1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
28 *
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
33 *
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39 * selected for garbage collection, which consists of marking the clean nodes in
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43 * mounted.
44 */
45
46#include "ubifs.h"
47#include <linux/crc16.h>
48#include <linux/math64.h>
49#include <linux/slab.h>
50
51/**
52 * do_calc_lpt_geom - calculate sizes for the LPT area.
53 * @c: the UBIFS file-system description object
54 *
55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56 * properties of the flash and whether LPT is "big" (c->big_lpt).
57 */
58static void do_calc_lpt_geom(struct ubifs_info *c)
59{
60	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61	long long sz, tot_wastage;
62
63	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65
66	c->lpt_hght = 1;
67	n = UBIFS_LPT_FANOUT;
68	while (n < max_pnode_cnt) {
69		c->lpt_hght += 1;
70		n <<= UBIFS_LPT_FANOUT_SHIFT;
71	}
72
73	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74
75	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76	c->nnode_cnt = n;
77	for (i = 1; i < c->lpt_hght; i++) {
78		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79		c->nnode_cnt += n;
80	}
81
82	c->space_bits = fls(c->leb_size) - 3;
83	c->lpt_lnum_bits = fls(c->lpt_lebs);
84	c->lpt_offs_bits = fls(c->leb_size - 1);
85	c->lpt_spc_bits = fls(c->leb_size);
86
87	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88	c->pcnt_bits = fls(n - 1);
89
90	c->lnum_bits = fls(c->max_leb_cnt - 1);
91
92	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93	       (c->big_lpt ? c->pcnt_bits : 0) +
94	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95	c->pnode_sz = (bits + 7) / 8;
96
97	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98	       (c->big_lpt ? c->pcnt_bits : 0) +
99	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100	c->nnode_sz = (bits + 7) / 8;
101
102	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103	       c->lpt_lebs * c->lpt_spc_bits * 2;
104	c->ltab_sz = (bits + 7) / 8;
105
106	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107	       c->lnum_bits * c->lsave_cnt;
108	c->lsave_sz = (bits + 7) / 8;
109
110	/* Calculate the minimum LPT size */
111	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113	c->lpt_sz += c->ltab_sz;
114	if (c->big_lpt)
115		c->lpt_sz += c->lsave_sz;
116
117	/* Add wastage */
118	sz = c->lpt_sz;
119	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120	sz += per_leb_wastage;
121	tot_wastage = per_leb_wastage;
122	while (sz > c->leb_size) {
123		sz += per_leb_wastage;
124		sz -= c->leb_size;
125		tot_wastage += per_leb_wastage;
126	}
127	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128	c->lpt_sz += tot_wastage;
129}
130
131/**
132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133 * @c: the UBIFS file-system description object
134 *
135 * This function returns %0 on success and a negative error code on failure.
136 */
137int ubifs_calc_lpt_geom(struct ubifs_info *c)
138{
139	int lebs_needed;
140	long long sz;
141
142	do_calc_lpt_geom(c);
143
144	/* Verify that lpt_lebs is big enough */
145	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147	if (lebs_needed > c->lpt_lebs) {
148		ubifs_err(c, "too few LPT LEBs");
149		return -EINVAL;
150	}
151
152	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153	if (c->ltab_sz > c->leb_size) {
154		ubifs_err(c, "LPT ltab too big");
155		return -EINVAL;
156	}
157
158	c->check_lpt_free = c->big_lpt;
159	return 0;
160}
161
162/**
163 * calc_dflt_lpt_geom - calculate default LPT geometry.
164 * @c: the UBIFS file-system description object
165 * @main_lebs: number of main area LEBs is passed and returned here
166 * @big_lpt: whether the LPT area is "big" is returned here
167 *
168 * The size of the LPT area depends on parameters that themselves are dependent
169 * on the size of the LPT area. This function, successively recalculates the LPT
170 * area geometry until the parameters and resultant geometry are consistent.
171 *
172 * This function returns %0 on success and a negative error code on failure.
173 */
174static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175			      int *big_lpt)
176{
177	int i, lebs_needed;
178	long long sz;
179
180	/* Start by assuming the minimum number of LPT LEBs */
181	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182	c->main_lebs = *main_lebs - c->lpt_lebs;
183	if (c->main_lebs <= 0)
184		return -EINVAL;
185
186	/* And assume we will use the small LPT model */
187	c->big_lpt = 0;
188
189	/*
190	 * Calculate the geometry based on assumptions above and then see if it
191	 * makes sense
192	 */
193	do_calc_lpt_geom(c);
194
195	/* Small LPT model must have lpt_sz < leb_size */
196	if (c->lpt_sz > c->leb_size) {
197		/* Nope, so try again using big LPT model */
198		c->big_lpt = 1;
199		do_calc_lpt_geom(c);
200	}
201
202	/* Now check there are enough LPT LEBs */
203	for (i = 0; i < 64 ; i++) {
204		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206		if (lebs_needed > c->lpt_lebs) {
207			/* Not enough LPT LEBs so try again with more */
208			c->lpt_lebs = lebs_needed;
209			c->main_lebs = *main_lebs - c->lpt_lebs;
210			if (c->main_lebs <= 0)
211				return -EINVAL;
212			do_calc_lpt_geom(c);
213			continue;
214		}
215		if (c->ltab_sz > c->leb_size) {
216			ubifs_err(c, "LPT ltab too big");
217			return -EINVAL;
218		}
219		*main_lebs = c->main_lebs;
220		*big_lpt = c->big_lpt;
221		return 0;
222	}
223	return -EINVAL;
224}
225
226/**
227 * pack_bits - pack bit fields end-to-end.
228 * @addr: address at which to pack (passed and next address returned)
229 * @pos: bit position at which to pack (passed and next position returned)
230 * @val: value to pack
231 * @nrbits: number of bits of value to pack (1-32)
232 */
233static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
234{
235	uint8_t *p = *addr;
236	int b = *pos;
237
238	ubifs_assert(nrbits > 0);
239	ubifs_assert(nrbits <= 32);
240	ubifs_assert(*pos >= 0);
241	ubifs_assert(*pos < 8);
242	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243	if (b) {
244		*p |= ((uint8_t)val) << b;
245		nrbits += b;
246		if (nrbits > 8) {
247			*++p = (uint8_t)(val >>= (8 - b));
248			if (nrbits > 16) {
249				*++p = (uint8_t)(val >>= 8);
250				if (nrbits > 24) {
251					*++p = (uint8_t)(val >>= 8);
252					if (nrbits > 32)
253						*++p = (uint8_t)(val >>= 8);
254				}
255			}
256		}
257	} else {
258		*p = (uint8_t)val;
259		if (nrbits > 8) {
260			*++p = (uint8_t)(val >>= 8);
261			if (nrbits > 16) {
262				*++p = (uint8_t)(val >>= 8);
263				if (nrbits > 24)
264					*++p = (uint8_t)(val >>= 8);
265			}
266		}
267	}
268	b = nrbits & 7;
269	if (b == 0)
270		p++;
271	*addr = p;
272	*pos = b;
273}
274
275/**
276 * ubifs_unpack_bits - unpack bit fields.
277 * @addr: address at which to unpack (passed and next address returned)
278 * @pos: bit position at which to unpack (passed and next position returned)
279 * @nrbits: number of bits of value to unpack (1-32)
280 *
281 * This functions returns the value unpacked.
282 */
283uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
284{
285	const int k = 32 - nrbits;
286	uint8_t *p = *addr;
287	int b = *pos;
288	uint32_t uninitialized_var(val);
289	const int bytes = (nrbits + b + 7) >> 3;
290
291	ubifs_assert(nrbits > 0);
292	ubifs_assert(nrbits <= 32);
293	ubifs_assert(*pos >= 0);
294	ubifs_assert(*pos < 8);
295	if (b) {
296		switch (bytes) {
297		case 2:
298			val = p[1];
299			break;
300		case 3:
301			val = p[1] | ((uint32_t)p[2] << 8);
302			break;
303		case 4:
304			val = p[1] | ((uint32_t)p[2] << 8) |
305				     ((uint32_t)p[3] << 16);
306			break;
307		case 5:
308			val = p[1] | ((uint32_t)p[2] << 8) |
309				     ((uint32_t)p[3] << 16) |
310				     ((uint32_t)p[4] << 24);
311		}
312		val <<= (8 - b);
313		val |= *p >> b;
314		nrbits += b;
315	} else {
316		switch (bytes) {
317		case 1:
318			val = p[0];
319			break;
320		case 2:
321			val = p[0] | ((uint32_t)p[1] << 8);
322			break;
323		case 3:
324			val = p[0] | ((uint32_t)p[1] << 8) |
325				     ((uint32_t)p[2] << 16);
326			break;
327		case 4:
328			val = p[0] | ((uint32_t)p[1] << 8) |
329				     ((uint32_t)p[2] << 16) |
330				     ((uint32_t)p[3] << 24);
331			break;
332		}
333	}
334	val <<= k;
335	val >>= k;
336	b = nrbits & 7;
337	p += nrbits >> 3;
338	*addr = p;
339	*pos = b;
340	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341	return val;
342}
343
344/**
345 * ubifs_pack_pnode - pack all the bit fields of a pnode.
346 * @c: UBIFS file-system description object
347 * @buf: buffer into which to pack
348 * @pnode: pnode to pack
349 */
350void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351		      struct ubifs_pnode *pnode)
352{
353	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354	int i, pos = 0;
355	uint16_t crc;
356
357	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358	if (c->big_lpt)
359		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362			  c->space_bits);
363		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364			  c->space_bits);
365		if (pnode->lprops[i].flags & LPROPS_INDEX)
366			pack_bits(&addr, &pos, 1, 1);
367		else
368			pack_bits(&addr, &pos, 0, 1);
369	}
370	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372	addr = buf;
373	pos = 0;
374	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
375}
376
377/**
378 * ubifs_pack_nnode - pack all the bit fields of a nnode.
379 * @c: UBIFS file-system description object
380 * @buf: buffer into which to pack
381 * @nnode: nnode to pack
382 */
383void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384		      struct ubifs_nnode *nnode)
385{
386	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387	int i, pos = 0;
388	uint16_t crc;
389
390	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391	if (c->big_lpt)
392		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394		int lnum = nnode->nbranch[i].lnum;
395
396		if (lnum == 0)
397			lnum = c->lpt_last + 1;
398		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400			  c->lpt_offs_bits);
401	}
402	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404	addr = buf;
405	pos = 0;
406	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
407}
408
409/**
410 * ubifs_pack_ltab - pack the LPT's own lprops table.
411 * @c: UBIFS file-system description object
412 * @buf: buffer into which to pack
413 * @ltab: LPT's own lprops table to pack
414 */
415void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416		     struct ubifs_lpt_lprops *ltab)
417{
418	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419	int i, pos = 0;
420	uint16_t crc;
421
422	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423	for (i = 0; i < c->lpt_lebs; i++) {
424		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
426	}
427	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429	addr = buf;
430	pos = 0;
431	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
432}
433
434/**
435 * ubifs_pack_lsave - pack the LPT's save table.
436 * @c: UBIFS file-system description object
437 * @buf: buffer into which to pack
438 * @lsave: LPT's save table to pack
439 */
440void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
441{
442	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443	int i, pos = 0;
444	uint16_t crc;
445
446	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447	for (i = 0; i < c->lsave_cnt; i++)
448		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451	addr = buf;
452	pos = 0;
453	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
454}
455
456/**
457 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458 * @c: UBIFS file-system description object
459 * @lnum: LEB number to which to add dirty space
460 * @dirty: amount of dirty space to add
461 */
462void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
463{
464	if (!dirty || !lnum)
465		return;
466	dbg_lp("LEB %d add %d to %d",
467	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469	c->ltab[lnum - c->lpt_first].dirty += dirty;
470}
471
472/**
473 * set_ltab - set LPT LEB properties.
474 * @c: UBIFS file-system description object
475 * @lnum: LEB number
476 * @free: amount of free space
477 * @dirty: amount of dirty space
478 */
479static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
480{
481	dbg_lp("LEB %d free %d dirty %d to %d %d",
482	       lnum, c->ltab[lnum - c->lpt_first].free,
483	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485	c->ltab[lnum - c->lpt_first].free = free;
486	c->ltab[lnum - c->lpt_first].dirty = dirty;
487}
488
489/**
490 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491 * @c: UBIFS file-system description object
492 * @nnode: nnode for which to add dirt
493 */
494void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
495{
496	struct ubifs_nnode *np = nnode->parent;
497
498	if (np)
499		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500				   c->nnode_sz);
501	else {
502		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504			c->lpt_drty_flgs |= LTAB_DIRTY;
505			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
506		}
507	}
508}
509
510/**
511 * add_pnode_dirt - add dirty space to LPT LEB properties.
512 * @c: UBIFS file-system description object
513 * @pnode: pnode for which to add dirt
514 */
515static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
516{
517	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518			   c->pnode_sz);
519}
520
521/**
522 * calc_nnode_num - calculate nnode number.
523 * @row: the row in the tree (root is zero)
524 * @col: the column in the row (leftmost is zero)
525 *
526 * The nnode number is a number that uniquely identifies a nnode and can be used
527 * easily to traverse the tree from the root to that nnode.
528 *
529 * This function calculates and returns the nnode number for the nnode at @row
530 * and @col.
531 */
532static int calc_nnode_num(int row, int col)
533{
534	int num, bits;
535
536	num = 1;
537	while (row--) {
538		bits = (col & (UBIFS_LPT_FANOUT - 1));
539		col >>= UBIFS_LPT_FANOUT_SHIFT;
540		num <<= UBIFS_LPT_FANOUT_SHIFT;
541		num |= bits;
542	}
543	return num;
544}
545
546/**
547 * calc_nnode_num_from_parent - calculate nnode number.
548 * @c: UBIFS file-system description object
549 * @parent: parent nnode
550 * @iip: index in parent
551 *
552 * The nnode number is a number that uniquely identifies a nnode and can be used
553 * easily to traverse the tree from the root to that nnode.
554 *
555 * This function calculates and returns the nnode number based on the parent's
556 * nnode number and the index in parent.
557 */
558static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559				      struct ubifs_nnode *parent, int iip)
560{
561	int num, shft;
562
563	if (!parent)
564		return 1;
565	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566	num = parent->num ^ (1 << shft);
567	num |= (UBIFS_LPT_FANOUT + iip) << shft;
568	return num;
569}
570
571/**
572 * calc_pnode_num_from_parent - calculate pnode number.
573 * @c: UBIFS file-system description object
574 * @parent: parent nnode
575 * @iip: index in parent
576 *
577 * The pnode number is a number that uniquely identifies a pnode and can be used
578 * easily to traverse the tree from the root to that pnode.
579 *
580 * This function calculates and returns the pnode number based on the parent's
581 * nnode number and the index in parent.
582 */
583static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584				      struct ubifs_nnode *parent, int iip)
585{
586	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
587
588	for (i = 0; i < n; i++) {
589		num <<= UBIFS_LPT_FANOUT_SHIFT;
590		num |= pnum & (UBIFS_LPT_FANOUT - 1);
591		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
592	}
593	num <<= UBIFS_LPT_FANOUT_SHIFT;
594	num |= iip;
595	return num;
596}
597
598/**
599 * ubifs_create_dflt_lpt - create default LPT.
600 * @c: UBIFS file-system description object
601 * @main_lebs: number of main area LEBs is passed and returned here
602 * @lpt_first: LEB number of first LPT LEB
603 * @lpt_lebs: number of LEBs for LPT is passed and returned here
604 * @big_lpt: use big LPT model is passed and returned here
605 *
606 * This function returns %0 on success and a negative error code on failure.
607 */
608int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609			  int *lpt_lebs, int *big_lpt)
610{
611	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612	int blnum, boffs, bsz, bcnt;
613	struct ubifs_pnode *pnode = NULL;
614	struct ubifs_nnode *nnode = NULL;
615	void *buf = NULL, *p;
616	struct ubifs_lpt_lprops *ltab = NULL;
617	int *lsave = NULL;
618
619	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620	if (err)
621		return err;
622	*lpt_lebs = c->lpt_lebs;
623
624	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625	c->lpt_first = lpt_first;
626	/* Needed by 'set_ltab()' */
627	c->lpt_last = lpt_first + c->lpt_lebs - 1;
628	/* Needed by 'ubifs_pack_lsave()' */
629	c->main_first = c->leb_cnt - *main_lebs;
630
631	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
632	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634	buf = vmalloc(c->leb_size);
635	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
636	if (!pnode || !nnode || !buf || !ltab || !lsave) {
637		err = -ENOMEM;
638		goto out;
639	}
640
641	ubifs_assert(!c->ltab);
642	c->ltab = ltab; /* Needed by set_ltab */
643
644	/* Initialize LPT's own lprops */
645	for (i = 0; i < c->lpt_lebs; i++) {
646		ltab[i].free = c->leb_size;
647		ltab[i].dirty = 0;
648		ltab[i].tgc = 0;
649		ltab[i].cmt = 0;
650	}
651
652	lnum = lpt_first;
653	p = buf;
654	/* Number of leaf nodes (pnodes) */
655	cnt = c->pnode_cnt;
656
657	/*
658	 * The first pnode contains the LEB properties for the LEBs that contain
659	 * the root inode node and the root index node of the index tree.
660	 */
661	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
662	iopos = ALIGN(node_sz, c->min_io_size);
663	pnode->lprops[0].free = c->leb_size - iopos;
664	pnode->lprops[0].dirty = iopos - node_sz;
665	pnode->lprops[0].flags = LPROPS_INDEX;
666
667	node_sz = UBIFS_INO_NODE_SZ;
668	iopos = ALIGN(node_sz, c->min_io_size);
669	pnode->lprops[1].free = c->leb_size - iopos;
670	pnode->lprops[1].dirty = iopos - node_sz;
671
672	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
673		pnode->lprops[i].free = c->leb_size;
674
675	/* Add first pnode */
676	ubifs_pack_pnode(c, p, pnode);
677	p += c->pnode_sz;
678	len = c->pnode_sz;
679	pnode->num += 1;
680
681	/* Reset pnode values for remaining pnodes */
682	pnode->lprops[0].free = c->leb_size;
683	pnode->lprops[0].dirty = 0;
684	pnode->lprops[0].flags = 0;
685
686	pnode->lprops[1].free = c->leb_size;
687	pnode->lprops[1].dirty = 0;
688
689	/*
690	 * To calculate the internal node branches, we keep information about
691	 * the level below.
692	 */
693	blnum = lnum; /* LEB number of level below */
694	boffs = 0; /* Offset of level below */
695	bcnt = cnt; /* Number of nodes in level below */
696	bsz = c->pnode_sz; /* Size of nodes in level below */
697
698	/* Add all remaining pnodes */
699	for (i = 1; i < cnt; i++) {
700		if (len + c->pnode_sz > c->leb_size) {
701			alen = ALIGN(len, c->min_io_size);
702			set_ltab(c, lnum, c->leb_size - alen, alen - len);
703			memset(p, 0xff, alen - len);
704			err = ubifs_leb_change(c, lnum++, buf, alen);
705			if (err)
706				goto out;
707			p = buf;
708			len = 0;
709		}
710		ubifs_pack_pnode(c, p, pnode);
711		p += c->pnode_sz;
712		len += c->pnode_sz;
713		/*
714		 * pnodes are simply numbered left to right starting at zero,
715		 * which means the pnode number can be used easily to traverse
716		 * down the tree to the corresponding pnode.
717		 */
718		pnode->num += 1;
719	}
720
721	row = 0;
722	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
723		row += 1;
724	/* Add all nnodes, one level at a time */
725	while (1) {
726		/* Number of internal nodes (nnodes) at next level */
727		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
728		for (i = 0; i < cnt; i++) {
729			if (len + c->nnode_sz > c->leb_size) {
730				alen = ALIGN(len, c->min_io_size);
731				set_ltab(c, lnum, c->leb_size - alen,
732					    alen - len);
733				memset(p, 0xff, alen - len);
734				err = ubifs_leb_change(c, lnum++, buf, alen);
735				if (err)
736					goto out;
737				p = buf;
738				len = 0;
739			}
740			/* Only 1 nnode at this level, so it is the root */
741			if (cnt == 1) {
742				c->lpt_lnum = lnum;
743				c->lpt_offs = len;
744			}
745			/* Set branches to the level below */
746			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
747				if (bcnt) {
748					if (boffs + bsz > c->leb_size) {
749						blnum += 1;
750						boffs = 0;
751					}
752					nnode->nbranch[j].lnum = blnum;
753					nnode->nbranch[j].offs = boffs;
754					boffs += bsz;
755					bcnt--;
756				} else {
757					nnode->nbranch[j].lnum = 0;
758					nnode->nbranch[j].offs = 0;
759				}
760			}
761			nnode->num = calc_nnode_num(row, i);
762			ubifs_pack_nnode(c, p, nnode);
763			p += c->nnode_sz;
764			len += c->nnode_sz;
765		}
766		/* Only 1 nnode at this level, so it is the root */
767		if (cnt == 1)
768			break;
769		/* Update the information about the level below */
770		bcnt = cnt;
771		bsz = c->nnode_sz;
772		row -= 1;
773	}
774
775	if (*big_lpt) {
776		/* Need to add LPT's save table */
777		if (len + c->lsave_sz > c->leb_size) {
778			alen = ALIGN(len, c->min_io_size);
779			set_ltab(c, lnum, c->leb_size - alen, alen - len);
780			memset(p, 0xff, alen - len);
781			err = ubifs_leb_change(c, lnum++, buf, alen);
782			if (err)
783				goto out;
784			p = buf;
785			len = 0;
786		}
787
788		c->lsave_lnum = lnum;
789		c->lsave_offs = len;
790
791		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
792			lsave[i] = c->main_first + i;
793		for (; i < c->lsave_cnt; i++)
794			lsave[i] = c->main_first;
795
796		ubifs_pack_lsave(c, p, lsave);
797		p += c->lsave_sz;
798		len += c->lsave_sz;
799	}
800
801	/* Need to add LPT's own LEB properties table */
802	if (len + c->ltab_sz > c->leb_size) {
803		alen = ALIGN(len, c->min_io_size);
804		set_ltab(c, lnum, c->leb_size - alen, alen - len);
805		memset(p, 0xff, alen - len);
806		err = ubifs_leb_change(c, lnum++, buf, alen);
807		if (err)
808			goto out;
809		p = buf;
810		len = 0;
811	}
812
813	c->ltab_lnum = lnum;
814	c->ltab_offs = len;
815
816	/* Update ltab before packing it */
817	len += c->ltab_sz;
818	alen = ALIGN(len, c->min_io_size);
819	set_ltab(c, lnum, c->leb_size - alen, alen - len);
820
821	ubifs_pack_ltab(c, p, ltab);
822	p += c->ltab_sz;
823
824	/* Write remaining buffer */
825	memset(p, 0xff, alen - len);
826	err = ubifs_leb_change(c, lnum, buf, alen);
827	if (err)
828		goto out;
829
830	c->nhead_lnum = lnum;
831	c->nhead_offs = ALIGN(len, c->min_io_size);
832
833	dbg_lp("space_bits %d", c->space_bits);
834	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
835	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
836	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
837	dbg_lp("pcnt_bits %d", c->pcnt_bits);
838	dbg_lp("lnum_bits %d", c->lnum_bits);
839	dbg_lp("pnode_sz %d", c->pnode_sz);
840	dbg_lp("nnode_sz %d", c->nnode_sz);
841	dbg_lp("ltab_sz %d", c->ltab_sz);
842	dbg_lp("lsave_sz %d", c->lsave_sz);
843	dbg_lp("lsave_cnt %d", c->lsave_cnt);
844	dbg_lp("lpt_hght %d", c->lpt_hght);
845	dbg_lp("big_lpt %d", c->big_lpt);
846	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
847	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
848	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
849	if (c->big_lpt)
850		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
851out:
852	c->ltab = NULL;
853	kfree(lsave);
854	vfree(ltab);
855	vfree(buf);
856	kfree(nnode);
857	kfree(pnode);
858	return err;
859}
860
861/**
862 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
863 * @c: UBIFS file-system description object
864 * @pnode: pnode
865 *
866 * When a pnode is loaded into memory, the LEB properties it contains are added,
867 * by this function, to the LEB category lists and heaps.
868 */
869static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
870{
871	int i;
872
873	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
874		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
875		int lnum = pnode->lprops[i].lnum;
876
877		if (!lnum)
878			return;
879		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
880	}
881}
882
883/**
884 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
885 * @c: UBIFS file-system description object
886 * @old_pnode: pnode copied
887 * @new_pnode: pnode copy
888 *
889 * During commit it is sometimes necessary to copy a pnode
890 * (see dirty_cow_pnode).  When that happens, references in
891 * category lists and heaps must be replaced.  This function does that.
892 */
893static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
894			 struct ubifs_pnode *new_pnode)
895{
896	int i;
897
898	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
899		if (!new_pnode->lprops[i].lnum)
900			return;
901		ubifs_replace_cat(c, &old_pnode->lprops[i],
902				  &new_pnode->lprops[i]);
903	}
904}
905
906/**
907 * check_lpt_crc - check LPT node crc is correct.
908 * @c: UBIFS file-system description object
909 * @buf: buffer containing node
910 * @len: length of node
911 *
912 * This function returns %0 on success and a negative error code on failure.
913 */
914static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
915{
916	int pos = 0;
917	uint8_t *addr = buf;
918	uint16_t crc, calc_crc;
919
920	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
921	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
922			 len - UBIFS_LPT_CRC_BYTES);
923	if (crc != calc_crc) {
924		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
925			  crc, calc_crc);
926		dump_stack();
927		return -EINVAL;
928	}
929	return 0;
930}
931
932/**
933 * check_lpt_type - check LPT node type is correct.
934 * @c: UBIFS file-system description object
935 * @addr: address of type bit field is passed and returned updated here
936 * @pos: position of type bit field is passed and returned updated here
937 * @type: expected type
938 *
939 * This function returns %0 on success and a negative error code on failure.
940 */
941static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
942			  int *pos, int type)
943{
944	int node_type;
945
946	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
947	if (node_type != type) {
948		ubifs_err(c, "invalid type (%d) in LPT node type %d",
949			  node_type, type);
950		dump_stack();
951		return -EINVAL;
952	}
953	return 0;
954}
955
956/**
957 * unpack_pnode - unpack a pnode.
958 * @c: UBIFS file-system description object
959 * @buf: buffer containing packed pnode to unpack
960 * @pnode: pnode structure to fill
961 *
962 * This function returns %0 on success and a negative error code on failure.
963 */
964static int unpack_pnode(const struct ubifs_info *c, void *buf,
965			struct ubifs_pnode *pnode)
966{
967	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
968	int i, pos = 0, err;
969
970	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
971	if (err)
972		return err;
973	if (c->big_lpt)
974		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
975	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
976		struct ubifs_lprops * const lprops = &pnode->lprops[i];
977
978		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
979		lprops->free <<= 3;
980		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
981		lprops->dirty <<= 3;
982
983		if (ubifs_unpack_bits(&addr, &pos, 1))
984			lprops->flags = LPROPS_INDEX;
985		else
986			lprops->flags = 0;
987		lprops->flags |= ubifs_categorize_lprops(c, lprops);
988	}
989	err = check_lpt_crc(c, buf, c->pnode_sz);
990	return err;
991}
992
993/**
994 * ubifs_unpack_nnode - unpack a nnode.
995 * @c: UBIFS file-system description object
996 * @buf: buffer containing packed nnode to unpack
997 * @nnode: nnode structure to fill
998 *
999 * This function returns %0 on success and a negative error code on failure.
1000 */
1001int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1002		       struct ubifs_nnode *nnode)
1003{
1004	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1005	int i, pos = 0, err;
1006
1007	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1008	if (err)
1009		return err;
1010	if (c->big_lpt)
1011		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1012	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1013		int lnum;
1014
1015		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1016		       c->lpt_first;
1017		if (lnum == c->lpt_last + 1)
1018			lnum = 0;
1019		nnode->nbranch[i].lnum = lnum;
1020		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1021						     c->lpt_offs_bits);
1022	}
1023	err = check_lpt_crc(c, buf, c->nnode_sz);
1024	return err;
1025}
1026
1027/**
1028 * unpack_ltab - unpack the LPT's own lprops table.
1029 * @c: UBIFS file-system description object
1030 * @buf: buffer from which to unpack
1031 *
1032 * This function returns %0 on success and a negative error code on failure.
1033 */
1034static int unpack_ltab(const struct ubifs_info *c, void *buf)
1035{
1036	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1037	int i, pos = 0, err;
1038
1039	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1040	if (err)
1041		return err;
1042	for (i = 0; i < c->lpt_lebs; i++) {
1043		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1044		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1045
1046		if (free < 0 || free > c->leb_size || dirty < 0 ||
1047		    dirty > c->leb_size || free + dirty > c->leb_size)
1048			return -EINVAL;
1049
1050		c->ltab[i].free = free;
1051		c->ltab[i].dirty = dirty;
1052		c->ltab[i].tgc = 0;
1053		c->ltab[i].cmt = 0;
1054	}
1055	err = check_lpt_crc(c, buf, c->ltab_sz);
1056	return err;
1057}
1058
1059/**
1060 * unpack_lsave - unpack the LPT's save table.
1061 * @c: UBIFS file-system description object
1062 * @buf: buffer from which to unpack
1063 *
1064 * This function returns %0 on success and a negative error code on failure.
1065 */
1066static int unpack_lsave(const struct ubifs_info *c, void *buf)
1067{
1068	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1069	int i, pos = 0, err;
1070
1071	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1072	if (err)
1073		return err;
1074	for (i = 0; i < c->lsave_cnt; i++) {
1075		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1076
1077		if (lnum < c->main_first || lnum >= c->leb_cnt)
1078			return -EINVAL;
1079		c->lsave[i] = lnum;
1080	}
1081	err = check_lpt_crc(c, buf, c->lsave_sz);
1082	return err;
1083}
1084
1085/**
1086 * validate_nnode - validate a nnode.
1087 * @c: UBIFS file-system description object
1088 * @nnode: nnode to validate
1089 * @parent: parent nnode (or NULL for the root nnode)
1090 * @iip: index in parent
1091 *
1092 * This function returns %0 on success and a negative error code on failure.
1093 */
1094static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1095			  struct ubifs_nnode *parent, int iip)
1096{
1097	int i, lvl, max_offs;
1098
1099	if (c->big_lpt) {
1100		int num = calc_nnode_num_from_parent(c, parent, iip);
1101
1102		if (nnode->num != num)
1103			return -EINVAL;
1104	}
1105	lvl = parent ? parent->level - 1 : c->lpt_hght;
1106	if (lvl < 1)
1107		return -EINVAL;
1108	if (lvl == 1)
1109		max_offs = c->leb_size - c->pnode_sz;
1110	else
1111		max_offs = c->leb_size - c->nnode_sz;
1112	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1113		int lnum = nnode->nbranch[i].lnum;
1114		int offs = nnode->nbranch[i].offs;
1115
1116		if (lnum == 0) {
1117			if (offs != 0)
1118				return -EINVAL;
1119			continue;
1120		}
1121		if (lnum < c->lpt_first || lnum > c->lpt_last)
1122			return -EINVAL;
1123		if (offs < 0 || offs > max_offs)
1124			return -EINVAL;
1125	}
1126	return 0;
1127}
1128
1129/**
1130 * validate_pnode - validate a pnode.
1131 * @c: UBIFS file-system description object
1132 * @pnode: pnode to validate
1133 * @parent: parent nnode
1134 * @iip: index in parent
1135 *
1136 * This function returns %0 on success and a negative error code on failure.
1137 */
1138static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1139			  struct ubifs_nnode *parent, int iip)
1140{
1141	int i;
1142
1143	if (c->big_lpt) {
1144		int num = calc_pnode_num_from_parent(c, parent, iip);
1145
1146		if (pnode->num != num)
1147			return -EINVAL;
1148	}
1149	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1150		int free = pnode->lprops[i].free;
1151		int dirty = pnode->lprops[i].dirty;
1152
1153		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1154		    (free & 7))
1155			return -EINVAL;
1156		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1157			return -EINVAL;
1158		if (dirty + free > c->leb_size)
1159			return -EINVAL;
1160	}
1161	return 0;
1162}
1163
1164/**
1165 * set_pnode_lnum - set LEB numbers on a pnode.
1166 * @c: UBIFS file-system description object
1167 * @pnode: pnode to update
1168 *
1169 * This function calculates the LEB numbers for the LEB properties it contains
1170 * based on the pnode number.
1171 */
1172static void set_pnode_lnum(const struct ubifs_info *c,
1173			   struct ubifs_pnode *pnode)
1174{
1175	int i, lnum;
1176
1177	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1178	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1179		if (lnum >= c->leb_cnt)
1180			return;
1181		pnode->lprops[i].lnum = lnum++;
1182	}
1183}
1184
1185/**
1186 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1187 * @c: UBIFS file-system description object
1188 * @parent: parent nnode (or NULL for the root)
1189 * @iip: index in parent
1190 *
1191 * This function returns %0 on success and a negative error code on failure.
1192 */
1193int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1194{
1195	struct ubifs_nbranch *branch = NULL;
1196	struct ubifs_nnode *nnode = NULL;
1197	void *buf = c->lpt_nod_buf;
1198	int err, lnum, offs;
1199
1200	if (parent) {
1201		branch = &parent->nbranch[iip];
1202		lnum = branch->lnum;
1203		offs = branch->offs;
1204	} else {
1205		lnum = c->lpt_lnum;
1206		offs = c->lpt_offs;
1207	}
1208	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1209	if (!nnode) {
1210		err = -ENOMEM;
1211		goto out;
1212	}
1213	if (lnum == 0) {
1214		/*
1215		 * This nnode was not written which just means that the LEB
1216		 * properties in the subtree below it describe empty LEBs. We
1217		 * make the nnode as though we had read it, which in fact means
1218		 * doing almost nothing.
1219		 */
1220		if (c->big_lpt)
1221			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1222	} else {
1223		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1224		if (err)
1225			goto out;
1226		err = ubifs_unpack_nnode(c, buf, nnode);
1227		if (err)
1228			goto out;
1229	}
1230	err = validate_nnode(c, nnode, parent, iip);
1231	if (err)
1232		goto out;
1233	if (!c->big_lpt)
1234		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1235	if (parent) {
1236		branch->nnode = nnode;
1237		nnode->level = parent->level - 1;
1238	} else {
1239		c->nroot = nnode;
1240		nnode->level = c->lpt_hght;
1241	}
1242	nnode->parent = parent;
1243	nnode->iip = iip;
1244	return 0;
1245
1246out:
1247	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1248	dump_stack();
1249	kfree(nnode);
1250	return err;
1251}
1252
1253/**
1254 * read_pnode - read a pnode from flash and link it to the tree in memory.
1255 * @c: UBIFS file-system description object
1256 * @parent: parent nnode
1257 * @iip: index in parent
1258 *
1259 * This function returns %0 on success and a negative error code on failure.
1260 */
1261static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1262{
1263	struct ubifs_nbranch *branch;
1264	struct ubifs_pnode *pnode = NULL;
1265	void *buf = c->lpt_nod_buf;
1266	int err, lnum, offs;
1267
1268	branch = &parent->nbranch[iip];
1269	lnum = branch->lnum;
1270	offs = branch->offs;
1271	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1272	if (!pnode)
1273		return -ENOMEM;
1274
1275	if (lnum == 0) {
1276		/*
1277		 * This pnode was not written which just means that the LEB
1278		 * properties in it describe empty LEBs. We make the pnode as
1279		 * though we had read it.
1280		 */
1281		int i;
1282
1283		if (c->big_lpt)
1284			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1285		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1286			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1287
1288			lprops->free = c->leb_size;
1289			lprops->flags = ubifs_categorize_lprops(c, lprops);
1290		}
1291	} else {
1292		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1293		if (err)
1294			goto out;
1295		err = unpack_pnode(c, buf, pnode);
1296		if (err)
1297			goto out;
1298	}
1299	err = validate_pnode(c, pnode, parent, iip);
1300	if (err)
1301		goto out;
1302	if (!c->big_lpt)
1303		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1304	branch->pnode = pnode;
1305	pnode->parent = parent;
1306	pnode->iip = iip;
1307	set_pnode_lnum(c, pnode);
1308	c->pnodes_have += 1;
1309	return 0;
1310
1311out:
1312	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1313	ubifs_dump_pnode(c, pnode, parent, iip);
1314	dump_stack();
1315	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1316	kfree(pnode);
1317	return err;
1318}
1319
1320/**
1321 * read_ltab - read LPT's own lprops table.
1322 * @c: UBIFS file-system description object
1323 *
1324 * This function returns %0 on success and a negative error code on failure.
1325 */
1326static int read_ltab(struct ubifs_info *c)
1327{
1328	int err;
1329	void *buf;
1330
1331	buf = vmalloc(c->ltab_sz);
1332	if (!buf)
1333		return -ENOMEM;
1334	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1335	if (err)
1336		goto out;
1337	err = unpack_ltab(c, buf);
1338out:
1339	vfree(buf);
1340	return err;
1341}
1342
1343/**
1344 * read_lsave - read LPT's save table.
1345 * @c: UBIFS file-system description object
1346 *
1347 * This function returns %0 on success and a negative error code on failure.
1348 */
1349static int read_lsave(struct ubifs_info *c)
1350{
1351	int err, i;
1352	void *buf;
1353
1354	buf = vmalloc(c->lsave_sz);
1355	if (!buf)
1356		return -ENOMEM;
1357	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1358			     c->lsave_sz, 1);
1359	if (err)
1360		goto out;
1361	err = unpack_lsave(c, buf);
1362	if (err)
1363		goto out;
1364	for (i = 0; i < c->lsave_cnt; i++) {
1365		int lnum = c->lsave[i];
1366		struct ubifs_lprops *lprops;
1367
1368		/*
1369		 * Due to automatic resizing, the values in the lsave table
1370		 * could be beyond the volume size - just ignore them.
1371		 */
1372		if (lnum >= c->leb_cnt)
1373			continue;
1374		lprops = ubifs_lpt_lookup(c, lnum);
1375		if (IS_ERR(lprops)) {
1376			err = PTR_ERR(lprops);
1377			goto out;
1378		}
1379	}
1380out:
1381	vfree(buf);
1382	return err;
1383}
1384
1385/**
1386 * ubifs_get_nnode - get a nnode.
1387 * @c: UBIFS file-system description object
1388 * @parent: parent nnode (or NULL for the root)
1389 * @iip: index in parent
1390 *
1391 * This function returns a pointer to the nnode on success or a negative error
1392 * code on failure.
1393 */
1394struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1395				    struct ubifs_nnode *parent, int iip)
1396{
1397	struct ubifs_nbranch *branch;
1398	struct ubifs_nnode *nnode;
1399	int err;
1400
1401	branch = &parent->nbranch[iip];
1402	nnode = branch->nnode;
1403	if (nnode)
1404		return nnode;
1405	err = ubifs_read_nnode(c, parent, iip);
1406	if (err)
1407		return ERR_PTR(err);
1408	return branch->nnode;
1409}
1410
1411/**
1412 * ubifs_get_pnode - get a pnode.
1413 * @c: UBIFS file-system description object
1414 * @parent: parent nnode
1415 * @iip: index in parent
1416 *
1417 * This function returns a pointer to the pnode on success or a negative error
1418 * code on failure.
1419 */
1420struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1421				    struct ubifs_nnode *parent, int iip)
1422{
1423	struct ubifs_nbranch *branch;
1424	struct ubifs_pnode *pnode;
1425	int err;
1426
1427	branch = &parent->nbranch[iip];
1428	pnode = branch->pnode;
1429	if (pnode)
1430		return pnode;
1431	err = read_pnode(c, parent, iip);
1432	if (err)
1433		return ERR_PTR(err);
1434	update_cats(c, branch->pnode);
1435	return branch->pnode;
1436}
1437
1438/**
1439 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1440 * @c: UBIFS file-system description object
1441 * @lnum: LEB number to lookup
1442 *
1443 * This function returns a pointer to the LEB properties on success or a
1444 * negative error code on failure.
1445 */
1446struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1447{
1448	int err, i, h, iip, shft;
1449	struct ubifs_nnode *nnode;
1450	struct ubifs_pnode *pnode;
1451
1452	if (!c->nroot) {
1453		err = ubifs_read_nnode(c, NULL, 0);
1454		if (err)
1455			return ERR_PTR(err);
1456	}
1457	nnode = c->nroot;
1458	i = lnum - c->main_first;
1459	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1460	for (h = 1; h < c->lpt_hght; h++) {
1461		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1462		shft -= UBIFS_LPT_FANOUT_SHIFT;
1463		nnode = ubifs_get_nnode(c, nnode, iip);
1464		if (IS_ERR(nnode))
1465			return ERR_CAST(nnode);
1466	}
1467	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1468	pnode = ubifs_get_pnode(c, nnode, iip);
1469	if (IS_ERR(pnode))
1470		return ERR_CAST(pnode);
1471	iip = (i & (UBIFS_LPT_FANOUT - 1));
1472	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1473	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1474	       pnode->lprops[iip].flags);
1475	return &pnode->lprops[iip];
1476}
1477
1478/**
1479 * dirty_cow_nnode - ensure a nnode is not being committed.
1480 * @c: UBIFS file-system description object
1481 * @nnode: nnode to check
1482 *
1483 * Returns dirtied nnode on success or negative error code on failure.
1484 */
1485static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1486					   struct ubifs_nnode *nnode)
1487{
1488	struct ubifs_nnode *n;
1489	int i;
1490
1491	if (!test_bit(COW_CNODE, &nnode->flags)) {
1492		/* nnode is not being committed */
1493		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1494			c->dirty_nn_cnt += 1;
1495			ubifs_add_nnode_dirt(c, nnode);
1496		}
1497		return nnode;
1498	}
1499
1500	/* nnode is being committed, so copy it */
1501	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1502	if (unlikely(!n))
1503		return ERR_PTR(-ENOMEM);
1504
1505	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1506	n->cnext = NULL;
1507	__set_bit(DIRTY_CNODE, &n->flags);
1508	__clear_bit(COW_CNODE, &n->flags);
1509
1510	/* The children now have new parent */
1511	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1512		struct ubifs_nbranch *branch = &n->nbranch[i];
1513
1514		if (branch->cnode)
1515			branch->cnode->parent = n;
1516	}
1517
1518	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1519	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1520
1521	c->dirty_nn_cnt += 1;
1522	ubifs_add_nnode_dirt(c, nnode);
1523	if (nnode->parent)
1524		nnode->parent->nbranch[n->iip].nnode = n;
1525	else
1526		c->nroot = n;
1527	return n;
1528}
1529
1530/**
1531 * dirty_cow_pnode - ensure a pnode is not being committed.
1532 * @c: UBIFS file-system description object
1533 * @pnode: pnode to check
1534 *
1535 * Returns dirtied pnode on success or negative error code on failure.
1536 */
1537static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1538					   struct ubifs_pnode *pnode)
1539{
1540	struct ubifs_pnode *p;
1541
1542	if (!test_bit(COW_CNODE, &pnode->flags)) {
1543		/* pnode is not being committed */
1544		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1545			c->dirty_pn_cnt += 1;
1546			add_pnode_dirt(c, pnode);
1547		}
1548		return pnode;
1549	}
1550
1551	/* pnode is being committed, so copy it */
1552	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1553	if (unlikely(!p))
1554		return ERR_PTR(-ENOMEM);
1555
1556	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1557	p->cnext = NULL;
1558	__set_bit(DIRTY_CNODE, &p->flags);
1559	__clear_bit(COW_CNODE, &p->flags);
1560	replace_cats(c, pnode, p);
1561
1562	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1563	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1564
1565	c->dirty_pn_cnt += 1;
1566	add_pnode_dirt(c, pnode);
1567	pnode->parent->nbranch[p->iip].pnode = p;
1568	return p;
1569}
1570
1571/**
1572 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1573 * @c: UBIFS file-system description object
1574 * @lnum: LEB number to lookup
1575 *
1576 * This function returns a pointer to the LEB properties on success or a
1577 * negative error code on failure.
1578 */
1579struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1580{
1581	int err, i, h, iip, shft;
1582	struct ubifs_nnode *nnode;
1583	struct ubifs_pnode *pnode;
1584
1585	if (!c->nroot) {
1586		err = ubifs_read_nnode(c, NULL, 0);
1587		if (err)
1588			return ERR_PTR(err);
1589	}
1590	nnode = c->nroot;
1591	nnode = dirty_cow_nnode(c, nnode);
1592	if (IS_ERR(nnode))
1593		return ERR_CAST(nnode);
1594	i = lnum - c->main_first;
1595	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1596	for (h = 1; h < c->lpt_hght; h++) {
1597		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1598		shft -= UBIFS_LPT_FANOUT_SHIFT;
1599		nnode = ubifs_get_nnode(c, nnode, iip);
1600		if (IS_ERR(nnode))
1601			return ERR_CAST(nnode);
1602		nnode = dirty_cow_nnode(c, nnode);
1603		if (IS_ERR(nnode))
1604			return ERR_CAST(nnode);
1605	}
1606	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1607	pnode = ubifs_get_pnode(c, nnode, iip);
1608	if (IS_ERR(pnode))
1609		return ERR_CAST(pnode);
1610	pnode = dirty_cow_pnode(c, pnode);
1611	if (IS_ERR(pnode))
1612		return ERR_CAST(pnode);
1613	iip = (i & (UBIFS_LPT_FANOUT - 1));
1614	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1615	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1616	       pnode->lprops[iip].flags);
1617	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1618	return &pnode->lprops[iip];
1619}
1620
1621/**
1622 * lpt_init_rd - initialize the LPT for reading.
1623 * @c: UBIFS file-system description object
1624 *
1625 * This function returns %0 on success and a negative error code on failure.
1626 */
1627static int lpt_init_rd(struct ubifs_info *c)
1628{
1629	int err, i;
1630
1631	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1632	if (!c->ltab)
1633		return -ENOMEM;
1634
1635	i = max_t(int, c->nnode_sz, c->pnode_sz);
1636	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1637	if (!c->lpt_nod_buf)
1638		return -ENOMEM;
1639
1640	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1641		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1642					     GFP_KERNEL);
1643		if (!c->lpt_heap[i].arr)
1644			return -ENOMEM;
1645		c->lpt_heap[i].cnt = 0;
1646		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1647	}
1648
1649	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1650	if (!c->dirty_idx.arr)
1651		return -ENOMEM;
1652	c->dirty_idx.cnt = 0;
1653	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1654
1655	err = read_ltab(c);
1656	if (err)
1657		return err;
1658
1659	dbg_lp("space_bits %d", c->space_bits);
1660	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1661	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1662	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1663	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1664	dbg_lp("lnum_bits %d", c->lnum_bits);
1665	dbg_lp("pnode_sz %d", c->pnode_sz);
1666	dbg_lp("nnode_sz %d", c->nnode_sz);
1667	dbg_lp("ltab_sz %d", c->ltab_sz);
1668	dbg_lp("lsave_sz %d", c->lsave_sz);
1669	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1670	dbg_lp("lpt_hght %d", c->lpt_hght);
1671	dbg_lp("big_lpt %d", c->big_lpt);
1672	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1673	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1674	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1675	if (c->big_lpt)
1676		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1677
1678	return 0;
1679}
1680
1681/**
1682 * lpt_init_wr - initialize the LPT for writing.
1683 * @c: UBIFS file-system description object
1684 *
1685 * 'lpt_init_rd()' must have been called already.
1686 *
1687 * This function returns %0 on success and a negative error code on failure.
1688 */
1689static int lpt_init_wr(struct ubifs_info *c)
1690{
1691	int err, i;
1692
1693	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1694	if (!c->ltab_cmt)
1695		return -ENOMEM;
1696
1697	c->lpt_buf = vmalloc(c->leb_size);
1698	if (!c->lpt_buf)
1699		return -ENOMEM;
1700
1701	if (c->big_lpt) {
1702		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1703		if (!c->lsave)
1704			return -ENOMEM;
1705		err = read_lsave(c);
1706		if (err)
1707			return err;
1708	}
1709
1710	for (i = 0; i < c->lpt_lebs; i++)
1711		if (c->ltab[i].free == c->leb_size) {
1712			err = ubifs_leb_unmap(c, i + c->lpt_first);
1713			if (err)
1714				return err;
1715		}
1716
1717	return 0;
1718}
1719
1720/**
1721 * ubifs_lpt_init - initialize the LPT.
1722 * @c: UBIFS file-system description object
1723 * @rd: whether to initialize lpt for reading
1724 * @wr: whether to initialize lpt for writing
1725 *
1726 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1727 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1728 * true.
1729 *
1730 * This function returns %0 on success and a negative error code on failure.
1731 */
1732int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1733{
1734	int err;
1735
1736	if (rd) {
1737		err = lpt_init_rd(c);
1738		if (err)
1739			goto out_err;
1740	}
1741
1742	if (wr) {
1743		err = lpt_init_wr(c);
1744		if (err)
1745			goto out_err;
1746	}
1747
1748	return 0;
1749
1750out_err:
1751	if (wr)
1752		ubifs_lpt_free(c, 1);
1753	if (rd)
1754		ubifs_lpt_free(c, 0);
1755	return err;
1756}
1757
1758/**
1759 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1760 * @nnode: where to keep a nnode
1761 * @pnode: where to keep a pnode
1762 * @cnode: where to keep a cnode
1763 * @in_tree: is the node in the tree in memory
1764 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1765 * the tree
1766 * @ptr.pnode: ditto for pnode
1767 * @ptr.cnode: ditto for cnode
1768 */
1769struct lpt_scan_node {
1770	union {
1771		struct ubifs_nnode nnode;
1772		struct ubifs_pnode pnode;
1773		struct ubifs_cnode cnode;
1774	};
1775	int in_tree;
1776	union {
1777		struct ubifs_nnode *nnode;
1778		struct ubifs_pnode *pnode;
1779		struct ubifs_cnode *cnode;
1780	} ptr;
1781};
1782
1783/**
1784 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1785 * @c: the UBIFS file-system description object
1786 * @path: where to put the nnode
1787 * @parent: parent of the nnode
1788 * @iip: index in parent of the nnode
1789 *
1790 * This function returns a pointer to the nnode on success or a negative error
1791 * code on failure.
1792 */
1793static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1794					  struct lpt_scan_node *path,
1795					  struct ubifs_nnode *parent, int iip)
1796{
1797	struct ubifs_nbranch *branch;
1798	struct ubifs_nnode *nnode;
1799	void *buf = c->lpt_nod_buf;
1800	int err;
1801
1802	branch = &parent->nbranch[iip];
1803	nnode = branch->nnode;
1804	if (nnode) {
1805		path->in_tree = 1;
1806		path->ptr.nnode = nnode;
1807		return nnode;
1808	}
1809	nnode = &path->nnode;
1810	path->in_tree = 0;
1811	path->ptr.nnode = nnode;
1812	memset(nnode, 0, sizeof(struct ubifs_nnode));
1813	if (branch->lnum == 0) {
1814		/*
1815		 * This nnode was not written which just means that the LEB
1816		 * properties in the subtree below it describe empty LEBs. We
1817		 * make the nnode as though we had read it, which in fact means
1818		 * doing almost nothing.
1819		 */
1820		if (c->big_lpt)
1821			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1822	} else {
1823		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1824				     c->nnode_sz, 1);
1825		if (err)
1826			return ERR_PTR(err);
1827		err = ubifs_unpack_nnode(c, buf, nnode);
1828		if (err)
1829			return ERR_PTR(err);
1830	}
1831	err = validate_nnode(c, nnode, parent, iip);
1832	if (err)
1833		return ERR_PTR(err);
1834	if (!c->big_lpt)
1835		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1836	nnode->level = parent->level - 1;
1837	nnode->parent = parent;
1838	nnode->iip = iip;
1839	return nnode;
1840}
1841
1842/**
1843 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1844 * @c: the UBIFS file-system description object
1845 * @path: where to put the pnode
1846 * @parent: parent of the pnode
1847 * @iip: index in parent of the pnode
1848 *
1849 * This function returns a pointer to the pnode on success or a negative error
1850 * code on failure.
1851 */
1852static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1853					  struct lpt_scan_node *path,
1854					  struct ubifs_nnode *parent, int iip)
1855{
1856	struct ubifs_nbranch *branch;
1857	struct ubifs_pnode *pnode;
1858	void *buf = c->lpt_nod_buf;
1859	int err;
1860
1861	branch = &parent->nbranch[iip];
1862	pnode = branch->pnode;
1863	if (pnode) {
1864		path->in_tree = 1;
1865		path->ptr.pnode = pnode;
1866		return pnode;
1867	}
1868	pnode = &path->pnode;
1869	path->in_tree = 0;
1870	path->ptr.pnode = pnode;
1871	memset(pnode, 0, sizeof(struct ubifs_pnode));
1872	if (branch->lnum == 0) {
1873		/*
1874		 * This pnode was not written which just means that the LEB
1875		 * properties in it describe empty LEBs. We make the pnode as
1876		 * though we had read it.
1877		 */
1878		int i;
1879
1880		if (c->big_lpt)
1881			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1882		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1883			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1884
1885			lprops->free = c->leb_size;
1886			lprops->flags = ubifs_categorize_lprops(c, lprops);
1887		}
1888	} else {
1889		ubifs_assert(branch->lnum >= c->lpt_first &&
1890			     branch->lnum <= c->lpt_last);
1891		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1892		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1893				     c->pnode_sz, 1);
1894		if (err)
1895			return ERR_PTR(err);
1896		err = unpack_pnode(c, buf, pnode);
1897		if (err)
1898			return ERR_PTR(err);
1899	}
1900	err = validate_pnode(c, pnode, parent, iip);
1901	if (err)
1902		return ERR_PTR(err);
1903	if (!c->big_lpt)
1904		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1905	pnode->parent = parent;
1906	pnode->iip = iip;
1907	set_pnode_lnum(c, pnode);
1908	return pnode;
1909}
1910
1911/**
1912 * ubifs_lpt_scan_nolock - scan the LPT.
1913 * @c: the UBIFS file-system description object
1914 * @start_lnum: LEB number from which to start scanning
1915 * @end_lnum: LEB number at which to stop scanning
1916 * @scan_cb: callback function called for each lprops
1917 * @data: data to be passed to the callback function
1918 *
1919 * This function returns %0 on success and a negative error code on failure.
1920 */
1921int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1922			  ubifs_lpt_scan_callback scan_cb, void *data)
1923{
1924	int err = 0, i, h, iip, shft;
1925	struct ubifs_nnode *nnode;
1926	struct ubifs_pnode *pnode;
1927	struct lpt_scan_node *path;
1928
1929	if (start_lnum == -1) {
1930		start_lnum = end_lnum + 1;
1931		if (start_lnum >= c->leb_cnt)
1932			start_lnum = c->main_first;
1933	}
1934
1935	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1936	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1937
1938	if (!c->nroot) {
1939		err = ubifs_read_nnode(c, NULL, 0);
1940		if (err)
1941			return err;
1942	}
1943
1944	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1945		       GFP_NOFS);
1946	if (!path)
1947		return -ENOMEM;
1948
1949	path[0].ptr.nnode = c->nroot;
1950	path[0].in_tree = 1;
1951again:
1952	/* Descend to the pnode containing start_lnum */
1953	nnode = c->nroot;
1954	i = start_lnum - c->main_first;
1955	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1956	for (h = 1; h < c->lpt_hght; h++) {
1957		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1958		shft -= UBIFS_LPT_FANOUT_SHIFT;
1959		nnode = scan_get_nnode(c, path + h, nnode, iip);
1960		if (IS_ERR(nnode)) {
1961			err = PTR_ERR(nnode);
1962			goto out;
1963		}
1964	}
1965	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1966	pnode = scan_get_pnode(c, path + h, nnode, iip);
1967	if (IS_ERR(pnode)) {
1968		err = PTR_ERR(pnode);
1969		goto out;
1970	}
1971	iip = (i & (UBIFS_LPT_FANOUT - 1));
1972
1973	/* Loop for each lprops */
1974	while (1) {
1975		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1976		int ret, lnum = lprops->lnum;
1977
1978		ret = scan_cb(c, lprops, path[h].in_tree, data);
1979		if (ret < 0) {
1980			err = ret;
1981			goto out;
1982		}
1983		if (ret & LPT_SCAN_ADD) {
1984			/* Add all the nodes in path to the tree in memory */
1985			for (h = 1; h < c->lpt_hght; h++) {
1986				const size_t sz = sizeof(struct ubifs_nnode);
1987				struct ubifs_nnode *parent;
1988
1989				if (path[h].in_tree)
1990					continue;
1991				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1992				if (!nnode) {
1993					err = -ENOMEM;
1994					goto out;
1995				}
1996				parent = nnode->parent;
1997				parent->nbranch[nnode->iip].nnode = nnode;
1998				path[h].ptr.nnode = nnode;
1999				path[h].in_tree = 1;
2000				path[h + 1].cnode.parent = nnode;
2001			}
2002			if (path[h].in_tree)
2003				ubifs_ensure_cat(c, lprops);
2004			else {
2005				const size_t sz = sizeof(struct ubifs_pnode);
2006				struct ubifs_nnode *parent;
2007
2008				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2009				if (!pnode) {
2010					err = -ENOMEM;
2011					goto out;
2012				}
2013				parent = pnode->parent;
2014				parent->nbranch[pnode->iip].pnode = pnode;
2015				path[h].ptr.pnode = pnode;
2016				path[h].in_tree = 1;
2017				update_cats(c, pnode);
2018				c->pnodes_have += 1;
2019			}
2020			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2021						  c->nroot, 0, 0);
2022			if (err)
2023				goto out;
2024			err = dbg_check_cats(c);
2025			if (err)
2026				goto out;
2027		}
2028		if (ret & LPT_SCAN_STOP) {
2029			err = 0;
2030			break;
2031		}
2032		/* Get the next lprops */
2033		if (lnum == end_lnum) {
2034			/*
2035			 * We got to the end without finding what we were
2036			 * looking for
2037			 */
2038			err = -ENOSPC;
2039			goto out;
2040		}
2041		if (lnum + 1 >= c->leb_cnt) {
2042			/* Wrap-around to the beginning */
2043			start_lnum = c->main_first;
2044			goto again;
2045		}
2046		if (iip + 1 < UBIFS_LPT_FANOUT) {
2047			/* Next lprops is in the same pnode */
2048			iip += 1;
2049			continue;
2050		}
2051		/* We need to get the next pnode. Go up until we can go right */
2052		iip = pnode->iip;
2053		while (1) {
2054			h -= 1;
2055			ubifs_assert(h >= 0);
2056			nnode = path[h].ptr.nnode;
2057			if (iip + 1 < UBIFS_LPT_FANOUT)
2058				break;
2059			iip = nnode->iip;
2060		}
2061		/* Go right */
2062		iip += 1;
2063		/* Descend to the pnode */
2064		h += 1;
2065		for (; h < c->lpt_hght; h++) {
2066			nnode = scan_get_nnode(c, path + h, nnode, iip);
2067			if (IS_ERR(nnode)) {
2068				err = PTR_ERR(nnode);
2069				goto out;
2070			}
2071			iip = 0;
2072		}
2073		pnode = scan_get_pnode(c, path + h, nnode, iip);
2074		if (IS_ERR(pnode)) {
2075			err = PTR_ERR(pnode);
2076			goto out;
2077		}
2078		iip = 0;
2079	}
2080out:
2081	kfree(path);
2082	return err;
2083}
2084
2085/**
2086 * dbg_chk_pnode - check a pnode.
2087 * @c: the UBIFS file-system description object
2088 * @pnode: pnode to check
2089 * @col: pnode column
2090 *
2091 * This function returns %0 on success and a negative error code on failure.
2092 */
2093static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2094			 int col)
2095{
2096	int i;
2097
2098	if (pnode->num != col) {
2099		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2100			  pnode->num, col, pnode->parent->num, pnode->iip);
2101		return -EINVAL;
2102	}
2103	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2104		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2105		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2106			   c->main_first;
2107		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2108		struct ubifs_lpt_heap *heap;
2109		struct list_head *list = NULL;
2110
2111		if (lnum >= c->leb_cnt)
2112			continue;
2113		if (lprops->lnum != lnum) {
2114			ubifs_err(c, "bad LEB number %d expected %d",
2115				  lprops->lnum, lnum);
2116			return -EINVAL;
2117		}
2118		if (lprops->flags & LPROPS_TAKEN) {
2119			if (cat != LPROPS_UNCAT) {
2120				ubifs_err(c, "LEB %d taken but not uncat %d",
2121					  lprops->lnum, cat);
2122				return -EINVAL;
2123			}
2124			continue;
2125		}
2126		if (lprops->flags & LPROPS_INDEX) {
2127			switch (cat) {
2128			case LPROPS_UNCAT:
2129			case LPROPS_DIRTY_IDX:
2130			case LPROPS_FRDI_IDX:
2131				break;
2132			default:
2133				ubifs_err(c, "LEB %d index but cat %d",
2134					  lprops->lnum, cat);
2135				return -EINVAL;
2136			}
2137		} else {
2138			switch (cat) {
2139			case LPROPS_UNCAT:
2140			case LPROPS_DIRTY:
2141			case LPROPS_FREE:
2142			case LPROPS_EMPTY:
2143			case LPROPS_FREEABLE:
2144				break;
2145			default:
2146				ubifs_err(c, "LEB %d not index but cat %d",
2147					  lprops->lnum, cat);
2148				return -EINVAL;
2149			}
2150		}
2151		switch (cat) {
2152		case LPROPS_UNCAT:
2153			list = &c->uncat_list;
2154			break;
2155		case LPROPS_EMPTY:
2156			list = &c->empty_list;
2157			break;
2158		case LPROPS_FREEABLE:
2159			list = &c->freeable_list;
2160			break;
2161		case LPROPS_FRDI_IDX:
2162			list = &c->frdi_idx_list;
2163			break;
2164		}
2165		found = 0;
2166		switch (cat) {
2167		case LPROPS_DIRTY:
2168		case LPROPS_DIRTY_IDX:
2169		case LPROPS_FREE:
2170			heap = &c->lpt_heap[cat - 1];
2171			if (lprops->hpos < heap->cnt &&
2172			    heap->arr[lprops->hpos] == lprops)
2173				found = 1;
2174			break;
2175		case LPROPS_UNCAT:
2176		case LPROPS_EMPTY:
2177		case LPROPS_FREEABLE:
2178		case LPROPS_FRDI_IDX:
2179			list_for_each_entry(lp, list, list)
2180				if (lprops == lp) {
2181					found = 1;
2182					break;
2183				}
2184			break;
2185		}
2186		if (!found) {
2187			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2188				  lprops->lnum, cat);
2189			return -EINVAL;
2190		}
2191		switch (cat) {
2192		case LPROPS_EMPTY:
2193			if (lprops->free != c->leb_size) {
2194				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2195					  lprops->lnum, cat, lprops->free,
2196					  lprops->dirty);
2197				return -EINVAL;
2198			}
2199			break;
2200		case LPROPS_FREEABLE:
2201		case LPROPS_FRDI_IDX:
2202			if (lprops->free + lprops->dirty != c->leb_size) {
2203				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2204					  lprops->lnum, cat, lprops->free,
2205					  lprops->dirty);
2206				return -EINVAL;
2207			}
2208			break;
2209		}
2210	}
2211	return 0;
2212}
2213
2214/**
2215 * dbg_check_lpt_nodes - check nnodes and pnodes.
2216 * @c: the UBIFS file-system description object
2217 * @cnode: next cnode (nnode or pnode) to check
2218 * @row: row of cnode (root is zero)
2219 * @col: column of cnode (leftmost is zero)
2220 *
2221 * This function returns %0 on success and a negative error code on failure.
2222 */
2223int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2224			int row, int col)
2225{
2226	struct ubifs_nnode *nnode, *nn;
2227	struct ubifs_cnode *cn;
2228	int num, iip = 0, err;
2229
2230	if (!dbg_is_chk_lprops(c))
2231		return 0;
2232
2233	while (cnode) {
2234		ubifs_assert(row >= 0);
2235		nnode = cnode->parent;
2236		if (cnode->level) {
2237			/* cnode is a nnode */
2238			num = calc_nnode_num(row, col);
2239			if (cnode->num != num) {
2240				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2241					  cnode->num, num,
2242					  (nnode ? nnode->num : 0), cnode->iip);
2243				return -EINVAL;
2244			}
2245			nn = (struct ubifs_nnode *)cnode;
2246			while (iip < UBIFS_LPT_FANOUT) {
2247				cn = nn->nbranch[iip].cnode;
2248				if (cn) {
2249					/* Go down */
2250					row += 1;
2251					col <<= UBIFS_LPT_FANOUT_SHIFT;
2252					col += iip;
2253					iip = 0;
2254					cnode = cn;
2255					break;
2256				}
2257				/* Go right */
2258				iip += 1;
2259			}
2260			if (iip < UBIFS_LPT_FANOUT)
2261				continue;
2262		} else {
2263			struct ubifs_pnode *pnode;
2264
2265			/* cnode is a pnode */
2266			pnode = (struct ubifs_pnode *)cnode;
2267			err = dbg_chk_pnode(c, pnode, col);
2268			if (err)
2269				return err;
2270		}
2271		/* Go up and to the right */
2272		row -= 1;
2273		col >>= UBIFS_LPT_FANOUT_SHIFT;
2274		iip = cnode->iip + 1;
2275		cnode = (struct ubifs_cnode *)nnode;
2276	}
2277	return 0;
2278}
2279