1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 *          Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS superblock. The superblock is stored at the first
25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26 * change it. The superblock node mostly contains geometry information.
27 */
28
29#include "ubifs.h"
30#include <linux/slab.h>
31#include <linux/random.h>
32#include <linux/math64.h>
33
34/*
35 * Default journal size in logical eraseblocks as a percent of total
36 * flash size.
37 */
38#define DEFAULT_JNL_PERCENT 5
39
40/* Default maximum journal size in bytes */
41#define DEFAULT_MAX_JNL (32*1024*1024)
42
43/* Default indexing tree fanout */
44#define DEFAULT_FANOUT 8
45
46/* Default number of data journal heads */
47#define DEFAULT_JHEADS_CNT 1
48
49/* Default positions of different LEBs in the main area */
50#define DEFAULT_IDX_LEB  0
51#define DEFAULT_DATA_LEB 1
52#define DEFAULT_GC_LEB   2
53
54/* Default number of LEB numbers in LPT's save table */
55#define DEFAULT_LSAVE_CNT 256
56
57/* Default reserved pool size as a percent of maximum free space */
58#define DEFAULT_RP_PERCENT 5
59
60/* The default maximum size of reserved pool in bytes */
61#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62
63/* Default time granularity in nanoseconds */
64#define DEFAULT_TIME_GRAN 1000000000
65
66/**
67 * create_default_filesystem - format empty UBI volume.
68 * @c: UBIFS file-system description object
69 *
70 * This function creates default empty file-system. Returns zero in case of
71 * success and a negative error code in case of failure.
72 */
73static int create_default_filesystem(struct ubifs_info *c)
74{
75	struct ubifs_sb_node *sup;
76	struct ubifs_mst_node *mst;
77	struct ubifs_idx_node *idx;
78	struct ubifs_branch *br;
79	struct ubifs_ino_node *ino;
80	struct ubifs_cs_node *cs;
81	union ubifs_key key;
82	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
83	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
84	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
85	long long tmp64, main_bytes;
86	__le64 tmp_le64;
87
88	/* Some functions called from here depend on the @c->key_len filed */
89	c->key_len = UBIFS_SK_LEN;
90
91	/*
92	 * First of all, we have to calculate default file-system geometry -
93	 * log size, journal size, etc.
94	 */
95	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
96		/* We can first multiply then divide and have no overflow */
97		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
98	else
99		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
100
101	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
102		jnl_lebs = UBIFS_MIN_JNL_LEBS;
103	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
104		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
105
106	/*
107	 * The log should be large enough to fit reference nodes for all bud
108	 * LEBs. Because buds do not have to start from the beginning of LEBs
109	 * (half of the LEB may contain committed data), the log should
110	 * generally be larger, make it twice as large.
111	 */
112	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
113	log_lebs = tmp / c->leb_size;
114	/* Plus one LEB reserved for commit */
115	log_lebs += 1;
116	if (c->leb_cnt - min_leb_cnt > 8) {
117		/* And some extra space to allow writes while committing */
118		log_lebs += 1;
119		min_leb_cnt += 1;
120	}
121
122	max_buds = jnl_lebs - log_lebs;
123	if (max_buds < UBIFS_MIN_BUD_LEBS)
124		max_buds = UBIFS_MIN_BUD_LEBS;
125
126	/*
127	 * Orphan nodes are stored in a separate area. One node can store a lot
128	 * of orphan inode numbers, but when new orphan comes we just add a new
129	 * orphan node. At some point the nodes are consolidated into one
130	 * orphan node.
131	 */
132	orph_lebs = UBIFS_MIN_ORPH_LEBS;
133	if (c->leb_cnt - min_leb_cnt > 1)
134		/*
135		 * For debugging purposes it is better to have at least 2
136		 * orphan LEBs, because the orphan subsystem would need to do
137		 * consolidations and would be stressed more.
138		 */
139		orph_lebs += 1;
140
141	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
142	main_lebs -= orph_lebs;
143
144	lpt_first = UBIFS_LOG_LNUM + log_lebs;
145	c->lsave_cnt = DEFAULT_LSAVE_CNT;
146	c->max_leb_cnt = c->leb_cnt;
147	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
148				    &big_lpt);
149	if (err)
150		return err;
151
152	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
153		lpt_first + lpt_lebs - 1);
154
155	main_first = c->leb_cnt - main_lebs;
156
157	/* Create default superblock */
158	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
159	sup = kzalloc(tmp, GFP_KERNEL);
160	if (!sup)
161		return -ENOMEM;
162
163	tmp64 = (long long)max_buds * c->leb_size;
164	if (big_lpt)
165		sup_flags |= UBIFS_FLG_BIGLPT;
166
167	sup->ch.node_type  = UBIFS_SB_NODE;
168	sup->key_hash      = UBIFS_KEY_HASH_R5;
169	sup->flags         = cpu_to_le32(sup_flags);
170	sup->min_io_size   = cpu_to_le32(c->min_io_size);
171	sup->leb_size      = cpu_to_le32(c->leb_size);
172	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
173	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
174	sup->max_bud_bytes = cpu_to_le64(tmp64);
175	sup->log_lebs      = cpu_to_le32(log_lebs);
176	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
177	sup->orph_lebs     = cpu_to_le32(orph_lebs);
178	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
179	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
180	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
181	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
182	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
183	if (c->mount_opts.override_compr)
184		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
185	else
186		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
187
188	generate_random_uuid(sup->uuid);
189
190	main_bytes = (long long)main_lebs * c->leb_size;
191	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
192	if (tmp64 > DEFAULT_MAX_RP_SIZE)
193		tmp64 = DEFAULT_MAX_RP_SIZE;
194	sup->rp_size = cpu_to_le64(tmp64);
195	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
196
197	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
198	kfree(sup);
199	if (err)
200		return err;
201
202	dbg_gen("default superblock created at LEB 0:0");
203
204	/* Create default master node */
205	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
206	if (!mst)
207		return -ENOMEM;
208
209	mst->ch.node_type = UBIFS_MST_NODE;
210	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
211	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
212	mst->cmt_no       = 0;
213	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
214	mst->root_offs    = 0;
215	tmp = ubifs_idx_node_sz(c, 1);
216	mst->root_len     = cpu_to_le32(tmp);
217	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
218	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
219	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
220	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
221	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
222	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
223	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
224	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
225	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
226	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
227	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
228	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
229	mst->lscan_lnum   = cpu_to_le32(main_first);
230	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
231	mst->idx_lebs     = cpu_to_le32(1);
232	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
233
234	/* Calculate lprops statistics */
235	tmp64 = main_bytes;
236	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
237	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
238	mst->total_free = cpu_to_le64(tmp64);
239
240	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
241	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
242			  UBIFS_INO_NODE_SZ;
243	tmp64 += ino_waste;
244	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
245	mst->total_dirty = cpu_to_le64(tmp64);
246
247	/*  The indexing LEB does not contribute to dark space */
248	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
249	mst->total_dark = cpu_to_le64(tmp64);
250
251	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
252
253	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
254	if (err) {
255		kfree(mst);
256		return err;
257	}
258	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
259			       0);
260	kfree(mst);
261	if (err)
262		return err;
263
264	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
265
266	/* Create the root indexing node */
267	tmp = ubifs_idx_node_sz(c, 1);
268	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
269	if (!idx)
270		return -ENOMEM;
271
272	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
273	c->key_hash = key_r5_hash;
274
275	idx->ch.node_type = UBIFS_IDX_NODE;
276	idx->child_cnt = cpu_to_le16(1);
277	ino_key_init(c, &key, UBIFS_ROOT_INO);
278	br = ubifs_idx_branch(c, idx, 0);
279	key_write_idx(c, &key, &br->key);
280	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
281	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
282	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
283	kfree(idx);
284	if (err)
285		return err;
286
287	dbg_gen("default root indexing node created LEB %d:0",
288		main_first + DEFAULT_IDX_LEB);
289
290	/* Create default root inode */
291	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
292	ino = kzalloc(tmp, GFP_KERNEL);
293	if (!ino)
294		return -ENOMEM;
295
296	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
297	ino->ch.node_type = UBIFS_INO_NODE;
298	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
299	ino->nlink = cpu_to_le32(2);
300	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
301	ino->atime_sec   = tmp_le64;
302	ino->ctime_sec   = tmp_le64;
303	ino->mtime_sec   = tmp_le64;
304	ino->atime_nsec  = 0;
305	ino->ctime_nsec  = 0;
306	ino->mtime_nsec  = 0;
307	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
308	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
309
310	/* Set compression enabled by default */
311	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
312
313	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
314			       main_first + DEFAULT_DATA_LEB, 0);
315	kfree(ino);
316	if (err)
317		return err;
318
319	dbg_gen("root inode created at LEB %d:0",
320		main_first + DEFAULT_DATA_LEB);
321
322	/*
323	 * The first node in the log has to be the commit start node. This is
324	 * always the case during normal file-system operation. Write a fake
325	 * commit start node to the log.
326	 */
327	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
328	cs = kzalloc(tmp, GFP_KERNEL);
329	if (!cs)
330		return -ENOMEM;
331
332	cs->ch.node_type = UBIFS_CS_NODE;
333	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
334	kfree(cs);
335	if (err)
336		return err;
337
338	ubifs_msg(c, "default file-system created");
339	return 0;
340}
341
342/**
343 * validate_sb - validate superblock node.
344 * @c: UBIFS file-system description object
345 * @sup: superblock node
346 *
347 * This function validates superblock node @sup. Since most of data was read
348 * from the superblock and stored in @c, the function validates fields in @c
349 * instead. Returns zero in case of success and %-EINVAL in case of validation
350 * failure.
351 */
352static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
353{
354	long long max_bytes;
355	int err = 1, min_leb_cnt;
356
357	if (!c->key_hash) {
358		err = 2;
359		goto failed;
360	}
361
362	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
363		err = 3;
364		goto failed;
365	}
366
367	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
368		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
369			  le32_to_cpu(sup->min_io_size), c->min_io_size);
370		goto failed;
371	}
372
373	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
374		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
375			  le32_to_cpu(sup->leb_size), c->leb_size);
376		goto failed;
377	}
378
379	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
380	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
381	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
382	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
383		err = 4;
384		goto failed;
385	}
386
387	/*
388	 * Calculate minimum allowed amount of main area LEBs. This is very
389	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
390	 * have just read from the superblock.
391	 */
392	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
393	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
394
395	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
396		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
397			  c->leb_cnt, c->vi.size, min_leb_cnt);
398		goto failed;
399	}
400
401	if (c->max_leb_cnt < c->leb_cnt) {
402		ubifs_err(c, "max. LEB count %d less than LEB count %d",
403			  c->max_leb_cnt, c->leb_cnt);
404		goto failed;
405	}
406
407	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
408		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
409			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
410		goto failed;
411	}
412
413	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
414	if (c->max_bud_bytes < max_bytes) {
415		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
416			  c->max_bud_bytes, max_bytes);
417		goto failed;
418	}
419
420	max_bytes = (long long)c->leb_size * c->main_lebs;
421	if (c->max_bud_bytes > max_bytes) {
422		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
423			  c->max_bud_bytes, max_bytes);
424		goto failed;
425	}
426
427	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
428	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
429		err = 9;
430		goto failed;
431	}
432
433	if (c->fanout < UBIFS_MIN_FANOUT ||
434	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
435		err = 10;
436		goto failed;
437	}
438
439	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
440	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
441	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
442		err = 11;
443		goto failed;
444	}
445
446	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
447	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
448		err = 12;
449		goto failed;
450	}
451
452	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
453		err = 13;
454		goto failed;
455	}
456
457	if (c->rp_size < 0 || max_bytes < c->rp_size) {
458		err = 14;
459		goto failed;
460	}
461
462	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
463	    le32_to_cpu(sup->time_gran) < 1) {
464		err = 15;
465		goto failed;
466	}
467
468	return 0;
469
470failed:
471	ubifs_err(c, "bad superblock, error %d", err);
472	ubifs_dump_node(c, sup);
473	return -EINVAL;
474}
475
476/**
477 * ubifs_read_sb_node - read superblock node.
478 * @c: UBIFS file-system description object
479 *
480 * This function returns a pointer to the superblock node or a negative error
481 * code. Note, the user of this function is responsible of kfree()'ing the
482 * returned superblock buffer.
483 */
484struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
485{
486	struct ubifs_sb_node *sup;
487	int err;
488
489	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
490	if (!sup)
491		return ERR_PTR(-ENOMEM);
492
493	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
494			      UBIFS_SB_LNUM, 0);
495	if (err) {
496		kfree(sup);
497		return ERR_PTR(err);
498	}
499
500	return sup;
501}
502
503/**
504 * ubifs_write_sb_node - write superblock node.
505 * @c: UBIFS file-system description object
506 * @sup: superblock node read with 'ubifs_read_sb_node()'
507 *
508 * This function returns %0 on success and a negative error code on failure.
509 */
510int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
511{
512	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
513
514	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
515	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
516}
517
518/**
519 * ubifs_read_superblock - read superblock.
520 * @c: UBIFS file-system description object
521 *
522 * This function finds, reads and checks the superblock. If an empty UBI volume
523 * is being mounted, this function creates default superblock. Returns zero in
524 * case of success, and a negative error code in case of failure.
525 */
526int ubifs_read_superblock(struct ubifs_info *c)
527{
528	int err, sup_flags;
529	struct ubifs_sb_node *sup;
530
531	if (c->empty) {
532		err = create_default_filesystem(c);
533		if (err)
534			return err;
535	}
536
537	sup = ubifs_read_sb_node(c);
538	if (IS_ERR(sup))
539		return PTR_ERR(sup);
540
541	c->fmt_version = le32_to_cpu(sup->fmt_version);
542	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
543
544	/*
545	 * The software supports all previous versions but not future versions,
546	 * due to the unavailability of time-travelling equipment.
547	 */
548	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
549		ubifs_assert(!c->ro_media || c->ro_mount);
550		if (!c->ro_mount ||
551		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
552			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
553				  c->fmt_version, c->ro_compat_version,
554				  UBIFS_FORMAT_VERSION,
555				  UBIFS_RO_COMPAT_VERSION);
556			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
557				ubifs_msg(c, "only R/O mounting is possible");
558				err = -EROFS;
559			} else
560				err = -EINVAL;
561			goto out;
562		}
563
564		/*
565		 * The FS is mounted R/O, and the media format is
566		 * R/O-compatible with the UBIFS implementation, so we can
567		 * mount.
568		 */
569		c->rw_incompat = 1;
570	}
571
572	if (c->fmt_version < 3) {
573		ubifs_err(c, "on-flash format version %d is not supported",
574			  c->fmt_version);
575		err = -EINVAL;
576		goto out;
577	}
578
579	switch (sup->key_hash) {
580	case UBIFS_KEY_HASH_R5:
581		c->key_hash = key_r5_hash;
582		c->key_hash_type = UBIFS_KEY_HASH_R5;
583		break;
584
585	case UBIFS_KEY_HASH_TEST:
586		c->key_hash = key_test_hash;
587		c->key_hash_type = UBIFS_KEY_HASH_TEST;
588		break;
589	};
590
591	c->key_fmt = sup->key_fmt;
592
593	switch (c->key_fmt) {
594	case UBIFS_SIMPLE_KEY_FMT:
595		c->key_len = UBIFS_SK_LEN;
596		break;
597	default:
598		ubifs_err(c, "unsupported key format");
599		err = -EINVAL;
600		goto out;
601	}
602
603	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
604	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
605	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
606	c->log_lebs      = le32_to_cpu(sup->log_lebs);
607	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
608	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
609	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
610	c->fanout        = le32_to_cpu(sup->fanout);
611	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
612	c->rp_size       = le64_to_cpu(sup->rp_size);
613	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
614	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
615	sup_flags        = le32_to_cpu(sup->flags);
616	if (!c->mount_opts.override_compr)
617		c->default_compr = le16_to_cpu(sup->default_compr);
618
619	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
620	memcpy(&c->uuid, &sup->uuid, 16);
621	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
622	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
623
624	/* Automatically increase file system size to the maximum size */
625	c->old_leb_cnt = c->leb_cnt;
626	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
627		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
628		if (c->ro_mount)
629			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
630				c->old_leb_cnt,	c->leb_cnt);
631		else {
632			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
633				c->old_leb_cnt, c->leb_cnt);
634			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
635			err = ubifs_write_sb_node(c, sup);
636			if (err)
637				goto out;
638			c->old_leb_cnt = c->leb_cnt;
639		}
640	}
641
642	c->log_bytes = (long long)c->log_lebs * c->leb_size;
643	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
644	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
645	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
646	c->orph_first = c->lpt_last + 1;
647	c->orph_last = c->orph_first + c->orph_lebs - 1;
648	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
649	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
650	c->main_first = c->leb_cnt - c->main_lebs;
651
652	err = validate_sb(c, sup);
653out:
654	kfree(sup);
655	return err;
656}
657
658/**
659 * fixup_leb - fixup/unmap an LEB containing free space.
660 * @c: UBIFS file-system description object
661 * @lnum: the LEB number to fix up
662 * @len: number of used bytes in LEB (starting at offset 0)
663 *
664 * This function reads the contents of the given LEB number @lnum, then fixes
665 * it up, so that empty min. I/O units in the end of LEB are actually erased on
666 * flash (rather than being just all-0xff real data). If the LEB is completely
667 * empty, it is simply unmapped.
668 */
669static int fixup_leb(struct ubifs_info *c, int lnum, int len)
670{
671	int err;
672
673	ubifs_assert(len >= 0);
674	ubifs_assert(len % c->min_io_size == 0);
675	ubifs_assert(len < c->leb_size);
676
677	if (len == 0) {
678		dbg_mnt("unmap empty LEB %d", lnum);
679		return ubifs_leb_unmap(c, lnum);
680	}
681
682	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
683	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
684	if (err)
685		return err;
686
687	return ubifs_leb_change(c, lnum, c->sbuf, len);
688}
689
690/**
691 * fixup_free_space - find & remap all LEBs containing free space.
692 * @c: UBIFS file-system description object
693 *
694 * This function walks through all LEBs in the filesystem and fiexes up those
695 * containing free/empty space.
696 */
697static int fixup_free_space(struct ubifs_info *c)
698{
699	int lnum, err = 0;
700	struct ubifs_lprops *lprops;
701
702	ubifs_get_lprops(c);
703
704	/* Fixup LEBs in the master area */
705	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
706		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
707		if (err)
708			goto out;
709	}
710
711	/* Unmap unused log LEBs */
712	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
713	while (lnum != c->ltail_lnum) {
714		err = fixup_leb(c, lnum, 0);
715		if (err)
716			goto out;
717		lnum = ubifs_next_log_lnum(c, lnum);
718	}
719
720	/*
721	 * Fixup the log head which contains the only a CS node at the
722	 * beginning.
723	 */
724	err = fixup_leb(c, c->lhead_lnum,
725			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
726	if (err)
727		goto out;
728
729	/* Fixup LEBs in the LPT area */
730	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
731		int free = c->ltab[lnum - c->lpt_first].free;
732
733		if (free > 0) {
734			err = fixup_leb(c, lnum, c->leb_size - free);
735			if (err)
736				goto out;
737		}
738	}
739
740	/* Unmap LEBs in the orphans area */
741	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
742		err = fixup_leb(c, lnum, 0);
743		if (err)
744			goto out;
745	}
746
747	/* Fixup LEBs in the main area */
748	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
749		lprops = ubifs_lpt_lookup(c, lnum);
750		if (IS_ERR(lprops)) {
751			err = PTR_ERR(lprops);
752			goto out;
753		}
754
755		if (lprops->free > 0) {
756			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
757			if (err)
758				goto out;
759		}
760	}
761
762out:
763	ubifs_release_lprops(c);
764	return err;
765}
766
767/**
768 * ubifs_fixup_free_space - find & fix all LEBs with free space.
769 * @c: UBIFS file-system description object
770 *
771 * This function fixes up LEBs containing free space on first mount, if the
772 * appropriate flag was set when the FS was created. Each LEB with one or more
773 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
774 * the free space is actually erased. E.g., this is necessary for some NAND
775 * chips, since the free space may have been programmed like real "0xff" data
776 * (generating a non-0xff ECC), causing future writes to the not-really-erased
777 * NAND pages to behave badly. After the space is fixed up, the superblock flag
778 * is cleared, so that this is skipped for all future mounts.
779 */
780int ubifs_fixup_free_space(struct ubifs_info *c)
781{
782	int err;
783	struct ubifs_sb_node *sup;
784
785	ubifs_assert(c->space_fixup);
786	ubifs_assert(!c->ro_mount);
787
788	ubifs_msg(c, "start fixing up free space");
789
790	err = fixup_free_space(c);
791	if (err)
792		return err;
793
794	sup = ubifs_read_sb_node(c);
795	if (IS_ERR(sup))
796		return PTR_ERR(sup);
797
798	/* Free-space fixup is no longer required */
799	c->space_fixup = 0;
800	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
801
802	err = ubifs_write_sb_node(c, sup);
803	kfree(sup);
804	if (err)
805		return err;
806
807	ubifs_msg(c, "free space fixup complete");
808	return err;
809}
810