1#ifndef _LINUX_PTRACE_H
2#define _LINUX_PTRACE_H
3
4#include <linux/compiler.h>		/* For unlikely.  */
5#include <linux/sched.h>		/* For struct task_struct.  */
6#include <linux/err.h>			/* for IS_ERR_VALUE */
7#include <linux/bug.h>			/* For BUG_ON.  */
8#include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
9#include <uapi/linux/ptrace.h>
10
11/*
12 * Ptrace flags
13 *
14 * The owner ship rules for task->ptrace which holds the ptrace
15 * flags is simple.  When a task is running it owns it's task->ptrace
16 * flags.  When the a task is stopped the ptracer owns task->ptrace.
17 */
18
19#define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
20#define PT_PTRACED	0x00000001
21#define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
22#define PT_PTRACE_CAP	0x00000004	/* ptracer can follow suid-exec */
23
24#define PT_OPT_FLAG_SHIFT	3
25/* PT_TRACE_* event enable flags */
26#define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
27#define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
28#define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
29#define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
30#define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
31#define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
32#define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
33#define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
34#define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
35
36#define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
37
38/* single stepping state bits (used on ARM and PA-RISC) */
39#define PT_SINGLESTEP_BIT	31
40#define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
41#define PT_BLOCKSTEP_BIT	30
42#define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
43
44extern long arch_ptrace(struct task_struct *child, long request,
45			unsigned long addr, unsigned long data);
46extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
47extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
48extern void ptrace_disable(struct task_struct *);
49extern int ptrace_request(struct task_struct *child, long request,
50			  unsigned long addr, unsigned long data);
51extern void ptrace_notify(int exit_code);
52extern void __ptrace_link(struct task_struct *child,
53			  struct task_struct *new_parent);
54extern void __ptrace_unlink(struct task_struct *child);
55extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
56#define PTRACE_MODE_READ	0x01
57#define PTRACE_MODE_ATTACH	0x02
58#define PTRACE_MODE_NOAUDIT	0x04
59#define PTRACE_MODE_FSCREDS 0x08
60#define PTRACE_MODE_REALCREDS 0x10
61
62/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
63#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
64#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
65#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
66#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
67
68/**
69 * ptrace_may_access - check whether the caller is permitted to access
70 * a target task.
71 * @task: target task
72 * @mode: selects type of access and caller credentials
73 *
74 * Returns true on success, false on denial.
75 *
76 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
77 * be set in @mode to specify whether the access was requested through
78 * a filesystem syscall (should use effective capabilities and fsuid
79 * of the caller) or through an explicit syscall such as
80 * process_vm_writev or ptrace (and should use the real credentials).
81 */
82extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
83
84static inline int ptrace_reparented(struct task_struct *child)
85{
86	return !same_thread_group(child->real_parent, child->parent);
87}
88
89static inline void ptrace_unlink(struct task_struct *child)
90{
91	if (unlikely(child->ptrace))
92		__ptrace_unlink(child);
93}
94
95int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
96			    unsigned long data);
97int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
98			    unsigned long data);
99
100/**
101 * ptrace_parent - return the task that is tracing the given task
102 * @task: task to consider
103 *
104 * Returns %NULL if no one is tracing @task, or the &struct task_struct
105 * pointer to its tracer.
106 *
107 * Must called under rcu_read_lock().  The pointer returned might be kept
108 * live only by RCU.  During exec, this may be called with task_lock() held
109 * on @task, still held from when check_unsafe_exec() was called.
110 */
111static inline struct task_struct *ptrace_parent(struct task_struct *task)
112{
113	if (unlikely(task->ptrace))
114		return rcu_dereference(task->parent);
115	return NULL;
116}
117
118/**
119 * ptrace_event_enabled - test whether a ptrace event is enabled
120 * @task: ptracee of interest
121 * @event: %PTRACE_EVENT_* to test
122 *
123 * Test whether @event is enabled for ptracee @task.
124 *
125 * Returns %true if @event is enabled, %false otherwise.
126 */
127static inline bool ptrace_event_enabled(struct task_struct *task, int event)
128{
129	return task->ptrace & PT_EVENT_FLAG(event);
130}
131
132/**
133 * ptrace_event - possibly stop for a ptrace event notification
134 * @event:	%PTRACE_EVENT_* value to report
135 * @message:	value for %PTRACE_GETEVENTMSG to return
136 *
137 * Check whether @event is enabled and, if so, report @event and @message
138 * to the ptrace parent.
139 *
140 * Called without locks.
141 */
142static inline void ptrace_event(int event, unsigned long message)
143{
144	if (unlikely(ptrace_event_enabled(current, event))) {
145		current->ptrace_message = message;
146		ptrace_notify((event << 8) | SIGTRAP);
147	} else if (event == PTRACE_EVENT_EXEC) {
148		/* legacy EXEC report via SIGTRAP */
149		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
150			send_sig(SIGTRAP, current, 0);
151	}
152}
153
154/**
155 * ptrace_event_pid - possibly stop for a ptrace event notification
156 * @event:	%PTRACE_EVENT_* value to report
157 * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
158 *
159 * Check whether @event is enabled and, if so, report @event and @pid
160 * to the ptrace parent.  @pid is reported as the pid_t seen from the
161 * the ptrace parent's pid namespace.
162 *
163 * Called without locks.
164 */
165static inline void ptrace_event_pid(int event, struct pid *pid)
166{
167	/*
168	 * FIXME: There's a potential race if a ptracer in a different pid
169	 * namespace than parent attaches between computing message below and
170	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
171	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
172	 */
173	unsigned long message = 0;
174	struct pid_namespace *ns;
175
176	rcu_read_lock();
177	ns = task_active_pid_ns(rcu_dereference(current->parent));
178	if (ns)
179		message = pid_nr_ns(pid, ns);
180	rcu_read_unlock();
181
182	ptrace_event(event, message);
183}
184
185/**
186 * ptrace_init_task - initialize ptrace state for a new child
187 * @child:		new child task
188 * @ptrace:		true if child should be ptrace'd by parent's tracer
189 *
190 * This is called immediately after adding @child to its parent's children
191 * list.  @ptrace is false in the normal case, and true to ptrace @child.
192 *
193 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
194 */
195static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
196{
197	INIT_LIST_HEAD(&child->ptrace_entry);
198	INIT_LIST_HEAD(&child->ptraced);
199	child->jobctl = 0;
200	child->ptrace = 0;
201	child->parent = child->real_parent;
202
203	if (unlikely(ptrace) && current->ptrace) {
204		child->ptrace = current->ptrace;
205		__ptrace_link(child, current->parent);
206
207		if (child->ptrace & PT_SEIZED)
208			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
209		else
210			sigaddset(&child->pending.signal, SIGSTOP);
211
212		set_tsk_thread_flag(child, TIF_SIGPENDING);
213	}
214}
215
216/**
217 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
218 * @task:	task in %EXIT_DEAD state
219 *
220 * Called with write_lock(&tasklist_lock) held.
221 */
222static inline void ptrace_release_task(struct task_struct *task)
223{
224	BUG_ON(!list_empty(&task->ptraced));
225	ptrace_unlink(task);
226	BUG_ON(!list_empty(&task->ptrace_entry));
227}
228
229#ifndef force_successful_syscall_return
230/*
231 * System call handlers that, upon successful completion, need to return a
232 * negative value should call force_successful_syscall_return() right before
233 * returning.  On architectures where the syscall convention provides for a
234 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
235 * others), this macro can be used to ensure that the error flag will not get
236 * set.  On architectures which do not support a separate error flag, the macro
237 * is a no-op and the spurious error condition needs to be filtered out by some
238 * other means (e.g., in user-level, by passing an extra argument to the
239 * syscall handler, or something along those lines).
240 */
241#define force_successful_syscall_return() do { } while (0)
242#endif
243
244#ifndef is_syscall_success
245/*
246 * On most systems we can tell if a syscall is a success based on if the retval
247 * is an error value.  On some systems like ia64 and powerpc they have different
248 * indicators of success/failure and must define their own.
249 */
250#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
251#endif
252
253/*
254 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
255 *
256 * These do-nothing inlines are used when the arch does not
257 * implement single-step.  The kerneldoc comments are here
258 * to document the interface for all arch definitions.
259 */
260
261#ifndef arch_has_single_step
262/**
263 * arch_has_single_step - does this CPU support user-mode single-step?
264 *
265 * If this is defined, then there must be function declarations or
266 * inlines for user_enable_single_step() and user_disable_single_step().
267 * arch_has_single_step() should evaluate to nonzero iff the machine
268 * supports instruction single-step for user mode.
269 * It can be a constant or it can test a CPU feature bit.
270 */
271#define arch_has_single_step()		(0)
272
273/**
274 * user_enable_single_step - single-step in user-mode task
275 * @task: either current or a task stopped in %TASK_TRACED
276 *
277 * This can only be called when arch_has_single_step() has returned nonzero.
278 * Set @task so that when it returns to user mode, it will trap after the
279 * next single instruction executes.  If arch_has_block_step() is defined,
280 * this must clear the effects of user_enable_block_step() too.
281 */
282static inline void user_enable_single_step(struct task_struct *task)
283{
284	BUG();			/* This can never be called.  */
285}
286
287/**
288 * user_disable_single_step - cancel user-mode single-step
289 * @task: either current or a task stopped in %TASK_TRACED
290 *
291 * Clear @task of the effects of user_enable_single_step() and
292 * user_enable_block_step().  This can be called whether or not either
293 * of those was ever called on @task, and even if arch_has_single_step()
294 * returned zero.
295 */
296static inline void user_disable_single_step(struct task_struct *task)
297{
298}
299#else
300extern void user_enable_single_step(struct task_struct *);
301extern void user_disable_single_step(struct task_struct *);
302#endif	/* arch_has_single_step */
303
304#ifndef arch_has_block_step
305/**
306 * arch_has_block_step - does this CPU support user-mode block-step?
307 *
308 * If this is defined, then there must be a function declaration or inline
309 * for user_enable_block_step(), and arch_has_single_step() must be defined
310 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
311 * supports step-until-branch for user mode.  It can be a constant or it
312 * can test a CPU feature bit.
313 */
314#define arch_has_block_step()		(0)
315
316/**
317 * user_enable_block_step - step until branch in user-mode task
318 * @task: either current or a task stopped in %TASK_TRACED
319 *
320 * This can only be called when arch_has_block_step() has returned nonzero,
321 * and will never be called when single-instruction stepping is being used.
322 * Set @task so that when it returns to user mode, it will trap after the
323 * next branch or trap taken.
324 */
325static inline void user_enable_block_step(struct task_struct *task)
326{
327	BUG();			/* This can never be called.  */
328}
329#else
330extern void user_enable_block_step(struct task_struct *);
331#endif	/* arch_has_block_step */
332
333#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
334extern void user_single_step_siginfo(struct task_struct *tsk,
335				struct pt_regs *regs, siginfo_t *info);
336#else
337static inline void user_single_step_siginfo(struct task_struct *tsk,
338				struct pt_regs *regs, siginfo_t *info)
339{
340	memset(info, 0, sizeof(*info));
341	info->si_signo = SIGTRAP;
342}
343#endif
344
345#ifndef arch_ptrace_stop_needed
346/**
347 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
348 * @code:	current->exit_code value ptrace will stop with
349 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
350 *
351 * This is called with the siglock held, to decide whether or not it's
352 * necessary to release the siglock and call arch_ptrace_stop() with the
353 * same @code and @info arguments.  It can be defined to a constant if
354 * arch_ptrace_stop() is never required, or always is.  On machines where
355 * this makes sense, it should be defined to a quick test to optimize out
356 * calling arch_ptrace_stop() when it would be superfluous.  For example,
357 * if the thread has not been back to user mode since the last stop, the
358 * thread state might indicate that nothing needs to be done.
359 *
360 * This is guaranteed to be invoked once before a task stops for ptrace and
361 * may include arch-specific operations necessary prior to a ptrace stop.
362 */
363#define arch_ptrace_stop_needed(code, info)	(0)
364#endif
365
366#ifndef arch_ptrace_stop
367/**
368 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
369 * @code:	current->exit_code value ptrace will stop with
370 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
371 *
372 * This is called with no locks held when arch_ptrace_stop_needed() has
373 * just returned nonzero.  It is allowed to block, e.g. for user memory
374 * access.  The arch can have machine-specific work to be done before
375 * ptrace stops.  On ia64, register backing store gets written back to user
376 * memory here.  Since this can be costly (requires dropping the siglock),
377 * we only do it when the arch requires it for this particular stop, as
378 * indicated by arch_ptrace_stop_needed().
379 */
380#define arch_ptrace_stop(code, info)		do { } while (0)
381#endif
382
383#ifndef current_pt_regs
384#define current_pt_regs() task_pt_regs(current)
385#endif
386
387#ifndef ptrace_signal_deliver
388#define ptrace_signal_deliver() ((void)0)
389#endif
390
391/*
392 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
393 * on *all* architectures; the only reason to have a per-arch definition
394 * is optimisation.
395 */
396#ifndef signal_pt_regs
397#define signal_pt_regs() task_pt_regs(current)
398#endif
399
400#ifndef current_user_stack_pointer
401#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
402#endif
403
404extern int task_current_syscall(struct task_struct *target, long *callno,
405				unsigned long args[6], unsigned int maxargs,
406				unsigned long *sp, unsigned long *pc);
407
408#endif
409