1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_error.h"
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_log.h"
29#include "xfs_log_priv.h"
30#include "xfs_log_recover.h"
31#include "xfs_inode.h"
32#include "xfs_trace.h"
33#include "xfs_fsops.h"
34#include "xfs_cksum.h"
35#include "xfs_sysfs.h"
36#include "xfs_sb.h"
37
38kmem_zone_t	*xfs_log_ticket_zone;
39
40/* Local miscellaneous function prototypes */
41STATIC int
42xlog_commit_record(
43	struct xlog		*log,
44	struct xlog_ticket	*ticket,
45	struct xlog_in_core	**iclog,
46	xfs_lsn_t		*commitlsnp);
47
48STATIC struct xlog *
49xlog_alloc_log(
50	struct xfs_mount	*mp,
51	struct xfs_buftarg	*log_target,
52	xfs_daddr_t		blk_offset,
53	int			num_bblks);
54STATIC int
55xlog_space_left(
56	struct xlog		*log,
57	atomic64_t		*head);
58STATIC int
59xlog_sync(
60	struct xlog		*log,
61	struct xlog_in_core	*iclog);
62STATIC void
63xlog_dealloc_log(
64	struct xlog		*log);
65
66/* local state machine functions */
67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68STATIC void
69xlog_state_do_callback(
70	struct xlog		*log,
71	int			aborted,
72	struct xlog_in_core	*iclog);
73STATIC int
74xlog_state_get_iclog_space(
75	struct xlog		*log,
76	int			len,
77	struct xlog_in_core	**iclog,
78	struct xlog_ticket	*ticket,
79	int			*continued_write,
80	int			*logoffsetp);
81STATIC int
82xlog_state_release_iclog(
83	struct xlog		*log,
84	struct xlog_in_core	*iclog);
85STATIC void
86xlog_state_switch_iclogs(
87	struct xlog		*log,
88	struct xlog_in_core	*iclog,
89	int			eventual_size);
90STATIC void
91xlog_state_want_sync(
92	struct xlog		*log,
93	struct xlog_in_core	*iclog);
94
95STATIC void
96xlog_grant_push_ail(
97	struct xlog		*log,
98	int			need_bytes);
99STATIC void
100xlog_regrant_reserve_log_space(
101	struct xlog		*log,
102	struct xlog_ticket	*ticket);
103STATIC void
104xlog_ungrant_log_space(
105	struct xlog		*log,
106	struct xlog_ticket	*ticket);
107
108#if defined(DEBUG)
109STATIC void
110xlog_verify_dest_ptr(
111	struct xlog		*log,
112	char			*ptr);
113STATIC void
114xlog_verify_grant_tail(
115	struct xlog *log);
116STATIC void
117xlog_verify_iclog(
118	struct xlog		*log,
119	struct xlog_in_core	*iclog,
120	int			count,
121	bool                    syncing);
122STATIC void
123xlog_verify_tail_lsn(
124	struct xlog		*log,
125	struct xlog_in_core	*iclog,
126	xfs_lsn_t		tail_lsn);
127#else
128#define xlog_verify_dest_ptr(a,b)
129#define xlog_verify_grant_tail(a)
130#define xlog_verify_iclog(a,b,c,d)
131#define xlog_verify_tail_lsn(a,b,c)
132#endif
133
134STATIC int
135xlog_iclogs_empty(
136	struct xlog		*log);
137
138static void
139xlog_grant_sub_space(
140	struct xlog		*log,
141	atomic64_t		*head,
142	int			bytes)
143{
144	int64_t	head_val = atomic64_read(head);
145	int64_t new, old;
146
147	do {
148		int	cycle, space;
149
150		xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152		space -= bytes;
153		if (space < 0) {
154			space += log->l_logsize;
155			cycle--;
156		}
157
158		old = head_val;
159		new = xlog_assign_grant_head_val(cycle, space);
160		head_val = atomic64_cmpxchg(head, old, new);
161	} while (head_val != old);
162}
163
164static void
165xlog_grant_add_space(
166	struct xlog		*log,
167	atomic64_t		*head,
168	int			bytes)
169{
170	int64_t	head_val = atomic64_read(head);
171	int64_t new, old;
172
173	do {
174		int		tmp;
175		int		cycle, space;
176
177		xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179		tmp = log->l_logsize - space;
180		if (tmp > bytes)
181			space += bytes;
182		else {
183			space = bytes - tmp;
184			cycle++;
185		}
186
187		old = head_val;
188		new = xlog_assign_grant_head_val(cycle, space);
189		head_val = atomic64_cmpxchg(head, old, new);
190	} while (head_val != old);
191}
192
193STATIC void
194xlog_grant_head_init(
195	struct xlog_grant_head	*head)
196{
197	xlog_assign_grant_head(&head->grant, 1, 0);
198	INIT_LIST_HEAD(&head->waiters);
199	spin_lock_init(&head->lock);
200}
201
202STATIC void
203xlog_grant_head_wake_all(
204	struct xlog_grant_head	*head)
205{
206	struct xlog_ticket	*tic;
207
208	spin_lock(&head->lock);
209	list_for_each_entry(tic, &head->waiters, t_queue)
210		wake_up_process(tic->t_task);
211	spin_unlock(&head->lock);
212}
213
214static inline int
215xlog_ticket_reservation(
216	struct xlog		*log,
217	struct xlog_grant_head	*head,
218	struct xlog_ticket	*tic)
219{
220	if (head == &log->l_write_head) {
221		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222		return tic->t_unit_res;
223	} else {
224		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225			return tic->t_unit_res * tic->t_cnt;
226		else
227			return tic->t_unit_res;
228	}
229}
230
231STATIC bool
232xlog_grant_head_wake(
233	struct xlog		*log,
234	struct xlog_grant_head	*head,
235	int			*free_bytes)
236{
237	struct xlog_ticket	*tic;
238	int			need_bytes;
239
240	list_for_each_entry(tic, &head->waiters, t_queue) {
241		need_bytes = xlog_ticket_reservation(log, head, tic);
242		if (*free_bytes < need_bytes)
243			return false;
244
245		*free_bytes -= need_bytes;
246		trace_xfs_log_grant_wake_up(log, tic);
247		wake_up_process(tic->t_task);
248	}
249
250	return true;
251}
252
253STATIC int
254xlog_grant_head_wait(
255	struct xlog		*log,
256	struct xlog_grant_head	*head,
257	struct xlog_ticket	*tic,
258	int			need_bytes) __releases(&head->lock)
259					    __acquires(&head->lock)
260{
261	list_add_tail(&tic->t_queue, &head->waiters);
262
263	do {
264		if (XLOG_FORCED_SHUTDOWN(log))
265			goto shutdown;
266		xlog_grant_push_ail(log, need_bytes);
267
268		__set_current_state(TASK_UNINTERRUPTIBLE);
269		spin_unlock(&head->lock);
270
271		XFS_STATS_INC(xs_sleep_logspace);
272
273		trace_xfs_log_grant_sleep(log, tic);
274		schedule();
275		trace_xfs_log_grant_wake(log, tic);
276
277		spin_lock(&head->lock);
278		if (XLOG_FORCED_SHUTDOWN(log))
279			goto shutdown;
280	} while (xlog_space_left(log, &head->grant) < need_bytes);
281
282	list_del_init(&tic->t_queue);
283	return 0;
284shutdown:
285	list_del_init(&tic->t_queue);
286	return -EIO;
287}
288
289/*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306STATIC int
307xlog_grant_head_check(
308	struct xlog		*log,
309	struct xlog_grant_head	*head,
310	struct xlog_ticket	*tic,
311	int			*need_bytes)
312{
313	int			free_bytes;
314	int			error = 0;
315
316	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318	/*
319	 * If there are other waiters on the queue then give them a chance at
320	 * logspace before us.  Wake up the first waiters, if we do not wake
321	 * up all the waiters then go to sleep waiting for more free space,
322	 * otherwise try to get some space for this transaction.
323	 */
324	*need_bytes = xlog_ticket_reservation(log, head, tic);
325	free_bytes = xlog_space_left(log, &head->grant);
326	if (!list_empty_careful(&head->waiters)) {
327		spin_lock(&head->lock);
328		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329		    free_bytes < *need_bytes) {
330			error = xlog_grant_head_wait(log, head, tic,
331						     *need_bytes);
332		}
333		spin_unlock(&head->lock);
334	} else if (free_bytes < *need_bytes) {
335		spin_lock(&head->lock);
336		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337		spin_unlock(&head->lock);
338	}
339
340	return error;
341}
342
343static void
344xlog_tic_reset_res(xlog_ticket_t *tic)
345{
346	tic->t_res_num = 0;
347	tic->t_res_arr_sum = 0;
348	tic->t_res_num_ophdrs = 0;
349}
350
351static void
352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353{
354	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355		/* add to overflow and start again */
356		tic->t_res_o_flow += tic->t_res_arr_sum;
357		tic->t_res_num = 0;
358		tic->t_res_arr_sum = 0;
359	}
360
361	tic->t_res_arr[tic->t_res_num].r_len = len;
362	tic->t_res_arr[tic->t_res_num].r_type = type;
363	tic->t_res_arr_sum += len;
364	tic->t_res_num++;
365}
366
367/*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370int
371xfs_log_regrant(
372	struct xfs_mount	*mp,
373	struct xlog_ticket	*tic)
374{
375	struct xlog		*log = mp->m_log;
376	int			need_bytes;
377	int			error = 0;
378
379	if (XLOG_FORCED_SHUTDOWN(log))
380		return -EIO;
381
382	XFS_STATS_INC(xs_try_logspace);
383
384	/*
385	 * This is a new transaction on the ticket, so we need to change the
386	 * transaction ID so that the next transaction has a different TID in
387	 * the log. Just add one to the existing tid so that we can see chains
388	 * of rolling transactions in the log easily.
389	 */
390	tic->t_tid++;
391
392	xlog_grant_push_ail(log, tic->t_unit_res);
393
394	tic->t_curr_res = tic->t_unit_res;
395	xlog_tic_reset_res(tic);
396
397	if (tic->t_cnt > 0)
398		return 0;
399
400	trace_xfs_log_regrant(log, tic);
401
402	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403				      &need_bytes);
404	if (error)
405		goto out_error;
406
407	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408	trace_xfs_log_regrant_exit(log, tic);
409	xlog_verify_grant_tail(log);
410	return 0;
411
412out_error:
413	/*
414	 * If we are failing, make sure the ticket doesn't have any current
415	 * reservations.  We don't want to add this back when the ticket/
416	 * transaction gets cancelled.
417	 */
418	tic->t_curr_res = 0;
419	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420	return error;
421}
422
423/*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation.  By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431int
432xfs_log_reserve(
433	struct xfs_mount	*mp,
434	int		 	unit_bytes,
435	int		 	cnt,
436	struct xlog_ticket	**ticp,
437	__uint8_t	 	client,
438	bool			permanent,
439	uint		 	t_type)
440{
441	struct xlog		*log = mp->m_log;
442	struct xlog_ticket	*tic;
443	int			need_bytes;
444	int			error = 0;
445
446	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448	if (XLOG_FORCED_SHUTDOWN(log))
449		return -EIO;
450
451	XFS_STATS_INC(xs_try_logspace);
452
453	ASSERT(*ticp == NULL);
454	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455				KM_SLEEP | KM_MAYFAIL);
456	if (!tic)
457		return -ENOMEM;
458
459	tic->t_trans_type = t_type;
460	*ticp = tic;
461
462	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463					    : tic->t_unit_res);
464
465	trace_xfs_log_reserve(log, tic);
466
467	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468				      &need_bytes);
469	if (error)
470		goto out_error;
471
472	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474	trace_xfs_log_reserve_exit(log, tic);
475	xlog_verify_grant_tail(log);
476	return 0;
477
478out_error:
479	/*
480	 * If we are failing, make sure the ticket doesn't have any current
481	 * reservations.  We don't want to add this back when the ticket/
482	 * transaction gets cancelled.
483	 */
484	tic->t_curr_res = 0;
485	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486	return error;
487}
488
489
490/*
491 * NOTES:
492 *
493 *	1. currblock field gets updated at startup and after in-core logs
494 *		marked as with WANT_SYNC.
495 */
496
497/*
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation.  If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket.  If the ticket was one with a permanent reservation, then
503 * a few operations are done differently.  Permanent reservation tickets by
504 * default don't release the reservation.  They just commit the current
505 * transaction with the belief that the reservation is still needed.  A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again.  By doing this, a start record will be written
509 * out when the next write occurs.
510 */
511xfs_lsn_t
512xfs_log_done(
513	struct xfs_mount	*mp,
514	struct xlog_ticket	*ticket,
515	struct xlog_in_core	**iclog,
516	uint			flags)
517{
518	struct xlog		*log = mp->m_log;
519	xfs_lsn_t		lsn = 0;
520
521	if (XLOG_FORCED_SHUTDOWN(log) ||
522	    /*
523	     * If nothing was ever written, don't write out commit record.
524	     * If we get an error, just continue and give back the log ticket.
525	     */
526	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528		lsn = (xfs_lsn_t) -1;
529		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530			flags |= XFS_LOG_REL_PERM_RESERV;
531		}
532	}
533
534
535	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536	    (flags & XFS_LOG_REL_PERM_RESERV)) {
537		trace_xfs_log_done_nonperm(log, ticket);
538
539		/*
540		 * Release ticket if not permanent reservation or a specific
541		 * request has been made to release a permanent reservation.
542		 */
543		xlog_ungrant_log_space(log, ticket);
544		xfs_log_ticket_put(ticket);
545	} else {
546		trace_xfs_log_done_perm(log, ticket);
547
548		xlog_regrant_reserve_log_space(log, ticket);
549		/* If this ticket was a permanent reservation and we aren't
550		 * trying to release it, reset the inited flags; so next time
551		 * we write, a start record will be written out.
552		 */
553		ticket->t_flags |= XLOG_TIC_INITED;
554	}
555
556	return lsn;
557}
558
559/*
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit.  If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
564 */
565int
566xfs_log_notify(
567	struct xfs_mount	*mp,
568	struct xlog_in_core	*iclog,
569	xfs_log_callback_t	*cb)
570{
571	int	abortflg;
572
573	spin_lock(&iclog->ic_callback_lock);
574	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575	if (!abortflg) {
576		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578		cb->cb_next = NULL;
579		*(iclog->ic_callback_tail) = cb;
580		iclog->ic_callback_tail = &(cb->cb_next);
581	}
582	spin_unlock(&iclog->ic_callback_lock);
583	return abortflg;
584}
585
586int
587xfs_log_release_iclog(
588	struct xfs_mount	*mp,
589	struct xlog_in_core	*iclog)
590{
591	if (xlog_state_release_iclog(mp->m_log, iclog)) {
592		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593		return -EIO;
594	}
595
596	return 0;
597}
598
599/*
600 * Mount a log filesystem
601 *
602 * mp		- ubiquitous xfs mount point structure
603 * log_target	- buftarg of on-disk log device
604 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks	- Number of BBSIZE blocks in on-disk log
606 *
607 * Return error or zero.
608 */
609int
610xfs_log_mount(
611	xfs_mount_t	*mp,
612	xfs_buftarg_t	*log_target,
613	xfs_daddr_t	blk_offset,
614	int		num_bblks)
615{
616	int		error = 0;
617	int		min_logfsbs;
618
619	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
620		xfs_notice(mp, "Mounting V%d Filesystem",
621			   XFS_SB_VERSION_NUM(&mp->m_sb));
622	} else {
623		xfs_notice(mp,
624"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625			   XFS_SB_VERSION_NUM(&mp->m_sb));
626		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
627	}
628
629	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630	if (IS_ERR(mp->m_log)) {
631		error = PTR_ERR(mp->m_log);
632		goto out;
633	}
634
635	/*
636	 * Validate the given log space and drop a critical message via syslog
637	 * if the log size is too small that would lead to some unexpected
638	 * situations in transaction log space reservation stage.
639	 *
640	 * Note: we can't just reject the mount if the validation fails.  This
641	 * would mean that people would have to downgrade their kernel just to
642	 * remedy the situation as there is no way to grow the log (short of
643	 * black magic surgery with xfs_db).
644	 *
645	 * We can, however, reject mounts for CRC format filesystems, as the
646	 * mkfs binary being used to make the filesystem should never create a
647	 * filesystem with a log that is too small.
648	 */
649	min_logfsbs = xfs_log_calc_minimum_size(mp);
650
651	if (mp->m_sb.sb_logblocks < min_logfsbs) {
652		xfs_warn(mp,
653		"Log size %d blocks too small, minimum size is %d blocks",
654			 mp->m_sb.sb_logblocks, min_logfsbs);
655		error = -EINVAL;
656	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657		xfs_warn(mp,
658		"Log size %d blocks too large, maximum size is %lld blocks",
659			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660		error = -EINVAL;
661	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662		xfs_warn(mp,
663		"log size %lld bytes too large, maximum size is %lld bytes",
664			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665			 XFS_MAX_LOG_BYTES);
666		error = -EINVAL;
667	}
668	if (error) {
669		if (xfs_sb_version_hascrc(&mp->m_sb)) {
670			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671			ASSERT(0);
672			goto out_free_log;
673		}
674		xfs_crit(mp,
675"Log size out of supported range. Continuing onwards, but if log hangs are\n"
676"experienced then please report this message in the bug report.");
677	}
678
679	/*
680	 * Initialize the AIL now we have a log.
681	 */
682	error = xfs_trans_ail_init(mp);
683	if (error) {
684		xfs_warn(mp, "AIL initialisation failed: error %d", error);
685		goto out_free_log;
686	}
687	mp->m_log->l_ailp = mp->m_ail;
688
689	/*
690	 * skip log recovery on a norecovery mount.  pretend it all
691	 * just worked.
692	 */
693	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695
696		if (readonly)
697			mp->m_flags &= ~XFS_MOUNT_RDONLY;
698
699		error = xlog_recover(mp->m_log);
700
701		if (readonly)
702			mp->m_flags |= XFS_MOUNT_RDONLY;
703		if (error) {
704			xfs_warn(mp, "log mount/recovery failed: error %d",
705				error);
706			goto out_destroy_ail;
707		}
708	}
709
710	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
711			       "log");
712	if (error)
713		goto out_destroy_ail;
714
715	/* Normal transactions can now occur */
716	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
717
718	/*
719	 * Now the log has been fully initialised and we know were our
720	 * space grant counters are, we can initialise the permanent ticket
721	 * needed for delayed logging to work.
722	 */
723	xlog_cil_init_post_recovery(mp->m_log);
724
725	return 0;
726
727out_destroy_ail:
728	xfs_trans_ail_destroy(mp);
729out_free_log:
730	xlog_dealloc_log(mp->m_log);
731out:
732	return error;
733}
734
735/*
736 * Finish the recovery of the file system.  This is separate from the
737 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
738 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
739 * here.
740 *
741 * If we finish recovery successfully, start the background log work. If we are
742 * not doing recovery, then we have a RO filesystem and we don't need to start
743 * it.
744 */
745int
746xfs_log_mount_finish(xfs_mount_t *mp)
747{
748	int	error = 0;
749
750	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
751		error = xlog_recover_finish(mp->m_log);
752		if (!error)
753			xfs_log_work_queue(mp);
754	} else {
755		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
756	}
757
758
759	return error;
760}
761
762/*
763 * Final log writes as part of unmount.
764 *
765 * Mark the filesystem clean as unmount happens.  Note that during relocation
766 * this routine needs to be executed as part of source-bag while the
767 * deallocation must not be done until source-end.
768 */
769
770/*
771 * Unmount record used to have a string "Unmount filesystem--" in the
772 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
773 * We just write the magic number now since that particular field isn't
774 * currently architecture converted and "Unmount" is a bit foo.
775 * As far as I know, there weren't any dependencies on the old behaviour.
776 */
777
778int
779xfs_log_unmount_write(xfs_mount_t *mp)
780{
781	struct xlog	 *log = mp->m_log;
782	xlog_in_core_t	 *iclog;
783#ifdef DEBUG
784	xlog_in_core_t	 *first_iclog;
785#endif
786	xlog_ticket_t	*tic = NULL;
787	xfs_lsn_t	 lsn;
788	int		 error;
789
790	/*
791	 * Don't write out unmount record on read-only mounts.
792	 * Or, if we are doing a forced umount (typically because of IO errors).
793	 */
794	if (mp->m_flags & XFS_MOUNT_RDONLY)
795		return 0;
796
797	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
798	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
799
800#ifdef DEBUG
801	first_iclog = iclog = log->l_iclog;
802	do {
803		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
804			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
805			ASSERT(iclog->ic_offset == 0);
806		}
807		iclog = iclog->ic_next;
808	} while (iclog != first_iclog);
809#endif
810	if (! (XLOG_FORCED_SHUTDOWN(log))) {
811		error = xfs_log_reserve(mp, 600, 1, &tic,
812					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
813		if (!error) {
814			/* the data section must be 32 bit size aligned */
815			struct {
816			    __uint16_t magic;
817			    __uint16_t pad1;
818			    __uint32_t pad2; /* may as well make it 64 bits */
819			} magic = {
820				.magic = XLOG_UNMOUNT_TYPE,
821			};
822			struct xfs_log_iovec reg = {
823				.i_addr = &magic,
824				.i_len = sizeof(magic),
825				.i_type = XLOG_REG_TYPE_UNMOUNT,
826			};
827			struct xfs_log_vec vec = {
828				.lv_niovecs = 1,
829				.lv_iovecp = &reg,
830			};
831
832			/* remove inited flag, and account for space used */
833			tic->t_flags = 0;
834			tic->t_curr_res -= sizeof(magic);
835			error = xlog_write(log, &vec, tic, &lsn,
836					   NULL, XLOG_UNMOUNT_TRANS);
837			/*
838			 * At this point, we're umounting anyway,
839			 * so there's no point in transitioning log state
840			 * to IOERROR. Just continue...
841			 */
842		}
843
844		if (error)
845			xfs_alert(mp, "%s: unmount record failed", __func__);
846
847
848		spin_lock(&log->l_icloglock);
849		iclog = log->l_iclog;
850		atomic_inc(&iclog->ic_refcnt);
851		xlog_state_want_sync(log, iclog);
852		spin_unlock(&log->l_icloglock);
853		error = xlog_state_release_iclog(log, iclog);
854
855		spin_lock(&log->l_icloglock);
856		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
857		      iclog->ic_state == XLOG_STATE_DIRTY)) {
858			if (!XLOG_FORCED_SHUTDOWN(log)) {
859				xlog_wait(&iclog->ic_force_wait,
860							&log->l_icloglock);
861			} else {
862				spin_unlock(&log->l_icloglock);
863			}
864		} else {
865			spin_unlock(&log->l_icloglock);
866		}
867		if (tic) {
868			trace_xfs_log_umount_write(log, tic);
869			xlog_ungrant_log_space(log, tic);
870			xfs_log_ticket_put(tic);
871		}
872	} else {
873		/*
874		 * We're already in forced_shutdown mode, couldn't
875		 * even attempt to write out the unmount transaction.
876		 *
877		 * Go through the motions of sync'ing and releasing
878		 * the iclog, even though no I/O will actually happen,
879		 * we need to wait for other log I/Os that may already
880		 * be in progress.  Do this as a separate section of
881		 * code so we'll know if we ever get stuck here that
882		 * we're in this odd situation of trying to unmount
883		 * a file system that went into forced_shutdown as
884		 * the result of an unmount..
885		 */
886		spin_lock(&log->l_icloglock);
887		iclog = log->l_iclog;
888		atomic_inc(&iclog->ic_refcnt);
889
890		xlog_state_want_sync(log, iclog);
891		spin_unlock(&log->l_icloglock);
892		error =  xlog_state_release_iclog(log, iclog);
893
894		spin_lock(&log->l_icloglock);
895
896		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
897			|| iclog->ic_state == XLOG_STATE_DIRTY
898			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
899
900				xlog_wait(&iclog->ic_force_wait,
901							&log->l_icloglock);
902		} else {
903			spin_unlock(&log->l_icloglock);
904		}
905	}
906
907	return error;
908}	/* xfs_log_unmount_write */
909
910/*
911 * Empty the log for unmount/freeze.
912 *
913 * To do this, we first need to shut down the background log work so it is not
914 * trying to cover the log as we clean up. We then need to unpin all objects in
915 * the log so we can then flush them out. Once they have completed their IO and
916 * run the callbacks removing themselves from the AIL, we can write the unmount
917 * record.
918 */
919void
920xfs_log_quiesce(
921	struct xfs_mount	*mp)
922{
923	cancel_delayed_work_sync(&mp->m_log->l_work);
924	xfs_log_force(mp, XFS_LOG_SYNC);
925
926	/*
927	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
928	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
929	 * xfs_buf_iowait() cannot be used because it was pushed with the
930	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
931	 * the IO to complete.
932	 */
933	xfs_ail_push_all_sync(mp->m_ail);
934	xfs_wait_buftarg(mp->m_ddev_targp);
935	xfs_buf_lock(mp->m_sb_bp);
936	xfs_buf_unlock(mp->m_sb_bp);
937
938	xfs_log_unmount_write(mp);
939}
940
941/*
942 * Shut down and release the AIL and Log.
943 *
944 * During unmount, we need to ensure we flush all the dirty metadata objects
945 * from the AIL so that the log is empty before we write the unmount record to
946 * the log. Once this is done, we can tear down the AIL and the log.
947 */
948void
949xfs_log_unmount(
950	struct xfs_mount	*mp)
951{
952	xfs_log_quiesce(mp);
953
954	xfs_trans_ail_destroy(mp);
955
956	xfs_sysfs_del(&mp->m_log->l_kobj);
957
958	xlog_dealloc_log(mp->m_log);
959}
960
961void
962xfs_log_item_init(
963	struct xfs_mount	*mp,
964	struct xfs_log_item	*item,
965	int			type,
966	const struct xfs_item_ops *ops)
967{
968	item->li_mountp = mp;
969	item->li_ailp = mp->m_ail;
970	item->li_type = type;
971	item->li_ops = ops;
972	item->li_lv = NULL;
973
974	INIT_LIST_HEAD(&item->li_ail);
975	INIT_LIST_HEAD(&item->li_cil);
976}
977
978/*
979 * Wake up processes waiting for log space after we have moved the log tail.
980 */
981void
982xfs_log_space_wake(
983	struct xfs_mount	*mp)
984{
985	struct xlog		*log = mp->m_log;
986	int			free_bytes;
987
988	if (XLOG_FORCED_SHUTDOWN(log))
989		return;
990
991	if (!list_empty_careful(&log->l_write_head.waiters)) {
992		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
993
994		spin_lock(&log->l_write_head.lock);
995		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
996		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
997		spin_unlock(&log->l_write_head.lock);
998	}
999
1000	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1001		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1002
1003		spin_lock(&log->l_reserve_head.lock);
1004		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1005		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1006		spin_unlock(&log->l_reserve_head.lock);
1007	}
1008}
1009
1010/*
1011 * Determine if we have a transaction that has gone to disk that needs to be
1012 * covered. To begin the transition to the idle state firstly the log needs to
1013 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1014 * we start attempting to cover the log.
1015 *
1016 * Only if we are then in a state where covering is needed, the caller is
1017 * informed that dummy transactions are required to move the log into the idle
1018 * state.
1019 *
1020 * If there are any items in the AIl or CIL, then we do not want to attempt to
1021 * cover the log as we may be in a situation where there isn't log space
1022 * available to run a dummy transaction and this can lead to deadlocks when the
1023 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1024 * there's no point in running a dummy transaction at this point because we
1025 * can't start trying to idle the log until both the CIL and AIL are empty.
1026 */
1027int
1028xfs_log_need_covered(xfs_mount_t *mp)
1029{
1030	struct xlog	*log = mp->m_log;
1031	int		needed = 0;
1032
1033	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1034		return 0;
1035
1036	if (!xlog_cil_empty(log))
1037		return 0;
1038
1039	spin_lock(&log->l_icloglock);
1040	switch (log->l_covered_state) {
1041	case XLOG_STATE_COVER_DONE:
1042	case XLOG_STATE_COVER_DONE2:
1043	case XLOG_STATE_COVER_IDLE:
1044		break;
1045	case XLOG_STATE_COVER_NEED:
1046	case XLOG_STATE_COVER_NEED2:
1047		if (xfs_ail_min_lsn(log->l_ailp))
1048			break;
1049		if (!xlog_iclogs_empty(log))
1050			break;
1051
1052		needed = 1;
1053		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1054			log->l_covered_state = XLOG_STATE_COVER_DONE;
1055		else
1056			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1057		break;
1058	default:
1059		needed = 1;
1060		break;
1061	}
1062	spin_unlock(&log->l_icloglock);
1063	return needed;
1064}
1065
1066/*
1067 * We may be holding the log iclog lock upon entering this routine.
1068 */
1069xfs_lsn_t
1070xlog_assign_tail_lsn_locked(
1071	struct xfs_mount	*mp)
1072{
1073	struct xlog		*log = mp->m_log;
1074	struct xfs_log_item	*lip;
1075	xfs_lsn_t		tail_lsn;
1076
1077	assert_spin_locked(&mp->m_ail->xa_lock);
1078
1079	/*
1080	 * To make sure we always have a valid LSN for the log tail we keep
1081	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1082	 * and use that when the AIL was empty.
1083	 */
1084	lip = xfs_ail_min(mp->m_ail);
1085	if (lip)
1086		tail_lsn = lip->li_lsn;
1087	else
1088		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1089	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1090	atomic64_set(&log->l_tail_lsn, tail_lsn);
1091	return tail_lsn;
1092}
1093
1094xfs_lsn_t
1095xlog_assign_tail_lsn(
1096	struct xfs_mount	*mp)
1097{
1098	xfs_lsn_t		tail_lsn;
1099
1100	spin_lock(&mp->m_ail->xa_lock);
1101	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1102	spin_unlock(&mp->m_ail->xa_lock);
1103
1104	return tail_lsn;
1105}
1106
1107/*
1108 * Return the space in the log between the tail and the head.  The head
1109 * is passed in the cycle/bytes formal parms.  In the special case where
1110 * the reserve head has wrapped passed the tail, this calculation is no
1111 * longer valid.  In this case, just return 0 which means there is no space
1112 * in the log.  This works for all places where this function is called
1113 * with the reserve head.  Of course, if the write head were to ever
1114 * wrap the tail, we should blow up.  Rather than catch this case here,
1115 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1116 *
1117 * This code also handles the case where the reservation head is behind
1118 * the tail.  The details of this case are described below, but the end
1119 * result is that we return the size of the log as the amount of space left.
1120 */
1121STATIC int
1122xlog_space_left(
1123	struct xlog	*log,
1124	atomic64_t	*head)
1125{
1126	int		free_bytes;
1127	int		tail_bytes;
1128	int		tail_cycle;
1129	int		head_cycle;
1130	int		head_bytes;
1131
1132	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1133	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1134	tail_bytes = BBTOB(tail_bytes);
1135	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1136		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1137	else if (tail_cycle + 1 < head_cycle)
1138		return 0;
1139	else if (tail_cycle < head_cycle) {
1140		ASSERT(tail_cycle == (head_cycle - 1));
1141		free_bytes = tail_bytes - head_bytes;
1142	} else {
1143		/*
1144		 * The reservation head is behind the tail.
1145		 * In this case we just want to return the size of the
1146		 * log as the amount of space left.
1147		 */
1148		xfs_alert(log->l_mp,
1149			"xlog_space_left: head behind tail\n"
1150			"  tail_cycle = %d, tail_bytes = %d\n"
1151			"  GH   cycle = %d, GH   bytes = %d",
1152			tail_cycle, tail_bytes, head_cycle, head_bytes);
1153		ASSERT(0);
1154		free_bytes = log->l_logsize;
1155	}
1156	return free_bytes;
1157}
1158
1159
1160/*
1161 * Log function which is called when an io completes.
1162 *
1163 * The log manager needs its own routine, in order to control what
1164 * happens with the buffer after the write completes.
1165 */
1166void
1167xlog_iodone(xfs_buf_t *bp)
1168{
1169	struct xlog_in_core	*iclog = bp->b_fspriv;
1170	struct xlog		*l = iclog->ic_log;
1171	int			aborted = 0;
1172
1173	/*
1174	 * Race to shutdown the filesystem if we see an error.
1175	 */
1176	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1177			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1178		xfs_buf_ioerror_alert(bp, __func__);
1179		xfs_buf_stale(bp);
1180		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1181		/*
1182		 * This flag will be propagated to the trans-committed
1183		 * callback routines to let them know that the log-commit
1184		 * didn't succeed.
1185		 */
1186		aborted = XFS_LI_ABORTED;
1187	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1188		aborted = XFS_LI_ABORTED;
1189	}
1190
1191	/* log I/O is always issued ASYNC */
1192	ASSERT(XFS_BUF_ISASYNC(bp));
1193	xlog_state_done_syncing(iclog, aborted);
1194
1195	/*
1196	 * drop the buffer lock now that we are done. Nothing references
1197	 * the buffer after this, so an unmount waiting on this lock can now
1198	 * tear it down safely. As such, it is unsafe to reference the buffer
1199	 * (bp) after the unlock as we could race with it being freed.
1200	 */
1201	xfs_buf_unlock(bp);
1202}
1203
1204/*
1205 * Return size of each in-core log record buffer.
1206 *
1207 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1208 *
1209 * If the filesystem blocksize is too large, we may need to choose a
1210 * larger size since the directory code currently logs entire blocks.
1211 */
1212
1213STATIC void
1214xlog_get_iclog_buffer_size(
1215	struct xfs_mount	*mp,
1216	struct xlog		*log)
1217{
1218	int size;
1219	int xhdrs;
1220
1221	if (mp->m_logbufs <= 0)
1222		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1223	else
1224		log->l_iclog_bufs = mp->m_logbufs;
1225
1226	/*
1227	 * Buffer size passed in from mount system call.
1228	 */
1229	if (mp->m_logbsize > 0) {
1230		size = log->l_iclog_size = mp->m_logbsize;
1231		log->l_iclog_size_log = 0;
1232		while (size != 1) {
1233			log->l_iclog_size_log++;
1234			size >>= 1;
1235		}
1236
1237		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1238			/* # headers = size / 32k
1239			 * one header holds cycles from 32k of data
1240			 */
1241
1242			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1243			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1244				xhdrs++;
1245			log->l_iclog_hsize = xhdrs << BBSHIFT;
1246			log->l_iclog_heads = xhdrs;
1247		} else {
1248			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1249			log->l_iclog_hsize = BBSIZE;
1250			log->l_iclog_heads = 1;
1251		}
1252		goto done;
1253	}
1254
1255	/* All machines use 32kB buffers by default. */
1256	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1257	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1258
1259	/* the default log size is 16k or 32k which is one header sector */
1260	log->l_iclog_hsize = BBSIZE;
1261	log->l_iclog_heads = 1;
1262
1263done:
1264	/* are we being asked to make the sizes selected above visible? */
1265	if (mp->m_logbufs == 0)
1266		mp->m_logbufs = log->l_iclog_bufs;
1267	if (mp->m_logbsize == 0)
1268		mp->m_logbsize = log->l_iclog_size;
1269}	/* xlog_get_iclog_buffer_size */
1270
1271
1272void
1273xfs_log_work_queue(
1274	struct xfs_mount        *mp)
1275{
1276	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1277				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1278}
1279
1280/*
1281 * Every sync period we need to unpin all items in the AIL and push them to
1282 * disk. If there is nothing dirty, then we might need to cover the log to
1283 * indicate that the filesystem is idle.
1284 */
1285void
1286xfs_log_worker(
1287	struct work_struct	*work)
1288{
1289	struct xlog		*log = container_of(to_delayed_work(work),
1290						struct xlog, l_work);
1291	struct xfs_mount	*mp = log->l_mp;
1292
1293	/* dgc: errors ignored - not fatal and nowhere to report them */
1294	if (xfs_log_need_covered(mp)) {
1295		/*
1296		 * Dump a transaction into the log that contains no real change.
1297		 * This is needed to stamp the current tail LSN into the log
1298		 * during the covering operation.
1299		 *
1300		 * We cannot use an inode here for this - that will push dirty
1301		 * state back up into the VFS and then periodic inode flushing
1302		 * will prevent log covering from making progress. Hence we
1303		 * synchronously log the superblock instead to ensure the
1304		 * superblock is immediately unpinned and can be written back.
1305		 */
1306		xfs_sync_sb(mp, true);
1307	} else
1308		xfs_log_force(mp, 0);
1309
1310	/* start pushing all the metadata that is currently dirty */
1311	xfs_ail_push_all(mp->m_ail);
1312
1313	/* queue us up again */
1314	xfs_log_work_queue(mp);
1315}
1316
1317/*
1318 * This routine initializes some of the log structure for a given mount point.
1319 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1320 * some other stuff may be filled in too.
1321 */
1322STATIC struct xlog *
1323xlog_alloc_log(
1324	struct xfs_mount	*mp,
1325	struct xfs_buftarg	*log_target,
1326	xfs_daddr_t		blk_offset,
1327	int			num_bblks)
1328{
1329	struct xlog		*log;
1330	xlog_rec_header_t	*head;
1331	xlog_in_core_t		**iclogp;
1332	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1333	xfs_buf_t		*bp;
1334	int			i;
1335	int			error = -ENOMEM;
1336	uint			log2_size = 0;
1337
1338	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1339	if (!log) {
1340		xfs_warn(mp, "Log allocation failed: No memory!");
1341		goto out;
1342	}
1343
1344	log->l_mp	   = mp;
1345	log->l_targ	   = log_target;
1346	log->l_logsize     = BBTOB(num_bblks);
1347	log->l_logBBstart  = blk_offset;
1348	log->l_logBBsize   = num_bblks;
1349	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1350	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1351	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1352
1353	log->l_prev_block  = -1;
1354	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1355	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1356	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1357	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1358
1359	xlog_grant_head_init(&log->l_reserve_head);
1360	xlog_grant_head_init(&log->l_write_head);
1361
1362	error = -EFSCORRUPTED;
1363	if (xfs_sb_version_hassector(&mp->m_sb)) {
1364	        log2_size = mp->m_sb.sb_logsectlog;
1365		if (log2_size < BBSHIFT) {
1366			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1367				log2_size, BBSHIFT);
1368			goto out_free_log;
1369		}
1370
1371	        log2_size -= BBSHIFT;
1372		if (log2_size > mp->m_sectbb_log) {
1373			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1374				log2_size, mp->m_sectbb_log);
1375			goto out_free_log;
1376		}
1377
1378		/* for larger sector sizes, must have v2 or external log */
1379		if (log2_size && log->l_logBBstart > 0 &&
1380			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1381			xfs_warn(mp,
1382		"log sector size (0x%x) invalid for configuration.",
1383				log2_size);
1384			goto out_free_log;
1385		}
1386	}
1387	log->l_sectBBsize = 1 << log2_size;
1388
1389	xlog_get_iclog_buffer_size(mp, log);
1390
1391	/*
1392	 * Use a NULL block for the extra log buffer used during splits so that
1393	 * it will trigger errors if we ever try to do IO on it without first
1394	 * having set it up properly.
1395	 */
1396	error = -ENOMEM;
1397	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1398			   BTOBB(log->l_iclog_size), 0);
1399	if (!bp)
1400		goto out_free_log;
1401
1402	/*
1403	 * The iclogbuf buffer locks are held over IO but we are not going to do
1404	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1405	 * when appropriately.
1406	 */
1407	ASSERT(xfs_buf_islocked(bp));
1408	xfs_buf_unlock(bp);
1409
1410	/* use high priority wq for log I/O completion */
1411	bp->b_ioend_wq = mp->m_log_workqueue;
1412	bp->b_iodone = xlog_iodone;
1413	log->l_xbuf = bp;
1414
1415	spin_lock_init(&log->l_icloglock);
1416	init_waitqueue_head(&log->l_flush_wait);
1417
1418	iclogp = &log->l_iclog;
1419	/*
1420	 * The amount of memory to allocate for the iclog structure is
1421	 * rather funky due to the way the structure is defined.  It is
1422	 * done this way so that we can use different sizes for machines
1423	 * with different amounts of memory.  See the definition of
1424	 * xlog_in_core_t in xfs_log_priv.h for details.
1425	 */
1426	ASSERT(log->l_iclog_size >= 4096);
1427	for (i=0; i < log->l_iclog_bufs; i++) {
1428		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1429		if (!*iclogp)
1430			goto out_free_iclog;
1431
1432		iclog = *iclogp;
1433		iclog->ic_prev = prev_iclog;
1434		prev_iclog = iclog;
1435
1436		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1437						BTOBB(log->l_iclog_size), 0);
1438		if (!bp)
1439			goto out_free_iclog;
1440
1441		ASSERT(xfs_buf_islocked(bp));
1442		xfs_buf_unlock(bp);
1443
1444		/* use high priority wq for log I/O completion */
1445		bp->b_ioend_wq = mp->m_log_workqueue;
1446		bp->b_iodone = xlog_iodone;
1447		iclog->ic_bp = bp;
1448		iclog->ic_data = bp->b_addr;
1449#ifdef DEBUG
1450		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1451#endif
1452		head = &iclog->ic_header;
1453		memset(head, 0, sizeof(xlog_rec_header_t));
1454		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455		head->h_version = cpu_to_be32(
1456			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457		head->h_size = cpu_to_be32(log->l_iclog_size);
1458		/* new fields */
1459		head->h_fmt = cpu_to_be32(XLOG_FMT);
1460		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461
1462		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1463		iclog->ic_state = XLOG_STATE_ACTIVE;
1464		iclog->ic_log = log;
1465		atomic_set(&iclog->ic_refcnt, 0);
1466		spin_lock_init(&iclog->ic_callback_lock);
1467		iclog->ic_callback_tail = &(iclog->ic_callback);
1468		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469
1470		init_waitqueue_head(&iclog->ic_force_wait);
1471		init_waitqueue_head(&iclog->ic_write_wait);
1472
1473		iclogp = &iclog->ic_next;
1474	}
1475	*iclogp = log->l_iclog;			/* complete ring */
1476	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1477
1478	error = xlog_cil_init(log);
1479	if (error)
1480		goto out_free_iclog;
1481	return log;
1482
1483out_free_iclog:
1484	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1485		prev_iclog = iclog->ic_next;
1486		if (iclog->ic_bp)
1487			xfs_buf_free(iclog->ic_bp);
1488		kmem_free(iclog);
1489	}
1490	spinlock_destroy(&log->l_icloglock);
1491	xfs_buf_free(log->l_xbuf);
1492out_free_log:
1493	kmem_free(log);
1494out:
1495	return ERR_PTR(error);
1496}	/* xlog_alloc_log */
1497
1498
1499/*
1500 * Write out the commit record of a transaction associated with the given
1501 * ticket.  Return the lsn of the commit record.
1502 */
1503STATIC int
1504xlog_commit_record(
1505	struct xlog		*log,
1506	struct xlog_ticket	*ticket,
1507	struct xlog_in_core	**iclog,
1508	xfs_lsn_t		*commitlsnp)
1509{
1510	struct xfs_mount *mp = log->l_mp;
1511	int	error;
1512	struct xfs_log_iovec reg = {
1513		.i_addr = NULL,
1514		.i_len = 0,
1515		.i_type = XLOG_REG_TYPE_COMMIT,
1516	};
1517	struct xfs_log_vec vec = {
1518		.lv_niovecs = 1,
1519		.lv_iovecp = &reg,
1520	};
1521
1522	ASSERT_ALWAYS(iclog);
1523	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1524					XLOG_COMMIT_TRANS);
1525	if (error)
1526		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1527	return error;
1528}
1529
1530/*
1531 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1532 * log space.  This code pushes on the lsn which would supposedly free up
1533 * the 25% which we want to leave free.  We may need to adopt a policy which
1534 * pushes on an lsn which is further along in the log once we reach the high
1535 * water mark.  In this manner, we would be creating a low water mark.
1536 */
1537STATIC void
1538xlog_grant_push_ail(
1539	struct xlog	*log,
1540	int		need_bytes)
1541{
1542	xfs_lsn_t	threshold_lsn = 0;
1543	xfs_lsn_t	last_sync_lsn;
1544	int		free_blocks;
1545	int		free_bytes;
1546	int		threshold_block;
1547	int		threshold_cycle;
1548	int		free_threshold;
1549
1550	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1551
1552	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1553	free_blocks = BTOBBT(free_bytes);
1554
1555	/*
1556	 * Set the threshold for the minimum number of free blocks in the
1557	 * log to the maximum of what the caller needs, one quarter of the
1558	 * log, and 256 blocks.
1559	 */
1560	free_threshold = BTOBB(need_bytes);
1561	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1562	free_threshold = MAX(free_threshold, 256);
1563	if (free_blocks >= free_threshold)
1564		return;
1565
1566	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1567						&threshold_block);
1568	threshold_block += free_threshold;
1569	if (threshold_block >= log->l_logBBsize) {
1570		threshold_block -= log->l_logBBsize;
1571		threshold_cycle += 1;
1572	}
1573	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1574					threshold_block);
1575	/*
1576	 * Don't pass in an lsn greater than the lsn of the last
1577	 * log record known to be on disk. Use a snapshot of the last sync lsn
1578	 * so that it doesn't change between the compare and the set.
1579	 */
1580	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1581	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1582		threshold_lsn = last_sync_lsn;
1583
1584	/*
1585	 * Get the transaction layer to kick the dirty buffers out to
1586	 * disk asynchronously. No point in trying to do this if
1587	 * the filesystem is shutting down.
1588	 */
1589	if (!XLOG_FORCED_SHUTDOWN(log))
1590		xfs_ail_push(log->l_ailp, threshold_lsn);
1591}
1592
1593/*
1594 * Stamp cycle number in every block
1595 */
1596STATIC void
1597xlog_pack_data(
1598	struct xlog		*log,
1599	struct xlog_in_core	*iclog,
1600	int			roundoff)
1601{
1602	int			i, j, k;
1603	int			size = iclog->ic_offset + roundoff;
1604	__be32			cycle_lsn;
1605	xfs_caddr_t		dp;
1606
1607	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1608
1609	dp = iclog->ic_datap;
1610	for (i = 0; i < BTOBB(size); i++) {
1611		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1612			break;
1613		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1614		*(__be32 *)dp = cycle_lsn;
1615		dp += BBSIZE;
1616	}
1617
1618	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1619		xlog_in_core_2_t *xhdr = iclog->ic_data;
1620
1621		for ( ; i < BTOBB(size); i++) {
1622			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1623			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1624			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1625			*(__be32 *)dp = cycle_lsn;
1626			dp += BBSIZE;
1627		}
1628
1629		for (i = 1; i < log->l_iclog_heads; i++)
1630			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1631	}
1632}
1633
1634/*
1635 * Calculate the checksum for a log buffer.
1636 *
1637 * This is a little more complicated than it should be because the various
1638 * headers and the actual data are non-contiguous.
1639 */
1640__le32
1641xlog_cksum(
1642	struct xlog		*log,
1643	struct xlog_rec_header	*rhead,
1644	char			*dp,
1645	int			size)
1646{
1647	__uint32_t		crc;
1648
1649	/* first generate the crc for the record header ... */
1650	crc = xfs_start_cksum((char *)rhead,
1651			      sizeof(struct xlog_rec_header),
1652			      offsetof(struct xlog_rec_header, h_crc));
1653
1654	/* ... then for additional cycle data for v2 logs ... */
1655	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1656		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1657		int		i;
1658
1659		for (i = 1; i < log->l_iclog_heads; i++) {
1660			crc = crc32c(crc, &xhdr[i].hic_xheader,
1661				     sizeof(struct xlog_rec_ext_header));
1662		}
1663	}
1664
1665	/* ... and finally for the payload */
1666	crc = crc32c(crc, dp, size);
1667
1668	return xfs_end_cksum(crc);
1669}
1670
1671/*
1672 * The bdstrat callback function for log bufs. This gives us a central
1673 * place to trap bufs in case we get hit by a log I/O error and need to
1674 * shutdown. Actually, in practice, even when we didn't get a log error,
1675 * we transition the iclogs to IOERROR state *after* flushing all existing
1676 * iclogs to disk. This is because we don't want anymore new transactions to be
1677 * started or completed afterwards.
1678 *
1679 * We lock the iclogbufs here so that we can serialise against IO completion
1680 * during unmount. We might be processing a shutdown triggered during unmount,
1681 * and that can occur asynchronously to the unmount thread, and hence we need to
1682 * ensure that completes before tearing down the iclogbufs. Hence we need to
1683 * hold the buffer lock across the log IO to acheive that.
1684 */
1685STATIC int
1686xlog_bdstrat(
1687	struct xfs_buf		*bp)
1688{
1689	struct xlog_in_core	*iclog = bp->b_fspriv;
1690
1691	xfs_buf_lock(bp);
1692	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1693		xfs_buf_ioerror(bp, -EIO);
1694		xfs_buf_stale(bp);
1695		xfs_buf_ioend(bp);
1696		/*
1697		 * It would seem logical to return EIO here, but we rely on
1698		 * the log state machine to propagate I/O errors instead of
1699		 * doing it here. Similarly, IO completion will unlock the
1700		 * buffer, so we don't do it here.
1701		 */
1702		return 0;
1703	}
1704
1705	xfs_buf_submit(bp);
1706	return 0;
1707}
1708
1709/*
1710 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1711 * fashion.  Previously, we should have moved the current iclog
1712 * ptr in the log to point to the next available iclog.  This allows further
1713 * write to continue while this code syncs out an iclog ready to go.
1714 * Before an in-core log can be written out, the data section must be scanned
1715 * to save away the 1st word of each BBSIZE block into the header.  We replace
1716 * it with the current cycle count.  Each BBSIZE block is tagged with the
1717 * cycle count because there in an implicit assumption that drives will
1718 * guarantee that entire 512 byte blocks get written at once.  In other words,
1719 * we can't have part of a 512 byte block written and part not written.  By
1720 * tagging each block, we will know which blocks are valid when recovering
1721 * after an unclean shutdown.
1722 *
1723 * This routine is single threaded on the iclog.  No other thread can be in
1724 * this routine with the same iclog.  Changing contents of iclog can there-
1725 * fore be done without grabbing the state machine lock.  Updating the global
1726 * log will require grabbing the lock though.
1727 *
1728 * The entire log manager uses a logical block numbering scheme.  Only
1729 * log_sync (and then only bwrite()) know about the fact that the log may
1730 * not start with block zero on a given device.  The log block start offset
1731 * is added immediately before calling bwrite().
1732 */
1733
1734STATIC int
1735xlog_sync(
1736	struct xlog		*log,
1737	struct xlog_in_core	*iclog)
1738{
1739	xfs_buf_t	*bp;
1740	int		i;
1741	uint		count;		/* byte count of bwrite */
1742	uint		count_init;	/* initial count before roundup */
1743	int		roundoff;       /* roundoff to BB or stripe */
1744	int		split = 0;	/* split write into two regions */
1745	int		error;
1746	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1747	int		size;
1748
1749	XFS_STATS_INC(xs_log_writes);
1750	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1751
1752	/* Add for LR header */
1753	count_init = log->l_iclog_hsize + iclog->ic_offset;
1754
1755	/* Round out the log write size */
1756	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1757		/* we have a v2 stripe unit to use */
1758		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1759	} else {
1760		count = BBTOB(BTOBB(count_init));
1761	}
1762	roundoff = count - count_init;
1763	ASSERT(roundoff >= 0);
1764	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1765                roundoff < log->l_mp->m_sb.sb_logsunit)
1766		||
1767		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1768		 roundoff < BBTOB(1)));
1769
1770	/* move grant heads by roundoff in sync */
1771	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1772	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1773
1774	/* put cycle number in every block */
1775	xlog_pack_data(log, iclog, roundoff);
1776
1777	/* real byte length */
1778	size = iclog->ic_offset;
1779	if (v2)
1780		size += roundoff;
1781	iclog->ic_header.h_len = cpu_to_be32(size);
1782
1783	bp = iclog->ic_bp;
1784	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1785
1786	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1787
1788	/* Do we need to split this write into 2 parts? */
1789	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1790		char		*dptr;
1791
1792		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1793		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1794		iclog->ic_bwritecnt = 2;
1795
1796		/*
1797		 * Bump the cycle numbers at the start of each block in the
1798		 * part of the iclog that ends up in the buffer that gets
1799		 * written to the start of the log.
1800		 *
1801		 * Watch out for the header magic number case, though.
1802		 */
1803		dptr = (char *)&iclog->ic_header + count;
1804		for (i = 0; i < split; i += BBSIZE) {
1805			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1806			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1807				cycle++;
1808			*(__be32 *)dptr = cpu_to_be32(cycle);
1809
1810			dptr += BBSIZE;
1811		}
1812	} else {
1813		iclog->ic_bwritecnt = 1;
1814	}
1815
1816	/* calculcate the checksum */
1817	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1818					    iclog->ic_datap, size);
1819
1820	bp->b_io_length = BTOBB(count);
1821	bp->b_fspriv = iclog;
1822	XFS_BUF_ZEROFLAGS(bp);
1823	XFS_BUF_ASYNC(bp);
1824	bp->b_flags |= XBF_SYNCIO;
1825
1826	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1827		bp->b_flags |= XBF_FUA;
1828
1829		/*
1830		 * Flush the data device before flushing the log to make
1831		 * sure all meta data written back from the AIL actually made
1832		 * it to disk before stamping the new log tail LSN into the
1833		 * log buffer.  For an external log we need to issue the
1834		 * flush explicitly, and unfortunately synchronously here;
1835		 * for an internal log we can simply use the block layer
1836		 * state machine for preflushes.
1837		 */
1838		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1839			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1840		else
1841			bp->b_flags |= XBF_FLUSH;
1842	}
1843
1844	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1845	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1846
1847	xlog_verify_iclog(log, iclog, count, true);
1848
1849	/* account for log which doesn't start at block #0 */
1850	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1851	/*
1852	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1853	 * is shutting down.
1854	 */
1855	XFS_BUF_WRITE(bp);
1856
1857	error = xlog_bdstrat(bp);
1858	if (error) {
1859		xfs_buf_ioerror_alert(bp, "xlog_sync");
1860		return error;
1861	}
1862	if (split) {
1863		bp = iclog->ic_log->l_xbuf;
1864		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1865		xfs_buf_associate_memory(bp,
1866				(char *)&iclog->ic_header + count, split);
1867		bp->b_fspriv = iclog;
1868		XFS_BUF_ZEROFLAGS(bp);
1869		XFS_BUF_ASYNC(bp);
1870		bp->b_flags |= XBF_SYNCIO;
1871		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1872			bp->b_flags |= XBF_FUA;
1873
1874		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1875		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1876
1877		/* account for internal log which doesn't start at block #0 */
1878		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1879		XFS_BUF_WRITE(bp);
1880		error = xlog_bdstrat(bp);
1881		if (error) {
1882			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1883			return error;
1884		}
1885	}
1886	return 0;
1887}	/* xlog_sync */
1888
1889/*
1890 * Deallocate a log structure
1891 */
1892STATIC void
1893xlog_dealloc_log(
1894	struct xlog	*log)
1895{
1896	xlog_in_core_t	*iclog, *next_iclog;
1897	int		i;
1898
1899	xlog_cil_destroy(log);
1900
1901	/*
1902	 * Cycle all the iclogbuf locks to make sure all log IO completion
1903	 * is done before we tear down these buffers.
1904	 */
1905	iclog = log->l_iclog;
1906	for (i = 0; i < log->l_iclog_bufs; i++) {
1907		xfs_buf_lock(iclog->ic_bp);
1908		xfs_buf_unlock(iclog->ic_bp);
1909		iclog = iclog->ic_next;
1910	}
1911
1912	/*
1913	 * Always need to ensure that the extra buffer does not point to memory
1914	 * owned by another log buffer before we free it. Also, cycle the lock
1915	 * first to ensure we've completed IO on it.
1916	 */
1917	xfs_buf_lock(log->l_xbuf);
1918	xfs_buf_unlock(log->l_xbuf);
1919	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1920	xfs_buf_free(log->l_xbuf);
1921
1922	iclog = log->l_iclog;
1923	for (i = 0; i < log->l_iclog_bufs; i++) {
1924		xfs_buf_free(iclog->ic_bp);
1925		next_iclog = iclog->ic_next;
1926		kmem_free(iclog);
1927		iclog = next_iclog;
1928	}
1929	spinlock_destroy(&log->l_icloglock);
1930
1931	log->l_mp->m_log = NULL;
1932	kmem_free(log);
1933}	/* xlog_dealloc_log */
1934
1935/*
1936 * Update counters atomically now that memcpy is done.
1937 */
1938/* ARGSUSED */
1939static inline void
1940xlog_state_finish_copy(
1941	struct xlog		*log,
1942	struct xlog_in_core	*iclog,
1943	int			record_cnt,
1944	int			copy_bytes)
1945{
1946	spin_lock(&log->l_icloglock);
1947
1948	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1949	iclog->ic_offset += copy_bytes;
1950
1951	spin_unlock(&log->l_icloglock);
1952}	/* xlog_state_finish_copy */
1953
1954
1955
1956
1957/*
1958 * print out info relating to regions written which consume
1959 * the reservation
1960 */
1961void
1962xlog_print_tic_res(
1963	struct xfs_mount	*mp,
1964	struct xlog_ticket	*ticket)
1965{
1966	uint i;
1967	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1968
1969	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1970	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1971	    "bformat",
1972	    "bchunk",
1973	    "efi_format",
1974	    "efd_format",
1975	    "iformat",
1976	    "icore",
1977	    "iext",
1978	    "ibroot",
1979	    "ilocal",
1980	    "iattr_ext",
1981	    "iattr_broot",
1982	    "iattr_local",
1983	    "qformat",
1984	    "dquot",
1985	    "quotaoff",
1986	    "LR header",
1987	    "unmount",
1988	    "commit",
1989	    "trans header"
1990	};
1991	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1992	    "SETATTR_NOT_SIZE",
1993	    "SETATTR_SIZE",
1994	    "INACTIVE",
1995	    "CREATE",
1996	    "CREATE_TRUNC",
1997	    "TRUNCATE_FILE",
1998	    "REMOVE",
1999	    "LINK",
2000	    "RENAME",
2001	    "MKDIR",
2002	    "RMDIR",
2003	    "SYMLINK",
2004	    "SET_DMATTRS",
2005	    "GROWFS",
2006	    "STRAT_WRITE",
2007	    "DIOSTRAT",
2008	    "WRITE_SYNC",
2009	    "WRITEID",
2010	    "ADDAFORK",
2011	    "ATTRINVAL",
2012	    "ATRUNCATE",
2013	    "ATTR_SET",
2014	    "ATTR_RM",
2015	    "ATTR_FLAG",
2016	    "CLEAR_AGI_BUCKET",
2017	    "QM_SBCHANGE",
2018	    "DUMMY1",
2019	    "DUMMY2",
2020	    "QM_QUOTAOFF",
2021	    "QM_DQALLOC",
2022	    "QM_SETQLIM",
2023	    "QM_DQCLUSTER",
2024	    "QM_QINOCREATE",
2025	    "QM_QUOTAOFF_END",
2026	    "SB_UNIT",
2027	    "FSYNC_TS",
2028	    "GROWFSRT_ALLOC",
2029	    "GROWFSRT_ZERO",
2030	    "GROWFSRT_FREE",
2031	    "SWAPEXT"
2032	};
2033
2034	xfs_warn(mp,
2035		"xlog_write: reservation summary:\n"
2036		"  trans type  = %s (%u)\n"
2037		"  unit res    = %d bytes\n"
2038		"  current res = %d bytes\n"
2039		"  total reg   = %u bytes (o/flow = %u bytes)\n"
2040		"  ophdrs      = %u (ophdr space = %u bytes)\n"
2041		"  ophdr + reg = %u bytes\n"
2042		"  num regions = %u",
2043		((ticket->t_trans_type <= 0 ||
2044		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2045		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2046		ticket->t_trans_type,
2047		ticket->t_unit_res,
2048		ticket->t_curr_res,
2049		ticket->t_res_arr_sum, ticket->t_res_o_flow,
2050		ticket->t_res_num_ophdrs, ophdr_spc,
2051		ticket->t_res_arr_sum +
2052		ticket->t_res_o_flow + ophdr_spc,
2053		ticket->t_res_num);
2054
2055	for (i = 0; i < ticket->t_res_num; i++) {
2056		uint r_type = ticket->t_res_arr[i].r_type;
2057		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2058			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2059			    "bad-rtype" : res_type_str[r_type-1]),
2060			    ticket->t_res_arr[i].r_len);
2061	}
2062
2063	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2064		"xlog_write: reservation ran out. Need to up reservation");
2065	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2066}
2067
2068/*
2069 * Calculate the potential space needed by the log vector.  Each region gets
2070 * its own xlog_op_header_t and may need to be double word aligned.
2071 */
2072static int
2073xlog_write_calc_vec_length(
2074	struct xlog_ticket	*ticket,
2075	struct xfs_log_vec	*log_vector)
2076{
2077	struct xfs_log_vec	*lv;
2078	int			headers = 0;
2079	int			len = 0;
2080	int			i;
2081
2082	/* acct for start rec of xact */
2083	if (ticket->t_flags & XLOG_TIC_INITED)
2084		headers++;
2085
2086	for (lv = log_vector; lv; lv = lv->lv_next) {
2087		/* we don't write ordered log vectors */
2088		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2089			continue;
2090
2091		headers += lv->lv_niovecs;
2092
2093		for (i = 0; i < lv->lv_niovecs; i++) {
2094			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2095
2096			len += vecp->i_len;
2097			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2098		}
2099	}
2100
2101	ticket->t_res_num_ophdrs += headers;
2102	len += headers * sizeof(struct xlog_op_header);
2103
2104	return len;
2105}
2106
2107/*
2108 * If first write for transaction, insert start record  We can't be trying to
2109 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2110 */
2111static int
2112xlog_write_start_rec(
2113	struct xlog_op_header	*ophdr,
2114	struct xlog_ticket	*ticket)
2115{
2116	if (!(ticket->t_flags & XLOG_TIC_INITED))
2117		return 0;
2118
2119	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2120	ophdr->oh_clientid = ticket->t_clientid;
2121	ophdr->oh_len = 0;
2122	ophdr->oh_flags = XLOG_START_TRANS;
2123	ophdr->oh_res2 = 0;
2124
2125	ticket->t_flags &= ~XLOG_TIC_INITED;
2126
2127	return sizeof(struct xlog_op_header);
2128}
2129
2130static xlog_op_header_t *
2131xlog_write_setup_ophdr(
2132	struct xlog		*log,
2133	struct xlog_op_header	*ophdr,
2134	struct xlog_ticket	*ticket,
2135	uint			flags)
2136{
2137	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2138	ophdr->oh_clientid = ticket->t_clientid;
2139	ophdr->oh_res2 = 0;
2140
2141	/* are we copying a commit or unmount record? */
2142	ophdr->oh_flags = flags;
2143
2144	/*
2145	 * We've seen logs corrupted with bad transaction client ids.  This
2146	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2147	 * and shut down the filesystem.
2148	 */
2149	switch (ophdr->oh_clientid)  {
2150	case XFS_TRANSACTION:
2151	case XFS_VOLUME:
2152	case XFS_LOG:
2153		break;
2154	default:
2155		xfs_warn(log->l_mp,
2156			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2157			ophdr->oh_clientid, ticket);
2158		return NULL;
2159	}
2160
2161	return ophdr;
2162}
2163
2164/*
2165 * Set up the parameters of the region copy into the log. This has
2166 * to handle region write split across multiple log buffers - this
2167 * state is kept external to this function so that this code can
2168 * be written in an obvious, self documenting manner.
2169 */
2170static int
2171xlog_write_setup_copy(
2172	struct xlog_ticket	*ticket,
2173	struct xlog_op_header	*ophdr,
2174	int			space_available,
2175	int			space_required,
2176	int			*copy_off,
2177	int			*copy_len,
2178	int			*last_was_partial_copy,
2179	int			*bytes_consumed)
2180{
2181	int			still_to_copy;
2182
2183	still_to_copy = space_required - *bytes_consumed;
2184	*copy_off = *bytes_consumed;
2185
2186	if (still_to_copy <= space_available) {
2187		/* write of region completes here */
2188		*copy_len = still_to_copy;
2189		ophdr->oh_len = cpu_to_be32(*copy_len);
2190		if (*last_was_partial_copy)
2191			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2192		*last_was_partial_copy = 0;
2193		*bytes_consumed = 0;
2194		return 0;
2195	}
2196
2197	/* partial write of region, needs extra log op header reservation */
2198	*copy_len = space_available;
2199	ophdr->oh_len = cpu_to_be32(*copy_len);
2200	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2201	if (*last_was_partial_copy)
2202		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2203	*bytes_consumed += *copy_len;
2204	(*last_was_partial_copy)++;
2205
2206	/* account for new log op header */
2207	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2208	ticket->t_res_num_ophdrs++;
2209
2210	return sizeof(struct xlog_op_header);
2211}
2212
2213static int
2214xlog_write_copy_finish(
2215	struct xlog		*log,
2216	struct xlog_in_core	*iclog,
2217	uint			flags,
2218	int			*record_cnt,
2219	int			*data_cnt,
2220	int			*partial_copy,
2221	int			*partial_copy_len,
2222	int			log_offset,
2223	struct xlog_in_core	**commit_iclog)
2224{
2225	if (*partial_copy) {
2226		/*
2227		 * This iclog has already been marked WANT_SYNC by
2228		 * xlog_state_get_iclog_space.
2229		 */
2230		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2231		*record_cnt = 0;
2232		*data_cnt = 0;
2233		return xlog_state_release_iclog(log, iclog);
2234	}
2235
2236	*partial_copy = 0;
2237	*partial_copy_len = 0;
2238
2239	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2240		/* no more space in this iclog - push it. */
2241		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2242		*record_cnt = 0;
2243		*data_cnt = 0;
2244
2245		spin_lock(&log->l_icloglock);
2246		xlog_state_want_sync(log, iclog);
2247		spin_unlock(&log->l_icloglock);
2248
2249		if (!commit_iclog)
2250			return xlog_state_release_iclog(log, iclog);
2251		ASSERT(flags & XLOG_COMMIT_TRANS);
2252		*commit_iclog = iclog;
2253	}
2254
2255	return 0;
2256}
2257
2258/*
2259 * Write some region out to in-core log
2260 *
2261 * This will be called when writing externally provided regions or when
2262 * writing out a commit record for a given transaction.
2263 *
2264 * General algorithm:
2265 *	1. Find total length of this write.  This may include adding to the
2266 *		lengths passed in.
2267 *	2. Check whether we violate the tickets reservation.
2268 *	3. While writing to this iclog
2269 *	    A. Reserve as much space in this iclog as can get
2270 *	    B. If this is first write, save away start lsn
2271 *	    C. While writing this region:
2272 *		1. If first write of transaction, write start record
2273 *		2. Write log operation header (header per region)
2274 *		3. Find out if we can fit entire region into this iclog
2275 *		4. Potentially, verify destination memcpy ptr
2276 *		5. Memcpy (partial) region
2277 *		6. If partial copy, release iclog; otherwise, continue
2278 *			copying more regions into current iclog
2279 *	4. Mark want sync bit (in simulation mode)
2280 *	5. Release iclog for potential flush to on-disk log.
2281 *
2282 * ERRORS:
2283 * 1.	Panic if reservation is overrun.  This should never happen since
2284 *	reservation amounts are generated internal to the filesystem.
2285 * NOTES:
2286 * 1. Tickets are single threaded data structures.
2287 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2288 *	syncing routine.  When a single log_write region needs to span
2289 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2290 *	on all log operation writes which don't contain the end of the
2291 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2292 *	operation which contains the end of the continued log_write region.
2293 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2294 *	we don't really know exactly how much space will be used.  As a result,
2295 *	we don't update ic_offset until the end when we know exactly how many
2296 *	bytes have been written out.
2297 */
2298int
2299xlog_write(
2300	struct xlog		*log,
2301	struct xfs_log_vec	*log_vector,
2302	struct xlog_ticket	*ticket,
2303	xfs_lsn_t		*start_lsn,
2304	struct xlog_in_core	**commit_iclog,
2305	uint			flags)
2306{
2307	struct xlog_in_core	*iclog = NULL;
2308	struct xfs_log_iovec	*vecp;
2309	struct xfs_log_vec	*lv;
2310	int			len;
2311	int			index;
2312	int			partial_copy = 0;
2313	int			partial_copy_len = 0;
2314	int			contwr = 0;
2315	int			record_cnt = 0;
2316	int			data_cnt = 0;
2317	int			error;
2318
2319	*start_lsn = 0;
2320
2321	len = xlog_write_calc_vec_length(ticket, log_vector);
2322
2323	/*
2324	 * Region headers and bytes are already accounted for.
2325	 * We only need to take into account start records and
2326	 * split regions in this function.
2327	 */
2328	if (ticket->t_flags & XLOG_TIC_INITED)
2329		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2330
2331	/*
2332	 * Commit record headers need to be accounted for. These
2333	 * come in as separate writes so are easy to detect.
2334	 */
2335	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2336		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2337
2338	if (ticket->t_curr_res < 0)
2339		xlog_print_tic_res(log->l_mp, ticket);
2340
2341	index = 0;
2342	lv = log_vector;
2343	vecp = lv->lv_iovecp;
2344	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2345		void		*ptr;
2346		int		log_offset;
2347
2348		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2349						   &contwr, &log_offset);
2350		if (error)
2351			return error;
2352
2353		ASSERT(log_offset <= iclog->ic_size - 1);
2354		ptr = iclog->ic_datap + log_offset;
2355
2356		/* start_lsn is the first lsn written to. That's all we need. */
2357		if (!*start_lsn)
2358			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2359
2360		/*
2361		 * This loop writes out as many regions as can fit in the amount
2362		 * of space which was allocated by xlog_state_get_iclog_space().
2363		 */
2364		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2365			struct xfs_log_iovec	*reg;
2366			struct xlog_op_header	*ophdr;
2367			int			start_rec_copy;
2368			int			copy_len;
2369			int			copy_off;
2370			bool			ordered = false;
2371
2372			/* ordered log vectors have no regions to write */
2373			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2374				ASSERT(lv->lv_niovecs == 0);
2375				ordered = true;
2376				goto next_lv;
2377			}
2378
2379			reg = &vecp[index];
2380			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2381			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2382
2383			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2384			if (start_rec_copy) {
2385				record_cnt++;
2386				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2387						   start_rec_copy);
2388			}
2389
2390			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2391			if (!ophdr)
2392				return -EIO;
2393
2394			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2395					   sizeof(struct xlog_op_header));
2396
2397			len += xlog_write_setup_copy(ticket, ophdr,
2398						     iclog->ic_size-log_offset,
2399						     reg->i_len,
2400						     &copy_off, &copy_len,
2401						     &partial_copy,
2402						     &partial_copy_len);
2403			xlog_verify_dest_ptr(log, ptr);
2404
2405			/* copy region */
2406			ASSERT(copy_len >= 0);
2407			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2408			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2409
2410			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2411			record_cnt++;
2412			data_cnt += contwr ? copy_len : 0;
2413
2414			error = xlog_write_copy_finish(log, iclog, flags,
2415						       &record_cnt, &data_cnt,
2416						       &partial_copy,
2417						       &partial_copy_len,
2418						       log_offset,
2419						       commit_iclog);
2420			if (error)
2421				return error;
2422
2423			/*
2424			 * if we had a partial copy, we need to get more iclog
2425			 * space but we don't want to increment the region
2426			 * index because there is still more is this region to
2427			 * write.
2428			 *
2429			 * If we completed writing this region, and we flushed
2430			 * the iclog (indicated by resetting of the record
2431			 * count), then we also need to get more log space. If
2432			 * this was the last record, though, we are done and
2433			 * can just return.
2434			 */
2435			if (partial_copy)
2436				break;
2437
2438			if (++index == lv->lv_niovecs) {
2439next_lv:
2440				lv = lv->lv_next;
2441				index = 0;
2442				if (lv)
2443					vecp = lv->lv_iovecp;
2444			}
2445			if (record_cnt == 0 && ordered == false) {
2446				if (!lv)
2447					return 0;
2448				break;
2449			}
2450		}
2451	}
2452
2453	ASSERT(len == 0);
2454
2455	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2456	if (!commit_iclog)
2457		return xlog_state_release_iclog(log, iclog);
2458
2459	ASSERT(flags & XLOG_COMMIT_TRANS);
2460	*commit_iclog = iclog;
2461	return 0;
2462}
2463
2464
2465/*****************************************************************************
2466 *
2467 *		State Machine functions
2468 *
2469 *****************************************************************************
2470 */
2471
2472/* Clean iclogs starting from the head.  This ordering must be
2473 * maintained, so an iclog doesn't become ACTIVE beyond one that
2474 * is SYNCING.  This is also required to maintain the notion that we use
2475 * a ordered wait queue to hold off would be writers to the log when every
2476 * iclog is trying to sync to disk.
2477 *
2478 * State Change: DIRTY -> ACTIVE
2479 */
2480STATIC void
2481xlog_state_clean_log(
2482	struct xlog *log)
2483{
2484	xlog_in_core_t	*iclog;
2485	int changed = 0;
2486
2487	iclog = log->l_iclog;
2488	do {
2489		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2490			iclog->ic_state	= XLOG_STATE_ACTIVE;
2491			iclog->ic_offset       = 0;
2492			ASSERT(iclog->ic_callback == NULL);
2493			/*
2494			 * If the number of ops in this iclog indicate it just
2495			 * contains the dummy transaction, we can
2496			 * change state into IDLE (the second time around).
2497			 * Otherwise we should change the state into
2498			 * NEED a dummy.
2499			 * We don't need to cover the dummy.
2500			 */
2501			if (!changed &&
2502			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2503			   		XLOG_COVER_OPS)) {
2504				changed = 1;
2505			} else {
2506				/*
2507				 * We have two dirty iclogs so start over
2508				 * This could also be num of ops indicates
2509				 * this is not the dummy going out.
2510				 */
2511				changed = 2;
2512			}
2513			iclog->ic_header.h_num_logops = 0;
2514			memset(iclog->ic_header.h_cycle_data, 0,
2515			      sizeof(iclog->ic_header.h_cycle_data));
2516			iclog->ic_header.h_lsn = 0;
2517		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2518			/* do nothing */;
2519		else
2520			break;	/* stop cleaning */
2521		iclog = iclog->ic_next;
2522	} while (iclog != log->l_iclog);
2523
2524	/* log is locked when we are called */
2525	/*
2526	 * Change state for the dummy log recording.
2527	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2528	 * we are done writing the dummy record.
2529	 * If we are done with the second dummy recored (DONE2), then
2530	 * we go to IDLE.
2531	 */
2532	if (changed) {
2533		switch (log->l_covered_state) {
2534		case XLOG_STATE_COVER_IDLE:
2535		case XLOG_STATE_COVER_NEED:
2536		case XLOG_STATE_COVER_NEED2:
2537			log->l_covered_state = XLOG_STATE_COVER_NEED;
2538			break;
2539
2540		case XLOG_STATE_COVER_DONE:
2541			if (changed == 1)
2542				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2543			else
2544				log->l_covered_state = XLOG_STATE_COVER_NEED;
2545			break;
2546
2547		case XLOG_STATE_COVER_DONE2:
2548			if (changed == 1)
2549				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2550			else
2551				log->l_covered_state = XLOG_STATE_COVER_NEED;
2552			break;
2553
2554		default:
2555			ASSERT(0);
2556		}
2557	}
2558}	/* xlog_state_clean_log */
2559
2560STATIC xfs_lsn_t
2561xlog_get_lowest_lsn(
2562	struct xlog	*log)
2563{
2564	xlog_in_core_t  *lsn_log;
2565	xfs_lsn_t	lowest_lsn, lsn;
2566
2567	lsn_log = log->l_iclog;
2568	lowest_lsn = 0;
2569	do {
2570	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2571		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2572		if ((lsn && !lowest_lsn) ||
2573		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2574			lowest_lsn = lsn;
2575		}
2576	    }
2577	    lsn_log = lsn_log->ic_next;
2578	} while (lsn_log != log->l_iclog);
2579	return lowest_lsn;
2580}
2581
2582
2583STATIC void
2584xlog_state_do_callback(
2585	struct xlog		*log,
2586	int			aborted,
2587	struct xlog_in_core	*ciclog)
2588{
2589	xlog_in_core_t	   *iclog;
2590	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2591						 * processed all iclogs once */
2592	xfs_log_callback_t *cb, *cb_next;
2593	int		   flushcnt = 0;
2594	xfs_lsn_t	   lowest_lsn;
2595	int		   ioerrors;	/* counter: iclogs with errors */
2596	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2597	int		   funcdidcallbacks; /* flag: function did callbacks */
2598	int		   repeats;	/* for issuing console warnings if
2599					 * looping too many times */
2600	int		   wake = 0;
2601
2602	spin_lock(&log->l_icloglock);
2603	first_iclog = iclog = log->l_iclog;
2604	ioerrors = 0;
2605	funcdidcallbacks = 0;
2606	repeats = 0;
2607
2608	do {
2609		/*
2610		 * Scan all iclogs starting with the one pointed to by the
2611		 * log.  Reset this starting point each time the log is
2612		 * unlocked (during callbacks).
2613		 *
2614		 * Keep looping through iclogs until one full pass is made
2615		 * without running any callbacks.
2616		 */
2617		first_iclog = log->l_iclog;
2618		iclog = log->l_iclog;
2619		loopdidcallbacks = 0;
2620		repeats++;
2621
2622		do {
2623
2624			/* skip all iclogs in the ACTIVE & DIRTY states */
2625			if (iclog->ic_state &
2626			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2627				iclog = iclog->ic_next;
2628				continue;
2629			}
2630
2631			/*
2632			 * Between marking a filesystem SHUTDOWN and stopping
2633			 * the log, we do flush all iclogs to disk (if there
2634			 * wasn't a log I/O error). So, we do want things to
2635			 * go smoothly in case of just a SHUTDOWN  w/o a
2636			 * LOG_IO_ERROR.
2637			 */
2638			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2639				/*
2640				 * Can only perform callbacks in order.  Since
2641				 * this iclog is not in the DONE_SYNC/
2642				 * DO_CALLBACK state, we skip the rest and
2643				 * just try to clean up.  If we set our iclog
2644				 * to DO_CALLBACK, we will not process it when
2645				 * we retry since a previous iclog is in the
2646				 * CALLBACK and the state cannot change since
2647				 * we are holding the l_icloglock.
2648				 */
2649				if (!(iclog->ic_state &
2650					(XLOG_STATE_DONE_SYNC |
2651						 XLOG_STATE_DO_CALLBACK))) {
2652					if (ciclog && (ciclog->ic_state ==
2653							XLOG_STATE_DONE_SYNC)) {
2654						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2655					}
2656					break;
2657				}
2658				/*
2659				 * We now have an iclog that is in either the
2660				 * DO_CALLBACK or DONE_SYNC states. The other
2661				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2662				 * caught by the above if and are going to
2663				 * clean (i.e. we aren't doing their callbacks)
2664				 * see the above if.
2665				 */
2666
2667				/*
2668				 * We will do one more check here to see if we
2669				 * have chased our tail around.
2670				 */
2671
2672				lowest_lsn = xlog_get_lowest_lsn(log);
2673				if (lowest_lsn &&
2674				    XFS_LSN_CMP(lowest_lsn,
2675						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2676					iclog = iclog->ic_next;
2677					continue; /* Leave this iclog for
2678						   * another thread */
2679				}
2680
2681				iclog->ic_state = XLOG_STATE_CALLBACK;
2682
2683
2684				/*
2685				 * Completion of a iclog IO does not imply that
2686				 * a transaction has completed, as transactions
2687				 * can be large enough to span many iclogs. We
2688				 * cannot change the tail of the log half way
2689				 * through a transaction as this may be the only
2690				 * transaction in the log and moving th etail to
2691				 * point to the middle of it will prevent
2692				 * recovery from finding the start of the
2693				 * transaction. Hence we should only update the
2694				 * last_sync_lsn if this iclog contains
2695				 * transaction completion callbacks on it.
2696				 *
2697				 * We have to do this before we drop the
2698				 * icloglock to ensure we are the only one that
2699				 * can update it.
2700				 */
2701				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2702					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2703				if (iclog->ic_callback)
2704					atomic64_set(&log->l_last_sync_lsn,
2705						be64_to_cpu(iclog->ic_header.h_lsn));
2706
2707			} else
2708				ioerrors++;
2709
2710			spin_unlock(&log->l_icloglock);
2711
2712			/*
2713			 * Keep processing entries in the callback list until
2714			 * we come around and it is empty.  We need to
2715			 * atomically see that the list is empty and change the
2716			 * state to DIRTY so that we don't miss any more
2717			 * callbacks being added.
2718			 */
2719			spin_lock(&iclog->ic_callback_lock);
2720			cb = iclog->ic_callback;
2721			while (cb) {
2722				iclog->ic_callback_tail = &(iclog->ic_callback);
2723				iclog->ic_callback = NULL;
2724				spin_unlock(&iclog->ic_callback_lock);
2725
2726				/* perform callbacks in the order given */
2727				for (; cb; cb = cb_next) {
2728					cb_next = cb->cb_next;
2729					cb->cb_func(cb->cb_arg, aborted);
2730				}
2731				spin_lock(&iclog->ic_callback_lock);
2732				cb = iclog->ic_callback;
2733			}
2734
2735			loopdidcallbacks++;
2736			funcdidcallbacks++;
2737
2738			spin_lock(&log->l_icloglock);
2739			ASSERT(iclog->ic_callback == NULL);
2740			spin_unlock(&iclog->ic_callback_lock);
2741			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2742				iclog->ic_state = XLOG_STATE_DIRTY;
2743
2744			/*
2745			 * Transition from DIRTY to ACTIVE if applicable.
2746			 * NOP if STATE_IOERROR.
2747			 */
2748			xlog_state_clean_log(log);
2749
2750			/* wake up threads waiting in xfs_log_force() */
2751			wake_up_all(&iclog->ic_force_wait);
2752
2753			iclog = iclog->ic_next;
2754		} while (first_iclog != iclog);
2755
2756		if (repeats > 5000) {
2757			flushcnt += repeats;
2758			repeats = 0;
2759			xfs_warn(log->l_mp,
2760				"%s: possible infinite loop (%d iterations)",
2761				__func__, flushcnt);
2762		}
2763	} while (!ioerrors && loopdidcallbacks);
2764
2765	/*
2766	 * make one last gasp attempt to see if iclogs are being left in
2767	 * limbo..
2768	 */
2769#ifdef DEBUG
2770	if (funcdidcallbacks) {
2771		first_iclog = iclog = log->l_iclog;
2772		do {
2773			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2774			/*
2775			 * Terminate the loop if iclogs are found in states
2776			 * which will cause other threads to clean up iclogs.
2777			 *
2778			 * SYNCING - i/o completion will go through logs
2779			 * DONE_SYNC - interrupt thread should be waiting for
2780			 *              l_icloglock
2781			 * IOERROR - give up hope all ye who enter here
2782			 */
2783			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2784			    iclog->ic_state == XLOG_STATE_SYNCING ||
2785			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2786			    iclog->ic_state == XLOG_STATE_IOERROR )
2787				break;
2788			iclog = iclog->ic_next;
2789		} while (first_iclog != iclog);
2790	}
2791#endif
2792
2793	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2794		wake = 1;
2795	spin_unlock(&log->l_icloglock);
2796
2797	if (wake)
2798		wake_up_all(&log->l_flush_wait);
2799}
2800
2801
2802/*
2803 * Finish transitioning this iclog to the dirty state.
2804 *
2805 * Make sure that we completely execute this routine only when this is
2806 * the last call to the iclog.  There is a good chance that iclog flushes,
2807 * when we reach the end of the physical log, get turned into 2 separate
2808 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2809 * routine.  By using the reference count bwritecnt, we guarantee that only
2810 * the second completion goes through.
2811 *
2812 * Callbacks could take time, so they are done outside the scope of the
2813 * global state machine log lock.
2814 */
2815STATIC void
2816xlog_state_done_syncing(
2817	xlog_in_core_t	*iclog,
2818	int		aborted)
2819{
2820	struct xlog	   *log = iclog->ic_log;
2821
2822	spin_lock(&log->l_icloglock);
2823
2824	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2825	       iclog->ic_state == XLOG_STATE_IOERROR);
2826	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2827	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2828
2829
2830	/*
2831	 * If we got an error, either on the first buffer, or in the case of
2832	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2833	 * and none should ever be attempted to be written to disk
2834	 * again.
2835	 */
2836	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2837		if (--iclog->ic_bwritecnt == 1) {
2838			spin_unlock(&log->l_icloglock);
2839			return;
2840		}
2841		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2842	}
2843
2844	/*
2845	 * Someone could be sleeping prior to writing out the next
2846	 * iclog buffer, we wake them all, one will get to do the
2847	 * I/O, the others get to wait for the result.
2848	 */
2849	wake_up_all(&iclog->ic_write_wait);
2850	spin_unlock(&log->l_icloglock);
2851	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2852}	/* xlog_state_done_syncing */
2853
2854
2855/*
2856 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2857 * sleep.  We wait on the flush queue on the head iclog as that should be
2858 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2859 * we will wait here and all new writes will sleep until a sync completes.
2860 *
2861 * The in-core logs are used in a circular fashion. They are not used
2862 * out-of-order even when an iclog past the head is free.
2863 *
2864 * return:
2865 *	* log_offset where xlog_write() can start writing into the in-core
2866 *		log's data space.
2867 *	* in-core log pointer to which xlog_write() should write.
2868 *	* boolean indicating this is a continued write to an in-core log.
2869 *		If this is the last write, then the in-core log's offset field
2870 *		needs to be incremented, depending on the amount of data which
2871 *		is copied.
2872 */
2873STATIC int
2874xlog_state_get_iclog_space(
2875	struct xlog		*log,
2876	int			len,
2877	struct xlog_in_core	**iclogp,
2878	struct xlog_ticket	*ticket,
2879	int			*continued_write,
2880	int			*logoffsetp)
2881{
2882	int		  log_offset;
2883	xlog_rec_header_t *head;
2884	xlog_in_core_t	  *iclog;
2885	int		  error;
2886
2887restart:
2888	spin_lock(&log->l_icloglock);
2889	if (XLOG_FORCED_SHUTDOWN(log)) {
2890		spin_unlock(&log->l_icloglock);
2891		return -EIO;
2892	}
2893
2894	iclog = log->l_iclog;
2895	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2896		XFS_STATS_INC(xs_log_noiclogs);
2897
2898		/* Wait for log writes to have flushed */
2899		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2900		goto restart;
2901	}
2902
2903	head = &iclog->ic_header;
2904
2905	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2906	log_offset = iclog->ic_offset;
2907
2908	/* On the 1st write to an iclog, figure out lsn.  This works
2909	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2910	 * committing to.  If the offset is set, that's how many blocks
2911	 * must be written.
2912	 */
2913	if (log_offset == 0) {
2914		ticket->t_curr_res -= log->l_iclog_hsize;
2915		xlog_tic_add_region(ticket,
2916				    log->l_iclog_hsize,
2917				    XLOG_REG_TYPE_LRHEADER);
2918		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2919		head->h_lsn = cpu_to_be64(
2920			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2921		ASSERT(log->l_curr_block >= 0);
2922	}
2923
2924	/* If there is enough room to write everything, then do it.  Otherwise,
2925	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2926	 * bit is on, so this will get flushed out.  Don't update ic_offset
2927	 * until you know exactly how many bytes get copied.  Therefore, wait
2928	 * until later to update ic_offset.
2929	 *
2930	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2931	 * can fit into remaining data section.
2932	 */
2933	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2934		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2935
2936		/*
2937		 * If I'm the only one writing to this iclog, sync it to disk.
2938		 * We need to do an atomic compare and decrement here to avoid
2939		 * racing with concurrent atomic_dec_and_lock() calls in
2940		 * xlog_state_release_iclog() when there is more than one
2941		 * reference to the iclog.
2942		 */
2943		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2944			/* we are the only one */
2945			spin_unlock(&log->l_icloglock);
2946			error = xlog_state_release_iclog(log, iclog);
2947			if (error)
2948				return error;
2949		} else {
2950			spin_unlock(&log->l_icloglock);
2951		}
2952		goto restart;
2953	}
2954
2955	/* Do we have enough room to write the full amount in the remainder
2956	 * of this iclog?  Or must we continue a write on the next iclog and
2957	 * mark this iclog as completely taken?  In the case where we switch
2958	 * iclogs (to mark it taken), this particular iclog will release/sync
2959	 * to disk in xlog_write().
2960	 */
2961	if (len <= iclog->ic_size - iclog->ic_offset) {
2962		*continued_write = 0;
2963		iclog->ic_offset += len;
2964	} else {
2965		*continued_write = 1;
2966		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2967	}
2968	*iclogp = iclog;
2969
2970	ASSERT(iclog->ic_offset <= iclog->ic_size);
2971	spin_unlock(&log->l_icloglock);
2972
2973	*logoffsetp = log_offset;
2974	return 0;
2975}	/* xlog_state_get_iclog_space */
2976
2977/* The first cnt-1 times through here we don't need to
2978 * move the grant write head because the permanent
2979 * reservation has reserved cnt times the unit amount.
2980 * Release part of current permanent unit reservation and
2981 * reset current reservation to be one units worth.  Also
2982 * move grant reservation head forward.
2983 */
2984STATIC void
2985xlog_regrant_reserve_log_space(
2986	struct xlog		*log,
2987	struct xlog_ticket	*ticket)
2988{
2989	trace_xfs_log_regrant_reserve_enter(log, ticket);
2990
2991	if (ticket->t_cnt > 0)
2992		ticket->t_cnt--;
2993
2994	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995					ticket->t_curr_res);
2996	xlog_grant_sub_space(log, &log->l_write_head.grant,
2997					ticket->t_curr_res);
2998	ticket->t_curr_res = ticket->t_unit_res;
2999	xlog_tic_reset_res(ticket);
3000
3001	trace_xfs_log_regrant_reserve_sub(log, ticket);
3002
3003	/* just return if we still have some of the pre-reserved space */
3004	if (ticket->t_cnt > 0)
3005		return;
3006
3007	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3008					ticket->t_unit_res);
3009
3010	trace_xfs_log_regrant_reserve_exit(log, ticket);
3011
3012	ticket->t_curr_res = ticket->t_unit_res;
3013	xlog_tic_reset_res(ticket);
3014}	/* xlog_regrant_reserve_log_space */
3015
3016
3017/*
3018 * Give back the space left from a reservation.
3019 *
3020 * All the information we need to make a correct determination of space left
3021 * is present.  For non-permanent reservations, things are quite easy.  The
3022 * count should have been decremented to zero.  We only need to deal with the
3023 * space remaining in the current reservation part of the ticket.  If the
3024 * ticket contains a permanent reservation, there may be left over space which
3025 * needs to be released.  A count of N means that N-1 refills of the current
3026 * reservation can be done before we need to ask for more space.  The first
3027 * one goes to fill up the first current reservation.  Once we run out of
3028 * space, the count will stay at zero and the only space remaining will be
3029 * in the current reservation field.
3030 */
3031STATIC void
3032xlog_ungrant_log_space(
3033	struct xlog		*log,
3034	struct xlog_ticket	*ticket)
3035{
3036	int	bytes;
3037
3038	if (ticket->t_cnt > 0)
3039		ticket->t_cnt--;
3040
3041	trace_xfs_log_ungrant_enter(log, ticket);
3042	trace_xfs_log_ungrant_sub(log, ticket);
3043
3044	/*
3045	 * If this is a permanent reservation ticket, we may be able to free
3046	 * up more space based on the remaining count.
3047	 */
3048	bytes = ticket->t_curr_res;
3049	if (ticket->t_cnt > 0) {
3050		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051		bytes += ticket->t_unit_res*ticket->t_cnt;
3052	}
3053
3054	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3056
3057	trace_xfs_log_ungrant_exit(log, ticket);
3058
3059	xfs_log_space_wake(log->l_mp);
3060}
3061
3062/*
3063 * Flush iclog to disk if this is the last reference to the given iclog and
3064 * the WANT_SYNC bit is set.
3065 *
3066 * When this function is entered, the iclog is not necessarily in the
3067 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3068 *
3069 *
3070 */
3071STATIC int
3072xlog_state_release_iclog(
3073	struct xlog		*log,
3074	struct xlog_in_core	*iclog)
3075{
3076	int		sync = 0;	/* do we sync? */
3077
3078	if (iclog->ic_state & XLOG_STATE_IOERROR)
3079		return -EIO;
3080
3081	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3082	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3083		return 0;
3084
3085	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3086		spin_unlock(&log->l_icloglock);
3087		return -EIO;
3088	}
3089	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3090	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3091
3092	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3093		/* update tail before writing to iclog */
3094		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3095		sync++;
3096		iclog->ic_state = XLOG_STATE_SYNCING;
3097		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3098		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3099		/* cycle incremented when incrementing curr_block */
3100	}
3101	spin_unlock(&log->l_icloglock);
3102
3103	/*
3104	 * We let the log lock go, so it's possible that we hit a log I/O
3105	 * error or some other SHUTDOWN condition that marks the iclog
3106	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3107	 * this iclog has consistent data, so we ignore IOERROR
3108	 * flags after this point.
3109	 */
3110	if (sync)
3111		return xlog_sync(log, iclog);
3112	return 0;
3113}	/* xlog_state_release_iclog */
3114
3115
3116/*
3117 * This routine will mark the current iclog in the ring as WANT_SYNC
3118 * and move the current iclog pointer to the next iclog in the ring.
3119 * When this routine is called from xlog_state_get_iclog_space(), the
3120 * exact size of the iclog has not yet been determined.  All we know is
3121 * that every data block.  We have run out of space in this log record.
3122 */
3123STATIC void
3124xlog_state_switch_iclogs(
3125	struct xlog		*log,
3126	struct xlog_in_core	*iclog,
3127	int			eventual_size)
3128{
3129	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3130	if (!eventual_size)
3131		eventual_size = iclog->ic_offset;
3132	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3133	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3134	log->l_prev_block = log->l_curr_block;
3135	log->l_prev_cycle = log->l_curr_cycle;
3136
3137	/* roll log?: ic_offset changed later */
3138	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3139
3140	/* Round up to next log-sunit */
3141	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3142	    log->l_mp->m_sb.sb_logsunit > 1) {
3143		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3144		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3145	}
3146
3147	if (log->l_curr_block >= log->l_logBBsize) {
3148		log->l_curr_cycle++;
3149		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3150			log->l_curr_cycle++;
3151		log->l_curr_block -= log->l_logBBsize;
3152		ASSERT(log->l_curr_block >= 0);
3153	}
3154	ASSERT(iclog == log->l_iclog);
3155	log->l_iclog = iclog->ic_next;
3156}	/* xlog_state_switch_iclogs */
3157
3158/*
3159 * Write out all data in the in-core log as of this exact moment in time.
3160 *
3161 * Data may be written to the in-core log during this call.  However,
3162 * we don't guarantee this data will be written out.  A change from past
3163 * implementation means this routine will *not* write out zero length LRs.
3164 *
3165 * Basically, we try and perform an intelligent scan of the in-core logs.
3166 * If we determine there is no flushable data, we just return.  There is no
3167 * flushable data if:
3168 *
3169 *	1. the current iclog is active and has no data; the previous iclog
3170 *		is in the active or dirty state.
3171 *	2. the current iclog is drity, and the previous iclog is in the
3172 *		active or dirty state.
3173 *
3174 * We may sleep if:
3175 *
3176 *	1. the current iclog is not in the active nor dirty state.
3177 *	2. the current iclog dirty, and the previous iclog is not in the
3178 *		active nor dirty state.
3179 *	3. the current iclog is active, and there is another thread writing
3180 *		to this particular iclog.
3181 *	4. a) the current iclog is active and has no other writers
3182 *	   b) when we return from flushing out this iclog, it is still
3183 *		not in the active nor dirty state.
3184 */
3185int
3186_xfs_log_force(
3187	struct xfs_mount	*mp,
3188	uint			flags,
3189	int			*log_flushed)
3190{
3191	struct xlog		*log = mp->m_log;
3192	struct xlog_in_core	*iclog;
3193	xfs_lsn_t		lsn;
3194
3195	XFS_STATS_INC(xs_log_force);
3196
3197	xlog_cil_force(log);
3198
3199	spin_lock(&log->l_icloglock);
3200
3201	iclog = log->l_iclog;
3202	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3203		spin_unlock(&log->l_icloglock);
3204		return -EIO;
3205	}
3206
3207	/* If the head iclog is not active nor dirty, we just attach
3208	 * ourselves to the head and go to sleep.
3209	 */
3210	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3211	    iclog->ic_state == XLOG_STATE_DIRTY) {
3212		/*
3213		 * If the head is dirty or (active and empty), then
3214		 * we need to look at the previous iclog.  If the previous
3215		 * iclog is active or dirty we are done.  There is nothing
3216		 * to sync out.  Otherwise, we attach ourselves to the
3217		 * previous iclog and go to sleep.
3218		 */
3219		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3220		    (atomic_read(&iclog->ic_refcnt) == 0
3221		     && iclog->ic_offset == 0)) {
3222			iclog = iclog->ic_prev;
3223			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3224			    iclog->ic_state == XLOG_STATE_DIRTY)
3225				goto no_sleep;
3226			else
3227				goto maybe_sleep;
3228		} else {
3229			if (atomic_read(&iclog->ic_refcnt) == 0) {
3230				/* We are the only one with access to this
3231				 * iclog.  Flush it out now.  There should
3232				 * be a roundoff of zero to show that someone
3233				 * has already taken care of the roundoff from
3234				 * the previous sync.
3235				 */
3236				atomic_inc(&iclog->ic_refcnt);
3237				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3238				xlog_state_switch_iclogs(log, iclog, 0);
3239				spin_unlock(&log->l_icloglock);
3240
3241				if (xlog_state_release_iclog(log, iclog))
3242					return -EIO;
3243
3244				if (log_flushed)
3245					*log_flushed = 1;
3246				spin_lock(&log->l_icloglock);
3247				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3248				    iclog->ic_state != XLOG_STATE_DIRTY)
3249					goto maybe_sleep;
3250				else
3251					goto no_sleep;
3252			} else {
3253				/* Someone else is writing to this iclog.
3254				 * Use its call to flush out the data.  However,
3255				 * the other thread may not force out this LR,
3256				 * so we mark it WANT_SYNC.
3257				 */
3258				xlog_state_switch_iclogs(log, iclog, 0);
3259				goto maybe_sleep;
3260			}
3261		}
3262	}
3263
3264	/* By the time we come around again, the iclog could've been filled
3265	 * which would give it another lsn.  If we have a new lsn, just
3266	 * return because the relevant data has been flushed.
3267	 */
3268maybe_sleep:
3269	if (flags & XFS_LOG_SYNC) {
3270		/*
3271		 * We must check if we're shutting down here, before
3272		 * we wait, while we're holding the l_icloglock.
3273		 * Then we check again after waking up, in case our
3274		 * sleep was disturbed by a bad news.
3275		 */
3276		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3277			spin_unlock(&log->l_icloglock);
3278			return -EIO;
3279		}
3280		XFS_STATS_INC(xs_log_force_sleep);
3281		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3282		/*
3283		 * No need to grab the log lock here since we're
3284		 * only deciding whether or not to return EIO
3285		 * and the memory read should be atomic.
3286		 */
3287		if (iclog->ic_state & XLOG_STATE_IOERROR)
3288			return -EIO;
3289		if (log_flushed)
3290			*log_flushed = 1;
3291	} else {
3292
3293no_sleep:
3294		spin_unlock(&log->l_icloglock);
3295	}
3296	return 0;
3297}
3298
3299/*
3300 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3301 * about errors or whether the log was flushed or not. This is the normal
3302 * interface to use when trying to unpin items or move the log forward.
3303 */
3304void
3305xfs_log_force(
3306	xfs_mount_t	*mp,
3307	uint		flags)
3308{
3309	int	error;
3310
3311	trace_xfs_log_force(mp, 0);
3312	error = _xfs_log_force(mp, flags, NULL);
3313	if (error)
3314		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3315}
3316
3317/*
3318 * Force the in-core log to disk for a specific LSN.
3319 *
3320 * Find in-core log with lsn.
3321 *	If it is in the DIRTY state, just return.
3322 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3323 *		state and go to sleep or return.
3324 *	If it is in any other state, go to sleep or return.
3325 *
3326 * Synchronous forces are implemented with a signal variable. All callers
3327 * to force a given lsn to disk will wait on a the sv attached to the
3328 * specific in-core log.  When given in-core log finally completes its
3329 * write to disk, that thread will wake up all threads waiting on the
3330 * sv.
3331 */
3332int
3333_xfs_log_force_lsn(
3334	struct xfs_mount	*mp,
3335	xfs_lsn_t		lsn,
3336	uint			flags,
3337	int			*log_flushed)
3338{
3339	struct xlog		*log = mp->m_log;
3340	struct xlog_in_core	*iclog;
3341	int			already_slept = 0;
3342
3343	ASSERT(lsn != 0);
3344
3345	XFS_STATS_INC(xs_log_force);
3346
3347	lsn = xlog_cil_force_lsn(log, lsn);
3348	if (lsn == NULLCOMMITLSN)
3349		return 0;
3350
3351try_again:
3352	spin_lock(&log->l_icloglock);
3353	iclog = log->l_iclog;
3354	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3355		spin_unlock(&log->l_icloglock);
3356		return -EIO;
3357	}
3358
3359	do {
3360		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3361			iclog = iclog->ic_next;
3362			continue;
3363		}
3364
3365		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3366			spin_unlock(&log->l_icloglock);
3367			return 0;
3368		}
3369
3370		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3371			/*
3372			 * We sleep here if we haven't already slept (e.g.
3373			 * this is the first time we've looked at the correct
3374			 * iclog buf) and the buffer before us is going to
3375			 * be sync'ed. The reason for this is that if we
3376			 * are doing sync transactions here, by waiting for
3377			 * the previous I/O to complete, we can allow a few
3378			 * more transactions into this iclog before we close
3379			 * it down.
3380			 *
3381			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3382			 * up the refcnt so we can release the log (which
3383			 * drops the ref count).  The state switch keeps new
3384			 * transaction commits from using this buffer.  When
3385			 * the current commits finish writing into the buffer,
3386			 * the refcount will drop to zero and the buffer will
3387			 * go out then.
3388			 */
3389			if (!already_slept &&
3390			    (iclog->ic_prev->ic_state &
3391			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3392				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3393
3394				XFS_STATS_INC(xs_log_force_sleep);
3395
3396				xlog_wait(&iclog->ic_prev->ic_write_wait,
3397							&log->l_icloglock);
3398				if (log_flushed)
3399					*log_flushed = 1;
3400				already_slept = 1;
3401				goto try_again;
3402			}
3403			atomic_inc(&iclog->ic_refcnt);
3404			xlog_state_switch_iclogs(log, iclog, 0);
3405			spin_unlock(&log->l_icloglock);
3406			if (xlog_state_release_iclog(log, iclog))
3407				return -EIO;
3408			if (log_flushed)
3409				*log_flushed = 1;
3410			spin_lock(&log->l_icloglock);
3411		}
3412
3413		if ((flags & XFS_LOG_SYNC) && /* sleep */
3414		    !(iclog->ic_state &
3415		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3416			/*
3417			 * Don't wait on completion if we know that we've
3418			 * gotten a log write error.
3419			 */
3420			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3421				spin_unlock(&log->l_icloglock);
3422				return -EIO;
3423			}
3424			XFS_STATS_INC(xs_log_force_sleep);
3425			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3426			/*
3427			 * No need to grab the log lock here since we're
3428			 * only deciding whether or not to return EIO
3429			 * and the memory read should be atomic.
3430			 */
3431			if (iclog->ic_state & XLOG_STATE_IOERROR)
3432				return -EIO;
3433
3434			if (log_flushed)
3435				*log_flushed = 1;
3436		} else {		/* just return */
3437			spin_unlock(&log->l_icloglock);
3438		}
3439
3440		return 0;
3441	} while (iclog != log->l_iclog);
3442
3443	spin_unlock(&log->l_icloglock);
3444	return 0;
3445}
3446
3447/*
3448 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3449 * about errors or whether the log was flushed or not. This is the normal
3450 * interface to use when trying to unpin items or move the log forward.
3451 */
3452void
3453xfs_log_force_lsn(
3454	xfs_mount_t	*mp,
3455	xfs_lsn_t	lsn,
3456	uint		flags)
3457{
3458	int	error;
3459
3460	trace_xfs_log_force(mp, lsn);
3461	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3462	if (error)
3463		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3464}
3465
3466/*
3467 * Called when we want to mark the current iclog as being ready to sync to
3468 * disk.
3469 */
3470STATIC void
3471xlog_state_want_sync(
3472	struct xlog		*log,
3473	struct xlog_in_core	*iclog)
3474{
3475	assert_spin_locked(&log->l_icloglock);
3476
3477	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3478		xlog_state_switch_iclogs(log, iclog, 0);
3479	} else {
3480		ASSERT(iclog->ic_state &
3481			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3482	}
3483}
3484
3485
3486/*****************************************************************************
3487 *
3488 *		TICKET functions
3489 *
3490 *****************************************************************************
3491 */
3492
3493/*
3494 * Free a used ticket when its refcount falls to zero.
3495 */
3496void
3497xfs_log_ticket_put(
3498	xlog_ticket_t	*ticket)
3499{
3500	ASSERT(atomic_read(&ticket->t_ref) > 0);
3501	if (atomic_dec_and_test(&ticket->t_ref))
3502		kmem_zone_free(xfs_log_ticket_zone, ticket);
3503}
3504
3505xlog_ticket_t *
3506xfs_log_ticket_get(
3507	xlog_ticket_t	*ticket)
3508{
3509	ASSERT(atomic_read(&ticket->t_ref) > 0);
3510	atomic_inc(&ticket->t_ref);
3511	return ticket;
3512}
3513
3514/*
3515 * Figure out the total log space unit (in bytes) that would be
3516 * required for a log ticket.
3517 */
3518int
3519xfs_log_calc_unit_res(
3520	struct xfs_mount	*mp,
3521	int			unit_bytes)
3522{
3523	struct xlog		*log = mp->m_log;
3524	int			iclog_space;
3525	uint			num_headers;
3526
3527	/*
3528	 * Permanent reservations have up to 'cnt'-1 active log operations
3529	 * in the log.  A unit in this case is the amount of space for one
3530	 * of these log operations.  Normal reservations have a cnt of 1
3531	 * and their unit amount is the total amount of space required.
3532	 *
3533	 * The following lines of code account for non-transaction data
3534	 * which occupy space in the on-disk log.
3535	 *
3536	 * Normal form of a transaction is:
3537	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3538	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3539	 *
3540	 * We need to account for all the leadup data and trailer data
3541	 * around the transaction data.
3542	 * And then we need to account for the worst case in terms of using
3543	 * more space.
3544	 * The worst case will happen if:
3545	 * - the placement of the transaction happens to be such that the
3546	 *   roundoff is at its maximum
3547	 * - the transaction data is synced before the commit record is synced
3548	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3549	 *   Therefore the commit record is in its own Log Record.
3550	 *   This can happen as the commit record is called with its
3551	 *   own region to xlog_write().
3552	 *   This then means that in the worst case, roundoff can happen for
3553	 *   the commit-rec as well.
3554	 *   The commit-rec is smaller than padding in this scenario and so it is
3555	 *   not added separately.
3556	 */
3557
3558	/* for trans header */
3559	unit_bytes += sizeof(xlog_op_header_t);
3560	unit_bytes += sizeof(xfs_trans_header_t);
3561
3562	/* for start-rec */
3563	unit_bytes += sizeof(xlog_op_header_t);
3564
3565	/*
3566	 * for LR headers - the space for data in an iclog is the size minus
3567	 * the space used for the headers. If we use the iclog size, then we
3568	 * undercalculate the number of headers required.
3569	 *
3570	 * Furthermore - the addition of op headers for split-recs might
3571	 * increase the space required enough to require more log and op
3572	 * headers, so take that into account too.
3573	 *
3574	 * IMPORTANT: This reservation makes the assumption that if this
3575	 * transaction is the first in an iclog and hence has the LR headers
3576	 * accounted to it, then the remaining space in the iclog is
3577	 * exclusively for this transaction.  i.e. if the transaction is larger
3578	 * than the iclog, it will be the only thing in that iclog.
3579	 * Fundamentally, this means we must pass the entire log vector to
3580	 * xlog_write to guarantee this.
3581	 */
3582	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3583	num_headers = howmany(unit_bytes, iclog_space);
3584
3585	/* for split-recs - ophdrs added when data split over LRs */
3586	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3587
3588	/* add extra header reservations if we overrun */
3589	while (!num_headers ||
3590	       howmany(unit_bytes, iclog_space) > num_headers) {
3591		unit_bytes += sizeof(xlog_op_header_t);
3592		num_headers++;
3593	}
3594	unit_bytes += log->l_iclog_hsize * num_headers;
3595
3596	/* for commit-rec LR header - note: padding will subsume the ophdr */
3597	unit_bytes += log->l_iclog_hsize;
3598
3599	/* for roundoff padding for transaction data and one for commit record */
3600	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3601		/* log su roundoff */
3602		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3603	} else {
3604		/* BB roundoff */
3605		unit_bytes += 2 * BBSIZE;
3606        }
3607
3608	return unit_bytes;
3609}
3610
3611/*
3612 * Allocate and initialise a new log ticket.
3613 */
3614struct xlog_ticket *
3615xlog_ticket_alloc(
3616	struct xlog		*log,
3617	int			unit_bytes,
3618	int			cnt,
3619	char			client,
3620	bool			permanent,
3621	xfs_km_flags_t		alloc_flags)
3622{
3623	struct xlog_ticket	*tic;
3624	int			unit_res;
3625
3626	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3627	if (!tic)
3628		return NULL;
3629
3630	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3631
3632	atomic_set(&tic->t_ref, 1);
3633	tic->t_task		= current;
3634	INIT_LIST_HEAD(&tic->t_queue);
3635	tic->t_unit_res		= unit_res;
3636	tic->t_curr_res		= unit_res;
3637	tic->t_cnt		= cnt;
3638	tic->t_ocnt		= cnt;
3639	tic->t_tid		= prandom_u32();
3640	tic->t_clientid		= client;
3641	tic->t_flags		= XLOG_TIC_INITED;
3642	tic->t_trans_type	= 0;
3643	if (permanent)
3644		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3645
3646	xlog_tic_reset_res(tic);
3647
3648	return tic;
3649}
3650
3651
3652/******************************************************************************
3653 *
3654 *		Log debug routines
3655 *
3656 ******************************************************************************
3657 */
3658#if defined(DEBUG)
3659/*
3660 * Make sure that the destination ptr is within the valid data region of
3661 * one of the iclogs.  This uses backup pointers stored in a different
3662 * part of the log in case we trash the log structure.
3663 */
3664void
3665xlog_verify_dest_ptr(
3666	struct xlog	*log,
3667	char		*ptr)
3668{
3669	int i;
3670	int good_ptr = 0;
3671
3672	for (i = 0; i < log->l_iclog_bufs; i++) {
3673		if (ptr >= log->l_iclog_bak[i] &&
3674		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3675			good_ptr++;
3676	}
3677
3678	if (!good_ptr)
3679		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3680}
3681
3682/*
3683 * Check to make sure the grant write head didn't just over lap the tail.  If
3684 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3685 * the cycles differ by exactly one and check the byte count.
3686 *
3687 * This check is run unlocked, so can give false positives. Rather than assert
3688 * on failures, use a warn-once flag and a panic tag to allow the admin to
3689 * determine if they want to panic the machine when such an error occurs. For
3690 * debug kernels this will have the same effect as using an assert but, unlinke
3691 * an assert, it can be turned off at runtime.
3692 */
3693STATIC void
3694xlog_verify_grant_tail(
3695	struct xlog	*log)
3696{
3697	int		tail_cycle, tail_blocks;
3698	int		cycle, space;
3699
3700	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3701	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3702	if (tail_cycle != cycle) {
3703		if (cycle - 1 != tail_cycle &&
3704		    !(log->l_flags & XLOG_TAIL_WARN)) {
3705			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3706				"%s: cycle - 1 != tail_cycle", __func__);
3707			log->l_flags |= XLOG_TAIL_WARN;
3708		}
3709
3710		if (space > BBTOB(tail_blocks) &&
3711		    !(log->l_flags & XLOG_TAIL_WARN)) {
3712			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3713				"%s: space > BBTOB(tail_blocks)", __func__);
3714			log->l_flags |= XLOG_TAIL_WARN;
3715		}
3716	}
3717}
3718
3719/* check if it will fit */
3720STATIC void
3721xlog_verify_tail_lsn(
3722	struct xlog		*log,
3723	struct xlog_in_core	*iclog,
3724	xfs_lsn_t		tail_lsn)
3725{
3726    int blocks;
3727
3728    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3729	blocks =
3730	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3731	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3732		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3733    } else {
3734	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3735
3736	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3737		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3738
3739	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3740	if (blocks < BTOBB(iclog->ic_offset) + 1)
3741		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3742    }
3743}	/* xlog_verify_tail_lsn */
3744
3745/*
3746 * Perform a number of checks on the iclog before writing to disk.
3747 *
3748 * 1. Make sure the iclogs are still circular
3749 * 2. Make sure we have a good magic number
3750 * 3. Make sure we don't have magic numbers in the data
3751 * 4. Check fields of each log operation header for:
3752 *	A. Valid client identifier
3753 *	B. tid ptr value falls in valid ptr space (user space code)
3754 *	C. Length in log record header is correct according to the
3755 *		individual operation headers within record.
3756 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3757 *	log, check the preceding blocks of the physical log to make sure all
3758 *	the cycle numbers agree with the current cycle number.
3759 */
3760STATIC void
3761xlog_verify_iclog(
3762	struct xlog		*log,
3763	struct xlog_in_core	*iclog,
3764	int			count,
3765	bool                    syncing)
3766{
3767	xlog_op_header_t	*ophead;
3768	xlog_in_core_t		*icptr;
3769	xlog_in_core_2_t	*xhdr;
3770	xfs_caddr_t		ptr;
3771	xfs_caddr_t		base_ptr;
3772	__psint_t		field_offset;
3773	__uint8_t		clientid;
3774	int			len, i, j, k, op_len;
3775	int			idx;
3776
3777	/* check validity of iclog pointers */
3778	spin_lock(&log->l_icloglock);
3779	icptr = log->l_iclog;
3780	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3781		ASSERT(icptr);
3782
3783	if (icptr != log->l_iclog)
3784		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3785	spin_unlock(&log->l_icloglock);
3786
3787	/* check log magic numbers */
3788	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3789		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3790
3791	ptr = (xfs_caddr_t) &iclog->ic_header;
3792	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3793	     ptr += BBSIZE) {
3794		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3795			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3796				__func__);
3797	}
3798
3799	/* check fields */
3800	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3801	ptr = iclog->ic_datap;
3802	base_ptr = ptr;
3803	ophead = (xlog_op_header_t *)ptr;
3804	xhdr = iclog->ic_data;
3805	for (i = 0; i < len; i++) {
3806		ophead = (xlog_op_header_t *)ptr;
3807
3808		/* clientid is only 1 byte */
3809		field_offset = (__psint_t)
3810			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3811		if (!syncing || (field_offset & 0x1ff)) {
3812			clientid = ophead->oh_clientid;
3813		} else {
3814			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3815			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3816				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3817				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3818				clientid = xlog_get_client_id(
3819					xhdr[j].hic_xheader.xh_cycle_data[k]);
3820			} else {
3821				clientid = xlog_get_client_id(
3822					iclog->ic_header.h_cycle_data[idx]);
3823			}
3824		}
3825		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3826			xfs_warn(log->l_mp,
3827				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3828				__func__, clientid, ophead,
3829				(unsigned long)field_offset);
3830
3831		/* check length */
3832		field_offset = (__psint_t)
3833			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3834		if (!syncing || (field_offset & 0x1ff)) {
3835			op_len = be32_to_cpu(ophead->oh_len);
3836		} else {
3837			idx = BTOBBT((__psint_t)&ophead->oh_len -
3838				    (__psint_t)iclog->ic_datap);
3839			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3840				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3841				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3842				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3843			} else {
3844				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3845			}
3846		}
3847		ptr += sizeof(xlog_op_header_t) + op_len;
3848	}
3849}	/* xlog_verify_iclog */
3850#endif
3851
3852/*
3853 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3854 */
3855STATIC int
3856xlog_state_ioerror(
3857	struct xlog	*log)
3858{
3859	xlog_in_core_t	*iclog, *ic;
3860
3861	iclog = log->l_iclog;
3862	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3863		/*
3864		 * Mark all the incore logs IOERROR.
3865		 * From now on, no log flushes will result.
3866		 */
3867		ic = iclog;
3868		do {
3869			ic->ic_state = XLOG_STATE_IOERROR;
3870			ic = ic->ic_next;
3871		} while (ic != iclog);
3872		return 0;
3873	}
3874	/*
3875	 * Return non-zero, if state transition has already happened.
3876	 */
3877	return 1;
3878}
3879
3880/*
3881 * This is called from xfs_force_shutdown, when we're forcibly
3882 * shutting down the filesystem, typically because of an IO error.
3883 * Our main objectives here are to make sure that:
3884 *	a. if !logerror, flush the logs to disk. Anything modified
3885 *	   after this is ignored.
3886 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3887 *	   parties to find out, 'atomically'.
3888 *	c. those who're sleeping on log reservations, pinned objects and
3889 *	    other resources get woken up, and be told the bad news.
3890 *	d. nothing new gets queued up after (b) and (c) are done.
3891 *
3892 * Note: for the !logerror case we need to flush the regions held in memory out
3893 * to disk first. This needs to be done before the log is marked as shutdown,
3894 * otherwise the iclog writes will fail.
3895 */
3896int
3897xfs_log_force_umount(
3898	struct xfs_mount	*mp,
3899	int			logerror)
3900{
3901	struct xlog	*log;
3902	int		retval;
3903
3904	log = mp->m_log;
3905
3906	/*
3907	 * If this happens during log recovery, don't worry about
3908	 * locking; the log isn't open for business yet.
3909	 */
3910	if (!log ||
3911	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3912		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913		if (mp->m_sb_bp)
3914			XFS_BUF_DONE(mp->m_sb_bp);
3915		return 0;
3916	}
3917
3918	/*
3919	 * Somebody could've already done the hard work for us.
3920	 * No need to get locks for this.
3921	 */
3922	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3923		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3924		return 1;
3925	}
3926
3927	/*
3928	 * Flush all the completed transactions to disk before marking the log
3929	 * being shut down. We need to do it in this order to ensure that
3930	 * completed operations are safely on disk before we shut down, and that
3931	 * we don't have to issue any buffer IO after the shutdown flags are set
3932	 * to guarantee this.
3933	 */
3934	if (!logerror)
3935		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3936
3937	/*
3938	 * mark the filesystem and the as in a shutdown state and wake
3939	 * everybody up to tell them the bad news.
3940	 */
3941	spin_lock(&log->l_icloglock);
3942	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943	if (mp->m_sb_bp)
3944		XFS_BUF_DONE(mp->m_sb_bp);
3945
3946	/*
3947	 * Mark the log and the iclogs with IO error flags to prevent any
3948	 * further log IO from being issued or completed.
3949	 */
3950	log->l_flags |= XLOG_IO_ERROR;
3951	retval = xlog_state_ioerror(log);
3952	spin_unlock(&log->l_icloglock);
3953
3954	/*
3955	 * We don't want anybody waiting for log reservations after this. That
3956	 * means we have to wake up everybody queued up on reserveq as well as
3957	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3958	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959	 * action is protected by the grant locks.
3960	 */
3961	xlog_grant_head_wake_all(&log->l_reserve_head);
3962	xlog_grant_head_wake_all(&log->l_write_head);
3963
3964	/*
3965	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966	 * as if the log writes were completed. The abort handling in the log
3967	 * item committed callback functions will do this again under lock to
3968	 * avoid races.
3969	 */
3970	wake_up_all(&log->l_cilp->xc_commit_wait);
3971	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3972
3973#ifdef XFSERRORDEBUG
3974	{
3975		xlog_in_core_t	*iclog;
3976
3977		spin_lock(&log->l_icloglock);
3978		iclog = log->l_iclog;
3979		do {
3980			ASSERT(iclog->ic_callback == 0);
3981			iclog = iclog->ic_next;
3982		} while (iclog != log->l_iclog);
3983		spin_unlock(&log->l_icloglock);
3984	}
3985#endif
3986	/* return non-zero if log IOERROR transition had already happened */
3987	return retval;
3988}
3989
3990STATIC int
3991xlog_iclogs_empty(
3992	struct xlog	*log)
3993{
3994	xlog_in_core_t	*iclog;
3995
3996	iclog = log->l_iclog;
3997	do {
3998		/* endianness does not matter here, zero is zero in
3999		 * any language.
4000		 */
4001		if (iclog->ic_header.h_num_logops)
4002			return 0;
4003		iclog = iclog->ic_next;
4004	} while (iclog != log->l_iclog);
4005	return 1;
4006}
4007
4008