1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
34#include <linux/slab.h>
35#include "ubifs.h"
36
37/*
38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39 * @NAME_LESS: name corresponding to the first argument is less than second
40 * @NAME_MATCHES: names match
41 * @NAME_GREATER: name corresponding to the second argument is greater than
42 *                first
43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44 *
45 * These constants were introduce to improve readability.
46 */
47enum {
48	NAME_LESS    = 0,
49	NAME_MATCHES = 1,
50	NAME_GREATER = 2,
51	NOT_ON_MEDIA = 3,
52};
53
54/**
55 * insert_old_idx - record an index node obsoleted since the last commit start.
56 * @c: UBIFS file-system description object
57 * @lnum: LEB number of obsoleted index node
58 * @offs: offset of obsoleted index node
59 *
60 * Returns %0 on success, and a negative error code on failure.
61 *
62 * For recovery, there must always be a complete intact version of the index on
63 * flash at all times. That is called the "old index". It is the index as at the
64 * time of the last successful commit. Many of the index nodes in the old index
65 * may be dirty, but they must not be erased until the next successful commit
66 * (at which point that index becomes the old index).
67 *
68 * That means that the garbage collection and the in-the-gaps method of
69 * committing must be able to determine if an index node is in the old index.
70 * Most of the old index nodes can be found by looking up the TNC using the
71 * 'lookup_znode()' function. However, some of the old index nodes may have
72 * been deleted from the current index or may have been changed so much that
73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74 * That is what this function does. The RB-tree is ordered by LEB number and
75 * offset because they uniquely identify the old index node.
76 */
77static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78{
79	struct ubifs_old_idx *old_idx, *o;
80	struct rb_node **p, *parent = NULL;
81
82	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83	if (unlikely(!old_idx))
84		return -ENOMEM;
85	old_idx->lnum = lnum;
86	old_idx->offs = offs;
87
88	p = &c->old_idx.rb_node;
89	while (*p) {
90		parent = *p;
91		o = rb_entry(parent, struct ubifs_old_idx, rb);
92		if (lnum < o->lnum)
93			p = &(*p)->rb_left;
94		else if (lnum > o->lnum)
95			p = &(*p)->rb_right;
96		else if (offs < o->offs)
97			p = &(*p)->rb_left;
98		else if (offs > o->offs)
99			p = &(*p)->rb_right;
100		else {
101			ubifs_err(c, "old idx added twice!");
102			kfree(old_idx);
103			return 0;
104		}
105	}
106	rb_link_node(&old_idx->rb, parent, p);
107	rb_insert_color(&old_idx->rb, &c->old_idx);
108	return 0;
109}
110
111/**
112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
113 * @c: UBIFS file-system description object
114 * @znode: znode of obsoleted index node
115 *
116 * Returns %0 on success, and a negative error code on failure.
117 */
118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119{
120	if (znode->parent) {
121		struct ubifs_zbranch *zbr;
122
123		zbr = &znode->parent->zbranch[znode->iip];
124		if (zbr->len)
125			return insert_old_idx(c, zbr->lnum, zbr->offs);
126	} else
127		if (c->zroot.len)
128			return insert_old_idx(c, c->zroot.lnum,
129					      c->zroot.offs);
130	return 0;
131}
132
133/**
134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135 * @c: UBIFS file-system description object
136 * @znode: znode of obsoleted index node
137 *
138 * Returns %0 on success, and a negative error code on failure.
139 */
140static int ins_clr_old_idx_znode(struct ubifs_info *c,
141				 struct ubifs_znode *znode)
142{
143	int err;
144
145	if (znode->parent) {
146		struct ubifs_zbranch *zbr;
147
148		zbr = &znode->parent->zbranch[znode->iip];
149		if (zbr->len) {
150			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151			if (err)
152				return err;
153			zbr->lnum = 0;
154			zbr->offs = 0;
155			zbr->len = 0;
156		}
157	} else
158		if (c->zroot.len) {
159			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160			if (err)
161				return err;
162			c->zroot.lnum = 0;
163			c->zroot.offs = 0;
164			c->zroot.len = 0;
165		}
166	return 0;
167}
168
169/**
170 * destroy_old_idx - destroy the old_idx RB-tree.
171 * @c: UBIFS file-system description object
172 *
173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
174 * nodes that were in the index last commit but have since been deleted.  This
175 * is necessary for recovery i.e. the old index must be kept intact until the
176 * new index is successfully written.  The old-idx RB-tree is used for the
177 * in-the-gaps method of writing index nodes and is destroyed every commit.
178 */
179void destroy_old_idx(struct ubifs_info *c)
180{
181	struct ubifs_old_idx *old_idx, *n;
182
183	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
184		kfree(old_idx);
185
186	c->old_idx = RB_ROOT;
187}
188
189/**
190 * copy_znode - copy a dirty znode.
191 * @c: UBIFS file-system description object
192 * @znode: znode to copy
193 *
194 * A dirty znode being committed may not be changed, so it is copied.
195 */
196static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197				      struct ubifs_znode *znode)
198{
199	struct ubifs_znode *zn;
200
201	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
202	if (unlikely(!zn))
203		return ERR_PTR(-ENOMEM);
204
205	memcpy(zn, znode, c->max_znode_sz);
206	zn->cnext = NULL;
207	__set_bit(DIRTY_ZNODE, &zn->flags);
208	__clear_bit(COW_ZNODE, &zn->flags);
209
210	ubifs_assert(!ubifs_zn_obsolete(znode));
211	__set_bit(OBSOLETE_ZNODE, &znode->flags);
212
213	if (znode->level != 0) {
214		int i;
215		const int n = zn->child_cnt;
216
217		/* The children now have new parent */
218		for (i = 0; i < n; i++) {
219			struct ubifs_zbranch *zbr = &zn->zbranch[i];
220
221			if (zbr->znode)
222				zbr->znode->parent = zn;
223		}
224	}
225
226	atomic_long_inc(&c->dirty_zn_cnt);
227	return zn;
228}
229
230/**
231 * add_idx_dirt - add dirt due to a dirty znode.
232 * @c: UBIFS file-system description object
233 * @lnum: LEB number of index node
234 * @dirt: size of index node
235 *
236 * This function updates lprops dirty space and the new size of the index.
237 */
238static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
239{
240	c->calc_idx_sz -= ALIGN(dirt, 8);
241	return ubifs_add_dirt(c, lnum, dirt);
242}
243
244/**
245 * dirty_cow_znode - ensure a znode is not being committed.
246 * @c: UBIFS file-system description object
247 * @zbr: branch of znode to check
248 *
249 * Returns dirtied znode on success or negative error code on failure.
250 */
251static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
252					   struct ubifs_zbranch *zbr)
253{
254	struct ubifs_znode *znode = zbr->znode;
255	struct ubifs_znode *zn;
256	int err;
257
258	if (!ubifs_zn_cow(znode)) {
259		/* znode is not being committed */
260		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
261			atomic_long_inc(&c->dirty_zn_cnt);
262			atomic_long_dec(&c->clean_zn_cnt);
263			atomic_long_dec(&ubifs_clean_zn_cnt);
264			err = add_idx_dirt(c, zbr->lnum, zbr->len);
265			if (unlikely(err))
266				return ERR_PTR(err);
267		}
268		return znode;
269	}
270
271	zn = copy_znode(c, znode);
272	if (IS_ERR(zn))
273		return zn;
274
275	if (zbr->len) {
276		err = insert_old_idx(c, zbr->lnum, zbr->offs);
277		if (unlikely(err))
278			return ERR_PTR(err);
279		err = add_idx_dirt(c, zbr->lnum, zbr->len);
280	} else
281		err = 0;
282
283	zbr->znode = zn;
284	zbr->lnum = 0;
285	zbr->offs = 0;
286	zbr->len = 0;
287
288	if (unlikely(err))
289		return ERR_PTR(err);
290	return zn;
291}
292
293/**
294 * lnc_add - add a leaf node to the leaf node cache.
295 * @c: UBIFS file-system description object
296 * @zbr: zbranch of leaf node
297 * @node: leaf node
298 *
299 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
300 * purpose of the leaf node cache is to save re-reading the same leaf node over
301 * and over again. Most things are cached by VFS, however the file system must
302 * cache directory entries for readdir and for resolving hash collisions. The
303 * present implementation of the leaf node cache is extremely simple, and
304 * allows for error returns that are not used but that may be needed if a more
305 * complex implementation is created.
306 *
307 * Note, this function does not add the @node object to LNC directly, but
308 * allocates a copy of the object and adds the copy to LNC. The reason for this
309 * is that @node has been allocated outside of the TNC subsystem and will be
310 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
311 * may be changed at any time, e.g. freed by the shrinker.
312 */
313static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
314		   const void *node)
315{
316	int err;
317	void *lnc_node;
318	const struct ubifs_dent_node *dent = node;
319
320	ubifs_assert(!zbr->leaf);
321	ubifs_assert(zbr->len != 0);
322	ubifs_assert(is_hash_key(c, &zbr->key));
323
324	err = ubifs_validate_entry(c, dent);
325	if (err) {
326		dump_stack();
327		ubifs_dump_node(c, dent);
328		return err;
329	}
330
331	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
332	if (!lnc_node)
333		/* We don't have to have the cache, so no error */
334		return 0;
335
336	zbr->leaf = lnc_node;
337	return 0;
338}
339
340 /**
341 * lnc_add_directly - add a leaf node to the leaf-node-cache.
342 * @c: UBIFS file-system description object
343 * @zbr: zbranch of leaf node
344 * @node: leaf node
345 *
346 * This function is similar to 'lnc_add()', but it does not create a copy of
347 * @node but inserts @node to TNC directly.
348 */
349static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
350			    void *node)
351{
352	int err;
353
354	ubifs_assert(!zbr->leaf);
355	ubifs_assert(zbr->len != 0);
356
357	err = ubifs_validate_entry(c, node);
358	if (err) {
359		dump_stack();
360		ubifs_dump_node(c, node);
361		return err;
362	}
363
364	zbr->leaf = node;
365	return 0;
366}
367
368/**
369 * lnc_free - remove a leaf node from the leaf node cache.
370 * @zbr: zbranch of leaf node
371 * @node: leaf node
372 */
373static void lnc_free(struct ubifs_zbranch *zbr)
374{
375	if (!zbr->leaf)
376		return;
377	kfree(zbr->leaf);
378	zbr->leaf = NULL;
379}
380
381/**
382 * tnc_read_node_nm - read a "hashed" leaf node.
383 * @c: UBIFS file-system description object
384 * @zbr: key and position of the node
385 * @node: node is returned here
386 *
387 * This function reads a "hashed" node defined by @zbr from the leaf node cache
388 * (in it is there) or from the hash media, in which case the node is also
389 * added to LNC. Returns zero in case of success or a negative negative error
390 * code in case of failure.
391 */
392static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
393			    void *node)
394{
395	int err;
396
397	ubifs_assert(is_hash_key(c, &zbr->key));
398
399	if (zbr->leaf) {
400		/* Read from the leaf node cache */
401		ubifs_assert(zbr->len != 0);
402		memcpy(node, zbr->leaf, zbr->len);
403		return 0;
404	}
405
406	err = ubifs_tnc_read_node(c, zbr, node);
407	if (err)
408		return err;
409
410	/* Add the node to the leaf node cache */
411	err = lnc_add(c, zbr, node);
412	return err;
413}
414
415/**
416 * try_read_node - read a node if it is a node.
417 * @c: UBIFS file-system description object
418 * @buf: buffer to read to
419 * @type: node type
420 * @len: node length (not aligned)
421 * @lnum: LEB number of node to read
422 * @offs: offset of node to read
423 *
424 * This function tries to read a node of known type and length, checks it and
425 * stores it in @buf. This function returns %1 if a node is present and %0 if
426 * a node is not present. A negative error code is returned for I/O errors.
427 * This function performs that same function as ubifs_read_node except that
428 * it does not require that there is actually a node present and instead
429 * the return code indicates if a node was read.
430 *
431 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
432 * is true (it is controlled by corresponding mount option). However, if
433 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
434 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
435 * because during mounting or re-mounting from R/O mode to R/W mode we may read
436 * journal nodes (when replying the journal or doing the recovery) and the
437 * journal nodes may potentially be corrupted, so checking is required.
438 */
439static int try_read_node(const struct ubifs_info *c, void *buf, int type,
440			 int len, int lnum, int offs)
441{
442	int err, node_len;
443	struct ubifs_ch *ch = buf;
444	uint32_t crc, node_crc;
445
446	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
447
448	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
449	if (err) {
450		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
451			  type, lnum, offs, err);
452		return err;
453	}
454
455	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
456		return 0;
457
458	if (ch->node_type != type)
459		return 0;
460
461	node_len = le32_to_cpu(ch->len);
462	if (node_len != len)
463		return 0;
464
465	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
466	    !c->remounting_rw)
467		return 1;
468
469	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
470	node_crc = le32_to_cpu(ch->crc);
471	if (crc != node_crc)
472		return 0;
473
474	return 1;
475}
476
477/**
478 * fallible_read_node - try to read a leaf node.
479 * @c: UBIFS file-system description object
480 * @key:  key of node to read
481 * @zbr:  position of node
482 * @node: node returned
483 *
484 * This function tries to read a node and returns %1 if the node is read, %0
485 * if the node is not present, and a negative error code in the case of error.
486 */
487static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
488			      struct ubifs_zbranch *zbr, void *node)
489{
490	int ret;
491
492	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
493
494	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
495			    zbr->offs);
496	if (ret == 1) {
497		union ubifs_key node_key;
498		struct ubifs_dent_node *dent = node;
499
500		/* All nodes have key in the same place */
501		key_read(c, &dent->key, &node_key);
502		if (keys_cmp(c, key, &node_key) != 0)
503			ret = 0;
504	}
505	if (ret == 0 && c->replaying)
506		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
507			zbr->lnum, zbr->offs, zbr->len);
508	return ret;
509}
510
511/**
512 * matches_name - determine if a direntry or xattr entry matches a given name.
513 * @c: UBIFS file-system description object
514 * @zbr: zbranch of dent
515 * @nm: name to match
516 *
517 * This function checks if xentry/direntry referred by zbranch @zbr matches name
518 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
519 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
520 * of failure, a negative error code is returned.
521 */
522static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
523			const struct qstr *nm)
524{
525	struct ubifs_dent_node *dent;
526	int nlen, err;
527
528	/* If possible, match against the dent in the leaf node cache */
529	if (!zbr->leaf) {
530		dent = kmalloc(zbr->len, GFP_NOFS);
531		if (!dent)
532			return -ENOMEM;
533
534		err = ubifs_tnc_read_node(c, zbr, dent);
535		if (err)
536			goto out_free;
537
538		/* Add the node to the leaf node cache */
539		err = lnc_add_directly(c, zbr, dent);
540		if (err)
541			goto out_free;
542	} else
543		dent = zbr->leaf;
544
545	nlen = le16_to_cpu(dent->nlen);
546	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
547	if (err == 0) {
548		if (nlen == nm->len)
549			return NAME_MATCHES;
550		else if (nlen < nm->len)
551			return NAME_LESS;
552		else
553			return NAME_GREATER;
554	} else if (err < 0)
555		return NAME_LESS;
556	else
557		return NAME_GREATER;
558
559out_free:
560	kfree(dent);
561	return err;
562}
563
564/**
565 * get_znode - get a TNC znode that may not be loaded yet.
566 * @c: UBIFS file-system description object
567 * @znode: parent znode
568 * @n: znode branch slot number
569 *
570 * This function returns the znode or a negative error code.
571 */
572static struct ubifs_znode *get_znode(struct ubifs_info *c,
573				     struct ubifs_znode *znode, int n)
574{
575	struct ubifs_zbranch *zbr;
576
577	zbr = &znode->zbranch[n];
578	if (zbr->znode)
579		znode = zbr->znode;
580	else
581		znode = ubifs_load_znode(c, zbr, znode, n);
582	return znode;
583}
584
585/**
586 * tnc_next - find next TNC entry.
587 * @c: UBIFS file-system description object
588 * @zn: znode is passed and returned here
589 * @n: znode branch slot number is passed and returned here
590 *
591 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
592 * no next entry, or a negative error code otherwise.
593 */
594static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
595{
596	struct ubifs_znode *znode = *zn;
597	int nn = *n;
598
599	nn += 1;
600	if (nn < znode->child_cnt) {
601		*n = nn;
602		return 0;
603	}
604	while (1) {
605		struct ubifs_znode *zp;
606
607		zp = znode->parent;
608		if (!zp)
609			return -ENOENT;
610		nn = znode->iip + 1;
611		znode = zp;
612		if (nn < znode->child_cnt) {
613			znode = get_znode(c, znode, nn);
614			if (IS_ERR(znode))
615				return PTR_ERR(znode);
616			while (znode->level != 0) {
617				znode = get_znode(c, znode, 0);
618				if (IS_ERR(znode))
619					return PTR_ERR(znode);
620			}
621			nn = 0;
622			break;
623		}
624	}
625	*zn = znode;
626	*n = nn;
627	return 0;
628}
629
630/**
631 * tnc_prev - find previous TNC entry.
632 * @c: UBIFS file-system description object
633 * @zn: znode is returned here
634 * @n: znode branch slot number is passed and returned here
635 *
636 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
637 * there is no next entry, or a negative error code otherwise.
638 */
639static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
640{
641	struct ubifs_znode *znode = *zn;
642	int nn = *n;
643
644	if (nn > 0) {
645		*n = nn - 1;
646		return 0;
647	}
648	while (1) {
649		struct ubifs_znode *zp;
650
651		zp = znode->parent;
652		if (!zp)
653			return -ENOENT;
654		nn = znode->iip - 1;
655		znode = zp;
656		if (nn >= 0) {
657			znode = get_znode(c, znode, nn);
658			if (IS_ERR(znode))
659				return PTR_ERR(znode);
660			while (znode->level != 0) {
661				nn = znode->child_cnt - 1;
662				znode = get_znode(c, znode, nn);
663				if (IS_ERR(znode))
664					return PTR_ERR(znode);
665			}
666			nn = znode->child_cnt - 1;
667			break;
668		}
669	}
670	*zn = znode;
671	*n = nn;
672	return 0;
673}
674
675/**
676 * resolve_collision - resolve a collision.
677 * @c: UBIFS file-system description object
678 * @key: key of a directory or extended attribute entry
679 * @zn: znode is returned here
680 * @n: zbranch number is passed and returned here
681 * @nm: name of the entry
682 *
683 * This function is called for "hashed" keys to make sure that the found key
684 * really corresponds to the looked up node (directory or extended attribute
685 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
686 * %0 is returned if @nm is not found and @zn and @n are set to the previous
687 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
688 * This means that @n may be set to %-1 if the leftmost key in @zn is the
689 * previous one. A negative error code is returned on failures.
690 */
691static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
692			     struct ubifs_znode **zn, int *n,
693			     const struct qstr *nm)
694{
695	int err;
696
697	err = matches_name(c, &(*zn)->zbranch[*n], nm);
698	if (unlikely(err < 0))
699		return err;
700	if (err == NAME_MATCHES)
701		return 1;
702
703	if (err == NAME_GREATER) {
704		/* Look left */
705		while (1) {
706			err = tnc_prev(c, zn, n);
707			if (err == -ENOENT) {
708				ubifs_assert(*n == 0);
709				*n = -1;
710				return 0;
711			}
712			if (err < 0)
713				return err;
714			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
715				/*
716				 * We have found the branch after which we would
717				 * like to insert, but inserting in this znode
718				 * may still be wrong. Consider the following 3
719				 * znodes, in the case where we are resolving a
720				 * collision with Key2.
721				 *
722				 *                  znode zp
723				 *            ----------------------
724				 * level 1     |  Key0  |  Key1  |
725				 *            -----------------------
726				 *                 |            |
727				 *       znode za  |            |  znode zb
728				 *          ------------      ------------
729				 * level 0  |  Key0  |        |  Key2  |
730				 *          ------------      ------------
731				 *
732				 * The lookup finds Key2 in znode zb. Lets say
733				 * there is no match and the name is greater so
734				 * we look left. When we find Key0, we end up
735				 * here. If we return now, we will insert into
736				 * znode za at slot n = 1.  But that is invalid
737				 * according to the parent's keys.  Key2 must
738				 * be inserted into znode zb.
739				 *
740				 * Note, this problem is not relevant for the
741				 * case when we go right, because
742				 * 'tnc_insert()' would correct the parent key.
743				 */
744				if (*n == (*zn)->child_cnt - 1) {
745					err = tnc_next(c, zn, n);
746					if (err) {
747						/* Should be impossible */
748						ubifs_assert(0);
749						if (err == -ENOENT)
750							err = -EINVAL;
751						return err;
752					}
753					ubifs_assert(*n == 0);
754					*n = -1;
755				}
756				return 0;
757			}
758			err = matches_name(c, &(*zn)->zbranch[*n], nm);
759			if (err < 0)
760				return err;
761			if (err == NAME_LESS)
762				return 0;
763			if (err == NAME_MATCHES)
764				return 1;
765			ubifs_assert(err == NAME_GREATER);
766		}
767	} else {
768		int nn = *n;
769		struct ubifs_znode *znode = *zn;
770
771		/* Look right */
772		while (1) {
773			err = tnc_next(c, &znode, &nn);
774			if (err == -ENOENT)
775				return 0;
776			if (err < 0)
777				return err;
778			if (keys_cmp(c, &znode->zbranch[nn].key, key))
779				return 0;
780			err = matches_name(c, &znode->zbranch[nn], nm);
781			if (err < 0)
782				return err;
783			if (err == NAME_GREATER)
784				return 0;
785			*zn = znode;
786			*n = nn;
787			if (err == NAME_MATCHES)
788				return 1;
789			ubifs_assert(err == NAME_LESS);
790		}
791	}
792}
793
794/**
795 * fallible_matches_name - determine if a dent matches a given name.
796 * @c: UBIFS file-system description object
797 * @zbr: zbranch of dent
798 * @nm: name to match
799 *
800 * This is a "fallible" version of 'matches_name()' function which does not
801 * panic if the direntry/xentry referred by @zbr does not exist on the media.
802 *
803 * This function checks if xentry/direntry referred by zbranch @zbr matches name
804 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
805 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
806 * if xentry/direntry referred by @zbr does not exist on the media. A negative
807 * error code is returned in case of failure.
808 */
809static int fallible_matches_name(struct ubifs_info *c,
810				 struct ubifs_zbranch *zbr,
811				 const struct qstr *nm)
812{
813	struct ubifs_dent_node *dent;
814	int nlen, err;
815
816	/* If possible, match against the dent in the leaf node cache */
817	if (!zbr->leaf) {
818		dent = kmalloc(zbr->len, GFP_NOFS);
819		if (!dent)
820			return -ENOMEM;
821
822		err = fallible_read_node(c, &zbr->key, zbr, dent);
823		if (err < 0)
824			goto out_free;
825		if (err == 0) {
826			/* The node was not present */
827			err = NOT_ON_MEDIA;
828			goto out_free;
829		}
830		ubifs_assert(err == 1);
831
832		err = lnc_add_directly(c, zbr, dent);
833		if (err)
834			goto out_free;
835	} else
836		dent = zbr->leaf;
837
838	nlen = le16_to_cpu(dent->nlen);
839	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
840	if (err == 0) {
841		if (nlen == nm->len)
842			return NAME_MATCHES;
843		else if (nlen < nm->len)
844			return NAME_LESS;
845		else
846			return NAME_GREATER;
847	} else if (err < 0)
848		return NAME_LESS;
849	else
850		return NAME_GREATER;
851
852out_free:
853	kfree(dent);
854	return err;
855}
856
857/**
858 * fallible_resolve_collision - resolve a collision even if nodes are missing.
859 * @c: UBIFS file-system description object
860 * @key: key
861 * @zn: znode is returned here
862 * @n: branch number is passed and returned here
863 * @nm: name of directory entry
864 * @adding: indicates caller is adding a key to the TNC
865 *
866 * This is a "fallible" version of the 'resolve_collision()' function which
867 * does not panic if one of the nodes referred to by TNC does not exist on the
868 * media. This may happen when replaying the journal if a deleted node was
869 * Garbage-collected and the commit was not done. A branch that refers to a node
870 * that is not present is called a dangling branch. The following are the return
871 * codes for this function:
872 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
873 *    branch;
874 *  o if we are @adding and @nm was not found, %0 is returned;
875 *  o if we are not @adding and @nm was not found, but a dangling branch was
876 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
877 *  o a negative error code is returned in case of failure.
878 */
879static int fallible_resolve_collision(struct ubifs_info *c,
880				      const union ubifs_key *key,
881				      struct ubifs_znode **zn, int *n,
882				      const struct qstr *nm, int adding)
883{
884	struct ubifs_znode *o_znode = NULL, *znode = *zn;
885	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
886
887	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
888	if (unlikely(cmp < 0))
889		return cmp;
890	if (cmp == NAME_MATCHES)
891		return 1;
892	if (cmp == NOT_ON_MEDIA) {
893		o_znode = znode;
894		o_n = nn;
895		/*
896		 * We are unlucky and hit a dangling branch straight away.
897		 * Now we do not really know where to go to find the needed
898		 * branch - to the left or to the right. Well, let's try left.
899		 */
900		unsure = 1;
901	} else if (!adding)
902		unsure = 1; /* Remove a dangling branch wherever it is */
903
904	if (cmp == NAME_GREATER || unsure) {
905		/* Look left */
906		while (1) {
907			err = tnc_prev(c, zn, n);
908			if (err == -ENOENT) {
909				ubifs_assert(*n == 0);
910				*n = -1;
911				break;
912			}
913			if (err < 0)
914				return err;
915			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
916				/* See comments in 'resolve_collision()' */
917				if (*n == (*zn)->child_cnt - 1) {
918					err = tnc_next(c, zn, n);
919					if (err) {
920						/* Should be impossible */
921						ubifs_assert(0);
922						if (err == -ENOENT)
923							err = -EINVAL;
924						return err;
925					}
926					ubifs_assert(*n == 0);
927					*n = -1;
928				}
929				break;
930			}
931			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
932			if (err < 0)
933				return err;
934			if (err == NAME_MATCHES)
935				return 1;
936			if (err == NOT_ON_MEDIA) {
937				o_znode = *zn;
938				o_n = *n;
939				continue;
940			}
941			if (!adding)
942				continue;
943			if (err == NAME_LESS)
944				break;
945			else
946				unsure = 0;
947		}
948	}
949
950	if (cmp == NAME_LESS || unsure) {
951		/* Look right */
952		*zn = znode;
953		*n = nn;
954		while (1) {
955			err = tnc_next(c, &znode, &nn);
956			if (err == -ENOENT)
957				break;
958			if (err < 0)
959				return err;
960			if (keys_cmp(c, &znode->zbranch[nn].key, key))
961				break;
962			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
963			if (err < 0)
964				return err;
965			if (err == NAME_GREATER)
966				break;
967			*zn = znode;
968			*n = nn;
969			if (err == NAME_MATCHES)
970				return 1;
971			if (err == NOT_ON_MEDIA) {
972				o_znode = znode;
973				o_n = nn;
974			}
975		}
976	}
977
978	/* Never match a dangling branch when adding */
979	if (adding || !o_znode)
980		return 0;
981
982	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
983		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
984		o_znode->zbranch[o_n].len);
985	*zn = o_znode;
986	*n = o_n;
987	return 1;
988}
989
990/**
991 * matches_position - determine if a zbranch matches a given position.
992 * @zbr: zbranch of dent
993 * @lnum: LEB number of dent to match
994 * @offs: offset of dent to match
995 *
996 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
997 */
998static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
999{
1000	if (zbr->lnum == lnum && zbr->offs == offs)
1001		return 1;
1002	else
1003		return 0;
1004}
1005
1006/**
1007 * resolve_collision_directly - resolve a collision directly.
1008 * @c: UBIFS file-system description object
1009 * @key: key of directory entry
1010 * @zn: znode is passed and returned here
1011 * @n: zbranch number is passed and returned here
1012 * @lnum: LEB number of dent node to match
1013 * @offs: offset of dent node to match
1014 *
1015 * This function is used for "hashed" keys to make sure the found directory or
1016 * extended attribute entry node is what was looked for. It is used when the
1017 * flash address of the right node is known (@lnum:@offs) which makes it much
1018 * easier to resolve collisions (no need to read entries and match full
1019 * names). This function returns %1 and sets @zn and @n if the collision is
1020 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1021 * previous directory entry. Otherwise a negative error code is returned.
1022 */
1023static int resolve_collision_directly(struct ubifs_info *c,
1024				      const union ubifs_key *key,
1025				      struct ubifs_znode **zn, int *n,
1026				      int lnum, int offs)
1027{
1028	struct ubifs_znode *znode;
1029	int nn, err;
1030
1031	znode = *zn;
1032	nn = *n;
1033	if (matches_position(&znode->zbranch[nn], lnum, offs))
1034		return 1;
1035
1036	/* Look left */
1037	while (1) {
1038		err = tnc_prev(c, &znode, &nn);
1039		if (err == -ENOENT)
1040			break;
1041		if (err < 0)
1042			return err;
1043		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1044			break;
1045		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1046			*zn = znode;
1047			*n = nn;
1048			return 1;
1049		}
1050	}
1051
1052	/* Look right */
1053	znode = *zn;
1054	nn = *n;
1055	while (1) {
1056		err = tnc_next(c, &znode, &nn);
1057		if (err == -ENOENT)
1058			return 0;
1059		if (err < 0)
1060			return err;
1061		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1062			return 0;
1063		*zn = znode;
1064		*n = nn;
1065		if (matches_position(&znode->zbranch[nn], lnum, offs))
1066			return 1;
1067	}
1068}
1069
1070/**
1071 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1072 * @c: UBIFS file-system description object
1073 * @znode: znode to dirty
1074 *
1075 * If we do not have a unique key that resides in a znode, then we cannot
1076 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1077 * This function records the path back to the last dirty ancestor, and then
1078 * dirties the znodes on that path.
1079 */
1080static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1081					       struct ubifs_znode *znode)
1082{
1083	struct ubifs_znode *zp;
1084	int *path = c->bottom_up_buf, p = 0;
1085
1086	ubifs_assert(c->zroot.znode);
1087	ubifs_assert(znode);
1088	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1089		kfree(c->bottom_up_buf);
1090		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1091					   GFP_NOFS);
1092		if (!c->bottom_up_buf)
1093			return ERR_PTR(-ENOMEM);
1094		path = c->bottom_up_buf;
1095	}
1096	if (c->zroot.znode->level) {
1097		/* Go up until parent is dirty */
1098		while (1) {
1099			int n;
1100
1101			zp = znode->parent;
1102			if (!zp)
1103				break;
1104			n = znode->iip;
1105			ubifs_assert(p < c->zroot.znode->level);
1106			path[p++] = n;
1107			if (!zp->cnext && ubifs_zn_dirty(znode))
1108				break;
1109			znode = zp;
1110		}
1111	}
1112
1113	/* Come back down, dirtying as we go */
1114	while (1) {
1115		struct ubifs_zbranch *zbr;
1116
1117		zp = znode->parent;
1118		if (zp) {
1119			ubifs_assert(path[p - 1] >= 0);
1120			ubifs_assert(path[p - 1] < zp->child_cnt);
1121			zbr = &zp->zbranch[path[--p]];
1122			znode = dirty_cow_znode(c, zbr);
1123		} else {
1124			ubifs_assert(znode == c->zroot.znode);
1125			znode = dirty_cow_znode(c, &c->zroot);
1126		}
1127		if (IS_ERR(znode) || !p)
1128			break;
1129		ubifs_assert(path[p - 1] >= 0);
1130		ubifs_assert(path[p - 1] < znode->child_cnt);
1131		znode = znode->zbranch[path[p - 1]].znode;
1132	}
1133
1134	return znode;
1135}
1136
1137/**
1138 * ubifs_lookup_level0 - search for zero-level znode.
1139 * @c: UBIFS file-system description object
1140 * @key:  key to lookup
1141 * @zn: znode is returned here
1142 * @n: znode branch slot number is returned here
1143 *
1144 * This function looks up the TNC tree and search for zero-level znode which
1145 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1146 * cases:
1147 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1148 *     is returned and slot number of the matched branch is stored in @n;
1149 *   o not exact match, which means that zero-level znode does not contain
1150 *     @key, then %0 is returned and slot number of the closest branch is stored
1151 *     in @n;
1152 *   o @key is so small that it is even less than the lowest key of the
1153 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1154 *
1155 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1156 * function reads corresponding indexing nodes and inserts them to TNC. In
1157 * case of failure, a negative error code is returned.
1158 */
1159int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1160			struct ubifs_znode **zn, int *n)
1161{
1162	int err, exact;
1163	struct ubifs_znode *znode;
1164	unsigned long time = get_seconds();
1165
1166	dbg_tnck(key, "search key ");
1167	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1168
1169	znode = c->zroot.znode;
1170	if (unlikely(!znode)) {
1171		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1172		if (IS_ERR(znode))
1173			return PTR_ERR(znode);
1174	}
1175
1176	znode->time = time;
1177
1178	while (1) {
1179		struct ubifs_zbranch *zbr;
1180
1181		exact = ubifs_search_zbranch(c, znode, key, n);
1182
1183		if (znode->level == 0)
1184			break;
1185
1186		if (*n < 0)
1187			*n = 0;
1188		zbr = &znode->zbranch[*n];
1189
1190		if (zbr->znode) {
1191			znode->time = time;
1192			znode = zbr->znode;
1193			continue;
1194		}
1195
1196		/* znode is not in TNC cache, load it from the media */
1197		znode = ubifs_load_znode(c, zbr, znode, *n);
1198		if (IS_ERR(znode))
1199			return PTR_ERR(znode);
1200	}
1201
1202	*zn = znode;
1203	if (exact || !is_hash_key(c, key) || *n != -1) {
1204		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1205		return exact;
1206	}
1207
1208	/*
1209	 * Here is a tricky place. We have not found the key and this is a
1210	 * "hashed" key, which may collide. The rest of the code deals with
1211	 * situations like this:
1212	 *
1213	 *                  | 3 | 5 |
1214	 *                  /       \
1215	 *          | 3 | 5 |      | 6 | 7 | (x)
1216	 *
1217	 * Or more a complex example:
1218	 *
1219	 *                | 1 | 5 |
1220	 *                /       \
1221	 *       | 1 | 3 |         | 5 | 8 |
1222	 *              \           /
1223	 *          | 5 | 5 |   | 6 | 7 | (x)
1224	 *
1225	 * In the examples, if we are looking for key "5", we may reach nodes
1226	 * marked with "(x)". In this case what we have do is to look at the
1227	 * left and see if there is "5" key there. If there is, we have to
1228	 * return it.
1229	 *
1230	 * Note, this whole situation is possible because we allow to have
1231	 * elements which are equivalent to the next key in the parent in the
1232	 * children of current znode. For example, this happens if we split a
1233	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1234	 * like this:
1235	 *                      | 3 | 5 |
1236	 *                       /     \
1237	 *                | 3 | 5 |   | 5 | 6 | 7 |
1238	 *                              ^
1239	 * And this becomes what is at the first "picture" after key "5" marked
1240	 * with "^" is removed. What could be done is we could prohibit
1241	 * splitting in the middle of the colliding sequence. Also, when
1242	 * removing the leftmost key, we would have to correct the key of the
1243	 * parent node, which would introduce additional complications. Namely,
1244	 * if we changed the leftmost key of the parent znode, the garbage
1245	 * collector would be unable to find it (GC is doing this when GC'ing
1246	 * indexing LEBs). Although we already have an additional RB-tree where
1247	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1248	 * after the commit. But anyway, this does not look easy to implement
1249	 * so we did not try this.
1250	 */
1251	err = tnc_prev(c, &znode, n);
1252	if (err == -ENOENT) {
1253		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1254		*n = -1;
1255		return 0;
1256	}
1257	if (unlikely(err < 0))
1258		return err;
1259	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1260		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261		*n = -1;
1262		return 0;
1263	}
1264
1265	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1266	*zn = znode;
1267	return 1;
1268}
1269
1270/**
1271 * lookup_level0_dirty - search for zero-level znode dirtying.
1272 * @c: UBIFS file-system description object
1273 * @key:  key to lookup
1274 * @zn: znode is returned here
1275 * @n: znode branch slot number is returned here
1276 *
1277 * This function looks up the TNC tree and search for zero-level znode which
1278 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1279 * cases:
1280 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1281 *     is returned and slot number of the matched branch is stored in @n;
1282 *   o not exact match, which means that zero-level znode does not contain @key
1283 *     then %0 is returned and slot number of the closed branch is stored in
1284 *     @n;
1285 *   o @key is so small that it is even less than the lowest key of the
1286 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1287 *
1288 * Additionally all znodes in the path from the root to the located zero-level
1289 * znode are marked as dirty.
1290 *
1291 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1292 * function reads corresponding indexing nodes and inserts them to TNC. In
1293 * case of failure, a negative error code is returned.
1294 */
1295static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1296			       struct ubifs_znode **zn, int *n)
1297{
1298	int err, exact;
1299	struct ubifs_znode *znode;
1300	unsigned long time = get_seconds();
1301
1302	dbg_tnck(key, "search and dirty key ");
1303
1304	znode = c->zroot.znode;
1305	if (unlikely(!znode)) {
1306		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1307		if (IS_ERR(znode))
1308			return PTR_ERR(znode);
1309	}
1310
1311	znode = dirty_cow_znode(c, &c->zroot);
1312	if (IS_ERR(znode))
1313		return PTR_ERR(znode);
1314
1315	znode->time = time;
1316
1317	while (1) {
1318		struct ubifs_zbranch *zbr;
1319
1320		exact = ubifs_search_zbranch(c, znode, key, n);
1321
1322		if (znode->level == 0)
1323			break;
1324
1325		if (*n < 0)
1326			*n = 0;
1327		zbr = &znode->zbranch[*n];
1328
1329		if (zbr->znode) {
1330			znode->time = time;
1331			znode = dirty_cow_znode(c, zbr);
1332			if (IS_ERR(znode))
1333				return PTR_ERR(znode);
1334			continue;
1335		}
1336
1337		/* znode is not in TNC cache, load it from the media */
1338		znode = ubifs_load_znode(c, zbr, znode, *n);
1339		if (IS_ERR(znode))
1340			return PTR_ERR(znode);
1341		znode = dirty_cow_znode(c, zbr);
1342		if (IS_ERR(znode))
1343			return PTR_ERR(znode);
1344	}
1345
1346	*zn = znode;
1347	if (exact || !is_hash_key(c, key) || *n != -1) {
1348		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1349		return exact;
1350	}
1351
1352	/*
1353	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1354	 * code.
1355	 */
1356	err = tnc_prev(c, &znode, n);
1357	if (err == -ENOENT) {
1358		*n = -1;
1359		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1360		return 0;
1361	}
1362	if (unlikely(err < 0))
1363		return err;
1364	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1365		*n = -1;
1366		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367		return 0;
1368	}
1369
1370	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1371		znode = dirty_cow_bottom_up(c, znode);
1372		if (IS_ERR(znode))
1373			return PTR_ERR(znode);
1374	}
1375
1376	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1377	*zn = znode;
1378	return 1;
1379}
1380
1381/**
1382 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1383 * @c: UBIFS file-system description object
1384 * @lnum: LEB number
1385 * @gc_seq1: garbage collection sequence number
1386 *
1387 * This function determines if @lnum may have been garbage collected since
1388 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1389 * %0 is returned.
1390 */
1391static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1392{
1393	int gc_seq2, gced_lnum;
1394
1395	gced_lnum = c->gced_lnum;
1396	smp_rmb();
1397	gc_seq2 = c->gc_seq;
1398	/* Same seq means no GC */
1399	if (gc_seq1 == gc_seq2)
1400		return 0;
1401	/* Different by more than 1 means we don't know */
1402	if (gc_seq1 + 1 != gc_seq2)
1403		return 1;
1404	/*
1405	 * We have seen the sequence number has increased by 1. Now we need to
1406	 * be sure we read the right LEB number, so read it again.
1407	 */
1408	smp_rmb();
1409	if (gced_lnum != c->gced_lnum)
1410		return 1;
1411	/* Finally we can check lnum */
1412	if (gced_lnum == lnum)
1413		return 1;
1414	return 0;
1415}
1416
1417/**
1418 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419 * @c: UBIFS file-system description object
1420 * @key: node key to lookup
1421 * @node: the node is returned here
1422 * @lnum: LEB number is returned here
1423 * @offs: offset is returned here
1424 *
1425 * This function looks up and reads node with key @key. The caller has to make
1426 * sure the @node buffer is large enough to fit the node. Returns zero in case
1427 * of success, %-ENOENT if the node was not found, and a negative error code in
1428 * case of failure. The node location can be returned in @lnum and @offs.
1429 */
1430int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431		     void *node, int *lnum, int *offs)
1432{
1433	int found, n, err, safely = 0, gc_seq1;
1434	struct ubifs_znode *znode;
1435	struct ubifs_zbranch zbr, *zt;
1436
1437again:
1438	mutex_lock(&c->tnc_mutex);
1439	found = ubifs_lookup_level0(c, key, &znode, &n);
1440	if (!found) {
1441		err = -ENOENT;
1442		goto out;
1443	} else if (found < 0) {
1444		err = found;
1445		goto out;
1446	}
1447	zt = &znode->zbranch[n];
1448	if (lnum) {
1449		*lnum = zt->lnum;
1450		*offs = zt->offs;
1451	}
1452	if (is_hash_key(c, key)) {
1453		/*
1454		 * In this case the leaf node cache gets used, so we pass the
1455		 * address of the zbranch and keep the mutex locked
1456		 */
1457		err = tnc_read_node_nm(c, zt, node);
1458		goto out;
1459	}
1460	if (safely) {
1461		err = ubifs_tnc_read_node(c, zt, node);
1462		goto out;
1463	}
1464	/* Drop the TNC mutex prematurely and race with garbage collection */
1465	zbr = znode->zbranch[n];
1466	gc_seq1 = c->gc_seq;
1467	mutex_unlock(&c->tnc_mutex);
1468
1469	if (ubifs_get_wbuf(c, zbr.lnum)) {
1470		/* We do not GC journal heads */
1471		err = ubifs_tnc_read_node(c, &zbr, node);
1472		return err;
1473	}
1474
1475	err = fallible_read_node(c, key, &zbr, node);
1476	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1477		/*
1478		 * The node may have been GC'ed out from under us so try again
1479		 * while keeping the TNC mutex locked.
1480		 */
1481		safely = 1;
1482		goto again;
1483	}
1484	return 0;
1485
1486out:
1487	mutex_unlock(&c->tnc_mutex);
1488	return err;
1489}
1490
1491/**
1492 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493 * @c: UBIFS file-system description object
1494 * @bu: bulk-read parameters and results
1495 *
1496 * Lookup consecutive data node keys for the same inode that reside
1497 * consecutively in the same LEB. This function returns zero in case of success
1498 * and a negative error code in case of failure.
1499 *
1500 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1502 * maximum possible amount of nodes for bulk-read.
1503 */
1504int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505{
1506	int n, err = 0, lnum = -1, uninitialized_var(offs);
1507	int uninitialized_var(len);
1508	unsigned int block = key_block(c, &bu->key);
1509	struct ubifs_znode *znode;
1510
1511	bu->cnt = 0;
1512	bu->blk_cnt = 0;
1513	bu->eof = 0;
1514
1515	mutex_lock(&c->tnc_mutex);
1516	/* Find first key */
1517	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518	if (err < 0)
1519		goto out;
1520	if (err) {
1521		/* Key found */
1522		len = znode->zbranch[n].len;
1523		/* The buffer must be big enough for at least 1 node */
1524		if (len > bu->buf_len) {
1525			err = -EINVAL;
1526			goto out;
1527		}
1528		/* Add this key */
1529		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530		bu->blk_cnt += 1;
1531		lnum = znode->zbranch[n].lnum;
1532		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533	}
1534	while (1) {
1535		struct ubifs_zbranch *zbr;
1536		union ubifs_key *key;
1537		unsigned int next_block;
1538
1539		/* Find next key */
1540		err = tnc_next(c, &znode, &n);
1541		if (err)
1542			goto out;
1543		zbr = &znode->zbranch[n];
1544		key = &zbr->key;
1545		/* See if there is another data key for this file */
1546		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547		    key_type(c, key) != UBIFS_DATA_KEY) {
1548			err = -ENOENT;
1549			goto out;
1550		}
1551		if (lnum < 0) {
1552			/* First key found */
1553			lnum = zbr->lnum;
1554			offs = ALIGN(zbr->offs + zbr->len, 8);
1555			len = zbr->len;
1556			if (len > bu->buf_len) {
1557				err = -EINVAL;
1558				goto out;
1559			}
1560		} else {
1561			/*
1562			 * The data nodes must be in consecutive positions in
1563			 * the same LEB.
1564			 */
1565			if (zbr->lnum != lnum || zbr->offs != offs)
1566				goto out;
1567			offs += ALIGN(zbr->len, 8);
1568			len = ALIGN(len, 8) + zbr->len;
1569			/* Must not exceed buffer length */
1570			if (len > bu->buf_len)
1571				goto out;
1572		}
1573		/* Allow for holes */
1574		next_block = key_block(c, key);
1575		bu->blk_cnt += (next_block - block - 1);
1576		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577			goto out;
1578		block = next_block;
1579		/* Add this key */
1580		bu->zbranch[bu->cnt++] = *zbr;
1581		bu->blk_cnt += 1;
1582		/* See if we have room for more */
1583		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584			goto out;
1585		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586			goto out;
1587	}
1588out:
1589	if (err == -ENOENT) {
1590		bu->eof = 1;
1591		err = 0;
1592	}
1593	bu->gc_seq = c->gc_seq;
1594	mutex_unlock(&c->tnc_mutex);
1595	if (err)
1596		return err;
1597	/*
1598	 * An enormous hole could cause bulk-read to encompass too many
1599	 * page cache pages, so limit the number here.
1600	 */
1601	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1602		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603	/*
1604	 * Ensure that bulk-read covers a whole number of page cache
1605	 * pages.
1606	 */
1607	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609		return 0;
1610	if (bu->eof) {
1611		/* At the end of file we can round up */
1612		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613		return 0;
1614	}
1615	/* Exclude data nodes that do not make up a whole page cache page */
1616	block = key_block(c, &bu->key) + bu->blk_cnt;
1617	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618	while (bu->cnt) {
1619		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620			break;
1621		bu->cnt -= 1;
1622	}
1623	return 0;
1624}
1625
1626/**
1627 * read_wbuf - bulk-read from a LEB with a wbuf.
1628 * @wbuf: wbuf that may overlap the read
1629 * @buf: buffer into which to read
1630 * @len: read length
1631 * @lnum: LEB number from which to read
1632 * @offs: offset from which to read
1633 *
1634 * This functions returns %0 on success or a negative error code on failure.
1635 */
1636static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637		     int offs)
1638{
1639	const struct ubifs_info *c = wbuf->c;
1640	int rlen, overlap;
1641
1642	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645	ubifs_assert(offs + len <= c->leb_size);
1646
1647	spin_lock(&wbuf->lock);
1648	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649	if (!overlap) {
1650		/* We may safely unlock the write-buffer and read the data */
1651		spin_unlock(&wbuf->lock);
1652		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1653	}
1654
1655	/* Don't read under wbuf */
1656	rlen = wbuf->offs - offs;
1657	if (rlen < 0)
1658		rlen = 0;
1659
1660	/* Copy the rest from the write-buffer */
1661	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662	spin_unlock(&wbuf->lock);
1663
1664	if (rlen > 0)
1665		/* Read everything that goes before write-buffer */
1666		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1667
1668	return 0;
1669}
1670
1671/**
1672 * validate_data_node - validate data nodes for bulk-read.
1673 * @c: UBIFS file-system description object
1674 * @buf: buffer containing data node to validate
1675 * @zbr: zbranch of data node to validate
1676 *
1677 * This functions returns %0 on success or a negative error code on failure.
1678 */
1679static int validate_data_node(struct ubifs_info *c, void *buf,
1680			      struct ubifs_zbranch *zbr)
1681{
1682	union ubifs_key key1;
1683	struct ubifs_ch *ch = buf;
1684	int err, len;
1685
1686	if (ch->node_type != UBIFS_DATA_NODE) {
1687		ubifs_err(c, "bad node type (%d but expected %d)",
1688			  ch->node_type, UBIFS_DATA_NODE);
1689		goto out_err;
1690	}
1691
1692	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1693	if (err) {
1694		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1695		goto out;
1696	}
1697
1698	len = le32_to_cpu(ch->len);
1699	if (len != zbr->len) {
1700		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1701		goto out_err;
1702	}
1703
1704	/* Make sure the key of the read node is correct */
1705	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706	if (!keys_eq(c, &zbr->key, &key1)) {
1707		ubifs_err(c, "bad key in node at LEB %d:%d",
1708			  zbr->lnum, zbr->offs);
1709		dbg_tnck(&zbr->key, "looked for key ");
1710		dbg_tnck(&key1, "found node's key ");
1711		goto out_err;
1712	}
1713
1714	return 0;
1715
1716out_err:
1717	err = -EINVAL;
1718out:
1719	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1720	ubifs_dump_node(c, buf);
1721	dump_stack();
1722	return err;
1723}
1724
1725/**
1726 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727 * @c: UBIFS file-system description object
1728 * @bu: bulk-read parameters and results
1729 *
1730 * This functions reads and validates the data nodes that were identified by the
1731 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732 * -EAGAIN to indicate a race with GC, or another negative error code on
1733 * failure.
1734 */
1735int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736{
1737	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738	struct ubifs_wbuf *wbuf;
1739	void *buf;
1740
1741	len = bu->zbranch[bu->cnt - 1].offs;
1742	len += bu->zbranch[bu->cnt - 1].len - offs;
1743	if (len > bu->buf_len) {
1744		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1745		return -EINVAL;
1746	}
1747
1748	/* Do the read */
1749	wbuf = ubifs_get_wbuf(c, lnum);
1750	if (wbuf)
1751		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752	else
1753		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1754
1755	/* Check for a race with GC */
1756	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757		return -EAGAIN;
1758
1759	if (err && err != -EBADMSG) {
1760		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1761			  lnum, offs, err);
1762		dump_stack();
1763		dbg_tnck(&bu->key, "key ");
1764		return err;
1765	}
1766
1767	/* Validate the nodes read */
1768	buf = bu->buf;
1769	for (i = 0; i < bu->cnt; i++) {
1770		err = validate_data_node(c, buf, &bu->zbranch[i]);
1771		if (err)
1772			return err;
1773		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774	}
1775
1776	return 0;
1777}
1778
1779/**
1780 * do_lookup_nm- look up a "hashed" node.
1781 * @c: UBIFS file-system description object
1782 * @key: node key to lookup
1783 * @node: the node is returned here
1784 * @nm: node name
1785 *
1786 * This function look up and reads a node which contains name hash in the key.
1787 * Since the hash may have collisions, there may be many nodes with the same
1788 * key, so we have to sequentially look to all of them until the needed one is
1789 * found. This function returns zero in case of success, %-ENOENT if the node
1790 * was not found, and a negative error code in case of failure.
1791 */
1792static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1793			void *node, const struct qstr *nm)
1794{
1795	int found, n, err;
1796	struct ubifs_znode *znode;
1797
1798	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1799	mutex_lock(&c->tnc_mutex);
1800	found = ubifs_lookup_level0(c, key, &znode, &n);
1801	if (!found) {
1802		err = -ENOENT;
1803		goto out_unlock;
1804	} else if (found < 0) {
1805		err = found;
1806		goto out_unlock;
1807	}
1808
1809	ubifs_assert(n >= 0);
1810
1811	err = resolve_collision(c, key, &znode, &n, nm);
1812	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813	if (unlikely(err < 0))
1814		goto out_unlock;
1815	if (err == 0) {
1816		err = -ENOENT;
1817		goto out_unlock;
1818	}
1819
1820	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1821
1822out_unlock:
1823	mutex_unlock(&c->tnc_mutex);
1824	return err;
1825}
1826
1827/**
1828 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829 * @c: UBIFS file-system description object
1830 * @key: node key to lookup
1831 * @node: the node is returned here
1832 * @nm: node name
1833 *
1834 * This function look up and reads a node which contains name hash in the key.
1835 * Since the hash may have collisions, there may be many nodes with the same
1836 * key, so we have to sequentially look to all of them until the needed one is
1837 * found. This function returns zero in case of success, %-ENOENT if the node
1838 * was not found, and a negative error code in case of failure.
1839 */
1840int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1841			void *node, const struct qstr *nm)
1842{
1843	int err, len;
1844	const struct ubifs_dent_node *dent = node;
1845
1846	/*
1847	 * We assume that in most of the cases there are no name collisions and
1848	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849	 */
1850	err = ubifs_tnc_lookup(c, key, node);
1851	if (err)
1852		return err;
1853
1854	len = le16_to_cpu(dent->nlen);
1855	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1856		return 0;
1857
1858	/*
1859	 * Unluckily, there are hash collisions and we have to iterate over
1860	 * them look at each direntry with colliding name hash sequentially.
1861	 */
1862	return do_lookup_nm(c, key, node, nm);
1863}
1864
1865/**
1866 * correct_parent_keys - correct parent znodes' keys.
1867 * @c: UBIFS file-system description object
1868 * @znode: znode to correct parent znodes for
1869 *
1870 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1871 * zbranch changes, keys of parent znodes have to be corrected. This helper
1872 * function is called in such situations and corrects the keys if needed.
1873 */
1874static void correct_parent_keys(const struct ubifs_info *c,
1875				struct ubifs_znode *znode)
1876{
1877	union ubifs_key *key, *key1;
1878
1879	ubifs_assert(znode->parent);
1880	ubifs_assert(znode->iip == 0);
1881
1882	key = &znode->zbranch[0].key;
1883	key1 = &znode->parent->zbranch[0].key;
1884
1885	while (keys_cmp(c, key, key1) < 0) {
1886		key_copy(c, key, key1);
1887		znode = znode->parent;
1888		znode->alt = 1;
1889		if (!znode->parent || znode->iip)
1890			break;
1891		key1 = &znode->parent->zbranch[0].key;
1892	}
1893}
1894
1895/**
1896 * insert_zbranch - insert a zbranch into a znode.
1897 * @znode: znode into which to insert
1898 * @zbr: zbranch to insert
1899 * @n: slot number to insert to
1900 *
1901 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1902 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1903 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1904 * slot, zbranches starting from @n have to be moved right.
1905 */
1906static void insert_zbranch(struct ubifs_znode *znode,
1907			   const struct ubifs_zbranch *zbr, int n)
1908{
1909	int i;
1910
1911	ubifs_assert(ubifs_zn_dirty(znode));
1912
1913	if (znode->level) {
1914		for (i = znode->child_cnt; i > n; i--) {
1915			znode->zbranch[i] = znode->zbranch[i - 1];
1916			if (znode->zbranch[i].znode)
1917				znode->zbranch[i].znode->iip = i;
1918		}
1919		if (zbr->znode)
1920			zbr->znode->iip = n;
1921	} else
1922		for (i = znode->child_cnt; i > n; i--)
1923			znode->zbranch[i] = znode->zbranch[i - 1];
1924
1925	znode->zbranch[n] = *zbr;
1926	znode->child_cnt += 1;
1927
1928	/*
1929	 * After inserting at slot zero, the lower bound of the key range of
1930	 * this znode may have changed. If this znode is subsequently split
1931	 * then the upper bound of the key range may change, and furthermore
1932	 * it could change to be lower than the original lower bound. If that
1933	 * happens, then it will no longer be possible to find this znode in the
1934	 * TNC using the key from the index node on flash. That is bad because
1935	 * if it is not found, we will assume it is obsolete and may overwrite
1936	 * it. Then if there is an unclean unmount, we will start using the
1937	 * old index which will be broken.
1938	 *
1939	 * So we first mark znodes that have insertions at slot zero, and then
1940	 * if they are split we add their lnum/offs to the old_idx tree.
1941	 */
1942	if (n == 0)
1943		znode->alt = 1;
1944}
1945
1946/**
1947 * tnc_insert - insert a node into TNC.
1948 * @c: UBIFS file-system description object
1949 * @znode: znode to insert into
1950 * @zbr: branch to insert
1951 * @n: slot number to insert new zbranch to
1952 *
1953 * This function inserts a new node described by @zbr into znode @znode. If
1954 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1955 * are splat as well if needed. Returns zero in case of success or a negative
1956 * error code in case of failure.
1957 */
1958static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1959		      struct ubifs_zbranch *zbr, int n)
1960{
1961	struct ubifs_znode *zn, *zi, *zp;
1962	int i, keep, move, appending = 0;
1963	union ubifs_key *key = &zbr->key, *key1;
1964
1965	ubifs_assert(n >= 0 && n <= c->fanout);
1966
1967	/* Implement naive insert for now */
1968again:
1969	zp = znode->parent;
1970	if (znode->child_cnt < c->fanout) {
1971		ubifs_assert(n != c->fanout);
1972		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1973
1974		insert_zbranch(znode, zbr, n);
1975
1976		/* Ensure parent's key is correct */
1977		if (n == 0 && zp && znode->iip == 0)
1978			correct_parent_keys(c, znode);
1979
1980		return 0;
1981	}
1982
1983	/*
1984	 * Unfortunately, @znode does not have more empty slots and we have to
1985	 * split it.
1986	 */
1987	dbg_tnck(key, "splitting level %d, key ", znode->level);
1988
1989	if (znode->alt)
1990		/*
1991		 * We can no longer be sure of finding this znode by key, so we
1992		 * record it in the old_idx tree.
1993		 */
1994		ins_clr_old_idx_znode(c, znode);
1995
1996	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1997	if (!zn)
1998		return -ENOMEM;
1999	zn->parent = zp;
2000	zn->level = znode->level;
2001
2002	/* Decide where to split */
2003	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2004		/* Try not to split consecutive data keys */
2005		if (n == c->fanout) {
2006			key1 = &znode->zbranch[n - 1].key;
2007			if (key_inum(c, key1) == key_inum(c, key) &&
2008			    key_type(c, key1) == UBIFS_DATA_KEY)
2009				appending = 1;
2010		} else
2011			goto check_split;
2012	} else if (appending && n != c->fanout) {
2013		/* Try not to split consecutive data keys */
2014		appending = 0;
2015check_split:
2016		if (n >= (c->fanout + 1) / 2) {
2017			key1 = &znode->zbranch[0].key;
2018			if (key_inum(c, key1) == key_inum(c, key) &&
2019			    key_type(c, key1) == UBIFS_DATA_KEY) {
2020				key1 = &znode->zbranch[n].key;
2021				if (key_inum(c, key1) != key_inum(c, key) ||
2022				    key_type(c, key1) != UBIFS_DATA_KEY) {
2023					keep = n;
2024					move = c->fanout - keep;
2025					zi = znode;
2026					goto do_split;
2027				}
2028			}
2029		}
2030	}
2031
2032	if (appending) {
2033		keep = c->fanout;
2034		move = 0;
2035	} else {
2036		keep = (c->fanout + 1) / 2;
2037		move = c->fanout - keep;
2038	}
2039
2040	/*
2041	 * Although we don't at present, we could look at the neighbors and see
2042	 * if we can move some zbranches there.
2043	 */
2044
2045	if (n < keep) {
2046		/* Insert into existing znode */
2047		zi = znode;
2048		move += 1;
2049		keep -= 1;
2050	} else {
2051		/* Insert into new znode */
2052		zi = zn;
2053		n -= keep;
2054		/* Re-parent */
2055		if (zn->level != 0)
2056			zbr->znode->parent = zn;
2057	}
2058
2059do_split:
2060
2061	__set_bit(DIRTY_ZNODE, &zn->flags);
2062	atomic_long_inc(&c->dirty_zn_cnt);
2063
2064	zn->child_cnt = move;
2065	znode->child_cnt = keep;
2066
2067	dbg_tnc("moving %d, keeping %d", move, keep);
2068
2069	/* Move zbranch */
2070	for (i = 0; i < move; i++) {
2071		zn->zbranch[i] = znode->zbranch[keep + i];
2072		/* Re-parent */
2073		if (zn->level != 0)
2074			if (zn->zbranch[i].znode) {
2075				zn->zbranch[i].znode->parent = zn;
2076				zn->zbranch[i].znode->iip = i;
2077			}
2078	}
2079
2080	/* Insert new key and branch */
2081	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2082
2083	insert_zbranch(zi, zbr, n);
2084
2085	/* Insert new znode (produced by spitting) into the parent */
2086	if (zp) {
2087		if (n == 0 && zi == znode && znode->iip == 0)
2088			correct_parent_keys(c, znode);
2089
2090		/* Locate insertion point */
2091		n = znode->iip + 1;
2092
2093		/* Tail recursion */
2094		zbr->key = zn->zbranch[0].key;
2095		zbr->znode = zn;
2096		zbr->lnum = 0;
2097		zbr->offs = 0;
2098		zbr->len = 0;
2099		znode = zp;
2100
2101		goto again;
2102	}
2103
2104	/* We have to split root znode */
2105	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2106
2107	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2108	if (!zi)
2109		return -ENOMEM;
2110
2111	zi->child_cnt = 2;
2112	zi->level = znode->level + 1;
2113
2114	__set_bit(DIRTY_ZNODE, &zi->flags);
2115	atomic_long_inc(&c->dirty_zn_cnt);
2116
2117	zi->zbranch[0].key = znode->zbranch[0].key;
2118	zi->zbranch[0].znode = znode;
2119	zi->zbranch[0].lnum = c->zroot.lnum;
2120	zi->zbranch[0].offs = c->zroot.offs;
2121	zi->zbranch[0].len = c->zroot.len;
2122	zi->zbranch[1].key = zn->zbranch[0].key;
2123	zi->zbranch[1].znode = zn;
2124
2125	c->zroot.lnum = 0;
2126	c->zroot.offs = 0;
2127	c->zroot.len = 0;
2128	c->zroot.znode = zi;
2129
2130	zn->parent = zi;
2131	zn->iip = 1;
2132	znode->parent = zi;
2133	znode->iip = 0;
2134
2135	return 0;
2136}
2137
2138/**
2139 * ubifs_tnc_add - add a node to TNC.
2140 * @c: UBIFS file-system description object
2141 * @key: key to add
2142 * @lnum: LEB number of node
2143 * @offs: node offset
2144 * @len: node length
2145 *
2146 * This function adds a node with key @key to TNC. The node may be new or it may
2147 * obsolete some existing one. Returns %0 on success or negative error code on
2148 * failure.
2149 */
2150int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2151		  int offs, int len)
2152{
2153	int found, n, err = 0;
2154	struct ubifs_znode *znode;
2155
2156	mutex_lock(&c->tnc_mutex);
2157	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2158	found = lookup_level0_dirty(c, key, &znode, &n);
2159	if (!found) {
2160		struct ubifs_zbranch zbr;
2161
2162		zbr.znode = NULL;
2163		zbr.lnum = lnum;
2164		zbr.offs = offs;
2165		zbr.len = len;
2166		key_copy(c, key, &zbr.key);
2167		err = tnc_insert(c, znode, &zbr, n + 1);
2168	} else if (found == 1) {
2169		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2170
2171		lnc_free(zbr);
2172		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2173		zbr->lnum = lnum;
2174		zbr->offs = offs;
2175		zbr->len = len;
2176	} else
2177		err = found;
2178	if (!err)
2179		err = dbg_check_tnc(c, 0);
2180	mutex_unlock(&c->tnc_mutex);
2181
2182	return err;
2183}
2184
2185/**
2186 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2187 * @c: UBIFS file-system description object
2188 * @key: key to add
2189 * @old_lnum: LEB number of old node
2190 * @old_offs: old node offset
2191 * @lnum: LEB number of node
2192 * @offs: node offset
2193 * @len: node length
2194 *
2195 * This function replaces a node with key @key in the TNC only if the old node
2196 * is found.  This function is called by garbage collection when node are moved.
2197 * Returns %0 on success or negative error code on failure.
2198 */
2199int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2200		      int old_lnum, int old_offs, int lnum, int offs, int len)
2201{
2202	int found, n, err = 0;
2203	struct ubifs_znode *znode;
2204
2205	mutex_lock(&c->tnc_mutex);
2206	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2207		 old_offs, lnum, offs, len);
2208	found = lookup_level0_dirty(c, key, &znode, &n);
2209	if (found < 0) {
2210		err = found;
2211		goto out_unlock;
2212	}
2213
2214	if (found == 1) {
2215		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2216
2217		found = 0;
2218		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2219			lnc_free(zbr);
2220			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2221			if (err)
2222				goto out_unlock;
2223			zbr->lnum = lnum;
2224			zbr->offs = offs;
2225			zbr->len = len;
2226			found = 1;
2227		} else if (is_hash_key(c, key)) {
2228			found = resolve_collision_directly(c, key, &znode, &n,
2229							   old_lnum, old_offs);
2230			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2231				found, znode, n, old_lnum, old_offs);
2232			if (found < 0) {
2233				err = found;
2234				goto out_unlock;
2235			}
2236
2237			if (found) {
2238				/* Ensure the znode is dirtied */
2239				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2240					znode = dirty_cow_bottom_up(c, znode);
2241					if (IS_ERR(znode)) {
2242						err = PTR_ERR(znode);
2243						goto out_unlock;
2244					}
2245				}
2246				zbr = &znode->zbranch[n];
2247				lnc_free(zbr);
2248				err = ubifs_add_dirt(c, zbr->lnum,
2249						     zbr->len);
2250				if (err)
2251					goto out_unlock;
2252				zbr->lnum = lnum;
2253				zbr->offs = offs;
2254				zbr->len = len;
2255			}
2256		}
2257	}
2258
2259	if (!found)
2260		err = ubifs_add_dirt(c, lnum, len);
2261
2262	if (!err)
2263		err = dbg_check_tnc(c, 0);
2264
2265out_unlock:
2266	mutex_unlock(&c->tnc_mutex);
2267	return err;
2268}
2269
2270/**
2271 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2272 * @c: UBIFS file-system description object
2273 * @key: key to add
2274 * @lnum: LEB number of node
2275 * @offs: node offset
2276 * @len: node length
2277 * @nm: node name
2278 *
2279 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2280 * may have collisions, like directory entry keys.
2281 */
2282int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2283		     int lnum, int offs, int len, const struct qstr *nm)
2284{
2285	int found, n, err = 0;
2286	struct ubifs_znode *znode;
2287
2288	mutex_lock(&c->tnc_mutex);
2289	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2290		 lnum, offs, nm->len, nm->name);
2291	found = lookup_level0_dirty(c, key, &znode, &n);
2292	if (found < 0) {
2293		err = found;
2294		goto out_unlock;
2295	}
2296
2297	if (found == 1) {
2298		if (c->replaying)
2299			found = fallible_resolve_collision(c, key, &znode, &n,
2300							   nm, 1);
2301		else
2302			found = resolve_collision(c, key, &znode, &n, nm);
2303		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2304		if (found < 0) {
2305			err = found;
2306			goto out_unlock;
2307		}
2308
2309		/* Ensure the znode is dirtied */
2310		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2311			znode = dirty_cow_bottom_up(c, znode);
2312			if (IS_ERR(znode)) {
2313				err = PTR_ERR(znode);
2314				goto out_unlock;
2315			}
2316		}
2317
2318		if (found == 1) {
2319			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2320
2321			lnc_free(zbr);
2322			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2323			zbr->lnum = lnum;
2324			zbr->offs = offs;
2325			zbr->len = len;
2326			goto out_unlock;
2327		}
2328	}
2329
2330	if (!found) {
2331		struct ubifs_zbranch zbr;
2332
2333		zbr.znode = NULL;
2334		zbr.lnum = lnum;
2335		zbr.offs = offs;
2336		zbr.len = len;
2337		key_copy(c, key, &zbr.key);
2338		err = tnc_insert(c, znode, &zbr, n + 1);
2339		if (err)
2340			goto out_unlock;
2341		if (c->replaying) {
2342			/*
2343			 * We did not find it in the index so there may be a
2344			 * dangling branch still in the index. So we remove it
2345			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2346			 * an unmatchable name.
2347			 */
2348			struct qstr noname = { .name = "" };
2349
2350			err = dbg_check_tnc(c, 0);
2351			mutex_unlock(&c->tnc_mutex);
2352			if (err)
2353				return err;
2354			return ubifs_tnc_remove_nm(c, key, &noname);
2355		}
2356	}
2357
2358out_unlock:
2359	if (!err)
2360		err = dbg_check_tnc(c, 0);
2361	mutex_unlock(&c->tnc_mutex);
2362	return err;
2363}
2364
2365/**
2366 * tnc_delete - delete a znode form TNC.
2367 * @c: UBIFS file-system description object
2368 * @znode: znode to delete from
2369 * @n: zbranch slot number to delete
2370 *
2371 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2372 * case of success and a negative error code in case of failure.
2373 */
2374static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2375{
2376	struct ubifs_zbranch *zbr;
2377	struct ubifs_znode *zp;
2378	int i, err;
2379
2380	/* Delete without merge for now */
2381	ubifs_assert(znode->level == 0);
2382	ubifs_assert(n >= 0 && n < c->fanout);
2383	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2384
2385	zbr = &znode->zbranch[n];
2386	lnc_free(zbr);
2387
2388	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2389	if (err) {
2390		ubifs_dump_znode(c, znode);
2391		return err;
2392	}
2393
2394	/* We do not "gap" zbranch slots */
2395	for (i = n; i < znode->child_cnt - 1; i++)
2396		znode->zbranch[i] = znode->zbranch[i + 1];
2397	znode->child_cnt -= 1;
2398
2399	if (znode->child_cnt > 0)
2400		return 0;
2401
2402	/*
2403	 * This was the last zbranch, we have to delete this znode from the
2404	 * parent.
2405	 */
2406
2407	do {
2408		ubifs_assert(!ubifs_zn_obsolete(znode));
2409		ubifs_assert(ubifs_zn_dirty(znode));
2410
2411		zp = znode->parent;
2412		n = znode->iip;
2413
2414		atomic_long_dec(&c->dirty_zn_cnt);
2415
2416		err = insert_old_idx_znode(c, znode);
2417		if (err)
2418			return err;
2419
2420		if (znode->cnext) {
2421			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2422			atomic_long_inc(&c->clean_zn_cnt);
2423			atomic_long_inc(&ubifs_clean_zn_cnt);
2424		} else
2425			kfree(znode);
2426		znode = zp;
2427	} while (znode->child_cnt == 1); /* while removing last child */
2428
2429	/* Remove from znode, entry n - 1 */
2430	znode->child_cnt -= 1;
2431	ubifs_assert(znode->level != 0);
2432	for (i = n; i < znode->child_cnt; i++) {
2433		znode->zbranch[i] = znode->zbranch[i + 1];
2434		if (znode->zbranch[i].znode)
2435			znode->zbranch[i].znode->iip = i;
2436	}
2437
2438	/*
2439	 * If this is the root and it has only 1 child then
2440	 * collapse the tree.
2441	 */
2442	if (!znode->parent) {
2443		while (znode->child_cnt == 1 && znode->level != 0) {
2444			zp = znode;
2445			zbr = &znode->zbranch[0];
2446			znode = get_znode(c, znode, 0);
2447			if (IS_ERR(znode))
2448				return PTR_ERR(znode);
2449			znode = dirty_cow_znode(c, zbr);
2450			if (IS_ERR(znode))
2451				return PTR_ERR(znode);
2452			znode->parent = NULL;
2453			znode->iip = 0;
2454			if (c->zroot.len) {
2455				err = insert_old_idx(c, c->zroot.lnum,
2456						     c->zroot.offs);
2457				if (err)
2458					return err;
2459			}
2460			c->zroot.lnum = zbr->lnum;
2461			c->zroot.offs = zbr->offs;
2462			c->zroot.len = zbr->len;
2463			c->zroot.znode = znode;
2464			ubifs_assert(!ubifs_zn_obsolete(zp));
2465			ubifs_assert(ubifs_zn_dirty(zp));
2466			atomic_long_dec(&c->dirty_zn_cnt);
2467
2468			if (zp->cnext) {
2469				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2470				atomic_long_inc(&c->clean_zn_cnt);
2471				atomic_long_inc(&ubifs_clean_zn_cnt);
2472			} else
2473				kfree(zp);
2474		}
2475	}
2476
2477	return 0;
2478}
2479
2480/**
2481 * ubifs_tnc_remove - remove an index entry of a node.
2482 * @c: UBIFS file-system description object
2483 * @key: key of node
2484 *
2485 * Returns %0 on success or negative error code on failure.
2486 */
2487int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2488{
2489	int found, n, err = 0;
2490	struct ubifs_znode *znode;
2491
2492	mutex_lock(&c->tnc_mutex);
2493	dbg_tnck(key, "key ");
2494	found = lookup_level0_dirty(c, key, &znode, &n);
2495	if (found < 0) {
2496		err = found;
2497		goto out_unlock;
2498	}
2499	if (found == 1)
2500		err = tnc_delete(c, znode, n);
2501	if (!err)
2502		err = dbg_check_tnc(c, 0);
2503
2504out_unlock:
2505	mutex_unlock(&c->tnc_mutex);
2506	return err;
2507}
2508
2509/**
2510 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2511 * @c: UBIFS file-system description object
2512 * @key: key of node
2513 * @nm: directory entry name
2514 *
2515 * Returns %0 on success or negative error code on failure.
2516 */
2517int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2518			const struct qstr *nm)
2519{
2520	int n, err;
2521	struct ubifs_znode *znode;
2522
2523	mutex_lock(&c->tnc_mutex);
2524	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2525	err = lookup_level0_dirty(c, key, &znode, &n);
2526	if (err < 0)
2527		goto out_unlock;
2528
2529	if (err) {
2530		if (c->replaying)
2531			err = fallible_resolve_collision(c, key, &znode, &n,
2532							 nm, 0);
2533		else
2534			err = resolve_collision(c, key, &znode, &n, nm);
2535		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2536		if (err < 0)
2537			goto out_unlock;
2538		if (err) {
2539			/* Ensure the znode is dirtied */
2540			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2541				znode = dirty_cow_bottom_up(c, znode);
2542				if (IS_ERR(znode)) {
2543					err = PTR_ERR(znode);
2544					goto out_unlock;
2545				}
2546			}
2547			err = tnc_delete(c, znode, n);
2548		}
2549	}
2550
2551out_unlock:
2552	if (!err)
2553		err = dbg_check_tnc(c, 0);
2554	mutex_unlock(&c->tnc_mutex);
2555	return err;
2556}
2557
2558/**
2559 * key_in_range - determine if a key falls within a range of keys.
2560 * @c: UBIFS file-system description object
2561 * @key: key to check
2562 * @from_key: lowest key in range
2563 * @to_key: highest key in range
2564 *
2565 * This function returns %1 if the key is in range and %0 otherwise.
2566 */
2567static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2568			union ubifs_key *from_key, union ubifs_key *to_key)
2569{
2570	if (keys_cmp(c, key, from_key) < 0)
2571		return 0;
2572	if (keys_cmp(c, key, to_key) > 0)
2573		return 0;
2574	return 1;
2575}
2576
2577/**
2578 * ubifs_tnc_remove_range - remove index entries in range.
2579 * @c: UBIFS file-system description object
2580 * @from_key: lowest key to remove
2581 * @to_key: highest key to remove
2582 *
2583 * This function removes index entries starting at @from_key and ending at
2584 * @to_key.  This function returns zero in case of success and a negative error
2585 * code in case of failure.
2586 */
2587int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2588			   union ubifs_key *to_key)
2589{
2590	int i, n, k, err = 0;
2591	struct ubifs_znode *znode;
2592	union ubifs_key *key;
2593
2594	mutex_lock(&c->tnc_mutex);
2595	while (1) {
2596		/* Find first level 0 znode that contains keys to remove */
2597		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2598		if (err < 0)
2599			goto out_unlock;
2600
2601		if (err)
2602			key = from_key;
2603		else {
2604			err = tnc_next(c, &znode, &n);
2605			if (err == -ENOENT) {
2606				err = 0;
2607				goto out_unlock;
2608			}
2609			if (err < 0)
2610				goto out_unlock;
2611			key = &znode->zbranch[n].key;
2612			if (!key_in_range(c, key, from_key, to_key)) {
2613				err = 0;
2614				goto out_unlock;
2615			}
2616		}
2617
2618		/* Ensure the znode is dirtied */
2619		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2620			znode = dirty_cow_bottom_up(c, znode);
2621			if (IS_ERR(znode)) {
2622				err = PTR_ERR(znode);
2623				goto out_unlock;
2624			}
2625		}
2626
2627		/* Remove all keys in range except the first */
2628		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2629			key = &znode->zbranch[i].key;
2630			if (!key_in_range(c, key, from_key, to_key))
2631				break;
2632			lnc_free(&znode->zbranch[i]);
2633			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2634					     znode->zbranch[i].len);
2635			if (err) {
2636				ubifs_dump_znode(c, znode);
2637				goto out_unlock;
2638			}
2639			dbg_tnck(key, "removing key ");
2640		}
2641		if (k) {
2642			for (i = n + 1 + k; i < znode->child_cnt; i++)
2643				znode->zbranch[i - k] = znode->zbranch[i];
2644			znode->child_cnt -= k;
2645		}
2646
2647		/* Now delete the first */
2648		err = tnc_delete(c, znode, n);
2649		if (err)
2650			goto out_unlock;
2651	}
2652
2653out_unlock:
2654	if (!err)
2655		err = dbg_check_tnc(c, 0);
2656	mutex_unlock(&c->tnc_mutex);
2657	return err;
2658}
2659
2660/**
2661 * ubifs_tnc_remove_ino - remove an inode from TNC.
2662 * @c: UBIFS file-system description object
2663 * @inum: inode number to remove
2664 *
2665 * This function remove inode @inum and all the extended attributes associated
2666 * with the anode from TNC and returns zero in case of success or a negative
2667 * error code in case of failure.
2668 */
2669int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2670{
2671	union ubifs_key key1, key2;
2672	struct ubifs_dent_node *xent, *pxent = NULL;
2673	struct qstr nm = { .name = NULL };
2674
2675	dbg_tnc("ino %lu", (unsigned long)inum);
2676
2677	/*
2678	 * Walk all extended attribute entries and remove them together with
2679	 * corresponding extended attribute inodes.
2680	 */
2681	lowest_xent_key(c, &key1, inum);
2682	while (1) {
2683		ino_t xattr_inum;
2684		int err;
2685
2686		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2687		if (IS_ERR(xent)) {
2688			err = PTR_ERR(xent);
2689			if (err == -ENOENT)
2690				break;
2691			return err;
2692		}
2693
2694		xattr_inum = le64_to_cpu(xent->inum);
2695		dbg_tnc("xent '%s', ino %lu", xent->name,
2696			(unsigned long)xattr_inum);
2697
2698		nm.name = xent->name;
2699		nm.len = le16_to_cpu(xent->nlen);
2700		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2701		if (err) {
2702			kfree(xent);
2703			return err;
2704		}
2705
2706		lowest_ino_key(c, &key1, xattr_inum);
2707		highest_ino_key(c, &key2, xattr_inum);
2708		err = ubifs_tnc_remove_range(c, &key1, &key2);
2709		if (err) {
2710			kfree(xent);
2711			return err;
2712		}
2713
2714		kfree(pxent);
2715		pxent = xent;
2716		key_read(c, &xent->key, &key1);
2717	}
2718
2719	kfree(pxent);
2720	lowest_ino_key(c, &key1, inum);
2721	highest_ino_key(c, &key2, inum);
2722
2723	return ubifs_tnc_remove_range(c, &key1, &key2);
2724}
2725
2726/**
2727 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2728 * @c: UBIFS file-system description object
2729 * @key: key of last entry
2730 * @nm: name of last entry found or %NULL
2731 *
2732 * This function finds and reads the next directory or extended attribute entry
2733 * after the given key (@key) if there is one. @nm is used to resolve
2734 * collisions.
2735 *
2736 * If the name of the current entry is not known and only the key is known,
2737 * @nm->name has to be %NULL. In this case the semantics of this function is a
2738 * little bit different and it returns the entry corresponding to this key, not
2739 * the next one. If the key was not found, the closest "right" entry is
2740 * returned.
2741 *
2742 * If the fist entry has to be found, @key has to contain the lowest possible
2743 * key value for this inode and @name has to be %NULL.
2744 *
2745 * This function returns the found directory or extended attribute entry node
2746 * in case of success, %-ENOENT is returned if no entry was found, and a
2747 * negative error code is returned in case of failure.
2748 */
2749struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2750					   union ubifs_key *key,
2751					   const struct qstr *nm)
2752{
2753	int n, err, type = key_type(c, key);
2754	struct ubifs_znode *znode;
2755	struct ubifs_dent_node *dent;
2756	struct ubifs_zbranch *zbr;
2757	union ubifs_key *dkey;
2758
2759	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2760	ubifs_assert(is_hash_key(c, key));
2761
2762	mutex_lock(&c->tnc_mutex);
2763	err = ubifs_lookup_level0(c, key, &znode, &n);
2764	if (unlikely(err < 0))
2765		goto out_unlock;
2766
2767	if (nm->name) {
2768		if (err) {
2769			/* Handle collisions */
2770			err = resolve_collision(c, key, &znode, &n, nm);
2771			dbg_tnc("rc returned %d, znode %p, n %d",
2772				err, znode, n);
2773			if (unlikely(err < 0))
2774				goto out_unlock;
2775		}
2776
2777		/* Now find next entry */
2778		err = tnc_next(c, &znode, &n);
2779		if (unlikely(err))
2780			goto out_unlock;
2781	} else {
2782		/*
2783		 * The full name of the entry was not given, in which case the
2784		 * behavior of this function is a little different and it
2785		 * returns current entry, not the next one.
2786		 */
2787		if (!err) {
2788			/*
2789			 * However, the given key does not exist in the TNC
2790			 * tree and @znode/@n variables contain the closest
2791			 * "preceding" element. Switch to the next one.
2792			 */
2793			err = tnc_next(c, &znode, &n);
2794			if (err)
2795				goto out_unlock;
2796		}
2797	}
2798
2799	zbr = &znode->zbranch[n];
2800	dent = kmalloc(zbr->len, GFP_NOFS);
2801	if (unlikely(!dent)) {
2802		err = -ENOMEM;
2803		goto out_unlock;
2804	}
2805
2806	/*
2807	 * The above 'tnc_next()' call could lead us to the next inode, check
2808	 * this.
2809	 */
2810	dkey = &zbr->key;
2811	if (key_inum(c, dkey) != key_inum(c, key) ||
2812	    key_type(c, dkey) != type) {
2813		err = -ENOENT;
2814		goto out_free;
2815	}
2816
2817	err = tnc_read_node_nm(c, zbr, dent);
2818	if (unlikely(err))
2819		goto out_free;
2820
2821	mutex_unlock(&c->tnc_mutex);
2822	return dent;
2823
2824out_free:
2825	kfree(dent);
2826out_unlock:
2827	mutex_unlock(&c->tnc_mutex);
2828	return ERR_PTR(err);
2829}
2830
2831/**
2832 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2833 * @c: UBIFS file-system description object
2834 *
2835 * Destroy left-over obsolete znodes from a failed commit.
2836 */
2837static void tnc_destroy_cnext(struct ubifs_info *c)
2838{
2839	struct ubifs_znode *cnext;
2840
2841	if (!c->cnext)
2842		return;
2843	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2844	cnext = c->cnext;
2845	do {
2846		struct ubifs_znode *znode = cnext;
2847
2848		cnext = cnext->cnext;
2849		if (ubifs_zn_obsolete(znode))
2850			kfree(znode);
2851	} while (cnext && cnext != c->cnext);
2852}
2853
2854/**
2855 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2856 * @c: UBIFS file-system description object
2857 */
2858void ubifs_tnc_close(struct ubifs_info *c)
2859{
2860	tnc_destroy_cnext(c);
2861	if (c->zroot.znode) {
2862		long n, freed;
2863
2864		n = atomic_long_read(&c->clean_zn_cnt);
2865		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2866		ubifs_assert(freed == n);
2867		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2868	}
2869	kfree(c->gap_lebs);
2870	kfree(c->ilebs);
2871	destroy_old_idx(c);
2872}
2873
2874/**
2875 * left_znode - get the znode to the left.
2876 * @c: UBIFS file-system description object
2877 * @znode: znode
2878 *
2879 * This function returns a pointer to the znode to the left of @znode or NULL if
2880 * there is not one. A negative error code is returned on failure.
2881 */
2882static struct ubifs_znode *left_znode(struct ubifs_info *c,
2883				      struct ubifs_znode *znode)
2884{
2885	int level = znode->level;
2886
2887	while (1) {
2888		int n = znode->iip - 1;
2889
2890		/* Go up until we can go left */
2891		znode = znode->parent;
2892		if (!znode)
2893			return NULL;
2894		if (n >= 0) {
2895			/* Now go down the rightmost branch to 'level' */
2896			znode = get_znode(c, znode, n);
2897			if (IS_ERR(znode))
2898				return znode;
2899			while (znode->level != level) {
2900				n = znode->child_cnt - 1;
2901				znode = get_znode(c, znode, n);
2902				if (IS_ERR(znode))
2903					return znode;
2904			}
2905			break;
2906		}
2907	}
2908	return znode;
2909}
2910
2911/**
2912 * right_znode - get the znode to the right.
2913 * @c: UBIFS file-system description object
2914 * @znode: znode
2915 *
2916 * This function returns a pointer to the znode to the right of @znode or NULL
2917 * if there is not one. A negative error code is returned on failure.
2918 */
2919static struct ubifs_znode *right_znode(struct ubifs_info *c,
2920				       struct ubifs_znode *znode)
2921{
2922	int level = znode->level;
2923
2924	while (1) {
2925		int n = znode->iip + 1;
2926
2927		/* Go up until we can go right */
2928		znode = znode->parent;
2929		if (!znode)
2930			return NULL;
2931		if (n < znode->child_cnt) {
2932			/* Now go down the leftmost branch to 'level' */
2933			znode = get_znode(c, znode, n);
2934			if (IS_ERR(znode))
2935				return znode;
2936			while (znode->level != level) {
2937				znode = get_znode(c, znode, 0);
2938				if (IS_ERR(znode))
2939					return znode;
2940			}
2941			break;
2942		}
2943	}
2944	return znode;
2945}
2946
2947/**
2948 * lookup_znode - find a particular indexing node from TNC.
2949 * @c: UBIFS file-system description object
2950 * @key: index node key to lookup
2951 * @level: index node level
2952 * @lnum: index node LEB number
2953 * @offs: index node offset
2954 *
2955 * This function searches an indexing node by its first key @key and its
2956 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2957 * nodes it traverses to TNC. This function is called for indexing nodes which
2958 * were found on the media by scanning, for example when garbage-collecting or
2959 * when doing in-the-gaps commit. This means that the indexing node which is
2960 * looked for does not have to have exactly the same leftmost key @key, because
2961 * the leftmost key may have been changed, in which case TNC will contain a
2962 * dirty znode which still refers the same @lnum:@offs. This function is clever
2963 * enough to recognize such indexing nodes.
2964 *
2965 * Note, if a znode was deleted or changed too much, then this function will
2966 * not find it. For situations like this UBIFS has the old index RB-tree
2967 * (indexed by @lnum:@offs).
2968 *
2969 * This function returns a pointer to the znode found or %NULL if it is not
2970 * found. A negative error code is returned on failure.
2971 */
2972static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2973					union ubifs_key *key, int level,
2974					int lnum, int offs)
2975{
2976	struct ubifs_znode *znode, *zn;
2977	int n, nn;
2978
2979	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2980
2981	/*
2982	 * The arguments have probably been read off flash, so don't assume
2983	 * they are valid.
2984	 */
2985	if (level < 0)
2986		return ERR_PTR(-EINVAL);
2987
2988	/* Get the root znode */
2989	znode = c->zroot.znode;
2990	if (!znode) {
2991		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2992		if (IS_ERR(znode))
2993			return znode;
2994	}
2995	/* Check if it is the one we are looking for */
2996	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2997		return znode;
2998	/* Descend to the parent level i.e. (level + 1) */
2999	if (level >= znode->level)
3000		return NULL;
3001	while (1) {
3002		ubifs_search_zbranch(c, znode, key, &n);
3003		if (n < 0) {
3004			/*
3005			 * We reached a znode where the leftmost key is greater
3006			 * than the key we are searching for. This is the same
3007			 * situation as the one described in a huge comment at
3008			 * the end of the 'ubifs_lookup_level0()' function. And
3009			 * for exactly the same reasons we have to try to look
3010			 * left before giving up.
3011			 */
3012			znode = left_znode(c, znode);
3013			if (!znode)
3014				return NULL;
3015			if (IS_ERR(znode))
3016				return znode;
3017			ubifs_search_zbranch(c, znode, key, &n);
3018			ubifs_assert(n >= 0);
3019		}
3020		if (znode->level == level + 1)
3021			break;
3022		znode = get_znode(c, znode, n);
3023		if (IS_ERR(znode))
3024			return znode;
3025	}
3026	/* Check if the child is the one we are looking for */
3027	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3028		return get_znode(c, znode, n);
3029	/* If the key is unique, there is nowhere else to look */
3030	if (!is_hash_key(c, key))
3031		return NULL;
3032	/*
3033	 * The key is not unique and so may be also in the znodes to either
3034	 * side.
3035	 */
3036	zn = znode;
3037	nn = n;
3038	/* Look left */
3039	while (1) {
3040		/* Move one branch to the left */
3041		if (n)
3042			n -= 1;
3043		else {
3044			znode = left_znode(c, znode);
3045			if (!znode)
3046				break;
3047			if (IS_ERR(znode))
3048				return znode;
3049			n = znode->child_cnt - 1;
3050		}
3051		/* Check it */
3052		if (znode->zbranch[n].lnum == lnum &&
3053		    znode->zbranch[n].offs == offs)
3054			return get_znode(c, znode, n);
3055		/* Stop if the key is less than the one we are looking for */
3056		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3057			break;
3058	}
3059	/* Back to the middle */
3060	znode = zn;
3061	n = nn;
3062	/* Look right */
3063	while (1) {
3064		/* Move one branch to the right */
3065		if (++n >= znode->child_cnt) {
3066			znode = right_znode(c, znode);
3067			if (!znode)
3068				break;
3069			if (IS_ERR(znode))
3070				return znode;
3071			n = 0;
3072		}
3073		/* Check it */
3074		if (znode->zbranch[n].lnum == lnum &&
3075		    znode->zbranch[n].offs == offs)
3076			return get_znode(c, znode, n);
3077		/* Stop if the key is greater than the one we are looking for */
3078		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3079			break;
3080	}
3081	return NULL;
3082}
3083
3084/**
3085 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3086 * @c: UBIFS file-system description object
3087 * @key: key of index node
3088 * @level: index node level
3089 * @lnum: LEB number of index node
3090 * @offs: offset of index node
3091 *
3092 * This function returns %0 if the index node is not referred to in the TNC, %1
3093 * if the index node is referred to in the TNC and the corresponding znode is
3094 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3095 * znode is clean, and a negative error code in case of failure.
3096 *
3097 * Note, the @key argument has to be the key of the first child. Also note,
3098 * this function relies on the fact that 0:0 is never a valid LEB number and
3099 * offset for a main-area node.
3100 */
3101int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3102		       int lnum, int offs)
3103{
3104	struct ubifs_znode *znode;
3105
3106	znode = lookup_znode(c, key, level, lnum, offs);
3107	if (!znode)
3108		return 0;
3109	if (IS_ERR(znode))
3110		return PTR_ERR(znode);
3111
3112	return ubifs_zn_dirty(znode) ? 1 : 2;
3113}
3114
3115/**
3116 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3117 * @c: UBIFS file-system description object
3118 * @key: node key
3119 * @lnum: node LEB number
3120 * @offs: node offset
3121 *
3122 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3123 * not, and a negative error code in case of failure.
3124 *
3125 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3126 * and offset for a main-area node.
3127 */
3128static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3129			       int lnum, int offs)
3130{
3131	struct ubifs_zbranch *zbr;
3132	struct ubifs_znode *znode, *zn;
3133	int n, found, err, nn;
3134	const int unique = !is_hash_key(c, key);
3135
3136	found = ubifs_lookup_level0(c, key, &znode, &n);
3137	if (found < 0)
3138		return found; /* Error code */
3139	if (!found)
3140		return 0;
3141	zbr = &znode->zbranch[n];
3142	if (lnum == zbr->lnum && offs == zbr->offs)
3143		return 1; /* Found it */
3144	if (unique)
3145		return 0;
3146	/*
3147	 * Because the key is not unique, we have to look left
3148	 * and right as well
3149	 */
3150	zn = znode;
3151	nn = n;
3152	/* Look left */
3153	while (1) {
3154		err = tnc_prev(c, &znode, &n);
3155		if (err == -ENOENT)
3156			break;
3157		if (err)
3158			return err;
3159		if (keys_cmp(c, key, &znode->zbranch[n].key))
3160			break;
3161		zbr = &znode->zbranch[n];
3162		if (lnum == zbr->lnum && offs == zbr->offs)
3163			return 1; /* Found it */
3164	}
3165	/* Look right */
3166	znode = zn;
3167	n = nn;
3168	while (1) {
3169		err = tnc_next(c, &znode, &n);
3170		if (err) {
3171			if (err == -ENOENT)
3172				return 0;
3173			return err;
3174		}
3175		if (keys_cmp(c, key, &znode->zbranch[n].key))
3176			break;
3177		zbr = &znode->zbranch[n];
3178		if (lnum == zbr->lnum && offs == zbr->offs)
3179			return 1; /* Found it */
3180	}
3181	return 0;
3182}
3183
3184/**
3185 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3186 * @c: UBIFS file-system description object
3187 * @key: node key
3188 * @level: index node level (if it is an index node)
3189 * @lnum: node LEB number
3190 * @offs: node offset
3191 * @is_idx: non-zero if the node is an index node
3192 *
3193 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3194 * negative error code in case of failure. For index nodes, @key has to be the
3195 * key of the first child. An index node is considered to be in the TNC only if
3196 * the corresponding znode is clean or has not been loaded.
3197 */
3198int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3199		       int lnum, int offs, int is_idx)
3200{
3201	int err;
3202
3203	mutex_lock(&c->tnc_mutex);
3204	if (is_idx) {
3205		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3206		if (err < 0)
3207			goto out_unlock;
3208		if (err == 1)
3209			/* The index node was found but it was dirty */
3210			err = 0;
3211		else if (err == 2)
3212			/* The index node was found and it was clean */
3213			err = 1;
3214		else
3215			BUG_ON(err != 0);
3216	} else
3217		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3218
3219out_unlock:
3220	mutex_unlock(&c->tnc_mutex);
3221	return err;
3222}
3223
3224/**
3225 * ubifs_dirty_idx_node - dirty an index node.
3226 * @c: UBIFS file-system description object
3227 * @key: index node key
3228 * @level: index node level
3229 * @lnum: index node LEB number
3230 * @offs: index node offset
3231 *
3232 * This function loads and dirties an index node so that it can be garbage
3233 * collected. The @key argument has to be the key of the first child. This
3234 * function relies on the fact that 0:0 is never a valid LEB number and offset
3235 * for a main-area node. Returns %0 on success and a negative error code on
3236 * failure.
3237 */
3238int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3239			 int lnum, int offs)
3240{
3241	struct ubifs_znode *znode;
3242	int err = 0;
3243
3244	mutex_lock(&c->tnc_mutex);
3245	znode = lookup_znode(c, key, level, lnum, offs);
3246	if (!znode)
3247		goto out_unlock;
3248	if (IS_ERR(znode)) {
3249		err = PTR_ERR(znode);
3250		goto out_unlock;
3251	}
3252	znode = dirty_cow_bottom_up(c, znode);
3253	if (IS_ERR(znode)) {
3254		err = PTR_ERR(znode);
3255		goto out_unlock;
3256	}
3257
3258out_unlock:
3259	mutex_unlock(&c->tnc_mutex);
3260	return err;
3261}
3262
3263/**
3264 * dbg_check_inode_size - check if inode size is correct.
3265 * @c: UBIFS file-system description object
3266 * @inum: inode number
3267 * @size: inode size
3268 *
3269 * This function makes sure that the inode size (@size) is correct and it does
3270 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3271 * if it has a data page beyond @size, and other negative error code in case of
3272 * other errors.
3273 */
3274int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3275			 loff_t size)
3276{
3277	int err, n;
3278	union ubifs_key from_key, to_key, *key;
3279	struct ubifs_znode *znode;
3280	unsigned int block;
3281
3282	if (!S_ISREG(inode->i_mode))
3283		return 0;
3284	if (!dbg_is_chk_gen(c))
3285		return 0;
3286
3287	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3288	data_key_init(c, &from_key, inode->i_ino, block);
3289	highest_data_key(c, &to_key, inode->i_ino);
3290
3291	mutex_lock(&c->tnc_mutex);
3292	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3293	if (err < 0)
3294		goto out_unlock;
3295
3296	if (err) {
3297		key = &from_key;
3298		goto out_dump;
3299	}
3300
3301	err = tnc_next(c, &znode, &n);
3302	if (err == -ENOENT) {
3303		err = 0;
3304		goto out_unlock;
3305	}
3306	if (err < 0)
3307		goto out_unlock;
3308
3309	ubifs_assert(err == 0);
3310	key = &znode->zbranch[n].key;
3311	if (!key_in_range(c, key, &from_key, &to_key))
3312		goto out_unlock;
3313
3314out_dump:
3315	block = key_block(c, key);
3316	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3317		  (unsigned long)inode->i_ino, size,
3318		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3319	mutex_unlock(&c->tnc_mutex);
3320	ubifs_dump_inode(c, inode);
3321	dump_stack();
3322	return -EINVAL;
3323
3324out_unlock:
3325	mutex_unlock(&c->tnc_mutex);
3326	return err;
3327}
3328