1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
27#include "xfs_inode.h"
28#include "xfs_trans.h"
29#include "xfs_inode_item.h"
30#include "xfs_bmap.h"
31#include "xfs_bmap_util.h"
32#include "xfs_error.h"
33#include "xfs_dir2.h"
34#include "xfs_dir2_priv.h"
35#include "xfs_ioctl.h"
36#include "xfs_trace.h"
37#include "xfs_log.h"
38#include "xfs_icache.h"
39#include "xfs_pnfs.h"
40
41#include <linux/dcache.h>
42#include <linux/falloc.h>
43#include <linux/pagevec.h>
44
45static const struct vm_operations_struct xfs_file_vm_ops;
46
47/*
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50 */
51static inline void
52xfs_rw_ilock(
53	struct xfs_inode	*ip,
54	int			type)
55{
56	if (type & XFS_IOLOCK_EXCL)
57		mutex_lock(&VFS_I(ip)->i_mutex);
58	xfs_ilock(ip, type);
59}
60
61static inline void
62xfs_rw_iunlock(
63	struct xfs_inode	*ip,
64	int			type)
65{
66	xfs_iunlock(ip, type);
67	if (type & XFS_IOLOCK_EXCL)
68		mutex_unlock(&VFS_I(ip)->i_mutex);
69}
70
71static inline void
72xfs_rw_ilock_demote(
73	struct xfs_inode	*ip,
74	int			type)
75{
76	xfs_ilock_demote(ip, type);
77	if (type & XFS_IOLOCK_EXCL)
78		mutex_unlock(&VFS_I(ip)->i_mutex);
79}
80
81/*
82 *	xfs_iozero
83 *
84 *	xfs_iozero clears the specified range of buffer supplied,
85 *	and marks all the affected blocks as valid and modified.  If
86 *	an affected block is not allocated, it will be allocated.  If
87 *	an affected block is not completely overwritten, and is not
88 *	valid before the operation, it will be read from disk before
89 *	being partially zeroed.
90 */
91int
92xfs_iozero(
93	struct xfs_inode	*ip,	/* inode			*/
94	loff_t			pos,	/* offset in file		*/
95	size_t			count)	/* size of data to zero		*/
96{
97	struct page		*page;
98	struct address_space	*mapping;
99	int			status;
100
101	mapping = VFS_I(ip)->i_mapping;
102	do {
103		unsigned offset, bytes;
104		void *fsdata;
105
106		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107		bytes = PAGE_CACHE_SIZE - offset;
108		if (bytes > count)
109			bytes = count;
110
111		status = pagecache_write_begin(NULL, mapping, pos, bytes,
112					AOP_FLAG_UNINTERRUPTIBLE,
113					&page, &fsdata);
114		if (status)
115			break;
116
117		zero_user(page, offset, bytes);
118
119		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120					page, fsdata);
121		WARN_ON(status <= 0); /* can't return less than zero! */
122		pos += bytes;
123		count -= bytes;
124		status = 0;
125	} while (count);
126
127	return status;
128}
129
130int
131xfs_update_prealloc_flags(
132	struct xfs_inode	*ip,
133	enum xfs_prealloc_flags	flags)
134{
135	struct xfs_trans	*tp;
136	int			error;
137
138	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
139	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
140	if (error) {
141		xfs_trans_cancel(tp, 0);
142		return error;
143	}
144
145	xfs_ilock(ip, XFS_ILOCK_EXCL);
146	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
147
148	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
149		ip->i_d.di_mode &= ~S_ISUID;
150		if (ip->i_d.di_mode & S_IXGRP)
151			ip->i_d.di_mode &= ~S_ISGID;
152		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
153	}
154
155	if (flags & XFS_PREALLOC_SET)
156		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
157	if (flags & XFS_PREALLOC_CLEAR)
158		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
159
160	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
161	if (flags & XFS_PREALLOC_SYNC)
162		xfs_trans_set_sync(tp);
163	return xfs_trans_commit(tp, 0);
164}
165
166/*
167 * Fsync operations on directories are much simpler than on regular files,
168 * as there is no file data to flush, and thus also no need for explicit
169 * cache flush operations, and there are no non-transaction metadata updates
170 * on directories either.
171 */
172STATIC int
173xfs_dir_fsync(
174	struct file		*file,
175	loff_t			start,
176	loff_t			end,
177	int			datasync)
178{
179	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
180	struct xfs_mount	*mp = ip->i_mount;
181	xfs_lsn_t		lsn = 0;
182
183	trace_xfs_dir_fsync(ip);
184
185	xfs_ilock(ip, XFS_ILOCK_SHARED);
186	if (xfs_ipincount(ip))
187		lsn = ip->i_itemp->ili_last_lsn;
188	xfs_iunlock(ip, XFS_ILOCK_SHARED);
189
190	if (!lsn)
191		return 0;
192	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
193}
194
195STATIC int
196xfs_file_fsync(
197	struct file		*file,
198	loff_t			start,
199	loff_t			end,
200	int			datasync)
201{
202	struct inode		*inode = file->f_mapping->host;
203	struct xfs_inode	*ip = XFS_I(inode);
204	struct xfs_mount	*mp = ip->i_mount;
205	int			error = 0;
206	int			log_flushed = 0;
207	xfs_lsn_t		lsn = 0;
208
209	trace_xfs_file_fsync(ip);
210
211	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
212	if (error)
213		return error;
214
215	if (XFS_FORCED_SHUTDOWN(mp))
216		return -EIO;
217
218	xfs_iflags_clear(ip, XFS_ITRUNCATED);
219
220	if (mp->m_flags & XFS_MOUNT_BARRIER) {
221		/*
222		 * If we have an RT and/or log subvolume we need to make sure
223		 * to flush the write cache the device used for file data
224		 * first.  This is to ensure newly written file data make
225		 * it to disk before logging the new inode size in case of
226		 * an extending write.
227		 */
228		if (XFS_IS_REALTIME_INODE(ip))
229			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
230		else if (mp->m_logdev_targp != mp->m_ddev_targp)
231			xfs_blkdev_issue_flush(mp->m_ddev_targp);
232	}
233
234	/*
235	 * All metadata updates are logged, which means that we just have
236	 * to flush the log up to the latest LSN that touched the inode.
237	 */
238	xfs_ilock(ip, XFS_ILOCK_SHARED);
239	if (xfs_ipincount(ip)) {
240		if (!datasync ||
241		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
242			lsn = ip->i_itemp->ili_last_lsn;
243	}
244	xfs_iunlock(ip, XFS_ILOCK_SHARED);
245
246	if (lsn)
247		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
248
249	/*
250	 * If we only have a single device, and the log force about was
251	 * a no-op we might have to flush the data device cache here.
252	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
253	 * an already allocated file and thus do not have any metadata to
254	 * commit.
255	 */
256	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
257	    mp->m_logdev_targp == mp->m_ddev_targp &&
258	    !XFS_IS_REALTIME_INODE(ip) &&
259	    !log_flushed)
260		xfs_blkdev_issue_flush(mp->m_ddev_targp);
261
262	return error;
263}
264
265STATIC ssize_t
266xfs_file_read_iter(
267	struct kiocb		*iocb,
268	struct iov_iter		*to)
269{
270	struct file		*file = iocb->ki_filp;
271	struct inode		*inode = file->f_mapping->host;
272	struct xfs_inode	*ip = XFS_I(inode);
273	struct xfs_mount	*mp = ip->i_mount;
274	size_t			size = iov_iter_count(to);
275	ssize_t			ret = 0;
276	int			ioflags = 0;
277	xfs_fsize_t		n;
278	loff_t			pos = iocb->ki_pos;
279
280	XFS_STATS_INC(xs_read_calls);
281
282	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
283		ioflags |= XFS_IO_ISDIRECT;
284	if (file->f_mode & FMODE_NOCMTIME)
285		ioflags |= XFS_IO_INVIS;
286
287	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
288		xfs_buftarg_t	*target =
289			XFS_IS_REALTIME_INODE(ip) ?
290				mp->m_rtdev_targp : mp->m_ddev_targp;
291		/* DIO must be aligned to device logical sector size */
292		if ((pos | size) & target->bt_logical_sectormask) {
293			if (pos == i_size_read(inode))
294				return 0;
295			return -EINVAL;
296		}
297	}
298
299	n = mp->m_super->s_maxbytes - pos;
300	if (n <= 0 || size == 0)
301		return 0;
302
303	if (n < size)
304		size = n;
305
306	if (XFS_FORCED_SHUTDOWN(mp))
307		return -EIO;
308
309	/*
310	 * Locking is a bit tricky here. If we take an exclusive lock
311	 * for direct IO, we effectively serialise all new concurrent
312	 * read IO to this file and block it behind IO that is currently in
313	 * progress because IO in progress holds the IO lock shared. We only
314	 * need to hold the lock exclusive to blow away the page cache, so
315	 * only take lock exclusively if the page cache needs invalidation.
316	 * This allows the normal direct IO case of no page cache pages to
317	 * proceeed concurrently without serialisation.
318	 */
319	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
320	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
321		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323
324		if (inode->i_mapping->nrpages) {
325			ret = filemap_write_and_wait_range(
326							VFS_I(ip)->i_mapping,
327							pos, pos + size - 1);
328			if (ret) {
329				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
330				return ret;
331			}
332
333			/*
334			 * Invalidate whole pages. This can return an error if
335			 * we fail to invalidate a page, but this should never
336			 * happen on XFS. Warn if it does fail.
337			 */
338			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
339					pos >> PAGE_CACHE_SHIFT,
340					(pos + size - 1) >> PAGE_CACHE_SHIFT);
341			WARN_ON_ONCE(ret);
342			ret = 0;
343		}
344		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345	}
346
347	trace_xfs_file_read(ip, size, pos, ioflags);
348
349	ret = generic_file_read_iter(iocb, to);
350	if (ret > 0)
351		XFS_STATS_ADD(xs_read_bytes, ret);
352
353	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354	return ret;
355}
356
357STATIC ssize_t
358xfs_file_splice_read(
359	struct file		*infilp,
360	loff_t			*ppos,
361	struct pipe_inode_info	*pipe,
362	size_t			count,
363	unsigned int		flags)
364{
365	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
366	int			ioflags = 0;
367	ssize_t			ret;
368
369	XFS_STATS_INC(xs_read_calls);
370
371	if (infilp->f_mode & FMODE_NOCMTIME)
372		ioflags |= XFS_IO_INVIS;
373
374	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375		return -EIO;
376
377	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378
379	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
380
381	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382	if (ret > 0)
383		XFS_STATS_ADD(xs_read_bytes, ret);
384
385	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386	return ret;
387}
388
389/*
390 * This routine is called to handle zeroing any space in the last block of the
391 * file that is beyond the EOF.  We do this since the size is being increased
392 * without writing anything to that block and we don't want to read the
393 * garbage on the disk.
394 */
395STATIC int				/* error (positive) */
396xfs_zero_last_block(
397	struct xfs_inode	*ip,
398	xfs_fsize_t		offset,
399	xfs_fsize_t		isize,
400	bool			*did_zeroing)
401{
402	struct xfs_mount	*mp = ip->i_mount;
403	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
404	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
405	int			zero_len;
406	int			nimaps = 1;
407	int			error = 0;
408	struct xfs_bmbt_irec	imap;
409
410	xfs_ilock(ip, XFS_ILOCK_EXCL);
411	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412	xfs_iunlock(ip, XFS_ILOCK_EXCL);
413	if (error)
414		return error;
415
416	ASSERT(nimaps > 0);
417
418	/*
419	 * If the block underlying isize is just a hole, then there
420	 * is nothing to zero.
421	 */
422	if (imap.br_startblock == HOLESTARTBLOCK)
423		return 0;
424
425	zero_len = mp->m_sb.sb_blocksize - zero_offset;
426	if (isize + zero_len > offset)
427		zero_len = offset - isize;
428	*did_zeroing = true;
429	return xfs_iozero(ip, isize, zero_len);
430}
431
432/*
433 * Zero any on disk space between the current EOF and the new, larger EOF.
434 *
435 * This handles the normal case of zeroing the remainder of the last block in
436 * the file and the unusual case of zeroing blocks out beyond the size of the
437 * file.  This second case only happens with fixed size extents and when the
438 * system crashes before the inode size was updated but after blocks were
439 * allocated.
440 *
441 * Expects the iolock to be held exclusive, and will take the ilock internally.
442 */
443int					/* error (positive) */
444xfs_zero_eof(
445	struct xfs_inode	*ip,
446	xfs_off_t		offset,		/* starting I/O offset */
447	xfs_fsize_t		isize,		/* current inode size */
448	bool			*did_zeroing)
449{
450	struct xfs_mount	*mp = ip->i_mount;
451	xfs_fileoff_t		start_zero_fsb;
452	xfs_fileoff_t		end_zero_fsb;
453	xfs_fileoff_t		zero_count_fsb;
454	xfs_fileoff_t		last_fsb;
455	xfs_fileoff_t		zero_off;
456	xfs_fsize_t		zero_len;
457	int			nimaps;
458	int			error = 0;
459	struct xfs_bmbt_irec	imap;
460
461	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
462	ASSERT(offset > isize);
463
464	/*
465	 * First handle zeroing the block on which isize resides.
466	 *
467	 * We only zero a part of that block so it is handled specially.
468	 */
469	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
471		if (error)
472			return error;
473	}
474
475	/*
476	 * Calculate the range between the new size and the old where blocks
477	 * needing to be zeroed may exist.
478	 *
479	 * To get the block where the last byte in the file currently resides,
480	 * we need to subtract one from the size and truncate back to a block
481	 * boundary.  We subtract 1 in case the size is exactly on a block
482	 * boundary.
483	 */
484	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488	if (last_fsb == end_zero_fsb) {
489		/*
490		 * The size was only incremented on its last block.
491		 * We took care of that above, so just return.
492		 */
493		return 0;
494	}
495
496	ASSERT(start_zero_fsb <= end_zero_fsb);
497	while (start_zero_fsb <= end_zero_fsb) {
498		nimaps = 1;
499		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
500
501		xfs_ilock(ip, XFS_ILOCK_EXCL);
502		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503					  &imap, &nimaps, 0);
504		xfs_iunlock(ip, XFS_ILOCK_EXCL);
505		if (error)
506			return error;
507
508		ASSERT(nimaps > 0);
509
510		if (imap.br_state == XFS_EXT_UNWRITTEN ||
511		    imap.br_startblock == HOLESTARTBLOCK) {
512			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514			continue;
515		}
516
517		/*
518		 * There are blocks we need to zero.
519		 */
520		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522
523		if ((zero_off + zero_len) > offset)
524			zero_len = offset - zero_off;
525
526		error = xfs_iozero(ip, zero_off, zero_len);
527		if (error)
528			return error;
529
530		*did_zeroing = true;
531		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533	}
534
535	return 0;
536}
537
538/*
539 * Common pre-write limit and setup checks.
540 *
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
544 */
545STATIC ssize_t
546xfs_file_aio_write_checks(
547	struct kiocb		*iocb,
548	struct iov_iter		*from,
549	int			*iolock)
550{
551	struct file		*file = iocb->ki_filp;
552	struct inode		*inode = file->f_mapping->host;
553	struct xfs_inode	*ip = XFS_I(inode);
554	ssize_t			error = 0;
555	size_t			count = iov_iter_count(from);
556
557restart:
558	error = generic_write_checks(iocb, from);
559	if (error <= 0)
560		return error;
561
562	error = xfs_break_layouts(inode, iolock, true);
563	if (error)
564		return error;
565
566	/*
567	 * If the offset is beyond the size of the file, we need to zero any
568	 * blocks that fall between the existing EOF and the start of this
569	 * write.  If zeroing is needed and we are currently holding the
570	 * iolock shared, we need to update it to exclusive which implies
571	 * having to redo all checks before.
572	 *
573	 * We need to serialise against EOF updates that occur in IO
574	 * completions here. We want to make sure that nobody is changing the
575	 * size while we do this check until we have placed an IO barrier (i.e.
576	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
577	 * The spinlock effectively forms a memory barrier once we have the
578	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
579	 * and hence be able to correctly determine if we need to run zeroing.
580	 */
581	spin_lock(&ip->i_flags_lock);
582	if (iocb->ki_pos > i_size_read(inode)) {
583		bool	zero = false;
584
585		spin_unlock(&ip->i_flags_lock);
586		if (*iolock == XFS_IOLOCK_SHARED) {
587			xfs_rw_iunlock(ip, *iolock);
588			*iolock = XFS_IOLOCK_EXCL;
589			xfs_rw_ilock(ip, *iolock);
590			iov_iter_reexpand(from, count);
591
592			/*
593			 * We now have an IO submission barrier in place, but
594			 * AIO can do EOF updates during IO completion and hence
595			 * we now need to wait for all of them to drain. Non-AIO
596			 * DIO will have drained before we are given the
597			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
598			 * no-op.
599			 */
600			inode_dio_wait(inode);
601			goto restart;
602		}
603		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
604		if (error)
605			return error;
606	} else
607		spin_unlock(&ip->i_flags_lock);
608
609	/*
610	 * Updating the timestamps will grab the ilock again from
611	 * xfs_fs_dirty_inode, so we have to call it after dropping the
612	 * lock above.  Eventually we should look into a way to avoid
613	 * the pointless lock roundtrip.
614	 */
615	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
616		error = file_update_time(file);
617		if (error)
618			return error;
619	}
620
621	/*
622	 * If we're writing the file then make sure to clear the setuid and
623	 * setgid bits if the process is not being run by root.  This keeps
624	 * people from modifying setuid and setgid binaries.
625	 */
626	return file_remove_suid(file);
627}
628
629/*
630 * xfs_file_dio_aio_write - handle direct IO writes
631 *
632 * Lock the inode appropriately to prepare for and issue a direct IO write.
633 * By separating it from the buffered write path we remove all the tricky to
634 * follow locking changes and looping.
635 *
636 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
637 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
638 * pages are flushed out.
639 *
640 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
641 * allowing them to be done in parallel with reads and other direct IO writes.
642 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
643 * needs to do sub-block zeroing and that requires serialisation against other
644 * direct IOs to the same block. In this case we need to serialise the
645 * submission of the unaligned IOs so that we don't get racing block zeroing in
646 * the dio layer.  To avoid the problem with aio, we also need to wait for
647 * outstanding IOs to complete so that unwritten extent conversion is completed
648 * before we try to map the overlapping block. This is currently implemented by
649 * hitting it with a big hammer (i.e. inode_dio_wait()).
650 *
651 * Returns with locks held indicated by @iolock and errors indicated by
652 * negative return values.
653 */
654STATIC ssize_t
655xfs_file_dio_aio_write(
656	struct kiocb		*iocb,
657	struct iov_iter		*from)
658{
659	struct file		*file = iocb->ki_filp;
660	struct address_space	*mapping = file->f_mapping;
661	struct inode		*inode = mapping->host;
662	struct xfs_inode	*ip = XFS_I(inode);
663	struct xfs_mount	*mp = ip->i_mount;
664	ssize_t			ret = 0;
665	int			unaligned_io = 0;
666	int			iolock;
667	size_t			count = iov_iter_count(from);
668	loff_t			pos = iocb->ki_pos;
669	loff_t			end;
670	struct iov_iter		data;
671	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
672					mp->m_rtdev_targp : mp->m_ddev_targp;
673
674	/* DIO must be aligned to device logical sector size */
675	if ((pos | count) & target->bt_logical_sectormask)
676		return -EINVAL;
677
678	/* "unaligned" here means not aligned to a filesystem block */
679	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
680		unaligned_io = 1;
681
682	/*
683	 * We don't need to take an exclusive lock unless there page cache needs
684	 * to be invalidated or unaligned IO is being executed. We don't need to
685	 * consider the EOF extension case here because
686	 * xfs_file_aio_write_checks() will relock the inode as necessary for
687	 * EOF zeroing cases and fill out the new inode size as appropriate.
688	 */
689	if (unaligned_io || mapping->nrpages)
690		iolock = XFS_IOLOCK_EXCL;
691	else
692		iolock = XFS_IOLOCK_SHARED;
693	xfs_rw_ilock(ip, iolock);
694
695	/*
696	 * Recheck if there are cached pages that need invalidate after we got
697	 * the iolock to protect against other threads adding new pages while
698	 * we were waiting for the iolock.
699	 */
700	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
701		xfs_rw_iunlock(ip, iolock);
702		iolock = XFS_IOLOCK_EXCL;
703		xfs_rw_ilock(ip, iolock);
704	}
705
706	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
707	if (ret)
708		goto out;
709	count = iov_iter_count(from);
710	pos = iocb->ki_pos;
711	end = pos + count - 1;
712
713	if (mapping->nrpages) {
714		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
715						   pos, end);
716		if (ret)
717			goto out;
718		/*
719		 * Invalidate whole pages. This can return an error if
720		 * we fail to invalidate a page, but this should never
721		 * happen on XFS. Warn if it does fail.
722		 */
723		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
724					pos >> PAGE_CACHE_SHIFT,
725					end >> PAGE_CACHE_SHIFT);
726		WARN_ON_ONCE(ret);
727		ret = 0;
728	}
729
730	/*
731	 * If we are doing unaligned IO, wait for all other IO to drain,
732	 * otherwise demote the lock if we had to flush cached pages
733	 */
734	if (unaligned_io)
735		inode_dio_wait(inode);
736	else if (iolock == XFS_IOLOCK_EXCL) {
737		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
738		iolock = XFS_IOLOCK_SHARED;
739	}
740
741	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
742
743	data = *from;
744	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
745
746	/* see generic_file_direct_write() for why this is necessary */
747	if (mapping->nrpages) {
748		invalidate_inode_pages2_range(mapping,
749					      pos >> PAGE_CACHE_SHIFT,
750					      end >> PAGE_CACHE_SHIFT);
751	}
752
753	if (ret > 0) {
754		pos += ret;
755		iov_iter_advance(from, ret);
756		iocb->ki_pos = pos;
757	}
758out:
759	xfs_rw_iunlock(ip, iolock);
760
761	/* No fallback to buffered IO on errors for XFS. */
762	ASSERT(ret < 0 || ret == count);
763	return ret;
764}
765
766STATIC ssize_t
767xfs_file_buffered_aio_write(
768	struct kiocb		*iocb,
769	struct iov_iter		*from)
770{
771	struct file		*file = iocb->ki_filp;
772	struct address_space	*mapping = file->f_mapping;
773	struct inode		*inode = mapping->host;
774	struct xfs_inode	*ip = XFS_I(inode);
775	ssize_t			ret;
776	int			enospc = 0;
777	int			iolock = XFS_IOLOCK_EXCL;
778
779	xfs_rw_ilock(ip, iolock);
780
781	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
782	if (ret)
783		goto out;
784
785	/* We can write back this queue in page reclaim */
786	current->backing_dev_info = inode_to_bdi(inode);
787
788write_retry:
789	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
790				      iocb->ki_pos, 0);
791	ret = generic_perform_write(file, from, iocb->ki_pos);
792	if (likely(ret >= 0))
793		iocb->ki_pos += ret;
794
795	/*
796	 * If we hit a space limit, try to free up some lingering preallocated
797	 * space before returning an error. In the case of ENOSPC, first try to
798	 * write back all dirty inodes to free up some of the excess reserved
799	 * metadata space. This reduces the chances that the eofblocks scan
800	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
801	 * also behaves as a filter to prevent too many eofblocks scans from
802	 * running at the same time.
803	 */
804	if (ret == -EDQUOT && !enospc) {
805		enospc = xfs_inode_free_quota_eofblocks(ip);
806		if (enospc)
807			goto write_retry;
808	} else if (ret == -ENOSPC && !enospc) {
809		struct xfs_eofblocks eofb = {0};
810
811		enospc = 1;
812		xfs_flush_inodes(ip->i_mount);
813		eofb.eof_scan_owner = ip->i_ino; /* for locking */
814		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
815		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
816		goto write_retry;
817	}
818
819	current->backing_dev_info = NULL;
820out:
821	xfs_rw_iunlock(ip, iolock);
822	return ret;
823}
824
825STATIC ssize_t
826xfs_file_write_iter(
827	struct kiocb		*iocb,
828	struct iov_iter		*from)
829{
830	struct file		*file = iocb->ki_filp;
831	struct address_space	*mapping = file->f_mapping;
832	struct inode		*inode = mapping->host;
833	struct xfs_inode	*ip = XFS_I(inode);
834	ssize_t			ret;
835	size_t			ocount = iov_iter_count(from);
836
837	XFS_STATS_INC(xs_write_calls);
838
839	if (ocount == 0)
840		return 0;
841
842	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
843		return -EIO;
844
845	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
846		ret = xfs_file_dio_aio_write(iocb, from);
847	else
848		ret = xfs_file_buffered_aio_write(iocb, from);
849
850	if (ret > 0) {
851		ssize_t err;
852
853		XFS_STATS_ADD(xs_write_bytes, ret);
854
855		/* Handle various SYNC-type writes */
856		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
857		if (err < 0)
858			ret = err;
859	}
860	return ret;
861}
862
863#define	XFS_FALLOC_FL_SUPPORTED						\
864		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
865		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
866		 FALLOC_FL_INSERT_RANGE)
867
868STATIC long
869xfs_file_fallocate(
870	struct file		*file,
871	int			mode,
872	loff_t			offset,
873	loff_t			len)
874{
875	struct inode		*inode = file_inode(file);
876	struct xfs_inode	*ip = XFS_I(inode);
877	long			error;
878	enum xfs_prealloc_flags	flags = 0;
879	uint			iolock = XFS_IOLOCK_EXCL;
880	loff_t			new_size = 0;
881	bool			do_file_insert = 0;
882
883	if (!S_ISREG(inode->i_mode))
884		return -EINVAL;
885	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
886		return -EOPNOTSUPP;
887
888	xfs_ilock(ip, iolock);
889	error = xfs_break_layouts(inode, &iolock, false);
890	if (error)
891		goto out_unlock;
892
893	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
894	iolock |= XFS_MMAPLOCK_EXCL;
895
896	if (mode & FALLOC_FL_PUNCH_HOLE) {
897		error = xfs_free_file_space(ip, offset, len);
898		if (error)
899			goto out_unlock;
900	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
901		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
902
903		if (offset & blksize_mask || len & blksize_mask) {
904			error = -EINVAL;
905			goto out_unlock;
906		}
907
908		/*
909		 * There is no need to overlap collapse range with EOF,
910		 * in which case it is effectively a truncate operation
911		 */
912		if (offset + len >= i_size_read(inode)) {
913			error = -EINVAL;
914			goto out_unlock;
915		}
916
917		new_size = i_size_read(inode) - len;
918
919		error = xfs_collapse_file_space(ip, offset, len);
920		if (error)
921			goto out_unlock;
922	} else if (mode & FALLOC_FL_INSERT_RANGE) {
923		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
924
925		new_size = i_size_read(inode) + len;
926		if (offset & blksize_mask || len & blksize_mask) {
927			error = -EINVAL;
928			goto out_unlock;
929		}
930
931		/* check the new inode size does not wrap through zero */
932		if (new_size > inode->i_sb->s_maxbytes) {
933			error = -EFBIG;
934			goto out_unlock;
935		}
936
937		/* Offset should be less than i_size */
938		if (offset >= i_size_read(inode)) {
939			error = -EINVAL;
940			goto out_unlock;
941		}
942		do_file_insert = 1;
943	} else {
944		flags |= XFS_PREALLOC_SET;
945
946		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
947		    offset + len > i_size_read(inode)) {
948			new_size = offset + len;
949			error = inode_newsize_ok(inode, new_size);
950			if (error)
951				goto out_unlock;
952		}
953
954		if (mode & FALLOC_FL_ZERO_RANGE)
955			error = xfs_zero_file_space(ip, offset, len);
956		else
957			error = xfs_alloc_file_space(ip, offset, len,
958						     XFS_BMAPI_PREALLOC);
959		if (error)
960			goto out_unlock;
961	}
962
963	if (file->f_flags & O_DSYNC)
964		flags |= XFS_PREALLOC_SYNC;
965
966	error = xfs_update_prealloc_flags(ip, flags);
967	if (error)
968		goto out_unlock;
969
970	/* Change file size if needed */
971	if (new_size) {
972		struct iattr iattr;
973
974		iattr.ia_valid = ATTR_SIZE;
975		iattr.ia_size = new_size;
976		error = xfs_setattr_size(ip, &iattr);
977		if (error)
978			goto out_unlock;
979	}
980
981	/*
982	 * Perform hole insertion now that the file size has been
983	 * updated so that if we crash during the operation we don't
984	 * leave shifted extents past EOF and hence losing access to
985	 * the data that is contained within them.
986	 */
987	if (do_file_insert)
988		error = xfs_insert_file_space(ip, offset, len);
989
990out_unlock:
991	xfs_iunlock(ip, iolock);
992	return error;
993}
994
995
996STATIC int
997xfs_file_open(
998	struct inode	*inode,
999	struct file	*file)
1000{
1001	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1002		return -EFBIG;
1003	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1004		return -EIO;
1005	return 0;
1006}
1007
1008STATIC int
1009xfs_dir_open(
1010	struct inode	*inode,
1011	struct file	*file)
1012{
1013	struct xfs_inode *ip = XFS_I(inode);
1014	int		mode;
1015	int		error;
1016
1017	error = xfs_file_open(inode, file);
1018	if (error)
1019		return error;
1020
1021	/*
1022	 * If there are any blocks, read-ahead block 0 as we're almost
1023	 * certain to have the next operation be a read there.
1024	 */
1025	mode = xfs_ilock_data_map_shared(ip);
1026	if (ip->i_d.di_nextents > 0)
1027		xfs_dir3_data_readahead(ip, 0, -1);
1028	xfs_iunlock(ip, mode);
1029	return 0;
1030}
1031
1032STATIC int
1033xfs_file_release(
1034	struct inode	*inode,
1035	struct file	*filp)
1036{
1037	return xfs_release(XFS_I(inode));
1038}
1039
1040STATIC int
1041xfs_file_readdir(
1042	struct file	*file,
1043	struct dir_context *ctx)
1044{
1045	struct inode	*inode = file_inode(file);
1046	xfs_inode_t	*ip = XFS_I(inode);
1047	size_t		bufsize;
1048
1049	/*
1050	 * The Linux API doesn't pass down the total size of the buffer
1051	 * we read into down to the filesystem.  With the filldir concept
1052	 * it's not needed for correct information, but the XFS dir2 leaf
1053	 * code wants an estimate of the buffer size to calculate it's
1054	 * readahead window and size the buffers used for mapping to
1055	 * physical blocks.
1056	 *
1057	 * Try to give it an estimate that's good enough, maybe at some
1058	 * point we can change the ->readdir prototype to include the
1059	 * buffer size.  For now we use the current glibc buffer size.
1060	 */
1061	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1062
1063	return xfs_readdir(ip, ctx, bufsize);
1064}
1065
1066STATIC int
1067xfs_file_mmap(
1068	struct file	*filp,
1069	struct vm_area_struct *vma)
1070{
1071	vma->vm_ops = &xfs_file_vm_ops;
1072
1073	file_accessed(filp);
1074	return 0;
1075}
1076
1077/*
1078 * This type is designed to indicate the type of offset we would like
1079 * to search from page cache for xfs_seek_hole_data().
1080 */
1081enum {
1082	HOLE_OFF = 0,
1083	DATA_OFF,
1084};
1085
1086/*
1087 * Lookup the desired type of offset from the given page.
1088 *
1089 * On success, return true and the offset argument will point to the
1090 * start of the region that was found.  Otherwise this function will
1091 * return false and keep the offset argument unchanged.
1092 */
1093STATIC bool
1094xfs_lookup_buffer_offset(
1095	struct page		*page,
1096	loff_t			*offset,
1097	unsigned int		type)
1098{
1099	loff_t			lastoff = page_offset(page);
1100	bool			found = false;
1101	struct buffer_head	*bh, *head;
1102
1103	bh = head = page_buffers(page);
1104	do {
1105		/*
1106		 * Unwritten extents that have data in the page
1107		 * cache covering them can be identified by the
1108		 * BH_Unwritten state flag.  Pages with multiple
1109		 * buffers might have a mix of holes, data and
1110		 * unwritten extents - any buffer with valid
1111		 * data in it should have BH_Uptodate flag set
1112		 * on it.
1113		 */
1114		if (buffer_unwritten(bh) ||
1115		    buffer_uptodate(bh)) {
1116			if (type == DATA_OFF)
1117				found = true;
1118		} else {
1119			if (type == HOLE_OFF)
1120				found = true;
1121		}
1122
1123		if (found) {
1124			*offset = lastoff;
1125			break;
1126		}
1127		lastoff += bh->b_size;
1128	} while ((bh = bh->b_this_page) != head);
1129
1130	return found;
1131}
1132
1133/*
1134 * This routine is called to find out and return a data or hole offset
1135 * from the page cache for unwritten extents according to the desired
1136 * type for xfs_seek_hole_data().
1137 *
1138 * The argument offset is used to tell where we start to search from the
1139 * page cache.  Map is used to figure out the end points of the range to
1140 * lookup pages.
1141 *
1142 * Return true if the desired type of offset was found, and the argument
1143 * offset is filled with that address.  Otherwise, return false and keep
1144 * offset unchanged.
1145 */
1146STATIC bool
1147xfs_find_get_desired_pgoff(
1148	struct inode		*inode,
1149	struct xfs_bmbt_irec	*map,
1150	unsigned int		type,
1151	loff_t			*offset)
1152{
1153	struct xfs_inode	*ip = XFS_I(inode);
1154	struct xfs_mount	*mp = ip->i_mount;
1155	struct pagevec		pvec;
1156	pgoff_t			index;
1157	pgoff_t			end;
1158	loff_t			endoff;
1159	loff_t			startoff = *offset;
1160	loff_t			lastoff = startoff;
1161	bool			found = false;
1162
1163	pagevec_init(&pvec, 0);
1164
1165	index = startoff >> PAGE_CACHE_SHIFT;
1166	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1167	end = endoff >> PAGE_CACHE_SHIFT;
1168	do {
1169		int		want;
1170		unsigned	nr_pages;
1171		unsigned int	i;
1172
1173		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1174		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1175					  want);
1176		/*
1177		 * No page mapped into given range.  If we are searching holes
1178		 * and if this is the first time we got into the loop, it means
1179		 * that the given offset is landed in a hole, return it.
1180		 *
1181		 * If we have already stepped through some block buffers to find
1182		 * holes but they all contains data.  In this case, the last
1183		 * offset is already updated and pointed to the end of the last
1184		 * mapped page, if it does not reach the endpoint to search,
1185		 * that means there should be a hole between them.
1186		 */
1187		if (nr_pages == 0) {
1188			/* Data search found nothing */
1189			if (type == DATA_OFF)
1190				break;
1191
1192			ASSERT(type == HOLE_OFF);
1193			if (lastoff == startoff || lastoff < endoff) {
1194				found = true;
1195				*offset = lastoff;
1196			}
1197			break;
1198		}
1199
1200		/*
1201		 * At lease we found one page.  If this is the first time we
1202		 * step into the loop, and if the first page index offset is
1203		 * greater than the given search offset, a hole was found.
1204		 */
1205		if (type == HOLE_OFF && lastoff == startoff &&
1206		    lastoff < page_offset(pvec.pages[0])) {
1207			found = true;
1208			break;
1209		}
1210
1211		for (i = 0; i < nr_pages; i++) {
1212			struct page	*page = pvec.pages[i];
1213			loff_t		b_offset;
1214
1215			/*
1216			 * At this point, the page may be truncated or
1217			 * invalidated (changing page->mapping to NULL),
1218			 * or even swizzled back from swapper_space to tmpfs
1219			 * file mapping. However, page->index will not change
1220			 * because we have a reference on the page.
1221			 *
1222			 * Searching done if the page index is out of range.
1223			 * If the current offset is not reaches the end of
1224			 * the specified search range, there should be a hole
1225			 * between them.
1226			 */
1227			if (page->index > end) {
1228				if (type == HOLE_OFF && lastoff < endoff) {
1229					*offset = lastoff;
1230					found = true;
1231				}
1232				goto out;
1233			}
1234
1235			lock_page(page);
1236			/*
1237			 * Page truncated or invalidated(page->mapping == NULL).
1238			 * We can freely skip it and proceed to check the next
1239			 * page.
1240			 */
1241			if (unlikely(page->mapping != inode->i_mapping)) {
1242				unlock_page(page);
1243				continue;
1244			}
1245
1246			if (!page_has_buffers(page)) {
1247				unlock_page(page);
1248				continue;
1249			}
1250
1251			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1252			if (found) {
1253				/*
1254				 * The found offset may be less than the start
1255				 * point to search if this is the first time to
1256				 * come here.
1257				 */
1258				*offset = max_t(loff_t, startoff, b_offset);
1259				unlock_page(page);
1260				goto out;
1261			}
1262
1263			/*
1264			 * We either searching data but nothing was found, or
1265			 * searching hole but found a data buffer.  In either
1266			 * case, probably the next page contains the desired
1267			 * things, update the last offset to it so.
1268			 */
1269			lastoff = page_offset(page) + PAGE_SIZE;
1270			unlock_page(page);
1271		}
1272
1273		/*
1274		 * The number of returned pages less than our desired, search
1275		 * done.  In this case, nothing was found for searching data,
1276		 * but we found a hole behind the last offset.
1277		 */
1278		if (nr_pages < want) {
1279			if (type == HOLE_OFF) {
1280				*offset = lastoff;
1281				found = true;
1282			}
1283			break;
1284		}
1285
1286		index = pvec.pages[i - 1]->index + 1;
1287		pagevec_release(&pvec);
1288	} while (index <= end);
1289
1290out:
1291	pagevec_release(&pvec);
1292	return found;
1293}
1294
1295STATIC loff_t
1296xfs_seek_hole_data(
1297	struct file		*file,
1298	loff_t			start,
1299	int			whence)
1300{
1301	struct inode		*inode = file->f_mapping->host;
1302	struct xfs_inode	*ip = XFS_I(inode);
1303	struct xfs_mount	*mp = ip->i_mount;
1304	loff_t			uninitialized_var(offset);
1305	xfs_fsize_t		isize;
1306	xfs_fileoff_t		fsbno;
1307	xfs_filblks_t		end;
1308	uint			lock;
1309	int			error;
1310
1311	if (XFS_FORCED_SHUTDOWN(mp))
1312		return -EIO;
1313
1314	lock = xfs_ilock_data_map_shared(ip);
1315
1316	isize = i_size_read(inode);
1317	if (start >= isize) {
1318		error = -ENXIO;
1319		goto out_unlock;
1320	}
1321
1322	/*
1323	 * Try to read extents from the first block indicated
1324	 * by fsbno to the end block of the file.
1325	 */
1326	fsbno = XFS_B_TO_FSBT(mp, start);
1327	end = XFS_B_TO_FSB(mp, isize);
1328
1329	for (;;) {
1330		struct xfs_bmbt_irec	map[2];
1331		int			nmap = 2;
1332		unsigned int		i;
1333
1334		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1335				       XFS_BMAPI_ENTIRE);
1336		if (error)
1337			goto out_unlock;
1338
1339		/* No extents at given offset, must be beyond EOF */
1340		if (nmap == 0) {
1341			error = -ENXIO;
1342			goto out_unlock;
1343		}
1344
1345		for (i = 0; i < nmap; i++) {
1346			offset = max_t(loff_t, start,
1347				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1348
1349			/* Landed in the hole we wanted? */
1350			if (whence == SEEK_HOLE &&
1351			    map[i].br_startblock == HOLESTARTBLOCK)
1352				goto out;
1353
1354			/* Landed in the data extent we wanted? */
1355			if (whence == SEEK_DATA &&
1356			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1357			     (map[i].br_state == XFS_EXT_NORM &&
1358			      !isnullstartblock(map[i].br_startblock))))
1359				goto out;
1360
1361			/*
1362			 * Landed in an unwritten extent, try to search
1363			 * for hole or data from page cache.
1364			 */
1365			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1366				if (xfs_find_get_desired_pgoff(inode, &map[i],
1367				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1368							&offset))
1369					goto out;
1370			}
1371		}
1372
1373		/*
1374		 * We only received one extent out of the two requested. This
1375		 * means we've hit EOF and didn't find what we are looking for.
1376		 */
1377		if (nmap == 1) {
1378			/*
1379			 * If we were looking for a hole, set offset to
1380			 * the end of the file (i.e., there is an implicit
1381			 * hole at the end of any file).
1382		 	 */
1383			if (whence == SEEK_HOLE) {
1384				offset = isize;
1385				break;
1386			}
1387			/*
1388			 * If we were looking for data, it's nowhere to be found
1389			 */
1390			ASSERT(whence == SEEK_DATA);
1391			error = -ENXIO;
1392			goto out_unlock;
1393		}
1394
1395		ASSERT(i > 1);
1396
1397		/*
1398		 * Nothing was found, proceed to the next round of search
1399		 * if the next reading offset is not at or beyond EOF.
1400		 */
1401		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1402		start = XFS_FSB_TO_B(mp, fsbno);
1403		if (start >= isize) {
1404			if (whence == SEEK_HOLE) {
1405				offset = isize;
1406				break;
1407			}
1408			ASSERT(whence == SEEK_DATA);
1409			error = -ENXIO;
1410			goto out_unlock;
1411		}
1412	}
1413
1414out:
1415	/*
1416	 * If at this point we have found the hole we wanted, the returned
1417	 * offset may be bigger than the file size as it may be aligned to
1418	 * page boundary for unwritten extents.  We need to deal with this
1419	 * situation in particular.
1420	 */
1421	if (whence == SEEK_HOLE)
1422		offset = min_t(loff_t, offset, isize);
1423	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1424
1425out_unlock:
1426	xfs_iunlock(ip, lock);
1427
1428	if (error)
1429		return error;
1430	return offset;
1431}
1432
1433STATIC loff_t
1434xfs_file_llseek(
1435	struct file	*file,
1436	loff_t		offset,
1437	int		whence)
1438{
1439	switch (whence) {
1440	case SEEK_END:
1441	case SEEK_CUR:
1442	case SEEK_SET:
1443		return generic_file_llseek(file, offset, whence);
1444	case SEEK_HOLE:
1445	case SEEK_DATA:
1446		return xfs_seek_hole_data(file, offset, whence);
1447	default:
1448		return -EINVAL;
1449	}
1450}
1451
1452/*
1453 * Locking for serialisation of IO during page faults. This results in a lock
1454 * ordering of:
1455 *
1456 * mmap_sem (MM)
1457 *   i_mmap_lock (XFS - truncate serialisation)
1458 *     page_lock (MM)
1459 *       i_lock (XFS - extent map serialisation)
1460 */
1461STATIC int
1462xfs_filemap_fault(
1463	struct vm_area_struct	*vma,
1464	struct vm_fault		*vmf)
1465{
1466	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1467	int			error;
1468
1469	trace_xfs_filemap_fault(ip);
1470
1471	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1472	error = filemap_fault(vma, vmf);
1473	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1474
1475	return error;
1476}
1477
1478/*
1479 * mmap()d file has taken write protection fault and is being made writable. We
1480 * can set the page state up correctly for a writable page, which means we can
1481 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1482 * mapping.
1483 */
1484STATIC int
1485xfs_filemap_page_mkwrite(
1486	struct vm_area_struct	*vma,
1487	struct vm_fault		*vmf)
1488{
1489	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1490	int			error;
1491
1492	trace_xfs_filemap_page_mkwrite(ip);
1493
1494	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1495	error = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1496	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1497
1498	return error;
1499}
1500
1501const struct file_operations xfs_file_operations = {
1502	.llseek		= xfs_file_llseek,
1503	.read_iter	= xfs_file_read_iter,
1504	.write_iter	= xfs_file_write_iter,
1505	.splice_read	= xfs_file_splice_read,
1506	.splice_write	= iter_file_splice_write,
1507	.unlocked_ioctl	= xfs_file_ioctl,
1508#ifdef CONFIG_COMPAT
1509	.compat_ioctl	= xfs_file_compat_ioctl,
1510#endif
1511	.mmap		= xfs_file_mmap,
1512	.open		= xfs_file_open,
1513	.release	= xfs_file_release,
1514	.fsync		= xfs_file_fsync,
1515	.fallocate	= xfs_file_fallocate,
1516};
1517
1518const struct file_operations xfs_dir_file_operations = {
1519	.open		= xfs_dir_open,
1520	.read		= generic_read_dir,
1521	.iterate	= xfs_file_readdir,
1522	.llseek		= generic_file_llseek,
1523	.unlocked_ioctl	= xfs_file_ioctl,
1524#ifdef CONFIG_COMPAT
1525	.compat_ioctl	= xfs_file_compat_ioctl,
1526#endif
1527	.fsync		= xfs_dir_fsync,
1528};
1529
1530static const struct vm_operations_struct xfs_file_vm_ops = {
1531	.fault		= xfs_filemap_fault,
1532	.map_pages	= filemap_map_pages,
1533	.page_mkwrite	= xfs_filemap_page_mkwrite,
1534};
1535