1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26
27struct mem_cgroup;
28struct page;
29struct mm_struct;
30struct kmem_cache;
31
32/*
33 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
34 * These two lists should keep in accord with each other.
35 */
36enum mem_cgroup_stat_index {
37	/*
38	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
39	 */
40	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
41	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
42	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
43	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
44	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
45	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
46	MEM_CGROUP_STAT_NSTATS,
47};
48
49struct mem_cgroup_reclaim_cookie {
50	struct zone *zone;
51	int priority;
52	unsigned int generation;
53};
54
55enum mem_cgroup_events_index {
56	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
57	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
58	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
59	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
60	MEM_CGROUP_EVENTS_NSTATS,
61	/* default hierarchy events */
62	MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
63	MEMCG_HIGH,
64	MEMCG_MAX,
65	MEMCG_OOM,
66	MEMCG_NR_EVENTS,
67};
68
69#ifdef CONFIG_MEMCG
70void mem_cgroup_events(struct mem_cgroup *memcg,
71		       enum mem_cgroup_events_index idx,
72		       unsigned int nr);
73
74bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
75
76int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
77			  gfp_t gfp_mask, struct mem_cgroup **memcgp);
78void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
79			      bool lrucare);
80void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
81void mem_cgroup_uncharge(struct page *page);
82void mem_cgroup_uncharge_list(struct list_head *page_list);
83
84void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
85			bool lrucare);
86
87struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
88struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
89
90bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
91			      struct mem_cgroup *root);
92bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
93
94extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
95extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
96
97extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
98extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
99
100static inline bool mm_match_cgroup(struct mm_struct *mm,
101				   struct mem_cgroup *memcg)
102{
103	struct mem_cgroup *task_memcg;
104	bool match = false;
105
106	rcu_read_lock();
107	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
108	if (task_memcg)
109		match = mem_cgroup_is_descendant(task_memcg, memcg);
110	rcu_read_unlock();
111	return match;
112}
113
114extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
115
116struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
117				   struct mem_cgroup *,
118				   struct mem_cgroup_reclaim_cookie *);
119void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
120
121/*
122 * For memory reclaim.
123 */
124int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
125bool mem_cgroup_lruvec_online(struct lruvec *lruvec);
126int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
127unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
128void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
129extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
130					struct task_struct *p);
131
132static inline void mem_cgroup_oom_enable(void)
133{
134	WARN_ON(current->memcg_oom.may_oom);
135	current->memcg_oom.may_oom = 1;
136}
137
138static inline void mem_cgroup_oom_disable(void)
139{
140	WARN_ON(!current->memcg_oom.may_oom);
141	current->memcg_oom.may_oom = 0;
142}
143
144static inline bool task_in_memcg_oom(struct task_struct *p)
145{
146	return p->memcg_oom.memcg;
147}
148
149bool mem_cgroup_oom_synchronize(bool wait);
150
151#ifdef CONFIG_MEMCG_SWAP
152extern int do_swap_account;
153#endif
154
155static inline bool mem_cgroup_disabled(void)
156{
157	if (memory_cgrp_subsys.disabled)
158		return true;
159	return false;
160}
161
162struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
163void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
164				 enum mem_cgroup_stat_index idx, int val);
165void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
166
167static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
168					    enum mem_cgroup_stat_index idx)
169{
170	mem_cgroup_update_page_stat(memcg, idx, 1);
171}
172
173static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
174					    enum mem_cgroup_stat_index idx)
175{
176	mem_cgroup_update_page_stat(memcg, idx, -1);
177}
178
179unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
180						gfp_t gfp_mask,
181						unsigned long *total_scanned);
182
183void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
184static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
185					     enum vm_event_item idx)
186{
187	if (mem_cgroup_disabled())
188		return;
189	__mem_cgroup_count_vm_event(mm, idx);
190}
191#ifdef CONFIG_TRANSPARENT_HUGEPAGE
192void mem_cgroup_split_huge_fixup(struct page *head);
193#endif
194
195#else /* CONFIG_MEMCG */
196struct mem_cgroup;
197
198static inline void mem_cgroup_events(struct mem_cgroup *memcg,
199				     enum mem_cgroup_events_index idx,
200				     unsigned int nr)
201{
202}
203
204static inline bool mem_cgroup_low(struct mem_cgroup *root,
205				  struct mem_cgroup *memcg)
206{
207	return false;
208}
209
210static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
211					gfp_t gfp_mask,
212					struct mem_cgroup **memcgp)
213{
214	*memcgp = NULL;
215	return 0;
216}
217
218static inline void mem_cgroup_commit_charge(struct page *page,
219					    struct mem_cgroup *memcg,
220					    bool lrucare)
221{
222}
223
224static inline void mem_cgroup_cancel_charge(struct page *page,
225					    struct mem_cgroup *memcg)
226{
227}
228
229static inline void mem_cgroup_uncharge(struct page *page)
230{
231}
232
233static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
234{
235}
236
237static inline void mem_cgroup_migrate(struct page *oldpage,
238				      struct page *newpage,
239				      bool lrucare)
240{
241}
242
243static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
244						    struct mem_cgroup *memcg)
245{
246	return &zone->lruvec;
247}
248
249static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
250						    struct zone *zone)
251{
252	return &zone->lruvec;
253}
254
255static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
256{
257	return NULL;
258}
259
260static inline bool mm_match_cgroup(struct mm_struct *mm,
261		struct mem_cgroup *memcg)
262{
263	return true;
264}
265
266static inline bool task_in_mem_cgroup(struct task_struct *task,
267				      const struct mem_cgroup *memcg)
268{
269	return true;
270}
271
272static inline struct cgroup_subsys_state
273		*mem_cgroup_css(struct mem_cgroup *memcg)
274{
275	return NULL;
276}
277
278static inline struct mem_cgroup *
279mem_cgroup_iter(struct mem_cgroup *root,
280		struct mem_cgroup *prev,
281		struct mem_cgroup_reclaim_cookie *reclaim)
282{
283	return NULL;
284}
285
286static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
287					 struct mem_cgroup *prev)
288{
289}
290
291static inline bool mem_cgroup_disabled(void)
292{
293	return true;
294}
295
296static inline int
297mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
298{
299	return 1;
300}
301
302static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
303{
304	return true;
305}
306
307static inline unsigned long
308mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
309{
310	return 0;
311}
312
313static inline void
314mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
315			      int increment)
316{
317}
318
319static inline void
320mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
321{
322}
323
324static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
325{
326	return NULL;
327}
328
329static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
330{
331}
332
333static inline void mem_cgroup_oom_enable(void)
334{
335}
336
337static inline void mem_cgroup_oom_disable(void)
338{
339}
340
341static inline bool task_in_memcg_oom(struct task_struct *p)
342{
343	return false;
344}
345
346static inline bool mem_cgroup_oom_synchronize(bool wait)
347{
348	return false;
349}
350
351static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
352					    enum mem_cgroup_stat_index idx)
353{
354}
355
356static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
357					    enum mem_cgroup_stat_index idx)
358{
359}
360
361static inline
362unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
363					    gfp_t gfp_mask,
364					    unsigned long *total_scanned)
365{
366	return 0;
367}
368
369static inline void mem_cgroup_split_huge_fixup(struct page *head)
370{
371}
372
373static inline
374void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
375{
376}
377#endif /* CONFIG_MEMCG */
378
379enum {
380	UNDER_LIMIT,
381	SOFT_LIMIT,
382	OVER_LIMIT,
383};
384
385struct sock;
386#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
387void sock_update_memcg(struct sock *sk);
388void sock_release_memcg(struct sock *sk);
389#else
390static inline void sock_update_memcg(struct sock *sk)
391{
392}
393static inline void sock_release_memcg(struct sock *sk)
394{
395}
396#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
397
398#ifdef CONFIG_MEMCG_KMEM
399extern struct static_key memcg_kmem_enabled_key;
400
401extern int memcg_nr_cache_ids;
402extern void memcg_get_cache_ids(void);
403extern void memcg_put_cache_ids(void);
404
405/*
406 * Helper macro to loop through all memcg-specific caches. Callers must still
407 * check if the cache is valid (it is either valid or NULL).
408 * the slab_mutex must be held when looping through those caches
409 */
410#define for_each_memcg_cache_index(_idx)	\
411	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
412
413static inline bool memcg_kmem_enabled(void)
414{
415	return static_key_false(&memcg_kmem_enabled_key);
416}
417
418bool memcg_kmem_is_active(struct mem_cgroup *memcg);
419
420/*
421 * In general, we'll do everything in our power to not incur in any overhead
422 * for non-memcg users for the kmem functions. Not even a function call, if we
423 * can avoid it.
424 *
425 * Therefore, we'll inline all those functions so that in the best case, we'll
426 * see that kmemcg is off for everybody and proceed quickly.  If it is on,
427 * we'll still do most of the flag checking inline. We check a lot of
428 * conditions, but because they are pretty simple, they are expected to be
429 * fast.
430 */
431bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
432					int order);
433void __memcg_kmem_commit_charge(struct page *page,
434				       struct mem_cgroup *memcg, int order);
435void __memcg_kmem_uncharge_pages(struct page *page, int order);
436
437int memcg_cache_id(struct mem_cgroup *memcg);
438
439struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
440void __memcg_kmem_put_cache(struct kmem_cache *cachep);
441
442struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
443
444int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
445		      unsigned long nr_pages);
446void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
447
448/**
449 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
450 * @gfp: the gfp allocation flags.
451 * @memcg: a pointer to the memcg this was charged against.
452 * @order: allocation order.
453 *
454 * returns true if the memcg where the current task belongs can hold this
455 * allocation.
456 *
457 * We return true automatically if this allocation is not to be accounted to
458 * any memcg.
459 */
460static inline bool
461memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
462{
463	if (!memcg_kmem_enabled())
464		return true;
465
466	if (gfp & __GFP_NOACCOUNT)
467		return true;
468	/*
469	 * __GFP_NOFAIL allocations will move on even if charging is not
470	 * possible. Therefore we don't even try, and have this allocation
471	 * unaccounted. We could in theory charge it forcibly, but we hope
472	 * those allocations are rare, and won't be worth the trouble.
473	 */
474	if (gfp & __GFP_NOFAIL)
475		return true;
476	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
477		return true;
478
479	/* If the test is dying, just let it go. */
480	if (unlikely(fatal_signal_pending(current)))
481		return true;
482
483	return __memcg_kmem_newpage_charge(gfp, memcg, order);
484}
485
486/**
487 * memcg_kmem_uncharge_pages: uncharge pages from memcg
488 * @page: pointer to struct page being freed
489 * @order: allocation order.
490 */
491static inline void
492memcg_kmem_uncharge_pages(struct page *page, int order)
493{
494	if (memcg_kmem_enabled())
495		__memcg_kmem_uncharge_pages(page, order);
496}
497
498/**
499 * memcg_kmem_commit_charge: embeds correct memcg in a page
500 * @page: pointer to struct page recently allocated
501 * @memcg: the memcg structure we charged against
502 * @order: allocation order.
503 *
504 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
505 * failure of the allocation. if @page is NULL, this function will revert the
506 * charges. Otherwise, it will commit @page to @memcg.
507 */
508static inline void
509memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
510{
511	if (memcg_kmem_enabled() && memcg)
512		__memcg_kmem_commit_charge(page, memcg, order);
513}
514
515/**
516 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
517 * @cachep: the original global kmem cache
518 * @gfp: allocation flags.
519 *
520 * All memory allocated from a per-memcg cache is charged to the owner memcg.
521 */
522static __always_inline struct kmem_cache *
523memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
524{
525	if (!memcg_kmem_enabled())
526		return cachep;
527	if (gfp & __GFP_NOACCOUNT)
528		return cachep;
529	if (gfp & __GFP_NOFAIL)
530		return cachep;
531	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
532		return cachep;
533	if (unlikely(fatal_signal_pending(current)))
534		return cachep;
535
536	return __memcg_kmem_get_cache(cachep);
537}
538
539static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
540{
541	if (memcg_kmem_enabled())
542		__memcg_kmem_put_cache(cachep);
543}
544
545static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
546{
547	if (!memcg_kmem_enabled())
548		return NULL;
549	return __mem_cgroup_from_kmem(ptr);
550}
551#else
552#define for_each_memcg_cache_index(_idx)	\
553	for (; NULL; )
554
555static inline bool memcg_kmem_enabled(void)
556{
557	return false;
558}
559
560static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
561{
562	return false;
563}
564
565static inline bool
566memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
567{
568	return true;
569}
570
571static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
572{
573}
574
575static inline void
576memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
577{
578}
579
580static inline int memcg_cache_id(struct mem_cgroup *memcg)
581{
582	return -1;
583}
584
585static inline void memcg_get_cache_ids(void)
586{
587}
588
589static inline void memcg_put_cache_ids(void)
590{
591}
592
593static inline struct kmem_cache *
594memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
595{
596	return cachep;
597}
598
599static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
600{
601}
602
603static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
604{
605	return NULL;
606}
607#endif /* CONFIG_MEMCG_KMEM */
608#endif /* _LINUX_MEMCONTROL_H */
609
610