs */
89enum {
90	GC_THREAD,	/* struct f2fs_gc_thread */
91	SM_INFO,	/* struct f2fs_sm_info */
92	NM_INFO,	/* struct f2fs_nm_info */
93	F2FS_SBI,	/* struct f2fs_sb_info */
94};
95
96struct f2fs_attr {
97	struct attribute attr;
98	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
99	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
100			 const char *, size_t);
101	int struct_type;
102	int offset;
103};
104
105static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
106{
107	if (struct_type == GC_THREAD)
108		return (unsigned char *)sbi->gc_thread;
109	else if (struct_type == SM_INFO)
110		return (unsigned char *)SM_I(sbi);
111	else if (struct_type == NM_INFO)
112		return (unsigned char *)NM_I(sbi);
113	else if (struct_type == F2FS_SBI)
114		return (unsigned char *)sbi;
115	return NULL;
116}
117
118static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
119			struct f2fs_sb_info *sbi, char *buf)
120{
121	unsigned char *ptr = NULL;
122	unsigned int *ui;
123
124	ptr = __struct_ptr(sbi, a->struct_type);
125	if (!ptr)
126		return -EINVAL;
127
128	ui = (unsigned int *)(ptr + a->offset);
129
130	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
131}
132
133static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
134			struct f2fs_sb_info *sbi,
135			const char *buf, size_t count)
136{
137	unsigned char *ptr;
138	unsigned long t;
139	unsigned int *ui;
140	ssize_t ret;
141
142	ptr = __struct_ptr(sbi, a->struct_type);
143	if (!ptr)
144		return -EINVAL;
145
146	ui = (unsigned int *)(ptr + a->offset);
147
148	ret = kstrtoul(skip_spaces(buf), 0, &t);
149	if (ret < 0)
150		return ret;
151	*ui = t;
152	return count;
153}
154
155static ssize_t f2fs_attr_show(struct kobject *kobj,
156				struct attribute *attr, char *buf)
157{
158	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
159								s_kobj);
160	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
161
162	return a->show ? a->show(a, sbi, buf) : 0;
163}
164
165static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
166						const char *buf, size_t len)
167{
168	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
169									s_kobj);
170	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
171
172	return a->store ? a->store(a, sbi, buf, len) : 0;
173}
174
175static void f2fs_sb_release(struct kobject *kobj)
176{
177	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
178								s_kobj);
179	complete(&sbi->s_kobj_unregister);
180}
181
182#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
183static struct f2fs_attr f2fs_attr_##_name = {			\
184	.attr = {.name = __stringify(_name), .mode = _mode },	\
185	.show	= _show,					\
186	.store	= _store,					\
187	.struct_type = _struct_type,				\
188	.offset = _offset					\
189}
190
191#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
192	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
193		f2fs_sbi_show, f2fs_sbi_store,			\
194		offsetof(struct struct_name, elname))
195
196F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
197F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
198F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
199F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
200F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
201F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
202F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
203F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
204F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
205F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
206F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
207F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
208F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
209
210#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
211static struct attribute *f2fs_attrs[] = {
212	ATTR_LIST(gc_min_sleep_time),
213	ATTR_LIST(gc_max_sleep_time),
214	ATTR_LIST(gc_no_gc_sleep_time),
215	ATTR_LIST(gc_idle),
216	ATTR_LIST(reclaim_segments),
217	ATTR_LIST(max_small_discards),
218	ATTR_LIST(batched_trim_sections),
219	ATTR_LIST(ipu_policy),
220	ATTR_LIST(min_ipu_util),
221	ATTR_LIST(min_fsync_blocks),
222	ATTR_LIST(max_victim_search),
223	ATTR_LIST(dir_level),
224	ATTR_LIST(ram_thresh),
225	NULL,
226};
227
228static const struct sysfs_ops f2fs_attr_ops = {
229	.show	= f2fs_attr_show,
230	.store	= f2fs_attr_store,
231};
232
233static struct kobj_type f2fs_ktype = {
234	.default_attrs	= f2fs_attrs,
235	.sysfs_ops	= &f2fs_attr_ops,
236	.release	= f2fs_sb_release,
237};
238
239void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
240{
241	struct va_format vaf;
242	va_list args;
243
244	va_start(args, fmt);
245	vaf.fmt = fmt;
246	vaf.va = &args;
247	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
248	va_end(args);
249}
250
251static void init_once(void *foo)
252{
253	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
254
255	inode_init_once(&fi->vfs_inode);
256}
257
258static int parse_options(struct super_block *sb, char *options)
259{
260	struct f2fs_sb_info *sbi = F2FS_SB(sb);
261	substring_t args[MAX_OPT_ARGS];
262	char *p, *name;
263	int arg = 0;
264
265	if (!options)
266		return 0;
267
268	while ((p = strsep(&options, ",")) != NULL) {
269		int token;
270		if (!*p)
271			continue;
272		/*
273		 * Initialize args struct so we know whether arg was
274		 * found; some options take optional arguments.
275		 */
276		args[0].to = args[0].from = NULL;
277		token = match_token(p, f2fs_tokens, args);
278
279		switch (token) {
280		case Opt_gc_background:
281			name = match_strdup(&args[0]);
282
283			if (!name)
284				return -ENOMEM;
285			if (strlen(name) == 2 && !strncmp(name, "on", 2))
286				set_opt(sbi, BG_GC);
287			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
288				clear_opt(sbi, BG_GC);
289			else {
290				kfree(name);
291				return -EINVAL;
292			}
293			kfree(name);
294			break;
295		case Opt_disable_roll_forward:
296			set_opt(sbi, DISABLE_ROLL_FORWARD);
297			break;
298		case Opt_norecovery:
299			/* this option mounts f2fs with ro */
300			set_opt(sbi, DISABLE_ROLL_FORWARD);
301			if (!f2fs_readonly(sb))
302				return -EINVAL;
303			break;
304		case Opt_discard:
305			set_opt(sbi, DISCARD);
306			break;
307		case Opt_noheap:
308			set_opt(sbi, NOHEAP);
309			break;
310#ifdef CONFIG_F2FS_FS_XATTR
311		case Opt_user_xattr:
312			set_opt(sbi, XATTR_USER);
313			break;
314		case Opt_nouser_xattr:
315			clear_opt(sbi, XATTR_USER);
316			break;
317		case Opt_inline_xattr:
318			set_opt(sbi, INLINE_XATTR);
319			break;
320#else
321		case Opt_user_xattr:
322			f2fs_msg(sb, KERN_INFO,
323				"user_xattr options not supported");
324			break;
325		case Opt_nouser_xattr:
326			f2fs_msg(sb, KERN_INFO,
327				"nouser_xattr options not supported");
328			break;
329		case Opt_inline_xattr:
330			f2fs_msg(sb, KERN_INFO,
331				"inline_xattr options not supported");
332			break;
333#endif
334#ifdef CONFIG_F2FS_FS_POSIX_ACL
335		case Opt_acl:
336			set_opt(sbi, POSIX_ACL);
337			break;
338		case Opt_noacl:
339			clear_opt(sbi, POSIX_ACL);
340			break;
341#else
342		case Opt_acl:
343			f2fs_msg(sb, KERN_INFO, "acl options not supported");
344			break;
345		case Opt_noacl:
346			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
347			break;
348#endif
349		case Opt_active_logs:
350			if (args->from && match_int(args, &arg))
351				return -EINVAL;
352			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
353				return -EINVAL;
354			sbi->active_logs = arg;
355			break;
356		case Opt_disable_ext_identify:
357			set_opt(sbi, DISABLE_EXT_IDENTIFY);
358			break;
359		case Opt_inline_data:
360			set_opt(sbi, INLINE_DATA);
361			break;
362		case Opt_inline_dentry:
363			set_opt(sbi, INLINE_DENTRY);
364			break;
365		case Opt_flush_merge:
366			set_opt(sbi, FLUSH_MERGE);
367			break;
368		case Opt_nobarrier:
369			set_opt(sbi, NOBARRIER);
370			break;
371		case Opt_fastboot:
372			set_opt(sbi, FASTBOOT);
373			break;
374		case Opt_extent_cache:
375			set_opt(sbi, EXTENT_CACHE);
376			break;
377		case Opt_noinline_data:
378			clear_opt(sbi, INLINE_DATA);
379			break;
380		default:
381			f2fs_msg(sb, KERN_ERR,
382				"Unrecognized mount option \"%s\" or missing value",
383				p);
384			return -EINVAL;
385		}
386	}
387	return 0;
388}
389
390static struct inode *f2fs_alloc_inode(struct super_block *sb)
391{
392	struct f2fs_inode_info *fi;
393
394	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
395	if (!fi)
396		return NULL;
397
398	init_once((void *) fi);
399
400	/* Initialize f2fs-specific inode info */
401	fi->vfs_inode.i_version = 1;
402	atomic_set(&fi->dirty_pages, 0);
403	fi->i_current_depth = 1;
404	fi->i_advise = 0;
405	rwlock_init(&fi->ext_lock);
406	init_rwsem(&fi->i_sem);
407	INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
408	INIT_LIST_HEAD(&fi->inmem_pages);
409	mutex_init(&fi->inmem_lock);
410
411	set_inode_flag(fi, FI_NEW_INODE);
412
413	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
414		set_inode_flag(fi, FI_INLINE_XATTR);
415
416	/* Will be used by directory only */
417	fi->i_dir_level = F2FS_SB(sb)->dir_level;
418
419	return &fi->vfs_inode;
420}
421
422static int f2fs_drop_inode(struct inode *inode)
423{
424	/*
425	 * This is to avoid a deadlock condition like below.
426	 * writeback_single_inode(inode)
427	 *  - f2fs_write_data_page
428	 *    - f2fs_gc -> iput -> evict
429	 *       - inode_wait_for_writeback(inode)
430	 */
431	if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
432		return 0;
433	return generic_drop_inode(inode);
434}
435
436/*
437 * f2fs_dirty_inode() is called from __mark_inode_dirty()
438 *
439 * We should call set_dirty_inode to write the dirty inode through write_inode.
440 */
441static void f2fs_dirty_inode(struct inode *inode, int flags)
442{
443	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
444}
445
446static void f2fs_i_callback(struct rcu_head *head)
447{
448	struct inode *inode = container_of(head, struct inode, i_rcu);
449	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
450}
451
452static void f2fs_destroy_inode(struct inode *inode)
453{
454	call_rcu(&inode->i_rcu, f2fs_i_callback);
455}
456
457static void f2fs_put_super(struct super_block *sb)
458{
459	struct f2fs_sb_info *sbi = F2FS_SB(sb);
460
461	if (sbi->s_proc) {
462		remove_proc_entry("segment_info", sbi->s_proc);
463		remove_proc_entry(sb->s_id, f2fs_proc_root);
464	}
465	kobject_del(&sbi->s_kobj);
466
467	f2fs_destroy_stats(sbi);
468	stop_gc_thread(sbi);
469
470	/*
471	 * We don't need to do checkpoint when superblock is clean.
472	 * But, the previous checkpoint was not done by umount, it needs to do
473	 * clean checkpoint again.
474	 */
475	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
476			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
477		struct cp_control cpc = {
478			.reason = CP_UMOUNT,
479		};
480		write_checkpoint(sbi, &cpc);
481	}
482
483	/*
484	 * normally superblock is clean, so we need to release this.
485	 * In addition, EIO will skip do checkpoint, we need this as well.
486	 */
487	release_dirty_inode(sbi);
488	release_discard_addrs(sbi);
489
490	iput(sbi->node_inode);
491	iput(sbi->meta_inode);
492
493	/* destroy f2fs internal modules */
494	destroy_node_manager(sbi);
495	destroy_segment_manager(sbi);
496
497	kfree(sbi->ckpt);
498	kobject_put(&sbi->s_kobj);
499	wait_for_completion(&sbi->s_kobj_unregister);
500
501	sb->s_fs_info = NULL;
502	brelse(sbi->raw_super_buf);
503	kfree(sbi);
504}
505
506int f2fs_sync_fs(struct super_block *sb, int sync)
507{
508	struct f2fs_sb_info *sbi = F2FS_SB(sb);
509
510	trace_f2fs_sync_fs(sb, sync);
511
512	if (sync) {
513		struct cp_control cpc;
514
515		cpc.reason = __get_cp_reason(sbi);
516
517		mutex_lock(&sbi->gc_mutex);
518		write_checkpoint(sbi, &cpc);
519		mutex_unlock(&sbi->gc_mutex);
520	} else {
521		f2fs_balance_fs(sbi);
522	}
523	f2fs_trace_ios(NULL, NULL, 1);
524
525	return 0;
526}
527
528static int f2fs_freeze(struct super_block *sb)
529{
530	int err;
531
532	if (f2fs_readonly(sb))
533		return 0;
534
535	err = f2fs_sync_fs(sb, 1);
536	return err;
537}
538
539static int f2fs_unfreeze(struct super_block *sb)
540{
541	return 0;
542}
543
544static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
545{
546	struct super_block *sb = dentry->d_sb;
547	struct f2fs_sb_info *sbi = F2FS_SB(sb);
548	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
549	block_t total_count, user_block_count, start_count, ovp_count;
550
551	total_count = le64_to_cpu(sbi->raw_super->block_count);
552	user_block_count = sbi->user_block_count;
553	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
554	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
555	buf->f_type = F2FS_SUPER_MAGIC;
556	buf->f_bsize = sbi->blocksize;
557
558	buf->f_blocks = total_count - start_count;
559	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
560	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
561
562	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
563	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
564
565	buf->f_namelen = F2FS_NAME_LEN;
566	buf->f_fsid.val[0] = (u32)id;
567	buf->f_fsid.val[1] = (u32)(id >> 32);
568
569	return 0;
570}
571
572static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
573{
574	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
575
576	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
577		seq_printf(seq, ",background_gc=%s", "on");
578	else
579		seq_printf(seq, ",background_gc=%s", "off");
580	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
581		seq_puts(seq, ",disable_roll_forward");
582	if (test_opt(sbi, DISCARD))
583		seq_puts(seq, ",discard");
584	if (test_opt(sbi, NOHEAP))
585		seq_puts(seq, ",no_heap_alloc");
586#ifdef CONFIG_F2FS_FS_XATTR
587	if (test_opt(sbi, XATTR_USER))
588		seq_puts(seq, ",user_xattr");
589	else
590		seq_puts(seq, ",nouser_xattr");
591	if (test_opt(sbi, INLINE_XATTR))
592		seq_puts(seq, ",inline_xattr");
593#endif
594#ifdef CONFIG_F2FS_FS_POSIX_ACL
595	if (test_opt(sbi, POSIX_ACL))
596		seq_puts(seq, ",acl");
597	else
598		seq_puts(seq, ",noacl");
599#endif
600	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
601		seq_puts(seq, ",disable_ext_identify");
602	if (test_opt(sbi, INLINE_DATA))
603		seq_puts(seq, ",inline_data");
604	else
605		seq_puts(seq, ",noinline_data");
606	if (test_opt(sbi, INLINE_DENTRY))
607		seq_puts(seq, ",inline_dentry");
608	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
609		seq_puts(seq, ",flush_merge");
610	if (test_opt(sbi, NOBARRIER))
611		seq_puts(seq, ",nobarrier");
612	if (test_opt(sbi, FASTBOOT))
613		seq_puts(seq, ",fastboot");
614	if (test_opt(sbi, EXTENT_CACHE))
615		seq_puts(seq, ",extent_cache");
616	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
617
618	return 0;
619}
620
621static int segment_info_seq_show(struct seq_file *seq, void *offset)
622{
623	struct super_block *sb = seq->private;
624	struct f2fs_sb_info *sbi = F2FS_SB(sb);
625	unsigned int total_segs =
626			le32_to_cpu(sbi->raw_super->segment_count_main);
627	int i;
628
629	seq_puts(seq, "format: segment_type|valid_blocks\n"
630		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
631
632	for (i = 0; i < total_segs; i++) {
633		struct seg_entry *se = get_seg_entry(sbi, i);
634
635		if ((i % 10) == 0)
636			seq_printf(seq, "%-5d", i);
637		seq_printf(seq, "%d|%-3u", se->type,
638					get_valid_blocks(sbi, i, 1));
639		if ((i % 10) == 9 || i == (total_segs - 1))
640			seq_putc(seq, '\n');
641		else
642			seq_putc(seq, ' ');
643	}
644
645	return 0;
646}
647
648static int segment_info_open_fs(struct inode *inode, struct file *file)
649{
650	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
651}
652
653static const struct file_operations f2fs_seq_segment_info_fops = {
654	.owner = THIS_MODULE,
655	.open = segment_info_open_fs,
656	.read = seq_read,
657	.llseek = seq_lseek,
658	.release = single_release,
659};
660
661static int f2fs_remount(struct super_block *sb, int *flags, char *data)
662{
663	struct f2fs_sb_info *sbi = F2FS_SB(sb);
664	struct f2fs_mount_info org_mount_opt;
665	int err, active_logs;
666	bool need_restart_gc = false;
667	bool need_stop_gc = false;
668
669	sync_filesystem(sb);
670
671	/*
672	 * Save the old mount options in case we
673	 * need to restore them.
674	 */
675	org_mount_opt = sbi->mount_opt;
676	active_logs = sbi->active_logs;
677
678	sbi->mount_opt.opt = 0;
679	sbi->active_logs = NR_CURSEG_TYPE;
680
681	/* parse mount options */
682	err = parse_options(sb, data);
683	if (err)
684		goto restore_opts;
685
686	/*
687	 * Previous and new state of filesystem is RO,
688	 * so skip checking GC and FLUSH_MERGE conditions.
689	 */
690	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
691		goto skip;
692
693	/*
694	 * We stop the GC thread if FS is mounted as RO
695	 * or if background_gc = off is passed in mount
696	 * option. Also sync the filesystem.
697	 */
698	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
699		if (sbi->gc_thread) {
700			stop_gc_thread(sbi);
701			f2fs_sync_fs(sb, 1);
702			need_restart_gc = true;
703		}
704	} else if (!sbi->gc_thread) {
705		err = start_gc_thread(sbi);
706		if (err)
707			goto restore_opts;
708		need_stop_gc = true;
709	}
710
711	/*
712	 * We stop issue flush thread if FS is mounted as RO
713	 * or if flush_merge is not passed in mount option.
714	 */
715	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
716		destroy_flush_cmd_control(sbi);
717	} else if (!SM_I(sbi)->cmd_control_info) {
718		err = create_flush_cmd_control(sbi);
719		if (err)
720			goto restore_gc;
721	}
722skip:
723	/* Update the POSIXACL Flag */
724	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
725		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
726	return 0;
727restore_gc:
728	if (need_restart_gc) {
729		if (start_gc_thread(sbi))
730			f2fs_msg(sbi->sb, KERN_WARNING,
731				"background gc thread has stopped");
732	} else if (need_stop_gc) {
733		stop_gc_thread(sbi);
734	}
735restore_opts:
736	sbi->mount_opt = org_mount_opt;
737	sbi->active_logs = active_logs;
738	return err;
739}
740
741static struct super_operations f2fs_sops = {
742	.alloc_inode	= f2fs_alloc_inode,
743	.drop_inode	= f2fs_drop_inode,
744	.destroy_inode	= f2fs_destroy_inode,
745	.write_inode	= f2fs_write_inode,
746	.dirty_inode	= f2fs_dirty_inode,
747	.show_options	= f2fs_show_options,
748	.evict_inode	= f2fs_evict_inode,
749	.put_super	= f2fs_put_super,
750	.sync_fs	= f2fs_sync_fs,
751	.freeze_fs	= f2fs_freeze,
752	.unfreeze_fs	= f2fs_unfreeze,
753	.statfs		= f2fs_statfs,
754	.remount_fs	= f2fs_remount,
755};
756
757static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
758		u64 ino, u32 generation)
759{
760	struct f2fs_sb_info *sbi = F2FS_SB(sb);
761	struct inode *inode;
762
763	if (check_nid_range(sbi, ino))
764		return ERR_PTR(-ESTALE);
765
766	/*
767	 * f2fs_iget isn't quite right if the inode is currently unallocated!
768	 * However f2fs_iget currently does appropriate checks to handle stale
769	 * inodes so everything is OK.
770	 */
771	inode = f2fs_iget(sb, ino);
772	if (IS_ERR(inode))
773		return ERR_CAST(inode);
774	if (unlikely(generation && inode->i_generation != generation)) {
775		/* we didn't find the right inode.. */
776		iput(inode);
777		return ERR_PTR(-ESTALE);
778	}
779	return inode;
780}
781
782static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
783		int fh_len, int fh_type)
784{
785	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
786				    f2fs_nfs_get_inode);
787}
788
789static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
790		int fh_len, int fh_type)
791{
792	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
793				    f2fs_nfs_get_inode);
794}
795
796static const struct export_operations f2fs_export_ops = {
797	.fh_to_dentry = f2fs_fh_to_dentry,
798	.fh_to_parent = f2fs_fh_to_parent,
799	.get_parent = f2fs_get_parent,
800};
801
802static loff_t max_file_size(unsigned bits)
803{
804	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
805	loff_t leaf_count = ADDRS_PER_BLOCK;
806
807	/* two direct node blocks */
808	result += (leaf_count * 2);
809
810	/* two indirect node blocks */
811	leaf_count *= NIDS_PER_BLOCK;
812	result += (leaf_count * 2);
813
814	/* one double indirect node block */
815	leaf_count *= NIDS_PER_BLOCK;
816	result += leaf_count;
817
818	result <<= bits;
819	return result;
820}
821
822static int sanity_check_raw_super(struct super_block *sb,
823			struct f2fs_super_block *raw_super)
824{
825	unsigned int blocksize;
826
827	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
828		f2fs_msg(sb, KERN_INFO,
829			"Magic Mismatch, valid(0x%x) - read(0x%x)",
830			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
831		return 1;
832	}
833
834	/* Currently, support only 4KB page cache size */
835	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
836		f2fs_msg(sb, KERN_INFO,
837			"Invalid page_cache_size (%lu), supports only 4KB\n",
838			PAGE_CACHE_SIZE);
839		return 1;
840	}
841
842	/* Currently, support only 4KB block size */
843	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
844	if (blocksize != F2FS_BLKSIZE) {
845		f2fs_msg(sb, KERN_INFO,
846			"Invalid blocksize (%u), supports only 4KB\n",
847			blocksize);
848		return 1;
849	}
850
851	/* Currently, support 512/1024/2048/4096 bytes sector size */
852	if (le32_to_cpu(raw_super->log_sectorsize) >
853				F2FS_MAX_LOG_SECTOR_SIZE ||
854		le32_to_cpu(raw_super->log_sectorsize) <
855				F2FS_MIN_LOG_SECTOR_SIZE) {
856		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
857			le32_to_cpu(raw_super->log_sectorsize));
858		return 1;
859	}
860	if (le32_to_cpu(raw_super->log_sectors_per_block) +
861		le32_to_cpu(raw_super->log_sectorsize) !=
862			F2FS_MAX_LOG_SECTOR_SIZE) {
863		f2fs_msg(sb, KERN_INFO,
864			"Invalid log sectors per block(%u) log sectorsize(%u)",
865			le32_to_cpu(raw_super->log_sectors_per_block),
866			le32_to_cpu(raw_super->log_sectorsize));
867		return 1;
868	}
869	return 0;
870}
871
872static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
873{
874	unsigned int total, fsmeta;
875	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
876	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
877
878	total = le32_to_cpu(raw_super->segment_count);
879	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
880	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
881	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
882	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
883	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
884
885	if (unlikely(fsmeta >= total))
886		return 1;
887
888	if (unlikely(f2fs_cp_error(sbi))) {
889		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
890		return 1;
891	}
892	return 0;
893}
894
895static void init_sb_info(struct f2fs_sb_info *sbi)
896{
897	struct f2fs_super_block *raw_super = sbi->raw_super;
898	int i;
899
900	sbi->log_sectors_per_block =
901		le32_to_cpu(raw_super->log_sectors_per_block);
902	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
903	sbi->blocksize = 1 << sbi->log_blocksize;
904	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
905	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
906	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
907	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
908	sbi->total_sections = le32_to_cpu(raw_super->section_count);
909	sbi->total_node_count =
910		(le32_to_cpu(raw_super->segment_count_nat) / 2)
911			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
912	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
913	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
914	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
915	sbi->cur_victim_sec = NULL_SECNO;
916	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
917
918	for (i = 0; i < NR_COUNT_TYPE; i++)
919		atomic_set(&sbi->nr_pages[i], 0);
920
921	sbi->dir_level = DEF_DIR_LEVEL;
922	clear_sbi_flag(sbi, SBI_NEED_FSCK);
923}
924
925/*
926 * Read f2fs raw super block.
927 * Because we have two copies of super block, so read the first one at first,
928 * if the first one is invalid, move to read the second one.
929 */
930static int read_raw_super_block(struct super_block *sb,
931			struct f2fs_super_block **raw_super,
932			struct buffer_head **raw_super_buf)
933{
934	int block = 0;
935
936retry:
937	*raw_super_buf = sb_bread(sb, block);
938	if (!*raw_super_buf) {
939		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
940				block + 1);
941		if (block == 0) {
942			block++;
943			goto retry;
944		} else {
945			return -EIO;
946		}
947	}
948
949	*raw_super = (struct f2fs_super_block *)
950		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
951
952	/* sanity checking of raw super */
953	if (sanity_check_raw_super(sb, *raw_super)) {
954		brelse(*raw_super_buf);
955		f2fs_msg(sb, KERN_ERR,
956			"Can't find valid F2FS filesystem in %dth superblock",
957								block + 1);
958		if (block == 0) {
959			block++;
960			goto retry;
961		} else {
962			return -EINVAL;
963		}
964	}
965
966	return 0;
967}
968
969static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
970{
971	struct f2fs_sb_info *sbi;
972	struct f2fs_super_block *raw_super = NULL;
973	struct buffer_head *raw_super_buf;
974	struct inode *root;
975	long err = -EINVAL;
976	bool retry = true, need_fsck = false;
977	char *options = NULL;
978	int i;
979
980try_onemore:
981	/* allocate memory for f2fs-specific super block info */
982	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
983	if (!sbi)
984		return -ENOMEM;
985
986	/* set a block size */
987	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
988		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
989		goto free_sbi;
990	}
991
992	err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
993	if (err)
994		goto free_sbi;
995
996	sb->s_fs_info = sbi;
997	/* init some FS parameters */
998	sbi->active_logs = NR_CURSEG_TYPE;
999
1000	set_opt(sbi, BG_GC);
1001	set_opt(sbi, INLINE_DATA);
1002
1003#ifdef CONFIG_F2FS_FS_XATTR
1004	set_opt(sbi, XATTR_USER);
1005#endif
1006#ifdef CONFIG_F2FS_FS_POSIX_ACL
1007	set_opt(sbi, POSIX_ACL);
1008#endif
1009	/* parse mount options */
1010	options = kstrdup((const char *)data, GFP_KERNEL);
1011	if (data && !options) {
1012		err = -ENOMEM;
1013		goto free_sb_buf;
1014	}
1015
1016	err = parse_options(sb, options);
1017	if (err)
1018		goto free_options;
1019
1020	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1021	sb->s_max_links = F2FS_LINK_MAX;
1022	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1023
1024	sb->s_op = &f2fs_sops;
1025	sb->s_xattr = f2fs_xattr_handlers;
1026	sb->s_export_op = &f2fs_export_ops;
1027	sb->s_magic = F2FS_SUPER_MAGIC;
1028	sb->s_time_gran = 1;
1029	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1030		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1031	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1032
1033	/* init f2fs-specific super block info */
1034	sbi->sb = sb;
1035	sbi->raw_super = raw_super;
1036	sbi->raw_super_buf = raw_super_buf;
1037	mutex_init(&sbi->gc_mutex);
1038	mutex_init(&sbi->writepages);
1039	mutex_init(&sbi->cp_mutex);
1040	init_rwsem(&sbi->node_write);
1041	clear_sbi_flag(sbi, SBI_POR_DOING);
1042	spin_lock_init(&sbi->stat_lock);
1043
1044	init_rwsem(&sbi->read_io.io_rwsem);
1045	sbi->read_io.sbi = sbi;
1046	sbi->read_io.bio = NULL;
1047	for (i = 0; i < NR_PAGE_TYPE; i++) {
1048		init_rwsem(&sbi->write_io[i].io_rwsem);
1049		sbi->write_io[i].sbi = sbi;
1050		sbi->write_io[i].bio = NULL;
1051	}
1052
1053	init_rwsem(&sbi->cp_rwsem);
1054	init_waitqueue_head(&sbi->cp_wait);
1055	init_sb_info(sbi);
1056
1057	/* get an inode for meta space */
1058	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1059	if (IS_ERR(sbi->meta_inode)) {
1060		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1061		err = PTR_ERR(sbi->meta_inode);
1062		goto free_options;
1063	}
1064
1065	err = get_valid_checkpoint(sbi);
1066	if (err) {
1067		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1068		goto free_meta_inode;
1069	}
1070
1071	/* sanity checking of checkpoint */
1072	err = -EINVAL;
1073	if (sanity_check_ckpt(sbi)) {
1074		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1075		goto free_cp;
1076	}
1077
1078	sbi->total_valid_node_count =
1079				le32_to_cpu(sbi->ckpt->valid_node_count);
1080	sbi->total_valid_inode_count =
1081				le32_to_cpu(sbi->ckpt->valid_inode_count);
1082	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1083	sbi->total_valid_block_count =
1084				le64_to_cpu(sbi->ckpt->valid_block_count);
1085	sbi->last_valid_block_count = sbi->total_valid_block_count;
1086	sbi->alloc_valid_block_count = 0;
1087	INIT_LIST_HEAD(&sbi->dir_inode_list);
1088	spin_lock_init(&sbi->dir_inode_lock);
1089
1090	init_extent_cache_info(sbi);
1091
1092	init_ino_entry_info(sbi);
1093
1094	/* setup f2fs internal modules */
1095	err = build_segment_manager(sbi);
1096	if (err) {
1097		f2fs_msg(sb, KERN_ERR,
1098			"Failed to initialize F2FS segment manager");
1099		goto free_sm;
1100	}
1101	err = build_node_manager(sbi);
1102	if (err) {
1103		f2fs_msg(sb, KERN_ERR,
1104			"Failed to initialize F2FS node manager");
1105		goto free_nm;
1106	}
1107
1108	build_gc_manager(sbi);
1109
1110	/* get an inode for node space */
1111	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1112	if (IS_ERR(sbi->node_inode)) {
1113		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1114		err = PTR_ERR(sbi->node_inode);
1115		goto free_nm;
1116	}
1117
1118	/* if there are nt orphan nodes free them */
1119	recover_orphan_inodes(sbi);
1120
1121	/* read root inode and dentry */
1122	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1123	if (IS_ERR(root)) {
1124		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1125		err = PTR_ERR(root);
1126		goto free_node_inode;
1127	}
1128	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1129		iput(root);
1130		err = -EINVAL;
1131		goto free_node_inode;
1132	}
1133
1134	sb->s_root = d_make_root(root); /* allocate root dentry */
1135	if (!sb->s_root) {
1136		err = -ENOMEM;
1137		goto free_root_inode;
1138	}
1139
1140	err = f2fs_build_stats(sbi);
1141	if (err)
1142		goto free_root_inode;
1143
1144	if (f2fs_proc_root)
1145		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1146
1147	if (sbi->s_proc)
1148		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1149				 &f2fs_seq_segment_info_fops, sb);
1150
1151	if (test_opt(sbi, DISCARD)) {
1152		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1153		if (!blk_queue_discard(q))
1154			f2fs_msg(sb, KERN_WARNING,
1155					"mounting with \"discard\" option, but "
1156					"the device does not support discard");
1157	}
1158
1159	sbi->s_kobj.kset = f2fs_kset;
1160	init_completion(&sbi->s_kobj_unregister);
1161	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1162							"%s", sb->s_id);
1163	if (err)
1164		goto free_proc;
1165
1166	/* recover fsynced data */
1167	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1168		/*
1169		 * mount should be failed, when device has readonly mode, and
1170		 * previous checkpoint was not done by clean system shutdown.
1171		 */
1172		if (bdev_read_only(sb->s_bdev) &&
1173				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1174			err = -EROFS;
1175			goto free_kobj;
1176		}
1177
1178		if (need_fsck)
1179			set_sbi_flag(sbi, SBI_NEED_FSCK);
1180
1181		err = recover_fsync_data(sbi);
1182		if (err) {
1183			need_fsck = true;
1184			f2fs_msg(sb, KERN_ERR,
1185				"Cannot recover all fsync data errno=%ld", err);
1186			goto free_kobj;
1187		}
1188	}
1189
1190	/*
1191	 * If filesystem is not mounted as read-only then
1192	 * do start the gc_thread.
1193	 */
1194	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1195		/* After POR, we can run background GC thread.*/
1196		err = start_gc_thread(sbi);
1197		if (err)
1198			goto free_kobj;
1199	}
1200	kfree(options);
1201	return 0;
1202
1203free_kobj:
1204	kobject_del(&sbi->s_kobj);
1205free_proc:
1206	if (sbi->s_proc) {
1207		remove_proc_entry("segment_info", sbi->s_proc);
1208		remove_proc_entry(sb->s_id, f2fs_proc_root);
1209	}
1210	f2fs_destroy_stats(sbi);
1211free_root_inode:
1212	dput(sb->s_root);
1213	sb->s_root = NULL;
1214free_node_inode:
1215	iput(sbi->node_inode);
1216free_nm:
1217	destroy_node_manager(sbi);
1218free_sm:
1219	destroy_segment_manager(sbi);
1220free_cp:
1221	kfree(sbi->ckpt);
1222free_meta_inode:
1223	make_bad_inode(sbi->meta_inode);
1224	iput(sbi->meta_inode);
1225free_options:
1226	kfree(options);
1227free_sb_buf:
1228	brelse(raw_super_buf);
1229free_sbi:
1230	kfree(sbi);
1231
1232	/* give only one another chance */
1233	if (retry) {
1234		retry = false;
1235		shrink_dcache_sb(sb);
1236		goto try_onemore;
1237	}
1238	return err;
1239}
1240
1241static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1242			const char *dev_name, void *data)
1243{
1244	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1245}
1246
1247static void kill_f2fs_super(struct super_block *sb)
1248{
1249	if (sb->s_root)
1250		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1251	kill_block_super(sb);
1252}
1253
1254static struct file_system_type f2fs_fs_type = {
1255	.owner		= THIS_MODULE,
1256	.name		= "f2fs",
1257	.mount		= f2fs_mount,
1258	.kill_sb	= kill_f2fs_super,
1259	.fs_flags	= FS_REQUIRES_DEV,
1260};
1261MODULE_ALIAS_FS("f2fs");
1262
1263static int __init init_inodecache(void)
1264{
1265	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1266			sizeof(struct f2fs_inode_info));
1267	if (!f2fs_inode_cachep)
1268		return -ENOMEM;
1269	return 0;
1270}
1271
1272static void destroy_inodecache(void)
1273{
1274	/*
1275	 * Make sure all delayed rcu free inodes are flushed before we
1276	 * destroy cache.
1277	 */
1278	rcu_barrier();
1279	kmem_cache_destroy(f2fs_inode_cachep);
1280}
1281
1282static int __init init_f2fs_fs(void)
1283{
1284	int err;
1285
1286	f2fs_build_trace_ios();
1287
1288	err = init_inodecache();
1289	if (err)
1290		goto fail;
1291	err = create_node_manager_caches();
1292	if (err)
1293		goto free_inodecache;
1294	err = create_segment_manager_caches();
1295	if (err)
1296		goto free_node_manager_caches;
1297	err = create_checkpoint_caches();
1298	if (err)
1299		goto free_segment_manager_caches;
1300	err = create_extent_cache();
1301	if (err)
1302		goto free_checkpoint_caches;
1303	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1304	if (!f2fs_kset) {
1305		err = -ENOMEM;
1306		goto free_extent_cache;
1307	}
1308	err = register_filesystem(&f2fs_fs_type);
1309	if (err)
1310		goto free_kset;
1311	f2fs_create_root_stats();
1312	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1313	return 0;
1314
1315free_kset:
1316	kset_unregister(f2fs_kset);
1317free_extent_cache:
1318	destroy_extent_cache();
1319free_checkpoint_caches:
1320	destroy_checkpoint_caches();
1321free_segment_manager_caches:
1322	destroy_segment_manager_caches();
1323free_node_manager_caches:
1324	destroy_node_manager_caches();
1325free_inodecache:
1326	destroy_inodecache();
1327fail:
1328	return err;
1329}
1330
1331static void __exit exit_f2fs_fs(void)
1332{
1333	remove_proc_entry("fs/f2fs", NULL);
1334	f2fs_destroy_root_stats();
1335	unregister_filesystem(&f2fs_fs_type);
1336	destroy_extent_cache();
1337	destroy_checkpoint_caches();
1338	destroy_segment_manager_caches();
1339	destroy_node_manager_caches();
1340	destroy_inodecache();
1341	kset_unregister(f2fs_kset);
1342	f2fs_destroy_trace_ios();
1343}
1344
1345module_init(init_f2fs_fs)
1346module_exit(exit_f2fs_fs)
1347
1348MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1349MODULE_DESCRIPTION("Flash Friendly File System");
1350MODULE_LICENSE("GPL");
1351