1#include <linux/mm.h>
2#include <linux/vmacache.h>
3#include <linux/hugetlb.h>
4#include <linux/huge_mm.h>
5#include <linux/mount.h>
6#include <linux/seq_file.h>
7#include <linux/highmem.h>
8#include <linux/ptrace.h>
9#include <linux/slab.h>
10#include <linux/pagemap.h>
11#include <linux/mempolicy.h>
12#include <linux/rmap.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mmu_notifier.h>
16
17#include <asm/elf.h>
18#include <asm/uaccess.h>
19#include <asm/tlbflush.h>
20#include "internal.h"
21
22void task_mem(struct seq_file *m, struct mm_struct *mm)
23{
24	unsigned long data, text, lib, swap, ptes, pmds;
25	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26
27	/*
28	 * Note: to minimize their overhead, mm maintains hiwater_vm and
29	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
30	 * collector of these hiwater stats must therefore get total_vm
31	 * and rss too, which will usually be the higher.  Barriers? not
32	 * worth the effort, such snapshots can always be inconsistent.
33	 */
34	hiwater_vm = total_vm = mm->total_vm;
35	if (hiwater_vm < mm->hiwater_vm)
36		hiwater_vm = mm->hiwater_vm;
37	hiwater_rss = total_rss = get_mm_rss(mm);
38	if (hiwater_rss < mm->hiwater_rss)
39		hiwater_rss = mm->hiwater_rss;
40
41	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44	swap = get_mm_counter(mm, MM_SWAPENTS);
45	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
46	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
47	seq_printf(m,
48		"VmPeak:\t%8lu kB\n"
49		"VmSize:\t%8lu kB\n"
50		"VmLck:\t%8lu kB\n"
51		"VmPin:\t%8lu kB\n"
52		"VmHWM:\t%8lu kB\n"
53		"VmRSS:\t%8lu kB\n"
54		"VmData:\t%8lu kB\n"
55		"VmStk:\t%8lu kB\n"
56		"VmExe:\t%8lu kB\n"
57		"VmLib:\t%8lu kB\n"
58		"VmPTE:\t%8lu kB\n"
59		"VmPMD:\t%8lu kB\n"
60		"VmSwap:\t%8lu kB\n",
61		hiwater_vm << (PAGE_SHIFT-10),
62		total_vm << (PAGE_SHIFT-10),
63		mm->locked_vm << (PAGE_SHIFT-10),
64		mm->pinned_vm << (PAGE_SHIFT-10),
65		hiwater_rss << (PAGE_SHIFT-10),
66		total_rss << (PAGE_SHIFT-10),
67		data << (PAGE_SHIFT-10),
68		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
69		ptes >> 10,
70		pmds >> 10,
71		swap << (PAGE_SHIFT-10));
72}
73
74unsigned long task_vsize(struct mm_struct *mm)
75{
76	return PAGE_SIZE * mm->total_vm;
77}
78
79unsigned long task_statm(struct mm_struct *mm,
80			 unsigned long *shared, unsigned long *text,
81			 unsigned long *data, unsigned long *resident)
82{
83	*shared = get_mm_counter(mm, MM_FILEPAGES);
84	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
85								>> PAGE_SHIFT;
86	*data = mm->total_vm - mm->shared_vm;
87	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
88	return mm->total_vm;
89}
90
91#ifdef CONFIG_NUMA
92/*
93 * Save get_task_policy() for show_numa_map().
94 */
95static void hold_task_mempolicy(struct proc_maps_private *priv)
96{
97	struct task_struct *task = priv->task;
98
99	task_lock(task);
100	priv->task_mempolicy = get_task_policy(task);
101	mpol_get(priv->task_mempolicy);
102	task_unlock(task);
103}
104static void release_task_mempolicy(struct proc_maps_private *priv)
105{
106	mpol_put(priv->task_mempolicy);
107}
108#else
109static void hold_task_mempolicy(struct proc_maps_private *priv)
110{
111}
112static void release_task_mempolicy(struct proc_maps_private *priv)
113{
114}
115#endif
116
117static void vma_stop(struct proc_maps_private *priv)
118{
119	struct mm_struct *mm = priv->mm;
120
121	release_task_mempolicy(priv);
122	up_read(&mm->mmap_sem);
123	mmput(mm);
124}
125
126static struct vm_area_struct *
127m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
128{
129	if (vma == priv->tail_vma)
130		return NULL;
131	return vma->vm_next ?: priv->tail_vma;
132}
133
134static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
135{
136	if (m->count < m->size)	/* vma is copied successfully */
137		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
138}
139
140static void *m_start(struct seq_file *m, loff_t *ppos)
141{
142	struct proc_maps_private *priv = m->private;
143	unsigned long last_addr = m->version;
144	struct mm_struct *mm;
145	struct vm_area_struct *vma;
146	unsigned int pos = *ppos;
147
148	/* See m_cache_vma(). Zero at the start or after lseek. */
149	if (last_addr == -1UL)
150		return NULL;
151
152	priv->task = get_proc_task(priv->inode);
153	if (!priv->task)
154		return ERR_PTR(-ESRCH);
155
156	mm = priv->mm;
157	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
158		return NULL;
159
160	down_read(&mm->mmap_sem);
161	hold_task_mempolicy(priv);
162	priv->tail_vma = get_gate_vma(mm);
163
164	if (last_addr) {
165		vma = find_vma(mm, last_addr);
166		if (vma && (vma = m_next_vma(priv, vma)))
167			return vma;
168	}
169
170	m->version = 0;
171	if (pos < mm->map_count) {
172		for (vma = mm->mmap; pos; pos--) {
173			m->version = vma->vm_start;
174			vma = vma->vm_next;
175		}
176		return vma;
177	}
178
179	/* we do not bother to update m->version in this case */
180	if (pos == mm->map_count && priv->tail_vma)
181		return priv->tail_vma;
182
183	vma_stop(priv);
184	return NULL;
185}
186
187static void *m_next(struct seq_file *m, void *v, loff_t *pos)
188{
189	struct proc_maps_private *priv = m->private;
190	struct vm_area_struct *next;
191
192	(*pos)++;
193	next = m_next_vma(priv, v);
194	if (!next)
195		vma_stop(priv);
196	return next;
197}
198
199static void m_stop(struct seq_file *m, void *v)
200{
201	struct proc_maps_private *priv = m->private;
202
203	if (!IS_ERR_OR_NULL(v))
204		vma_stop(priv);
205	if (priv->task) {
206		put_task_struct(priv->task);
207		priv->task = NULL;
208	}
209}
210
211static int proc_maps_open(struct inode *inode, struct file *file,
212			const struct seq_operations *ops, int psize)
213{
214	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
215
216	if (!priv)
217		return -ENOMEM;
218
219	priv->inode = inode;
220	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
221	if (IS_ERR(priv->mm)) {
222		int err = PTR_ERR(priv->mm);
223
224		seq_release_private(inode, file);
225		return err;
226	}
227
228	return 0;
229}
230
231static int proc_map_release(struct inode *inode, struct file *file)
232{
233	struct seq_file *seq = file->private_data;
234	struct proc_maps_private *priv = seq->private;
235
236	if (priv->mm)
237		mmdrop(priv->mm);
238
239	return seq_release_private(inode, file);
240}
241
242static int do_maps_open(struct inode *inode, struct file *file,
243			const struct seq_operations *ops)
244{
245	return proc_maps_open(inode, file, ops,
246				sizeof(struct proc_maps_private));
247}
248
249static pid_t pid_of_stack(struct proc_maps_private *priv,
250				struct vm_area_struct *vma, bool is_pid)
251{
252	struct inode *inode = priv->inode;
253	struct task_struct *task;
254	pid_t ret = 0;
255
256	rcu_read_lock();
257	task = pid_task(proc_pid(inode), PIDTYPE_PID);
258	if (task) {
259		task = task_of_stack(task, vma, is_pid);
260		if (task)
261			ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
262	}
263	rcu_read_unlock();
264
265	return ret;
266}
267
268static void
269show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
270{
271	struct mm_struct *mm = vma->vm_mm;
272	struct file *file = vma->vm_file;
273	struct proc_maps_private *priv = m->private;
274	vm_flags_t flags = vma->vm_flags;
275	unsigned long ino = 0;
276	unsigned long long pgoff = 0;
277	unsigned long start, end;
278	dev_t dev = 0;
279	const char *name = NULL;
280
281	if (file) {
282		struct inode *inode = file_inode(vma->vm_file);
283		dev = inode->i_sb->s_dev;
284		ino = inode->i_ino;
285		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
286	}
287
288	/* We don't show the stack guard page in /proc/maps */
289	start = vma->vm_start;
290	if (stack_guard_page_start(vma, start))
291		start += PAGE_SIZE;
292	end = vma->vm_end;
293	if (stack_guard_page_end(vma, end))
294		end -= PAGE_SIZE;
295
296	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
297	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
298			start,
299			end,
300			flags & VM_READ ? 'r' : '-',
301			flags & VM_WRITE ? 'w' : '-',
302			flags & VM_EXEC ? 'x' : '-',
303			flags & VM_MAYSHARE ? 's' : 'p',
304			pgoff,
305			MAJOR(dev), MINOR(dev), ino);
306
307	/*
308	 * Print the dentry name for named mappings, and a
309	 * special [heap] marker for the heap:
310	 */
311	if (file) {
312		seq_pad(m, ' ');
313		seq_path(m, &file->f_path, "\n");
314		goto done;
315	}
316
317	if (vma->vm_ops && vma->vm_ops->name) {
318		name = vma->vm_ops->name(vma);
319		if (name)
320			goto done;
321	}
322
323	name = arch_vma_name(vma);
324	if (!name) {
325		pid_t tid;
326
327		if (!mm) {
328			name = "[vdso]";
329			goto done;
330		}
331
332		if (vma->vm_start <= mm->brk &&
333		    vma->vm_end >= mm->start_brk) {
334			name = "[heap]";
335			goto done;
336		}
337
338		tid = pid_of_stack(priv, vma, is_pid);
339		if (tid != 0) {
340			/*
341			 * Thread stack in /proc/PID/task/TID/maps or
342			 * the main process stack.
343			 */
344			if (!is_pid || (vma->vm_start <= mm->start_stack &&
345			    vma->vm_end >= mm->start_stack)) {
346				name = "[stack]";
347			} else {
348				/* Thread stack in /proc/PID/maps */
349				seq_pad(m, ' ');
350				seq_printf(m, "[stack:%d]", tid);
351			}
352		}
353	}
354
355done:
356	if (name) {
357		seq_pad(m, ' ');
358		seq_puts(m, name);
359	}
360	seq_putc(m, '\n');
361}
362
363static int show_map(struct seq_file *m, void *v, int is_pid)
364{
365	show_map_vma(m, v, is_pid);
366	m_cache_vma(m, v);
367	return 0;
368}
369
370static int show_pid_map(struct seq_file *m, void *v)
371{
372	return show_map(m, v, 1);
373}
374
375static int show_tid_map(struct seq_file *m, void *v)
376{
377	return show_map(m, v, 0);
378}
379
380static const struct seq_operations proc_pid_maps_op = {
381	.start	= m_start,
382	.next	= m_next,
383	.stop	= m_stop,
384	.show	= show_pid_map
385};
386
387static const struct seq_operations proc_tid_maps_op = {
388	.start	= m_start,
389	.next	= m_next,
390	.stop	= m_stop,
391	.show	= show_tid_map
392};
393
394static int pid_maps_open(struct inode *inode, struct file *file)
395{
396	return do_maps_open(inode, file, &proc_pid_maps_op);
397}
398
399static int tid_maps_open(struct inode *inode, struct file *file)
400{
401	return do_maps_open(inode, file, &proc_tid_maps_op);
402}
403
404const struct file_operations proc_pid_maps_operations = {
405	.open		= pid_maps_open,
406	.read		= seq_read,
407	.llseek		= seq_lseek,
408	.release	= proc_map_release,
409};
410
411const struct file_operations proc_tid_maps_operations = {
412	.open		= tid_maps_open,
413	.read		= seq_read,
414	.llseek		= seq_lseek,
415	.release	= proc_map_release,
416};
417
418/*
419 * Proportional Set Size(PSS): my share of RSS.
420 *
421 * PSS of a process is the count of pages it has in memory, where each
422 * page is divided by the number of processes sharing it.  So if a
423 * process has 1000 pages all to itself, and 1000 shared with one other
424 * process, its PSS will be 1500.
425 *
426 * To keep (accumulated) division errors low, we adopt a 64bit
427 * fixed-point pss counter to minimize division errors. So (pss >>
428 * PSS_SHIFT) would be the real byte count.
429 *
430 * A shift of 12 before division means (assuming 4K page size):
431 * 	- 1M 3-user-pages add up to 8KB errors;
432 * 	- supports mapcount up to 2^24, or 16M;
433 * 	- supports PSS up to 2^52 bytes, or 4PB.
434 */
435#define PSS_SHIFT 12
436
437#ifdef CONFIG_PROC_PAGE_MONITOR
438struct mem_size_stats {
439	unsigned long resident;
440	unsigned long shared_clean;
441	unsigned long shared_dirty;
442	unsigned long private_clean;
443	unsigned long private_dirty;
444	unsigned long referenced;
445	unsigned long anonymous;
446	unsigned long anonymous_thp;
447	unsigned long swap;
448	u64 pss;
449};
450
451static void smaps_account(struct mem_size_stats *mss, struct page *page,
452		unsigned long size, bool young, bool dirty)
453{
454	int mapcount;
455
456	if (PageAnon(page))
457		mss->anonymous += size;
458
459	mss->resident += size;
460	/* Accumulate the size in pages that have been accessed. */
461	if (young || PageReferenced(page))
462		mss->referenced += size;
463	mapcount = page_mapcount(page);
464	if (mapcount >= 2) {
465		u64 pss_delta;
466
467		if (dirty || PageDirty(page))
468			mss->shared_dirty += size;
469		else
470			mss->shared_clean += size;
471		pss_delta = (u64)size << PSS_SHIFT;
472		do_div(pss_delta, mapcount);
473		mss->pss += pss_delta;
474	} else {
475		if (dirty || PageDirty(page))
476			mss->private_dirty += size;
477		else
478			mss->private_clean += size;
479		mss->pss += (u64)size << PSS_SHIFT;
480	}
481}
482
483static void smaps_pte_entry(pte_t *pte, unsigned long addr,
484		struct mm_walk *walk)
485{
486	struct mem_size_stats *mss = walk->private;
487	struct vm_area_struct *vma = walk->vma;
488	struct page *page = NULL;
489
490	if (pte_present(*pte)) {
491		page = vm_normal_page(vma, addr, *pte);
492	} else if (is_swap_pte(*pte)) {
493		swp_entry_t swpent = pte_to_swp_entry(*pte);
494
495		if (!non_swap_entry(swpent))
496			mss->swap += PAGE_SIZE;
497		else if (is_migration_entry(swpent))
498			page = migration_entry_to_page(swpent);
499	}
500
501	if (!page)
502		return;
503	smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
504}
505
506#ifdef CONFIG_TRANSPARENT_HUGEPAGE
507static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
508		struct mm_walk *walk)
509{
510	struct mem_size_stats *mss = walk->private;
511	struct vm_area_struct *vma = walk->vma;
512	struct page *page;
513
514	/* FOLL_DUMP will return -EFAULT on huge zero page */
515	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
516	if (IS_ERR_OR_NULL(page))
517		return;
518	mss->anonymous_thp += HPAGE_PMD_SIZE;
519	smaps_account(mss, page, HPAGE_PMD_SIZE,
520			pmd_young(*pmd), pmd_dirty(*pmd));
521}
522#else
523static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
524		struct mm_walk *walk)
525{
526}
527#endif
528
529static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
530			   struct mm_walk *walk)
531{
532	struct vm_area_struct *vma = walk->vma;
533	pte_t *pte;
534	spinlock_t *ptl;
535
536	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
537		smaps_pmd_entry(pmd, addr, walk);
538		spin_unlock(ptl);
539		return 0;
540	}
541
542	if (pmd_trans_unstable(pmd))
543		return 0;
544	/*
545	 * The mmap_sem held all the way back in m_start() is what
546	 * keeps khugepaged out of here and from collapsing things
547	 * in here.
548	 */
549	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
550	for (; addr != end; pte++, addr += PAGE_SIZE)
551		smaps_pte_entry(pte, addr, walk);
552	pte_unmap_unlock(pte - 1, ptl);
553	cond_resched();
554	return 0;
555}
556
557static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
558{
559	/*
560	 * Don't forget to update Documentation/ on changes.
561	 */
562	static const char mnemonics[BITS_PER_LONG][2] = {
563		/*
564		 * In case if we meet a flag we don't know about.
565		 */
566		[0 ... (BITS_PER_LONG-1)] = "??",
567
568		[ilog2(VM_READ)]	= "rd",
569		[ilog2(VM_WRITE)]	= "wr",
570		[ilog2(VM_EXEC)]	= "ex",
571		[ilog2(VM_SHARED)]	= "sh",
572		[ilog2(VM_MAYREAD)]	= "mr",
573		[ilog2(VM_MAYWRITE)]	= "mw",
574		[ilog2(VM_MAYEXEC)]	= "me",
575		[ilog2(VM_MAYSHARE)]	= "ms",
576		[ilog2(VM_GROWSDOWN)]	= "gd",
577		[ilog2(VM_PFNMAP)]	= "pf",
578		[ilog2(VM_DENYWRITE)]	= "dw",
579#ifdef CONFIG_X86_INTEL_MPX
580		[ilog2(VM_MPX)]		= "mp",
581#endif
582		[ilog2(VM_LOCKED)]	= "lo",
583		[ilog2(VM_IO)]		= "io",
584		[ilog2(VM_SEQ_READ)]	= "sr",
585		[ilog2(VM_RAND_READ)]	= "rr",
586		[ilog2(VM_DONTCOPY)]	= "dc",
587		[ilog2(VM_DONTEXPAND)]	= "de",
588		[ilog2(VM_ACCOUNT)]	= "ac",
589		[ilog2(VM_NORESERVE)]	= "nr",
590		[ilog2(VM_HUGETLB)]	= "ht",
591		[ilog2(VM_ARCH_1)]	= "ar",
592		[ilog2(VM_DONTDUMP)]	= "dd",
593#ifdef CONFIG_MEM_SOFT_DIRTY
594		[ilog2(VM_SOFTDIRTY)]	= "sd",
595#endif
596		[ilog2(VM_MIXEDMAP)]	= "mm",
597		[ilog2(VM_HUGEPAGE)]	= "hg",
598		[ilog2(VM_NOHUGEPAGE)]	= "nh",
599		[ilog2(VM_MERGEABLE)]	= "mg",
600	};
601	size_t i;
602
603	seq_puts(m, "VmFlags: ");
604	for (i = 0; i < BITS_PER_LONG; i++) {
605		if (vma->vm_flags & (1UL << i)) {
606			seq_printf(m, "%c%c ",
607				   mnemonics[i][0], mnemonics[i][1]);
608		}
609	}
610	seq_putc(m, '\n');
611}
612
613static int show_smap(struct seq_file *m, void *v, int is_pid)
614{
615	struct vm_area_struct *vma = v;
616	struct mem_size_stats mss;
617	struct mm_walk smaps_walk = {
618		.pmd_entry = smaps_pte_range,
619		.mm = vma->vm_mm,
620		.private = &mss,
621	};
622
623	memset(&mss, 0, sizeof mss);
624	/* mmap_sem is held in m_start */
625	walk_page_vma(vma, &smaps_walk);
626
627	show_map_vma(m, vma, is_pid);
628
629	seq_printf(m,
630		   "Size:           %8lu kB\n"
631		   "Rss:            %8lu kB\n"
632		   "Pss:            %8lu kB\n"
633		   "Shared_Clean:   %8lu kB\n"
634		   "Shared_Dirty:   %8lu kB\n"
635		   "Private_Clean:  %8lu kB\n"
636		   "Private_Dirty:  %8lu kB\n"
637		   "Referenced:     %8lu kB\n"
638		   "Anonymous:      %8lu kB\n"
639		   "AnonHugePages:  %8lu kB\n"
640		   "Swap:           %8lu kB\n"
641		   "KernelPageSize: %8lu kB\n"
642		   "MMUPageSize:    %8lu kB\n"
643		   "Locked:         %8lu kB\n",
644		   (vma->vm_end - vma->vm_start) >> 10,
645		   mss.resident >> 10,
646		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
647		   mss.shared_clean  >> 10,
648		   mss.shared_dirty  >> 10,
649		   mss.private_clean >> 10,
650		   mss.private_dirty >> 10,
651		   mss.referenced >> 10,
652		   mss.anonymous >> 10,
653		   mss.anonymous_thp >> 10,
654		   mss.swap >> 10,
655		   vma_kernel_pagesize(vma) >> 10,
656		   vma_mmu_pagesize(vma) >> 10,
657		   (vma->vm_flags & VM_LOCKED) ?
658			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
659
660	show_smap_vma_flags(m, vma);
661	m_cache_vma(m, vma);
662	return 0;
663}
664
665static int show_pid_smap(struct seq_file *m, void *v)
666{
667	return show_smap(m, v, 1);
668}
669
670static int show_tid_smap(struct seq_file *m, void *v)
671{
672	return show_smap(m, v, 0);
673}
674
675static const struct seq_operations proc_pid_smaps_op = {
676	.start	= m_start,
677	.next	= m_next,
678	.stop	= m_stop,
679	.show	= show_pid_smap
680};
681
682static const struct seq_operations proc_tid_smaps_op = {
683	.start	= m_start,
684	.next	= m_next,
685	.stop	= m_stop,
686	.show	= show_tid_smap
687};
688
689static int pid_smaps_open(struct inode *inode, struct file *file)
690{
691	return do_maps_open(inode, file, &proc_pid_smaps_op);
692}
693
694static int tid_smaps_open(struct inode *inode, struct file *file)
695{
696	return do_maps_open(inode, file, &proc_tid_smaps_op);
697}
698
699const struct file_operations proc_pid_smaps_operations = {
700	.open		= pid_smaps_open,
701	.read		= seq_read,
702	.llseek		= seq_lseek,
703	.release	= proc_map_release,
704};
705
706const struct file_operations proc_tid_smaps_operations = {
707	.open		= tid_smaps_open,
708	.read		= seq_read,
709	.llseek		= seq_lseek,
710	.release	= proc_map_release,
711};
712
713/*
714 * We do not want to have constant page-shift bits sitting in
715 * pagemap entries and are about to reuse them some time soon.
716 *
717 * Here's the "migration strategy":
718 * 1. when the system boots these bits remain what they are,
719 *    but a warning about future change is printed in log;
720 * 2. once anyone clears soft-dirty bits via clear_refs file,
721 *    these flag is set to denote, that user is aware of the
722 *    new API and those page-shift bits change their meaning.
723 *    The respective warning is printed in dmesg;
724 * 3. In a couple of releases we will remove all the mentions
725 *    of page-shift in pagemap entries.
726 */
727
728static bool soft_dirty_cleared __read_mostly;
729
730enum clear_refs_types {
731	CLEAR_REFS_ALL = 1,
732	CLEAR_REFS_ANON,
733	CLEAR_REFS_MAPPED,
734	CLEAR_REFS_SOFT_DIRTY,
735	CLEAR_REFS_MM_HIWATER_RSS,
736	CLEAR_REFS_LAST,
737};
738
739struct clear_refs_private {
740	enum clear_refs_types type;
741};
742
743#ifdef CONFIG_MEM_SOFT_DIRTY
744static inline void clear_soft_dirty(struct vm_area_struct *vma,
745		unsigned long addr, pte_t *pte)
746{
747	/*
748	 * The soft-dirty tracker uses #PF-s to catch writes
749	 * to pages, so write-protect the pte as well. See the
750	 * Documentation/vm/soft-dirty.txt for full description
751	 * of how soft-dirty works.
752	 */
753	pte_t ptent = *pte;
754
755	if (pte_present(ptent)) {
756		ptent = pte_wrprotect(ptent);
757		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
758	} else if (is_swap_pte(ptent)) {
759		ptent = pte_swp_clear_soft_dirty(ptent);
760	}
761
762	set_pte_at(vma->vm_mm, addr, pte, ptent);
763}
764
765static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
766		unsigned long addr, pmd_t *pmdp)
767{
768	pmd_t pmd = *pmdp;
769
770	pmd = pmd_wrprotect(pmd);
771	pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
772
773	if (vma->vm_flags & VM_SOFTDIRTY)
774		vma->vm_flags &= ~VM_SOFTDIRTY;
775
776	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
777}
778
779#else
780
781static inline void clear_soft_dirty(struct vm_area_struct *vma,
782		unsigned long addr, pte_t *pte)
783{
784}
785
786static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
787		unsigned long addr, pmd_t *pmdp)
788{
789}
790#endif
791
792static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
793				unsigned long end, struct mm_walk *walk)
794{
795	struct clear_refs_private *cp = walk->private;
796	struct vm_area_struct *vma = walk->vma;
797	pte_t *pte, ptent;
798	spinlock_t *ptl;
799	struct page *page;
800
801	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
802		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
803			clear_soft_dirty_pmd(vma, addr, pmd);
804			goto out;
805		}
806
807		page = pmd_page(*pmd);
808
809		/* Clear accessed and referenced bits. */
810		pmdp_test_and_clear_young(vma, addr, pmd);
811		ClearPageReferenced(page);
812out:
813		spin_unlock(ptl);
814		return 0;
815	}
816
817	if (pmd_trans_unstable(pmd))
818		return 0;
819
820	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
821	for (; addr != end; pte++, addr += PAGE_SIZE) {
822		ptent = *pte;
823
824		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
825			clear_soft_dirty(vma, addr, pte);
826			continue;
827		}
828
829		if (!pte_present(ptent))
830			continue;
831
832		page = vm_normal_page(vma, addr, ptent);
833		if (!page)
834			continue;
835
836		/* Clear accessed and referenced bits. */
837		ptep_test_and_clear_young(vma, addr, pte);
838		ClearPageReferenced(page);
839	}
840	pte_unmap_unlock(pte - 1, ptl);
841	cond_resched();
842	return 0;
843}
844
845static int clear_refs_test_walk(unsigned long start, unsigned long end,
846				struct mm_walk *walk)
847{
848	struct clear_refs_private *cp = walk->private;
849	struct vm_area_struct *vma = walk->vma;
850
851	if (vma->vm_flags & VM_PFNMAP)
852		return 1;
853
854	/*
855	 * Writing 1 to /proc/pid/clear_refs affects all pages.
856	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
857	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
858	 * Writing 4 to /proc/pid/clear_refs affects all pages.
859	 */
860	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
861		return 1;
862	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
863		return 1;
864	return 0;
865}
866
867static ssize_t clear_refs_write(struct file *file, const char __user *buf,
868				size_t count, loff_t *ppos)
869{
870	struct task_struct *task;
871	char buffer[PROC_NUMBUF];
872	struct mm_struct *mm;
873	struct vm_area_struct *vma;
874	enum clear_refs_types type;
875	int itype;
876	int rv;
877
878	memset(buffer, 0, sizeof(buffer));
879	if (count > sizeof(buffer) - 1)
880		count = sizeof(buffer) - 1;
881	if (copy_from_user(buffer, buf, count))
882		return -EFAULT;
883	rv = kstrtoint(strstrip(buffer), 10, &itype);
884	if (rv < 0)
885		return rv;
886	type = (enum clear_refs_types)itype;
887	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
888		return -EINVAL;
889
890	if (type == CLEAR_REFS_SOFT_DIRTY) {
891		soft_dirty_cleared = true;
892		pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
893			     " See the linux/Documentation/vm/pagemap.txt for "
894			     "details.\n");
895	}
896
897	task = get_proc_task(file_inode(file));
898	if (!task)
899		return -ESRCH;
900	mm = get_task_mm(task);
901	if (mm) {
902		struct clear_refs_private cp = {
903			.type = type,
904		};
905		struct mm_walk clear_refs_walk = {
906			.pmd_entry = clear_refs_pte_range,
907			.test_walk = clear_refs_test_walk,
908			.mm = mm,
909			.private = &cp,
910		};
911
912		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
913			/*
914			 * Writing 5 to /proc/pid/clear_refs resets the peak
915			 * resident set size to this mm's current rss value.
916			 */
917			down_write(&mm->mmap_sem);
918			reset_mm_hiwater_rss(mm);
919			up_write(&mm->mmap_sem);
920			goto out_mm;
921		}
922
923		down_read(&mm->mmap_sem);
924		if (type == CLEAR_REFS_SOFT_DIRTY) {
925			for (vma = mm->mmap; vma; vma = vma->vm_next) {
926				if (!(vma->vm_flags & VM_SOFTDIRTY))
927					continue;
928				up_read(&mm->mmap_sem);
929				down_write(&mm->mmap_sem);
930				for (vma = mm->mmap; vma; vma = vma->vm_next) {
931					vma->vm_flags &= ~VM_SOFTDIRTY;
932					vma_set_page_prot(vma);
933				}
934				downgrade_write(&mm->mmap_sem);
935				break;
936			}
937			mmu_notifier_invalidate_range_start(mm, 0, -1);
938		}
939		walk_page_range(0, ~0UL, &clear_refs_walk);
940		if (type == CLEAR_REFS_SOFT_DIRTY)
941			mmu_notifier_invalidate_range_end(mm, 0, -1);
942		flush_tlb_mm(mm);
943		up_read(&mm->mmap_sem);
944out_mm:
945		mmput(mm);
946	}
947	put_task_struct(task);
948
949	return count;
950}
951
952const struct file_operations proc_clear_refs_operations = {
953	.write		= clear_refs_write,
954	.llseek		= noop_llseek,
955};
956
957typedef struct {
958	u64 pme;
959} pagemap_entry_t;
960
961struct pagemapread {
962	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
963	pagemap_entry_t *buffer;
964	bool v2;
965};
966
967#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
968#define PAGEMAP_WALK_MASK	(PMD_MASK)
969
970#define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
971#define PM_STATUS_BITS      3
972#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
973#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
974#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
975#define PM_PSHIFT_BITS      6
976#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
977#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
978#define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
979#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
980#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
981/* in "new" pagemap pshift bits are occupied with more status bits */
982#define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
983
984#define __PM_SOFT_DIRTY      (1LL)
985#define PM_PRESENT          PM_STATUS(4LL)
986#define PM_SWAP             PM_STATUS(2LL)
987#define PM_FILE             PM_STATUS(1LL)
988#define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
989#define PM_END_OF_BUFFER    1
990
991static inline pagemap_entry_t make_pme(u64 val)
992{
993	return (pagemap_entry_t) { .pme = val };
994}
995
996static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
997			  struct pagemapread *pm)
998{
999	pm->buffer[pm->pos++] = *pme;
1000	if (pm->pos >= pm->len)
1001		return PM_END_OF_BUFFER;
1002	return 0;
1003}
1004
1005static int pagemap_pte_hole(unsigned long start, unsigned long end,
1006				struct mm_walk *walk)
1007{
1008	struct pagemapread *pm = walk->private;
1009	unsigned long addr = start;
1010	int err = 0;
1011
1012	while (addr < end) {
1013		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1014		pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1015		/* End of address space hole, which we mark as non-present. */
1016		unsigned long hole_end;
1017
1018		if (vma)
1019			hole_end = min(end, vma->vm_start);
1020		else
1021			hole_end = end;
1022
1023		for (; addr < hole_end; addr += PAGE_SIZE) {
1024			err = add_to_pagemap(addr, &pme, pm);
1025			if (err)
1026				goto out;
1027		}
1028
1029		if (!vma)
1030			break;
1031
1032		/* Addresses in the VMA. */
1033		if (vma->vm_flags & VM_SOFTDIRTY)
1034			pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
1035		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1036			err = add_to_pagemap(addr, &pme, pm);
1037			if (err)
1038				goto out;
1039		}
1040	}
1041out:
1042	return err;
1043}
1044
1045static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1046		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1047{
1048	u64 frame, flags;
1049	struct page *page = NULL;
1050	int flags2 = 0;
1051
1052	if (pte_present(pte)) {
1053		frame = pte_pfn(pte);
1054		flags = PM_PRESENT;
1055		page = vm_normal_page(vma, addr, pte);
1056		if (pte_soft_dirty(pte))
1057			flags2 |= __PM_SOFT_DIRTY;
1058	} else if (is_swap_pte(pte)) {
1059		swp_entry_t entry;
1060		if (pte_swp_soft_dirty(pte))
1061			flags2 |= __PM_SOFT_DIRTY;
1062		entry = pte_to_swp_entry(pte);
1063		frame = swp_type(entry) |
1064			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1065		flags = PM_SWAP;
1066		if (is_migration_entry(entry))
1067			page = migration_entry_to_page(entry);
1068	} else {
1069		if (vma->vm_flags & VM_SOFTDIRTY)
1070			flags2 |= __PM_SOFT_DIRTY;
1071		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1072		return;
1073	}
1074
1075	if (page && !PageAnon(page))
1076		flags |= PM_FILE;
1077	if ((vma->vm_flags & VM_SOFTDIRTY))
1078		flags2 |= __PM_SOFT_DIRTY;
1079
1080	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
1081}
1082
1083#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1084static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1085		pmd_t pmd, int offset, int pmd_flags2)
1086{
1087	/*
1088	 * Currently pmd for thp is always present because thp can not be
1089	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
1090	 * This if-check is just to prepare for future implementation.
1091	 */
1092	if (pmd_present(pmd))
1093		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
1094				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
1095	else
1096		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
1097}
1098#else
1099static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1100		pmd_t pmd, int offset, int pmd_flags2)
1101{
1102}
1103#endif
1104
1105static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1106			     struct mm_walk *walk)
1107{
1108	struct vm_area_struct *vma = walk->vma;
1109	struct pagemapread *pm = walk->private;
1110	spinlock_t *ptl;
1111	pte_t *pte, *orig_pte;
1112	int err = 0;
1113
1114	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1115		int pmd_flags2;
1116
1117		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1118			pmd_flags2 = __PM_SOFT_DIRTY;
1119		else
1120			pmd_flags2 = 0;
1121
1122		for (; addr != end; addr += PAGE_SIZE) {
1123			unsigned long offset;
1124			pagemap_entry_t pme;
1125
1126			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1127					PAGE_SHIFT;
1128			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1129			err = add_to_pagemap(addr, &pme, pm);
1130			if (err)
1131				break;
1132		}
1133		spin_unlock(ptl);
1134		return err;
1135	}
1136
1137	if (pmd_trans_unstable(pmd))
1138		return 0;
1139
1140	/*
1141	 * We can assume that @vma always points to a valid one and @end never
1142	 * goes beyond vma->vm_end.
1143	 */
1144	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1145	for (; addr < end; pte++, addr += PAGE_SIZE) {
1146		pagemap_entry_t pme;
1147
1148		pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1149		err = add_to_pagemap(addr, &pme, pm);
1150		if (err)
1151			break;
1152	}
1153	pte_unmap_unlock(orig_pte, ptl);
1154
1155	cond_resched();
1156
1157	return err;
1158}
1159
1160#ifdef CONFIG_HUGETLB_PAGE
1161static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1162					pte_t pte, int offset, int flags2)
1163{
1164	if (pte_present(pte))
1165		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1166				PM_STATUS2(pm->v2, flags2)		|
1167				PM_PRESENT);
1168	else
1169		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1170				PM_STATUS2(pm->v2, flags2));
1171}
1172
1173/* This function walks within one hugetlb entry in the single call */
1174static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1175				 unsigned long addr, unsigned long end,
1176				 struct mm_walk *walk)
1177{
1178	struct pagemapread *pm = walk->private;
1179	struct vm_area_struct *vma = walk->vma;
1180	int err = 0;
1181	int flags2;
1182	pagemap_entry_t pme;
1183
1184	if (vma->vm_flags & VM_SOFTDIRTY)
1185		flags2 = __PM_SOFT_DIRTY;
1186	else
1187		flags2 = 0;
1188
1189	for (; addr != end; addr += PAGE_SIZE) {
1190		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1191		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1192		err = add_to_pagemap(addr, &pme, pm);
1193		if (err)
1194			return err;
1195	}
1196
1197	cond_resched();
1198
1199	return err;
1200}
1201#endif /* HUGETLB_PAGE */
1202
1203/*
1204 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1205 *
1206 * For each page in the address space, this file contains one 64-bit entry
1207 * consisting of the following:
1208 *
1209 * Bits 0-54  page frame number (PFN) if present
1210 * Bits 0-4   swap type if swapped
1211 * Bits 5-54  swap offset if swapped
1212 * Bits 55-60 page shift (page size = 1<<page shift)
1213 * Bit  61    page is file-page or shared-anon
1214 * Bit  62    page swapped
1215 * Bit  63    page present
1216 *
1217 * If the page is not present but in swap, then the PFN contains an
1218 * encoding of the swap file number and the page's offset into the
1219 * swap. Unmapped pages return a null PFN. This allows determining
1220 * precisely which pages are mapped (or in swap) and comparing mapped
1221 * pages between processes.
1222 *
1223 * Efficient users of this interface will use /proc/pid/maps to
1224 * determine which areas of memory are actually mapped and llseek to
1225 * skip over unmapped regions.
1226 */
1227static ssize_t pagemap_read(struct file *file, char __user *buf,
1228			    size_t count, loff_t *ppos)
1229{
1230	struct task_struct *task = get_proc_task(file_inode(file));
1231	struct mm_struct *mm;
1232	struct pagemapread pm;
1233	int ret = -ESRCH;
1234	struct mm_walk pagemap_walk = {};
1235	unsigned long src;
1236	unsigned long svpfn;
1237	unsigned long start_vaddr;
1238	unsigned long end_vaddr;
1239	int copied = 0;
1240
1241	if (!task)
1242		goto out;
1243
1244	ret = -EINVAL;
1245	/* file position must be aligned */
1246	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1247		goto out_task;
1248
1249	ret = 0;
1250	if (!count)
1251		goto out_task;
1252
1253	pm.v2 = soft_dirty_cleared;
1254	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1255	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1256	ret = -ENOMEM;
1257	if (!pm.buffer)
1258		goto out_task;
1259
1260	mm = mm_access(task, PTRACE_MODE_READ);
1261	ret = PTR_ERR(mm);
1262	if (!mm || IS_ERR(mm))
1263		goto out_free;
1264
1265	pagemap_walk.pmd_entry = pagemap_pte_range;
1266	pagemap_walk.pte_hole = pagemap_pte_hole;
1267#ifdef CONFIG_HUGETLB_PAGE
1268	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1269#endif
1270	pagemap_walk.mm = mm;
1271	pagemap_walk.private = &pm;
1272
1273	src = *ppos;
1274	svpfn = src / PM_ENTRY_BYTES;
1275	start_vaddr = svpfn << PAGE_SHIFT;
1276	end_vaddr = TASK_SIZE_OF(task);
1277
1278	/* watch out for wraparound */
1279	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1280		start_vaddr = end_vaddr;
1281
1282	/*
1283	 * The odds are that this will stop walking way
1284	 * before end_vaddr, because the length of the
1285	 * user buffer is tracked in "pm", and the walk
1286	 * will stop when we hit the end of the buffer.
1287	 */
1288	ret = 0;
1289	while (count && (start_vaddr < end_vaddr)) {
1290		int len;
1291		unsigned long end;
1292
1293		pm.pos = 0;
1294		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1295		/* overflow ? */
1296		if (end < start_vaddr || end > end_vaddr)
1297			end = end_vaddr;
1298		down_read(&mm->mmap_sem);
1299		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1300		up_read(&mm->mmap_sem);
1301		start_vaddr = end;
1302
1303		len = min(count, PM_ENTRY_BYTES * pm.pos);
1304		if (copy_to_user(buf, pm.buffer, len)) {
1305			ret = -EFAULT;
1306			goto out_mm;
1307		}
1308		copied += len;
1309		buf += len;
1310		count -= len;
1311	}
1312	*ppos += copied;
1313	if (!ret || ret == PM_END_OF_BUFFER)
1314		ret = copied;
1315
1316out_mm:
1317	mmput(mm);
1318out_free:
1319	kfree(pm.buffer);
1320out_task:
1321	put_task_struct(task);
1322out:
1323	return ret;
1324}
1325
1326static int pagemap_open(struct inode *inode, struct file *file)
1327{
1328	/* do not disclose physical addresses: attack vector */
1329	if (!capable(CAP_SYS_ADMIN))
1330		return -EPERM;
1331	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1332			"to stop being page-shift some time soon. See the "
1333			"linux/Documentation/vm/pagemap.txt for details.\n");
1334	return 0;
1335}
1336
1337const struct file_operations proc_pagemap_operations = {
1338	.llseek		= mem_lseek, /* borrow this */
1339	.read		= pagemap_read,
1340	.open		= pagemap_open,
1341};
1342#endif /* CONFIG_PROC_PAGE_MONITOR */
1343
1344#ifdef CONFIG_NUMA
1345
1346struct numa_maps {
1347	unsigned long pages;
1348	unsigned long anon;
1349	unsigned long active;
1350	unsigned long writeback;
1351	unsigned long mapcount_max;
1352	unsigned long dirty;
1353	unsigned long swapcache;
1354	unsigned long node[MAX_NUMNODES];
1355};
1356
1357struct numa_maps_private {
1358	struct proc_maps_private proc_maps;
1359	struct numa_maps md;
1360};
1361
1362static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1363			unsigned long nr_pages)
1364{
1365	int count = page_mapcount(page);
1366
1367	md->pages += nr_pages;
1368	if (pte_dirty || PageDirty(page))
1369		md->dirty += nr_pages;
1370
1371	if (PageSwapCache(page))
1372		md->swapcache += nr_pages;
1373
1374	if (PageActive(page) || PageUnevictable(page))
1375		md->active += nr_pages;
1376
1377	if (PageWriteback(page))
1378		md->writeback += nr_pages;
1379
1380	if (PageAnon(page))
1381		md->anon += nr_pages;
1382
1383	if (count > md->mapcount_max)
1384		md->mapcount_max = count;
1385
1386	md->node[page_to_nid(page)] += nr_pages;
1387}
1388
1389static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1390		unsigned long addr)
1391{
1392	struct page *page;
1393	int nid;
1394
1395	if (!pte_present(pte))
1396		return NULL;
1397
1398	page = vm_normal_page(vma, addr, pte);
1399	if (!page)
1400		return NULL;
1401
1402	if (PageReserved(page))
1403		return NULL;
1404
1405	nid = page_to_nid(page);
1406	if (!node_isset(nid, node_states[N_MEMORY]))
1407		return NULL;
1408
1409	return page;
1410}
1411
1412static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1413		unsigned long end, struct mm_walk *walk)
1414{
1415	struct numa_maps *md = walk->private;
1416	struct vm_area_struct *vma = walk->vma;
1417	spinlock_t *ptl;
1418	pte_t *orig_pte;
1419	pte_t *pte;
1420
1421	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1422		pte_t huge_pte = *(pte_t *)pmd;
1423		struct page *page;
1424
1425		page = can_gather_numa_stats(huge_pte, vma, addr);
1426		if (page)
1427			gather_stats(page, md, pte_dirty(huge_pte),
1428				     HPAGE_PMD_SIZE/PAGE_SIZE);
1429		spin_unlock(ptl);
1430		return 0;
1431	}
1432
1433	if (pmd_trans_unstable(pmd))
1434		return 0;
1435	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1436	do {
1437		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1438		if (!page)
1439			continue;
1440		gather_stats(page, md, pte_dirty(*pte), 1);
1441
1442	} while (pte++, addr += PAGE_SIZE, addr != end);
1443	pte_unmap_unlock(orig_pte, ptl);
1444	return 0;
1445}
1446#ifdef CONFIG_HUGETLB_PAGE
1447static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1448		unsigned long addr, unsigned long end, struct mm_walk *walk)
1449{
1450	struct numa_maps *md;
1451	struct page *page;
1452
1453	if (!pte_present(*pte))
1454		return 0;
1455
1456	page = pte_page(*pte);
1457	if (!page)
1458		return 0;
1459
1460	md = walk->private;
1461	gather_stats(page, md, pte_dirty(*pte), 1);
1462	return 0;
1463}
1464
1465#else
1466static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1467		unsigned long addr, unsigned long end, struct mm_walk *walk)
1468{
1469	return 0;
1470}
1471#endif
1472
1473/*
1474 * Display pages allocated per node and memory policy via /proc.
1475 */
1476static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1477{
1478	struct numa_maps_private *numa_priv = m->private;
1479	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1480	struct vm_area_struct *vma = v;
1481	struct numa_maps *md = &numa_priv->md;
1482	struct file *file = vma->vm_file;
1483	struct mm_struct *mm = vma->vm_mm;
1484	struct mm_walk walk = {
1485		.hugetlb_entry = gather_hugetlb_stats,
1486		.pmd_entry = gather_pte_stats,
1487		.private = md,
1488		.mm = mm,
1489	};
1490	struct mempolicy *pol;
1491	char buffer[64];
1492	int nid;
1493
1494	if (!mm)
1495		return 0;
1496
1497	/* Ensure we start with an empty set of numa_maps statistics. */
1498	memset(md, 0, sizeof(*md));
1499
1500	pol = __get_vma_policy(vma, vma->vm_start);
1501	if (pol) {
1502		mpol_to_str(buffer, sizeof(buffer), pol);
1503		mpol_cond_put(pol);
1504	} else {
1505		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1506	}
1507
1508	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1509
1510	if (file) {
1511		seq_puts(m, " file=");
1512		seq_path(m, &file->f_path, "\n\t= ");
1513	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1514		seq_puts(m, " heap");
1515	} else {
1516		pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1517		if (tid != 0) {
1518			/*
1519			 * Thread stack in /proc/PID/task/TID/maps or
1520			 * the main process stack.
1521			 */
1522			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1523			    vma->vm_end >= mm->start_stack))
1524				seq_puts(m, " stack");
1525			else
1526				seq_printf(m, " stack:%d", tid);
1527		}
1528	}
1529
1530	if (is_vm_hugetlb_page(vma))
1531		seq_puts(m, " huge");
1532
1533	/* mmap_sem is held by m_start */
1534	walk_page_vma(vma, &walk);
1535
1536	if (!md->pages)
1537		goto out;
1538
1539	if (md->anon)
1540		seq_printf(m, " anon=%lu", md->anon);
1541
1542	if (md->dirty)
1543		seq_printf(m, " dirty=%lu", md->dirty);
1544
1545	if (md->pages != md->anon && md->pages != md->dirty)
1546		seq_printf(m, " mapped=%lu", md->pages);
1547
1548	if (md->mapcount_max > 1)
1549		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1550
1551	if (md->swapcache)
1552		seq_printf(m, " swapcache=%lu", md->swapcache);
1553
1554	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1555		seq_printf(m, " active=%lu", md->active);
1556
1557	if (md->writeback)
1558		seq_printf(m, " writeback=%lu", md->writeback);
1559
1560	for_each_node_state(nid, N_MEMORY)
1561		if (md->node[nid])
1562			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1563
1564	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1565out:
1566	seq_putc(m, '\n');
1567	m_cache_vma(m, vma);
1568	return 0;
1569}
1570
1571static int show_pid_numa_map(struct seq_file *m, void *v)
1572{
1573	return show_numa_map(m, v, 1);
1574}
1575
1576static int show_tid_numa_map(struct seq_file *m, void *v)
1577{
1578	return show_numa_map(m, v, 0);
1579}
1580
1581static const struct seq_operations proc_pid_numa_maps_op = {
1582	.start  = m_start,
1583	.next   = m_next,
1584	.stop   = m_stop,
1585	.show   = show_pid_numa_map,
1586};
1587
1588static const struct seq_operations proc_tid_numa_maps_op = {
1589	.start  = m_start,
1590	.next   = m_next,
1591	.stop   = m_stop,
1592	.show   = show_tid_numa_map,
1593};
1594
1595static int numa_maps_open(struct inode *inode, struct file *file,
1596			  const struct seq_operations *ops)
1597{
1598	return proc_maps_open(inode, file, ops,
1599				sizeof(struct numa_maps_private));
1600}
1601
1602static int pid_numa_maps_open(struct inode *inode, struct file *file)
1603{
1604	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1605}
1606
1607static int tid_numa_maps_open(struct inode *inode, struct file *file)
1608{
1609	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1610}
1611
1612const struct file_operations proc_pid_numa_maps_operations = {
1613	.open		= pid_numa_maps_open,
1614	.read		= seq_read,
1615	.llseek		= seq_lseek,
1616	.release	= proc_map_release,
1617};
1618
1619const struct file_operations proc_tid_numa_maps_operations = {
1620	.open		= tid_numa_maps_open,
1621	.read		= seq_read,
1622	.llseek		= seq_lseek,
1623	.release	= proc_map_release,
1624};
1625#endif /* CONFIG_NUMA */
1626