1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the TCP module.
7 *
8 * Version:	@(#)tcp.h	1.0.5	05/23/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 *		This program is free software; you can redistribute it and/or
14 *		modify it under the terms of the GNU General Public License
15 *		as published by the Free Software Foundation; either version
16 *		2 of the License, or (at your option) any later version.
17 */
18#ifndef _TCP_H
19#define _TCP_H
20
21#define FASTRETRANS_DEBUG 1
22
23#include <linux/list.h>
24#include <linux/tcp.h>
25#include <linux/bug.h>
26#include <linux/slab.h>
27#include <linux/cache.h>
28#include <linux/percpu.h>
29#include <linux/skbuff.h>
30#include <linux/crypto.h>
31#include <linux/cryptohash.h>
32#include <linux/kref.h>
33#include <linux/ktime.h>
34
35#include <net/inet_connection_sock.h>
36#include <net/inet_timewait_sock.h>
37#include <net/inet_hashtables.h>
38#include <net/checksum.h>
39#include <net/request_sock.h>
40#include <net/sock.h>
41#include <net/snmp.h>
42#include <net/ip.h>
43#include <net/tcp_states.h>
44#include <net/inet_ecn.h>
45#include <net/dst.h>
46
47#include <linux/seq_file.h>
48#include <linux/memcontrol.h>
49
50extern struct inet_hashinfo tcp_hashinfo;
51
52extern struct percpu_counter tcp_orphan_count;
53void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55#define MAX_TCP_HEADER	(128 + MAX_HEADER)
56#define MAX_TCP_OPTION_SPACE 40
57
58/*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62#define MAX_TCP_WINDOW		32767U
63
64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65#define TCP_MIN_MSS		88U
66
67/* The least MTU to use for probing */
68#define TCP_BASE_MSS		1024
69
70/* probing interval, default to 10 minutes as per RFC4821 */
71#define TCP_PROBE_INTERVAL	600
72
73/* Specify interval when tcp mtu probing will stop */
74#define TCP_PROBE_THRESHOLD	8
75
76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
77#define TCP_FASTRETRANS_THRESH 3
78
79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
80#define TCP_MAX_QUICKACKS	16U
81
82/* urg_data states */
83#define TCP_URG_VALID	0x0100
84#define TCP_URG_NOTYET	0x0200
85#define TCP_URG_READ	0x0400
86
87#define TCP_RETR1	3	/*
88				 * This is how many retries it does before it
89				 * tries to figure out if the gateway is
90				 * down. Minimal RFC value is 3; it corresponds
91				 * to ~3sec-8min depending on RTO.
92				 */
93
94#define TCP_RETR2	15	/*
95				 * This should take at least
96				 * 90 minutes to time out.
97				 * RFC1122 says that the limit is 100 sec.
98				 * 15 is ~13-30min depending on RTO.
99				 */
100
101#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
102				 * when active opening a connection.
103				 * RFC1122 says the minimum retry MUST
104				 * be at least 180secs.  Nevertheless
105				 * this value is corresponding to
106				 * 63secs of retransmission with the
107				 * current initial RTO.
108				 */
109
110#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
111				 * when passive opening a connection.
112				 * This is corresponding to 31secs of
113				 * retransmission with the current
114				 * initial RTO.
115				 */
116
117#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118				  * state, about 60 seconds	*/
119#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
120                                 /* BSD style FIN_WAIT2 deadlock breaker.
121				  * It used to be 3min, new value is 60sec,
122				  * to combine FIN-WAIT-2 timeout with
123				  * TIME-WAIT timer.
124				  */
125
126#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
127#if HZ >= 100
128#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
129#define TCP_ATO_MIN	((unsigned)(HZ/25))
130#else
131#define TCP_DELACK_MIN	4U
132#define TCP_ATO_MIN	4U
133#endif
134#define TCP_RTO_MAX	((unsigned)(120*HZ))
135#define TCP_RTO_MIN	((unsigned)(HZ/5))
136#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
137#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
138						 * used as a fallback RTO for the
139						 * initial data transmission if no
140						 * valid RTT sample has been acquired,
141						 * most likely due to retrans in 3WHS.
142						 */
143
144#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145					                 * for local resources.
146					                 */
147
148#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
149#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
150#define TCP_KEEPALIVE_INTVL	(75*HZ)
151
152#define MAX_TCP_KEEPIDLE	32767
153#define MAX_TCP_KEEPINTVL	32767
154#define MAX_TCP_KEEPCNT		127
155#define MAX_TCP_SYNCNT		127
156
157#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
158
159#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
160#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
161					 * after this time. It should be equal
162					 * (or greater than) TCP_TIMEWAIT_LEN
163					 * to provide reliability equal to one
164					 * provided by timewait state.
165					 */
166#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
167					 * timestamps. It must be less than
168					 * minimal timewait lifetime.
169					 */
170/*
171 *	TCP option
172 */
173
174#define TCPOPT_NOP		1	/* Padding */
175#define TCPOPT_EOL		0	/* End of options */
176#define TCPOPT_MSS		2	/* Segment size negotiating */
177#define TCPOPT_WINDOW		3	/* Window scaling */
178#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
179#define TCPOPT_SACK             5       /* SACK Block */
180#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
181#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
182#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
183#define TCPOPT_EXP		254	/* Experimental */
184/* Magic number to be after the option value for sharing TCP
185 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186 */
187#define TCPOPT_FASTOPEN_MAGIC	0xF989
188
189/*
190 *     TCP option lengths
191 */
192
193#define TCPOLEN_MSS            4
194#define TCPOLEN_WINDOW         3
195#define TCPOLEN_SACK_PERM      2
196#define TCPOLEN_TIMESTAMP      10
197#define TCPOLEN_MD5SIG         18
198#define TCPOLEN_FASTOPEN_BASE  2
199#define TCPOLEN_EXP_FASTOPEN_BASE  4
200
201/* But this is what stacks really send out. */
202#define TCPOLEN_TSTAMP_ALIGNED		12
203#define TCPOLEN_WSCALE_ALIGNED		4
204#define TCPOLEN_SACKPERM_ALIGNED	4
205#define TCPOLEN_SACK_BASE		2
206#define TCPOLEN_SACK_BASE_ALIGNED	4
207#define TCPOLEN_SACK_PERBLOCK		8
208#define TCPOLEN_MD5SIG_ALIGNED		20
209#define TCPOLEN_MSS_ALIGNED		4
210
211/* Flags in tp->nonagle */
212#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
213#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
214#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
215
216/* TCP thin-stream limits */
217#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
218
219/* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
220#define TCP_INIT_CWND		10
221
222/* Bit Flags for sysctl_tcp_fastopen */
223#define	TFO_CLIENT_ENABLE	1
224#define	TFO_SERVER_ENABLE	2
225#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
226
227/* Accept SYN data w/o any cookie option */
228#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
229
230/* Force enable TFO on all listeners, i.e., not requiring the
231 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
232 */
233#define	TFO_SERVER_WO_SOCKOPT1	0x400
234#define	TFO_SERVER_WO_SOCKOPT2	0x800
235
236extern struct inet_timewait_death_row tcp_death_row;
237
238/* sysctl variables for tcp */
239extern int sysctl_tcp_timestamps;
240extern int sysctl_tcp_window_scaling;
241extern int sysctl_tcp_sack;
242extern int sysctl_tcp_fin_timeout;
243extern int sysctl_tcp_keepalive_time;
244extern int sysctl_tcp_keepalive_probes;
245extern int sysctl_tcp_keepalive_intvl;
246extern int sysctl_tcp_syn_retries;
247extern int sysctl_tcp_synack_retries;
248extern int sysctl_tcp_retries1;
249extern int sysctl_tcp_retries2;
250extern int sysctl_tcp_orphan_retries;
251extern int sysctl_tcp_syncookies;
252extern int sysctl_tcp_fastopen;
253extern int sysctl_tcp_retrans_collapse;
254extern int sysctl_tcp_stdurg;
255extern int sysctl_tcp_rfc1337;
256extern int sysctl_tcp_abort_on_overflow;
257extern int sysctl_tcp_max_orphans;
258extern int sysctl_tcp_fack;
259extern int sysctl_tcp_reordering;
260extern int sysctl_tcp_max_reordering;
261extern int sysctl_tcp_dsack;
262extern long sysctl_tcp_mem[3];
263extern int sysctl_tcp_wmem[3];
264extern int sysctl_tcp_rmem[3];
265extern int sysctl_tcp_app_win;
266extern int sysctl_tcp_adv_win_scale;
267extern int sysctl_tcp_tw_reuse;
268extern int sysctl_tcp_frto;
269extern int sysctl_tcp_low_latency;
270extern int sysctl_tcp_nometrics_save;
271extern int sysctl_tcp_moderate_rcvbuf;
272extern int sysctl_tcp_tso_win_divisor;
273extern int sysctl_tcp_workaround_signed_windows;
274extern int sysctl_tcp_slow_start_after_idle;
275extern int sysctl_tcp_thin_linear_timeouts;
276extern int sysctl_tcp_thin_dupack;
277extern int sysctl_tcp_early_retrans;
278extern int sysctl_tcp_limit_output_bytes;
279extern int sysctl_tcp_challenge_ack_limit;
280extern unsigned int sysctl_tcp_notsent_lowat;
281extern int sysctl_tcp_min_tso_segs;
282extern int sysctl_tcp_autocorking;
283extern int sysctl_tcp_invalid_ratelimit;
284
285extern atomic_long_t tcp_memory_allocated;
286extern struct percpu_counter tcp_sockets_allocated;
287extern int tcp_memory_pressure;
288
289/*
290 * The next routines deal with comparing 32 bit unsigned ints
291 * and worry about wraparound (automatic with unsigned arithmetic).
292 */
293
294static inline bool before(__u32 seq1, __u32 seq2)
295{
296        return (__s32)(seq1-seq2) < 0;
297}
298#define after(seq2, seq1) 	before(seq1, seq2)
299
300/* is s2<=s1<=s3 ? */
301static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302{
303	return seq3 - seq2 >= seq1 - seq2;
304}
305
306static inline bool tcp_out_of_memory(struct sock *sk)
307{
308	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310		return true;
311	return false;
312}
313
314static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
315{
316	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
317	int orphans = percpu_counter_read_positive(ocp);
318
319	if (orphans << shift > sysctl_tcp_max_orphans) {
320		orphans = percpu_counter_sum_positive(ocp);
321		if (orphans << shift > sysctl_tcp_max_orphans)
322			return true;
323	}
324	return false;
325}
326
327bool tcp_check_oom(struct sock *sk, int shift);
328
329/* syncookies: remember time of last synqueue overflow */
330static inline void tcp_synq_overflow(struct sock *sk)
331{
332	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
333}
334
335/* syncookies: no recent synqueue overflow on this listening socket? */
336static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
337{
338	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
339	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
340}
341
342extern struct proto tcp_prot;
343
344#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
345#define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
346#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
347#define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
348#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349
350void tcp_tasklet_init(void);
351
352void tcp_v4_err(struct sk_buff *skb, u32);
353
354void tcp_shutdown(struct sock *sk, int how);
355
356void tcp_v4_early_demux(struct sk_buff *skb);
357int tcp_v4_rcv(struct sk_buff *skb);
358
359int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
360int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
362		 int flags);
363void tcp_release_cb(struct sock *sk);
364void tcp_wfree(struct sk_buff *skb);
365void tcp_write_timer_handler(struct sock *sk);
366void tcp_delack_timer_handler(struct sock *sk);
367int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
368int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
369			  const struct tcphdr *th, unsigned int len);
370void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
371			 const struct tcphdr *th, unsigned int len);
372void tcp_rcv_space_adjust(struct sock *sk);
373int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
374void tcp_twsk_destructor(struct sock *sk);
375ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
376			struct pipe_inode_info *pipe, size_t len,
377			unsigned int flags);
378
379static inline void tcp_dec_quickack_mode(struct sock *sk,
380					 const unsigned int pkts)
381{
382	struct inet_connection_sock *icsk = inet_csk(sk);
383
384	if (icsk->icsk_ack.quick) {
385		if (pkts >= icsk->icsk_ack.quick) {
386			icsk->icsk_ack.quick = 0;
387			/* Leaving quickack mode we deflate ATO. */
388			icsk->icsk_ack.ato   = TCP_ATO_MIN;
389		} else
390			icsk->icsk_ack.quick -= pkts;
391	}
392}
393
394#define	TCP_ECN_OK		1
395#define	TCP_ECN_QUEUE_CWR	2
396#define	TCP_ECN_DEMAND_CWR	4
397#define	TCP_ECN_SEEN		8
398
399enum tcp_tw_status {
400	TCP_TW_SUCCESS = 0,
401	TCP_TW_RST = 1,
402	TCP_TW_ACK = 2,
403	TCP_TW_SYN = 3
404};
405
406
407enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
408					      struct sk_buff *skb,
409					      const struct tcphdr *th);
410struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
411			   struct request_sock *req, bool fastopen);
412int tcp_child_process(struct sock *parent, struct sock *child,
413		      struct sk_buff *skb);
414void tcp_enter_loss(struct sock *sk);
415void tcp_clear_retrans(struct tcp_sock *tp);
416void tcp_update_metrics(struct sock *sk);
417void tcp_init_metrics(struct sock *sk);
418void tcp_metrics_init(void);
419bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
420			bool paws_check, bool timestamps);
421bool tcp_remember_stamp(struct sock *sk);
422bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
423void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
424void tcp_disable_fack(struct tcp_sock *tp);
425void tcp_close(struct sock *sk, long timeout);
426void tcp_init_sock(struct sock *sk);
427unsigned int tcp_poll(struct file *file, struct socket *sock,
428		      struct poll_table_struct *wait);
429int tcp_getsockopt(struct sock *sk, int level, int optname,
430		   char __user *optval, int __user *optlen);
431int tcp_setsockopt(struct sock *sk, int level, int optname,
432		   char __user *optval, unsigned int optlen);
433int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
434			  char __user *optval, int __user *optlen);
435int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
436			  char __user *optval, unsigned int optlen);
437void tcp_set_keepalive(struct sock *sk, int val);
438void tcp_syn_ack_timeout(const struct request_sock *req);
439int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
440		int flags, int *addr_len);
441void tcp_parse_options(const struct sk_buff *skb,
442		       struct tcp_options_received *opt_rx,
443		       int estab, struct tcp_fastopen_cookie *foc);
444const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
445
446/*
447 *	TCP v4 functions exported for the inet6 API
448 */
449
450void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451void tcp_v4_mtu_reduced(struct sock *sk);
452void tcp_req_err(struct sock *sk, u32 seq);
453int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454struct sock *tcp_create_openreq_child(struct sock *sk,
455				      struct request_sock *req,
456				      struct sk_buff *skb);
457void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
459				  struct request_sock *req,
460				  struct dst_entry *dst);
461int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
462int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
463int tcp_connect(struct sock *sk);
464struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
465				struct request_sock *req,
466				struct tcp_fastopen_cookie *foc);
467int tcp_disconnect(struct sock *sk, int flags);
468
469void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
470int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
471void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
472
473/* From syncookies.c */
474int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
475		      u32 cookie);
476struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
477#ifdef CONFIG_SYN_COOKIES
478
479/* Syncookies use a monotonic timer which increments every 60 seconds.
480 * This counter is used both as a hash input and partially encoded into
481 * the cookie value.  A cookie is only validated further if the delta
482 * between the current counter value and the encoded one is less than this,
483 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
484 * the counter advances immediately after a cookie is generated).
485 */
486#define MAX_SYNCOOKIE_AGE 2
487
488static inline u32 tcp_cookie_time(void)
489{
490	u64 val = get_jiffies_64();
491
492	do_div(val, 60 * HZ);
493	return val;
494}
495
496u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
497			      u16 *mssp);
498__u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
499			      __u16 *mss);
500__u32 cookie_init_timestamp(struct request_sock *req);
501bool cookie_timestamp_decode(struct tcp_options_received *opt);
502bool cookie_ecn_ok(const struct tcp_options_received *opt,
503		   const struct net *net, const struct dst_entry *dst);
504
505/* From net/ipv6/syncookies.c */
506int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
507		      u32 cookie);
508struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
509
510u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
511			      const struct tcphdr *th, u16 *mssp);
512__u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
513			      __u16 *mss);
514#endif
515/* tcp_output.c */
516
517void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
518			       int nonagle);
519bool tcp_may_send_now(struct sock *sk);
520int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
521int tcp_retransmit_skb(struct sock *, struct sk_buff *);
522void tcp_retransmit_timer(struct sock *sk);
523void tcp_xmit_retransmit_queue(struct sock *);
524void tcp_simple_retransmit(struct sock *);
525int tcp_trim_head(struct sock *, struct sk_buff *, u32);
526int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
527
528void tcp_send_probe0(struct sock *);
529void tcp_send_partial(struct sock *);
530int tcp_write_wakeup(struct sock *);
531void tcp_send_fin(struct sock *sk);
532void tcp_send_active_reset(struct sock *sk, gfp_t priority);
533int tcp_send_synack(struct sock *);
534void tcp_push_one(struct sock *, unsigned int mss_now);
535void tcp_send_ack(struct sock *sk);
536void tcp_send_delayed_ack(struct sock *sk);
537void tcp_send_loss_probe(struct sock *sk);
538bool tcp_schedule_loss_probe(struct sock *sk);
539
540/* tcp_input.c */
541void tcp_resume_early_retransmit(struct sock *sk);
542void tcp_rearm_rto(struct sock *sk);
543void tcp_reset(struct sock *sk);
544
545/* tcp_timer.c */
546void tcp_init_xmit_timers(struct sock *);
547static inline void tcp_clear_xmit_timers(struct sock *sk)
548{
549	inet_csk_clear_xmit_timers(sk);
550}
551
552unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
553unsigned int tcp_current_mss(struct sock *sk);
554
555/* Bound MSS / TSO packet size with the half of the window */
556static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
557{
558	int cutoff;
559
560	/* When peer uses tiny windows, there is no use in packetizing
561	 * to sub-MSS pieces for the sake of SWS or making sure there
562	 * are enough packets in the pipe for fast recovery.
563	 *
564	 * On the other hand, for extremely large MSS devices, handling
565	 * smaller than MSS windows in this way does make sense.
566	 */
567	if (tp->max_window >= 512)
568		cutoff = (tp->max_window >> 1);
569	else
570		cutoff = tp->max_window;
571
572	if (cutoff && pktsize > cutoff)
573		return max_t(int, cutoff, 68U - tp->tcp_header_len);
574	else
575		return pktsize;
576}
577
578/* tcp.c */
579void tcp_get_info(struct sock *, struct tcp_info *);
580
581/* Read 'sendfile()'-style from a TCP socket */
582typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
583				unsigned int, size_t);
584int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
585		  sk_read_actor_t recv_actor);
586
587void tcp_initialize_rcv_mss(struct sock *sk);
588
589int tcp_mtu_to_mss(struct sock *sk, int pmtu);
590int tcp_mss_to_mtu(struct sock *sk, int mss);
591void tcp_mtup_init(struct sock *sk);
592void tcp_init_buffer_space(struct sock *sk);
593
594static inline void tcp_bound_rto(const struct sock *sk)
595{
596	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
597		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
598}
599
600static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
601{
602	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
603}
604
605static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
606{
607	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
608			       ntohl(TCP_FLAG_ACK) |
609			       snd_wnd);
610}
611
612static inline void tcp_fast_path_on(struct tcp_sock *tp)
613{
614	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
615}
616
617static inline void tcp_fast_path_check(struct sock *sk)
618{
619	struct tcp_sock *tp = tcp_sk(sk);
620
621	if (skb_queue_empty(&tp->out_of_order_queue) &&
622	    tp->rcv_wnd &&
623	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
624	    !tp->urg_data)
625		tcp_fast_path_on(tp);
626}
627
628/* Compute the actual rto_min value */
629static inline u32 tcp_rto_min(struct sock *sk)
630{
631	const struct dst_entry *dst = __sk_dst_get(sk);
632	u32 rto_min = TCP_RTO_MIN;
633
634	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
635		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
636	return rto_min;
637}
638
639static inline u32 tcp_rto_min_us(struct sock *sk)
640{
641	return jiffies_to_usecs(tcp_rto_min(sk));
642}
643
644static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
645{
646	return dst_metric_locked(dst, RTAX_CC_ALGO);
647}
648
649/* Compute the actual receive window we are currently advertising.
650 * Rcv_nxt can be after the window if our peer push more data
651 * than the offered window.
652 */
653static inline u32 tcp_receive_window(const struct tcp_sock *tp)
654{
655	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
656
657	if (win < 0)
658		win = 0;
659	return (u32) win;
660}
661
662/* Choose a new window, without checks for shrinking, and without
663 * scaling applied to the result.  The caller does these things
664 * if necessary.  This is a "raw" window selection.
665 */
666u32 __tcp_select_window(struct sock *sk);
667
668void tcp_send_window_probe(struct sock *sk);
669
670/* TCP timestamps are only 32-bits, this causes a slight
671 * complication on 64-bit systems since we store a snapshot
672 * of jiffies in the buffer control blocks below.  We decided
673 * to use only the low 32-bits of jiffies and hide the ugly
674 * casts with the following macro.
675 */
676#define tcp_time_stamp		((__u32)(jiffies))
677
678static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
679{
680	return skb->skb_mstamp.stamp_jiffies;
681}
682
683
684#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
685
686#define TCPHDR_FIN 0x01
687#define TCPHDR_SYN 0x02
688#define TCPHDR_RST 0x04
689#define TCPHDR_PSH 0x08
690#define TCPHDR_ACK 0x10
691#define TCPHDR_URG 0x20
692#define TCPHDR_ECE 0x40
693#define TCPHDR_CWR 0x80
694
695/* This is what the send packet queuing engine uses to pass
696 * TCP per-packet control information to the transmission code.
697 * We also store the host-order sequence numbers in here too.
698 * This is 44 bytes if IPV6 is enabled.
699 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
700 */
701struct tcp_skb_cb {
702	__u32		seq;		/* Starting sequence number	*/
703	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
704	union {
705		/* Note : tcp_tw_isn is used in input path only
706		 *	  (isn chosen by tcp_timewait_state_process())
707		 *
708		 * 	  tcp_gso_segs is used in write queue only,
709		 *	  cf tcp_skb_pcount()
710		 */
711		__u32		tcp_tw_isn;
712		__u32		tcp_gso_segs;
713	};
714	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
715
716	__u8		sacked;		/* State flags for SACK/FACK.	*/
717#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
718#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
719#define TCPCB_LOST		0x04	/* SKB is lost			*/
720#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
721#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
722#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
723#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
724				TCPCB_REPAIRED)
725
726	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
727	/* 1 byte hole */
728	__u32		ack_seq;	/* Sequence number ACK'd	*/
729	union {
730		struct inet_skb_parm	h4;
731#if IS_ENABLED(CONFIG_IPV6)
732		struct inet6_skb_parm	h6;
733#endif
734	} header;	/* For incoming frames		*/
735};
736
737#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
738
739
740#if IS_ENABLED(CONFIG_IPV6)
741/* This is the variant of inet6_iif() that must be used by TCP,
742 * as TCP moves IP6CB into a different location in skb->cb[]
743 */
744static inline int tcp_v6_iif(const struct sk_buff *skb)
745{
746	return TCP_SKB_CB(skb)->header.h6.iif;
747}
748#endif
749
750/* Due to TSO, an SKB can be composed of multiple actual
751 * packets.  To keep these tracked properly, we use this.
752 */
753static inline int tcp_skb_pcount(const struct sk_buff *skb)
754{
755	return TCP_SKB_CB(skb)->tcp_gso_segs;
756}
757
758static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
759{
760	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
761}
762
763static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
764{
765	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
766}
767
768/* This is valid iff tcp_skb_pcount() > 1. */
769static inline int tcp_skb_mss(const struct sk_buff *skb)
770{
771	return skb_shinfo(skb)->gso_size;
772}
773
774/* Events passed to congestion control interface */
775enum tcp_ca_event {
776	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
777	CA_EVENT_CWND_RESTART,	/* congestion window restart */
778	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
779	CA_EVENT_LOSS,		/* loss timeout */
780	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
781	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
782	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
783	CA_EVENT_NON_DELAYED_ACK,
784};
785
786/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
787enum tcp_ca_ack_event_flags {
788	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
789	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
790	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
791};
792
793/*
794 * Interface for adding new TCP congestion control handlers
795 */
796#define TCP_CA_NAME_MAX	16
797#define TCP_CA_MAX	128
798#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
799
800#define TCP_CA_UNSPEC	0
801
802/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
803#define TCP_CONG_NON_RESTRICTED 0x1
804/* Requires ECN/ECT set on all packets */
805#define TCP_CONG_NEEDS_ECN	0x2
806
807union tcp_cc_info;
808
809struct tcp_congestion_ops {
810	struct list_head	list;
811	u32 key;
812	u32 flags;
813
814	/* initialize private data (optional) */
815	void (*init)(struct sock *sk);
816	/* cleanup private data  (optional) */
817	void (*release)(struct sock *sk);
818
819	/* return slow start threshold (required) */
820	u32 (*ssthresh)(struct sock *sk);
821	/* do new cwnd calculation (required) */
822	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
823	/* call before changing ca_state (optional) */
824	void (*set_state)(struct sock *sk, u8 new_state);
825	/* call when cwnd event occurs (optional) */
826	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
827	/* call when ack arrives (optional) */
828	void (*in_ack_event)(struct sock *sk, u32 flags);
829	/* new value of cwnd after loss (optional) */
830	u32  (*undo_cwnd)(struct sock *sk);
831	/* hook for packet ack accounting (optional) */
832	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
833	/* get info for inet_diag (optional) */
834	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
835			   union tcp_cc_info *info);
836
837	char 		name[TCP_CA_NAME_MAX];
838	struct module 	*owner;
839};
840
841int tcp_register_congestion_control(struct tcp_congestion_ops *type);
842void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
843
844void tcp_assign_congestion_control(struct sock *sk);
845void tcp_init_congestion_control(struct sock *sk);
846void tcp_cleanup_congestion_control(struct sock *sk);
847int tcp_set_default_congestion_control(const char *name);
848void tcp_get_default_congestion_control(char *name);
849void tcp_get_available_congestion_control(char *buf, size_t len);
850void tcp_get_allowed_congestion_control(char *buf, size_t len);
851int tcp_set_allowed_congestion_control(char *allowed);
852int tcp_set_congestion_control(struct sock *sk, const char *name);
853u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
854void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
855
856u32 tcp_reno_ssthresh(struct sock *sk);
857void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
858extern struct tcp_congestion_ops tcp_reno;
859
860struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
861u32 tcp_ca_get_key_by_name(const char *name);
862#ifdef CONFIG_INET
863char *tcp_ca_get_name_by_key(u32 key, char *buffer);
864#else
865static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
866{
867	return NULL;
868}
869#endif
870
871static inline bool tcp_ca_needs_ecn(const struct sock *sk)
872{
873	const struct inet_connection_sock *icsk = inet_csk(sk);
874
875	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
876}
877
878static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
879{
880	struct inet_connection_sock *icsk = inet_csk(sk);
881
882	if (icsk->icsk_ca_ops->set_state)
883		icsk->icsk_ca_ops->set_state(sk, ca_state);
884	icsk->icsk_ca_state = ca_state;
885}
886
887static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
888{
889	const struct inet_connection_sock *icsk = inet_csk(sk);
890
891	if (icsk->icsk_ca_ops->cwnd_event)
892		icsk->icsk_ca_ops->cwnd_event(sk, event);
893}
894
895/* These functions determine how the current flow behaves in respect of SACK
896 * handling. SACK is negotiated with the peer, and therefore it can vary
897 * between different flows.
898 *
899 * tcp_is_sack - SACK enabled
900 * tcp_is_reno - No SACK
901 * tcp_is_fack - FACK enabled, implies SACK enabled
902 */
903static inline int tcp_is_sack(const struct tcp_sock *tp)
904{
905	return tp->rx_opt.sack_ok;
906}
907
908static inline bool tcp_is_reno(const struct tcp_sock *tp)
909{
910	return !tcp_is_sack(tp);
911}
912
913static inline bool tcp_is_fack(const struct tcp_sock *tp)
914{
915	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
916}
917
918static inline void tcp_enable_fack(struct tcp_sock *tp)
919{
920	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
921}
922
923/* TCP early-retransmit (ER) is similar to but more conservative than
924 * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
925 */
926static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
927{
928	tp->do_early_retrans = sysctl_tcp_early_retrans &&
929		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
930		sysctl_tcp_reordering == 3;
931}
932
933static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
934{
935	tp->do_early_retrans = 0;
936}
937
938static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
939{
940	return tp->sacked_out + tp->lost_out;
941}
942
943/* This determines how many packets are "in the network" to the best
944 * of our knowledge.  In many cases it is conservative, but where
945 * detailed information is available from the receiver (via SACK
946 * blocks etc.) we can make more aggressive calculations.
947 *
948 * Use this for decisions involving congestion control, use just
949 * tp->packets_out to determine if the send queue is empty or not.
950 *
951 * Read this equation as:
952 *
953 *	"Packets sent once on transmission queue" MINUS
954 *	"Packets left network, but not honestly ACKed yet" PLUS
955 *	"Packets fast retransmitted"
956 */
957static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
958{
959	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
960}
961
962#define TCP_INFINITE_SSTHRESH	0x7fffffff
963
964static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
965{
966	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
967}
968
969static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
970{
971	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
972	       (1 << inet_csk(sk)->icsk_ca_state);
973}
974
975/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
976 * The exception is cwnd reduction phase, when cwnd is decreasing towards
977 * ssthresh.
978 */
979static inline __u32 tcp_current_ssthresh(const struct sock *sk)
980{
981	const struct tcp_sock *tp = tcp_sk(sk);
982
983	if (tcp_in_cwnd_reduction(sk))
984		return tp->snd_ssthresh;
985	else
986		return max(tp->snd_ssthresh,
987			   ((tp->snd_cwnd >> 1) +
988			    (tp->snd_cwnd >> 2)));
989}
990
991/* Use define here intentionally to get WARN_ON location shown at the caller */
992#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
993
994void tcp_enter_cwr(struct sock *sk);
995__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
996
997/* The maximum number of MSS of available cwnd for which TSO defers
998 * sending if not using sysctl_tcp_tso_win_divisor.
999 */
1000static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1001{
1002	return 3;
1003}
1004
1005/* Slow start with delack produces 3 packets of burst, so that
1006 * it is safe "de facto".  This will be the default - same as
1007 * the default reordering threshold - but if reordering increases,
1008 * we must be able to allow cwnd to burst at least this much in order
1009 * to not pull it back when holes are filled.
1010 */
1011static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1012{
1013	return tp->reordering;
1014}
1015
1016/* Returns end sequence number of the receiver's advertised window */
1017static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1018{
1019	return tp->snd_una + tp->snd_wnd;
1020}
1021
1022/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1023 * flexible approach. The RFC suggests cwnd should not be raised unless
1024 * it was fully used previously. And that's exactly what we do in
1025 * congestion avoidance mode. But in slow start we allow cwnd to grow
1026 * as long as the application has used half the cwnd.
1027 * Example :
1028 *    cwnd is 10 (IW10), but application sends 9 frames.
1029 *    We allow cwnd to reach 18 when all frames are ACKed.
1030 * This check is safe because it's as aggressive as slow start which already
1031 * risks 100% overshoot. The advantage is that we discourage application to
1032 * either send more filler packets or data to artificially blow up the cwnd
1033 * usage, and allow application-limited process to probe bw more aggressively.
1034 */
1035static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1036{
1037	const struct tcp_sock *tp = tcp_sk(sk);
1038
1039	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1040	if (tp->snd_cwnd <= tp->snd_ssthresh)
1041		return tp->snd_cwnd < 2 * tp->max_packets_out;
1042
1043	return tp->is_cwnd_limited;
1044}
1045
1046static inline void tcp_check_probe_timer(struct sock *sk)
1047{
1048	const struct tcp_sock *tp = tcp_sk(sk);
1049	const struct inet_connection_sock *icsk = inet_csk(sk);
1050
1051	if (!tp->packets_out && !icsk->icsk_pending)
1052		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1053					  icsk->icsk_rto, TCP_RTO_MAX);
1054}
1055
1056static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1057{
1058	tp->snd_wl1 = seq;
1059}
1060
1061static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1062{
1063	tp->snd_wl1 = seq;
1064}
1065
1066/*
1067 * Calculate(/check) TCP checksum
1068 */
1069static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1070				   __be32 daddr, __wsum base)
1071{
1072	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1073}
1074
1075static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1076{
1077	return __skb_checksum_complete(skb);
1078}
1079
1080static inline bool tcp_checksum_complete(struct sk_buff *skb)
1081{
1082	return !skb_csum_unnecessary(skb) &&
1083		__tcp_checksum_complete(skb);
1084}
1085
1086/* Prequeue for VJ style copy to user, combined with checksumming. */
1087
1088static inline void tcp_prequeue_init(struct tcp_sock *tp)
1089{
1090	tp->ucopy.task = NULL;
1091	tp->ucopy.len = 0;
1092	tp->ucopy.memory = 0;
1093	skb_queue_head_init(&tp->ucopy.prequeue);
1094}
1095
1096bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1097
1098#undef STATE_TRACE
1099
1100#ifdef STATE_TRACE
1101static const char *statename[]={
1102	"Unused","Established","Syn Sent","Syn Recv",
1103	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1104	"Close Wait","Last ACK","Listen","Closing"
1105};
1106#endif
1107void tcp_set_state(struct sock *sk, int state);
1108
1109void tcp_done(struct sock *sk);
1110
1111static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1112{
1113	rx_opt->dsack = 0;
1114	rx_opt->num_sacks = 0;
1115}
1116
1117u32 tcp_default_init_rwnd(u32 mss);
1118
1119/* Determine a window scaling and initial window to offer. */
1120void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1121			       __u32 *window_clamp, int wscale_ok,
1122			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1123
1124static inline int tcp_win_from_space(int space)
1125{
1126	return sysctl_tcp_adv_win_scale<=0 ?
1127		(space>>(-sysctl_tcp_adv_win_scale)) :
1128		space - (space>>sysctl_tcp_adv_win_scale);
1129}
1130
1131/* Note: caller must be prepared to deal with negative returns */
1132static inline int tcp_space(const struct sock *sk)
1133{
1134	return tcp_win_from_space(sk->sk_rcvbuf -
1135				  atomic_read(&sk->sk_rmem_alloc));
1136}
1137
1138static inline int tcp_full_space(const struct sock *sk)
1139{
1140	return tcp_win_from_space(sk->sk_rcvbuf);
1141}
1142
1143extern void tcp_openreq_init_rwin(struct request_sock *req,
1144				  struct sock *sk, struct dst_entry *dst);
1145
1146void tcp_enter_memory_pressure(struct sock *sk);
1147
1148static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1149{
1150	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1151}
1152
1153static inline int keepalive_time_when(const struct tcp_sock *tp)
1154{
1155	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1156}
1157
1158static inline int keepalive_probes(const struct tcp_sock *tp)
1159{
1160	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1161}
1162
1163static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1164{
1165	const struct inet_connection_sock *icsk = &tp->inet_conn;
1166
1167	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1168			  tcp_time_stamp - tp->rcv_tstamp);
1169}
1170
1171static inline int tcp_fin_time(const struct sock *sk)
1172{
1173	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1174	const int rto = inet_csk(sk)->icsk_rto;
1175
1176	if (fin_timeout < (rto << 2) - (rto >> 1))
1177		fin_timeout = (rto << 2) - (rto >> 1);
1178
1179	return fin_timeout;
1180}
1181
1182static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1183				  int paws_win)
1184{
1185	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1186		return true;
1187	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1188		return true;
1189	/*
1190	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1191	 * then following tcp messages have valid values. Ignore 0 value,
1192	 * or else 'negative' tsval might forbid us to accept their packets.
1193	 */
1194	if (!rx_opt->ts_recent)
1195		return true;
1196	return false;
1197}
1198
1199static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1200				   int rst)
1201{
1202	if (tcp_paws_check(rx_opt, 0))
1203		return false;
1204
1205	/* RST segments are not recommended to carry timestamp,
1206	   and, if they do, it is recommended to ignore PAWS because
1207	   "their cleanup function should take precedence over timestamps."
1208	   Certainly, it is mistake. It is necessary to understand the reasons
1209	   of this constraint to relax it: if peer reboots, clock may go
1210	   out-of-sync and half-open connections will not be reset.
1211	   Actually, the problem would be not existing if all
1212	   the implementations followed draft about maintaining clock
1213	   via reboots. Linux-2.2 DOES NOT!
1214
1215	   However, we can relax time bounds for RST segments to MSL.
1216	 */
1217	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1218		return false;
1219	return true;
1220}
1221
1222bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1223			  int mib_idx, u32 *last_oow_ack_time);
1224
1225static inline void tcp_mib_init(struct net *net)
1226{
1227	/* See RFC 2012 */
1228	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1229	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1230	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1231	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1232}
1233
1234/* from STCP */
1235static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1236{
1237	tp->lost_skb_hint = NULL;
1238}
1239
1240static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1241{
1242	tcp_clear_retrans_hints_partial(tp);
1243	tp->retransmit_skb_hint = NULL;
1244}
1245
1246/* MD5 Signature */
1247struct crypto_hash;
1248
1249union tcp_md5_addr {
1250	struct in_addr  a4;
1251#if IS_ENABLED(CONFIG_IPV6)
1252	struct in6_addr	a6;
1253#endif
1254};
1255
1256/* - key database */
1257struct tcp_md5sig_key {
1258	struct hlist_node	node;
1259	u8			keylen;
1260	u8			family; /* AF_INET or AF_INET6 */
1261	union tcp_md5_addr	addr;
1262	u8			key[TCP_MD5SIG_MAXKEYLEN];
1263	struct rcu_head		rcu;
1264};
1265
1266/* - sock block */
1267struct tcp_md5sig_info {
1268	struct hlist_head	head;
1269	struct rcu_head		rcu;
1270};
1271
1272/* - pseudo header */
1273struct tcp4_pseudohdr {
1274	__be32		saddr;
1275	__be32		daddr;
1276	__u8		pad;
1277	__u8		protocol;
1278	__be16		len;
1279};
1280
1281struct tcp6_pseudohdr {
1282	struct in6_addr	saddr;
1283	struct in6_addr daddr;
1284	__be32		len;
1285	__be32		protocol;	/* including padding */
1286};
1287
1288union tcp_md5sum_block {
1289	struct tcp4_pseudohdr ip4;
1290#if IS_ENABLED(CONFIG_IPV6)
1291	struct tcp6_pseudohdr ip6;
1292#endif
1293};
1294
1295/* - pool: digest algorithm, hash description and scratch buffer */
1296struct tcp_md5sig_pool {
1297	struct hash_desc	md5_desc;
1298	union tcp_md5sum_block	md5_blk;
1299};
1300
1301/* - functions */
1302int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1303			const struct sock *sk, const struct sk_buff *skb);
1304int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1305		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1306int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1307		   int family);
1308struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1309					 const struct sock *addr_sk);
1310
1311#ifdef CONFIG_TCP_MD5SIG
1312struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1313					 const union tcp_md5_addr *addr,
1314					 int family);
1315#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1316#else
1317static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1318					 const union tcp_md5_addr *addr,
1319					 int family)
1320{
1321	return NULL;
1322}
1323#define tcp_twsk_md5_key(twsk)	NULL
1324#endif
1325
1326bool tcp_alloc_md5sig_pool(void);
1327
1328struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1329static inline void tcp_put_md5sig_pool(void)
1330{
1331	local_bh_enable();
1332}
1333
1334int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1335int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1336			  unsigned int header_len);
1337int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1338		     const struct tcp_md5sig_key *key);
1339
1340/* From tcp_fastopen.c */
1341void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1342			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1343			    unsigned long *last_syn_loss);
1344void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1345			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1346			    u16 try_exp);
1347struct tcp_fastopen_request {
1348	/* Fast Open cookie. Size 0 means a cookie request */
1349	struct tcp_fastopen_cookie	cookie;
1350	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1351	size_t				size;
1352	int				copied;	/* queued in tcp_connect() */
1353};
1354void tcp_free_fastopen_req(struct tcp_sock *tp);
1355
1356extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1357int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1358bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1359		      struct request_sock *req,
1360		      struct tcp_fastopen_cookie *foc,
1361		      struct dst_entry *dst);
1362void tcp_fastopen_init_key_once(bool publish);
1363#define TCP_FASTOPEN_KEY_LENGTH 16
1364
1365/* Fastopen key context */
1366struct tcp_fastopen_context {
1367	struct crypto_cipher	*tfm;
1368	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1369	struct rcu_head		rcu;
1370};
1371
1372/* write queue abstraction */
1373static inline void tcp_write_queue_purge(struct sock *sk)
1374{
1375	struct sk_buff *skb;
1376
1377	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1378		sk_wmem_free_skb(sk, skb);
1379	sk_mem_reclaim(sk);
1380	tcp_clear_all_retrans_hints(tcp_sk(sk));
1381}
1382
1383static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1384{
1385	return skb_peek(&sk->sk_write_queue);
1386}
1387
1388static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1389{
1390	return skb_peek_tail(&sk->sk_write_queue);
1391}
1392
1393static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1394						   const struct sk_buff *skb)
1395{
1396	return skb_queue_next(&sk->sk_write_queue, skb);
1397}
1398
1399static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1400						   const struct sk_buff *skb)
1401{
1402	return skb_queue_prev(&sk->sk_write_queue, skb);
1403}
1404
1405#define tcp_for_write_queue(skb, sk)					\
1406	skb_queue_walk(&(sk)->sk_write_queue, skb)
1407
1408#define tcp_for_write_queue_from(skb, sk)				\
1409	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1410
1411#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1412	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1413
1414static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1415{
1416	return sk->sk_send_head;
1417}
1418
1419static inline bool tcp_skb_is_last(const struct sock *sk,
1420				   const struct sk_buff *skb)
1421{
1422	return skb_queue_is_last(&sk->sk_write_queue, skb);
1423}
1424
1425static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1426{
1427	if (tcp_skb_is_last(sk, skb))
1428		sk->sk_send_head = NULL;
1429	else
1430		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1431}
1432
1433static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1434{
1435	if (sk->sk_send_head == skb_unlinked)
1436		sk->sk_send_head = NULL;
1437}
1438
1439static inline void tcp_init_send_head(struct sock *sk)
1440{
1441	sk->sk_send_head = NULL;
1442}
1443
1444static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1445{
1446	__skb_queue_tail(&sk->sk_write_queue, skb);
1447}
1448
1449static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1450{
1451	__tcp_add_write_queue_tail(sk, skb);
1452
1453	/* Queue it, remembering where we must start sending. */
1454	if (sk->sk_send_head == NULL) {
1455		sk->sk_send_head = skb;
1456
1457		if (tcp_sk(sk)->highest_sack == NULL)
1458			tcp_sk(sk)->highest_sack = skb;
1459	}
1460}
1461
1462static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1463{
1464	__skb_queue_head(&sk->sk_write_queue, skb);
1465}
1466
1467/* Insert buff after skb on the write queue of sk.  */
1468static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1469						struct sk_buff *buff,
1470						struct sock *sk)
1471{
1472	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1473}
1474
1475/* Insert new before skb on the write queue of sk.  */
1476static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1477						  struct sk_buff *skb,
1478						  struct sock *sk)
1479{
1480	__skb_queue_before(&sk->sk_write_queue, skb, new);
1481
1482	if (sk->sk_send_head == skb)
1483		sk->sk_send_head = new;
1484}
1485
1486static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1487{
1488	__skb_unlink(skb, &sk->sk_write_queue);
1489}
1490
1491static inline bool tcp_write_queue_empty(struct sock *sk)
1492{
1493	return skb_queue_empty(&sk->sk_write_queue);
1494}
1495
1496static inline void tcp_push_pending_frames(struct sock *sk)
1497{
1498	if (tcp_send_head(sk)) {
1499		struct tcp_sock *tp = tcp_sk(sk);
1500
1501		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1502	}
1503}
1504
1505/* Start sequence of the skb just after the highest skb with SACKed
1506 * bit, valid only if sacked_out > 0 or when the caller has ensured
1507 * validity by itself.
1508 */
1509static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1510{
1511	if (!tp->sacked_out)
1512		return tp->snd_una;
1513
1514	if (tp->highest_sack == NULL)
1515		return tp->snd_nxt;
1516
1517	return TCP_SKB_CB(tp->highest_sack)->seq;
1518}
1519
1520static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1521{
1522	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1523						tcp_write_queue_next(sk, skb);
1524}
1525
1526static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1527{
1528	return tcp_sk(sk)->highest_sack;
1529}
1530
1531static inline void tcp_highest_sack_reset(struct sock *sk)
1532{
1533	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1534}
1535
1536/* Called when old skb is about to be deleted (to be combined with new skb) */
1537static inline void tcp_highest_sack_combine(struct sock *sk,
1538					    struct sk_buff *old,
1539					    struct sk_buff *new)
1540{
1541	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1542		tcp_sk(sk)->highest_sack = new;
1543}
1544
1545/* Determines whether this is a thin stream (which may suffer from
1546 * increased latency). Used to trigger latency-reducing mechanisms.
1547 */
1548static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1549{
1550	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1551}
1552
1553/* /proc */
1554enum tcp_seq_states {
1555	TCP_SEQ_STATE_LISTENING,
1556	TCP_SEQ_STATE_OPENREQ,
1557	TCP_SEQ_STATE_ESTABLISHED,
1558};
1559
1560int tcp_seq_open(struct inode *inode, struct file *file);
1561
1562struct tcp_seq_afinfo {
1563	char				*name;
1564	sa_family_t			family;
1565	const struct file_operations	*seq_fops;
1566	struct seq_operations		seq_ops;
1567};
1568
1569struct tcp_iter_state {
1570	struct seq_net_private	p;
1571	sa_family_t		family;
1572	enum tcp_seq_states	state;
1573	struct sock		*syn_wait_sk;
1574	int			bucket, offset, sbucket, num;
1575	kuid_t			uid;
1576	loff_t			last_pos;
1577};
1578
1579int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1580void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1581
1582extern struct request_sock_ops tcp_request_sock_ops;
1583extern struct request_sock_ops tcp6_request_sock_ops;
1584
1585void tcp_v4_destroy_sock(struct sock *sk);
1586
1587struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1588				netdev_features_t features);
1589struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1590int tcp_gro_complete(struct sk_buff *skb);
1591
1592void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1593
1594static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1595{
1596	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1597}
1598
1599static inline bool tcp_stream_memory_free(const struct sock *sk)
1600{
1601	const struct tcp_sock *tp = tcp_sk(sk);
1602	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1603
1604	return notsent_bytes < tcp_notsent_lowat(tp);
1605}
1606
1607#ifdef CONFIG_PROC_FS
1608int tcp4_proc_init(void);
1609void tcp4_proc_exit(void);
1610#endif
1611
1612int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1613int tcp_conn_request(struct request_sock_ops *rsk_ops,
1614		     const struct tcp_request_sock_ops *af_ops,
1615		     struct sock *sk, struct sk_buff *skb);
1616
1617/* TCP af-specific functions */
1618struct tcp_sock_af_ops {
1619#ifdef CONFIG_TCP_MD5SIG
1620	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1621						const struct sock *addr_sk);
1622	int		(*calc_md5_hash)(char *location,
1623					 const struct tcp_md5sig_key *md5,
1624					 const struct sock *sk,
1625					 const struct sk_buff *skb);
1626	int		(*md5_parse)(struct sock *sk,
1627				     char __user *optval,
1628				     int optlen);
1629#endif
1630};
1631
1632struct tcp_request_sock_ops {
1633	u16 mss_clamp;
1634#ifdef CONFIG_TCP_MD5SIG
1635	struct tcp_md5sig_key *(*req_md5_lookup)(struct sock *sk,
1636						 const struct sock *addr_sk);
1637	int		(*calc_md5_hash) (char *location,
1638					  const struct tcp_md5sig_key *md5,
1639					  const struct sock *sk,
1640					  const struct sk_buff *skb);
1641#endif
1642	void (*init_req)(struct request_sock *req, struct sock *sk,
1643			 struct sk_buff *skb);
1644#ifdef CONFIG_SYN_COOKIES
1645	__u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1646				 __u16 *mss);
1647#endif
1648	struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1649				       const struct request_sock *req,
1650				       bool *strict);
1651	__u32 (*init_seq)(const struct sk_buff *skb);
1652	int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1653			   struct flowi *fl, struct request_sock *req,
1654			   u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1655	void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1656			       const unsigned long timeout);
1657};
1658
1659#ifdef CONFIG_SYN_COOKIES
1660static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1661					 struct sock *sk, struct sk_buff *skb,
1662					 __u16 *mss)
1663{
1664	return ops->cookie_init_seq(sk, skb, mss);
1665}
1666#else
1667static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1668					 struct sock *sk, struct sk_buff *skb,
1669					 __u16 *mss)
1670{
1671	return 0;
1672}
1673#endif
1674
1675int tcpv4_offload_init(void);
1676
1677void tcp_v4_init(void);
1678void tcp_init(void);
1679
1680/*
1681 * Save and compile IPv4 options, return a pointer to it
1682 */
1683static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1684{
1685	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1686	struct ip_options_rcu *dopt = NULL;
1687
1688	if (opt->optlen) {
1689		int opt_size = sizeof(*dopt) + opt->optlen;
1690
1691		dopt = kmalloc(opt_size, GFP_ATOMIC);
1692		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1693			kfree(dopt);
1694			dopt = NULL;
1695		}
1696	}
1697	return dopt;
1698}
1699
1700/* locally generated TCP pure ACKs have skb->truesize == 2
1701 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1702 * This is much faster than dissecting the packet to find out.
1703 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1704 */
1705static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1706{
1707	return skb->truesize == 2;
1708}
1709
1710static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1711{
1712	skb->truesize = 2;
1713}
1714
1715#endif	/* _TCP_H */
1716