1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 *	    Manfred Spraul <manfred@colorfullife.com>
22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 *	Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/module.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
50#include <linux/kernel_stat.h>
51#include <linux/wait.h>
52#include <linux/kthread.h>
53#include <linux/prefetch.h>
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
56#include <linux/random.h>
57#include <linux/ftrace_event.h>
58#include <linux/suspend.h>
59
60#include "tree.h"
61#include "rcu.h"
62
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
69/* Data structures. */
70
71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95struct rcu_state sname##_state = { \
96	.level = { &sname##_state.node[0] }, \
97	.rda = &sname##_data, \
98	.call = cr, \
99	.fqs_state = RCU_GP_IDLE, \
100	.gpnum = 0UL - 300UL, \
101	.completed = 0UL - 300UL, \
102	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
104	.orphan_donetail = &sname##_state.orphan_donelist, \
105	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106	.name = RCU_STATE_NAME(sname), \
107	.abbr = sabbr, \
108}
109
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113static struct rcu_state *rcu_state_p;
114LIST_HEAD(rcu_struct_flavors);
115
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118module_param(rcu_fanout_leaf, int, 0444);
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
121	NUM_RCU_LVL_0,
122	NUM_RCU_LVL_1,
123	NUM_RCU_LVL_2,
124	NUM_RCU_LVL_3,
125	NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned.  So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier().  When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods.  This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks.  So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one.  We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
155static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158static void invoke_rcu_core(void);
159static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160
161/* rcuc/rcub kthread realtime priority */
162static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
163module_param(kthread_prio, int, 0644);
164
165/* Delay in jiffies for grace-period initialization delays, debug only. */
166#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
167static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
168module_param(gp_init_delay, int, 0644);
169#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
170static const int gp_init_delay;
171#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
172#define PER_RCU_NODE_PERIOD 10	/* Number of grace periods between delays. */
173
174/*
175 * Track the rcutorture test sequence number and the update version
176 * number within a given test.  The rcutorture_testseq is incremented
177 * on every rcutorture module load and unload, so has an odd value
178 * when a test is running.  The rcutorture_vernum is set to zero
179 * when rcutorture starts and is incremented on each rcutorture update.
180 * These variables enable correlating rcutorture output with the
181 * RCU tracing information.
182 */
183unsigned long rcutorture_testseq;
184unsigned long rcutorture_vernum;
185
186/*
187 * Compute the mask of online CPUs for the specified rcu_node structure.
188 * This will not be stable unless the rcu_node structure's ->lock is
189 * held, but the bit corresponding to the current CPU will be stable
190 * in most contexts.
191 */
192unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
193{
194	return ACCESS_ONCE(rnp->qsmaskinitnext);
195}
196
197/*
198 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
199 * permit this function to be invoked without holding the root rcu_node
200 * structure's ->lock, but of course results can be subject to change.
201 */
202static int rcu_gp_in_progress(struct rcu_state *rsp)
203{
204	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
205}
206
207/*
208 * Note a quiescent state.  Because we do not need to know
209 * how many quiescent states passed, just if there was at least
210 * one since the start of the grace period, this just sets a flag.
211 * The caller must have disabled preemption.
212 */
213void rcu_sched_qs(void)
214{
215	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
216		trace_rcu_grace_period(TPS("rcu_sched"),
217				       __this_cpu_read(rcu_sched_data.gpnum),
218				       TPS("cpuqs"));
219		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
220	}
221}
222
223void rcu_bh_qs(void)
224{
225	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
226		trace_rcu_grace_period(TPS("rcu_bh"),
227				       __this_cpu_read(rcu_bh_data.gpnum),
228				       TPS("cpuqs"));
229		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
230	}
231}
232
233static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
234
235static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
236	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
237	.dynticks = ATOMIC_INIT(1),
238#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
239	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
240	.dynticks_idle = ATOMIC_INIT(1),
241#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
242};
243
244DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
245EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
246
247/*
248 * Let the RCU core know that this CPU has gone through the scheduler,
249 * which is a quiescent state.  This is called when the need for a
250 * quiescent state is urgent, so we burn an atomic operation and full
251 * memory barriers to let the RCU core know about it, regardless of what
252 * this CPU might (or might not) do in the near future.
253 *
254 * We inform the RCU core by emulating a zero-duration dyntick-idle
255 * period, which we in turn do by incrementing the ->dynticks counter
256 * by two.
257 */
258static void rcu_momentary_dyntick_idle(void)
259{
260	unsigned long flags;
261	struct rcu_data *rdp;
262	struct rcu_dynticks *rdtp;
263	int resched_mask;
264	struct rcu_state *rsp;
265
266	local_irq_save(flags);
267
268	/*
269	 * Yes, we can lose flag-setting operations.  This is OK, because
270	 * the flag will be set again after some delay.
271	 */
272	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
273	raw_cpu_write(rcu_sched_qs_mask, 0);
274
275	/* Find the flavor that needs a quiescent state. */
276	for_each_rcu_flavor(rsp) {
277		rdp = raw_cpu_ptr(rsp->rda);
278		if (!(resched_mask & rsp->flavor_mask))
279			continue;
280		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
281		if (ACCESS_ONCE(rdp->mynode->completed) !=
282		    ACCESS_ONCE(rdp->cond_resched_completed))
283			continue;
284
285		/*
286		 * Pretend to be momentarily idle for the quiescent state.
287		 * This allows the grace-period kthread to record the
288		 * quiescent state, with no need for this CPU to do anything
289		 * further.
290		 */
291		rdtp = this_cpu_ptr(&rcu_dynticks);
292		smp_mb__before_atomic(); /* Earlier stuff before QS. */
293		atomic_add(2, &rdtp->dynticks);  /* QS. */
294		smp_mb__after_atomic(); /* Later stuff after QS. */
295		break;
296	}
297	local_irq_restore(flags);
298}
299
300/*
301 * Note a context switch.  This is a quiescent state for RCU-sched,
302 * and requires special handling for preemptible RCU.
303 * The caller must have disabled preemption.
304 */
305void rcu_note_context_switch(void)
306{
307	trace_rcu_utilization(TPS("Start context switch"));
308	rcu_sched_qs();
309	rcu_preempt_note_context_switch();
310	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
311		rcu_momentary_dyntick_idle();
312	trace_rcu_utilization(TPS("End context switch"));
313}
314EXPORT_SYMBOL_GPL(rcu_note_context_switch);
315
316/*
317 * Register a quiescent state for all RCU flavors.  If there is an
318 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
319 * dyntick-idle quiescent state visible to other CPUs (but only for those
320 * RCU flavors in desperate need of a quiescent state, which will normally
321 * be none of them).  Either way, do a lightweight quiescent state for
322 * all RCU flavors.
323 */
324void rcu_all_qs(void)
325{
326	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
327		rcu_momentary_dyntick_idle();
328	this_cpu_inc(rcu_qs_ctr);
329}
330EXPORT_SYMBOL_GPL(rcu_all_qs);
331
332static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
333static long qhimark = 10000;	/* If this many pending, ignore blimit. */
334static long qlowmark = 100;	/* Once only this many pending, use blimit. */
335
336module_param(blimit, long, 0444);
337module_param(qhimark, long, 0444);
338module_param(qlowmark, long, 0444);
339
340static ulong jiffies_till_first_fqs = ULONG_MAX;
341static ulong jiffies_till_next_fqs = ULONG_MAX;
342
343module_param(jiffies_till_first_fqs, ulong, 0644);
344module_param(jiffies_till_next_fqs, ulong, 0644);
345
346/*
347 * How long the grace period must be before we start recruiting
348 * quiescent-state help from rcu_note_context_switch().
349 */
350static ulong jiffies_till_sched_qs = HZ / 20;
351module_param(jiffies_till_sched_qs, ulong, 0644);
352
353static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
354				  struct rcu_data *rdp);
355static void force_qs_rnp(struct rcu_state *rsp,
356			 int (*f)(struct rcu_data *rsp, bool *isidle,
357				  unsigned long *maxj),
358			 bool *isidle, unsigned long *maxj);
359static void force_quiescent_state(struct rcu_state *rsp);
360static int rcu_pending(void);
361
362/*
363 * Return the number of RCU batches started thus far for debug & stats.
364 */
365unsigned long rcu_batches_started(void)
366{
367	return rcu_state_p->gpnum;
368}
369EXPORT_SYMBOL_GPL(rcu_batches_started);
370
371/*
372 * Return the number of RCU-sched batches started thus far for debug & stats.
373 */
374unsigned long rcu_batches_started_sched(void)
375{
376	return rcu_sched_state.gpnum;
377}
378EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
379
380/*
381 * Return the number of RCU BH batches started thus far for debug & stats.
382 */
383unsigned long rcu_batches_started_bh(void)
384{
385	return rcu_bh_state.gpnum;
386}
387EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
388
389/*
390 * Return the number of RCU batches completed thus far for debug & stats.
391 */
392unsigned long rcu_batches_completed(void)
393{
394	return rcu_state_p->completed;
395}
396EXPORT_SYMBOL_GPL(rcu_batches_completed);
397
398/*
399 * Return the number of RCU-sched batches completed thus far for debug & stats.
400 */
401unsigned long rcu_batches_completed_sched(void)
402{
403	return rcu_sched_state.completed;
404}
405EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
406
407/*
408 * Return the number of RCU BH batches completed thus far for debug & stats.
409 */
410unsigned long rcu_batches_completed_bh(void)
411{
412	return rcu_bh_state.completed;
413}
414EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
415
416/*
417 * Force a quiescent state.
418 */
419void rcu_force_quiescent_state(void)
420{
421	force_quiescent_state(rcu_state_p);
422}
423EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
424
425/*
426 * Force a quiescent state for RCU BH.
427 */
428void rcu_bh_force_quiescent_state(void)
429{
430	force_quiescent_state(&rcu_bh_state);
431}
432EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
433
434/*
435 * Force a quiescent state for RCU-sched.
436 */
437void rcu_sched_force_quiescent_state(void)
438{
439	force_quiescent_state(&rcu_sched_state);
440}
441EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
442
443/*
444 * Show the state of the grace-period kthreads.
445 */
446void show_rcu_gp_kthreads(void)
447{
448	struct rcu_state *rsp;
449
450	for_each_rcu_flavor(rsp) {
451		pr_info("%s: wait state: %d ->state: %#lx\n",
452			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
453		/* sched_show_task(rsp->gp_kthread); */
454	}
455}
456EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
457
458/*
459 * Record the number of times rcutorture tests have been initiated and
460 * terminated.  This information allows the debugfs tracing stats to be
461 * correlated to the rcutorture messages, even when the rcutorture module
462 * is being repeatedly loaded and unloaded.  In other words, we cannot
463 * store this state in rcutorture itself.
464 */
465void rcutorture_record_test_transition(void)
466{
467	rcutorture_testseq++;
468	rcutorture_vernum = 0;
469}
470EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
471
472/*
473 * Send along grace-period-related data for rcutorture diagnostics.
474 */
475void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
476			    unsigned long *gpnum, unsigned long *completed)
477{
478	struct rcu_state *rsp = NULL;
479
480	switch (test_type) {
481	case RCU_FLAVOR:
482		rsp = rcu_state_p;
483		break;
484	case RCU_BH_FLAVOR:
485		rsp = &rcu_bh_state;
486		break;
487	case RCU_SCHED_FLAVOR:
488		rsp = &rcu_sched_state;
489		break;
490	default:
491		break;
492	}
493	if (rsp != NULL) {
494		*flags = ACCESS_ONCE(rsp->gp_flags);
495		*gpnum = ACCESS_ONCE(rsp->gpnum);
496		*completed = ACCESS_ONCE(rsp->completed);
497		return;
498	}
499	*flags = 0;
500	*gpnum = 0;
501	*completed = 0;
502}
503EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
504
505/*
506 * Record the number of writer passes through the current rcutorture test.
507 * This is also used to correlate debugfs tracing stats with the rcutorture
508 * messages.
509 */
510void rcutorture_record_progress(unsigned long vernum)
511{
512	rcutorture_vernum++;
513}
514EXPORT_SYMBOL_GPL(rcutorture_record_progress);
515
516/*
517 * Does the CPU have callbacks ready to be invoked?
518 */
519static int
520cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
521{
522	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
523	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
524}
525
526/*
527 * Return the root node of the specified rcu_state structure.
528 */
529static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
530{
531	return &rsp->node[0];
532}
533
534/*
535 * Is there any need for future grace periods?
536 * Interrupts must be disabled.  If the caller does not hold the root
537 * rnp_node structure's ->lock, the results are advisory only.
538 */
539static int rcu_future_needs_gp(struct rcu_state *rsp)
540{
541	struct rcu_node *rnp = rcu_get_root(rsp);
542	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
543	int *fp = &rnp->need_future_gp[idx];
544
545	return ACCESS_ONCE(*fp);
546}
547
548/*
549 * Does the current CPU require a not-yet-started grace period?
550 * The caller must have disabled interrupts to prevent races with
551 * normal callback registry.
552 */
553static int
554cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
555{
556	int i;
557
558	if (rcu_gp_in_progress(rsp))
559		return 0;  /* No, a grace period is already in progress. */
560	if (rcu_future_needs_gp(rsp))
561		return 1;  /* Yes, a no-CBs CPU needs one. */
562	if (!rdp->nxttail[RCU_NEXT_TAIL])
563		return 0;  /* No, this is a no-CBs (or offline) CPU. */
564	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
565		return 1;  /* Yes, this CPU has newly registered callbacks. */
566	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
567		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
568		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
569				 rdp->nxtcompleted[i]))
570			return 1;  /* Yes, CBs for future grace period. */
571	return 0; /* No grace period needed. */
572}
573
574/*
575 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
576 *
577 * If the new value of the ->dynticks_nesting counter now is zero,
578 * we really have entered idle, and must do the appropriate accounting.
579 * The caller must have disabled interrupts.
580 */
581static void rcu_eqs_enter_common(long long oldval, bool user)
582{
583	struct rcu_state *rsp;
584	struct rcu_data *rdp;
585	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
586
587	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
588	if (!user && !is_idle_task(current)) {
589		struct task_struct *idle __maybe_unused =
590			idle_task(smp_processor_id());
591
592		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
593		ftrace_dump(DUMP_ORIG);
594		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
595			  current->pid, current->comm,
596			  idle->pid, idle->comm); /* must be idle task! */
597	}
598	for_each_rcu_flavor(rsp) {
599		rdp = this_cpu_ptr(rsp->rda);
600		do_nocb_deferred_wakeup(rdp);
601	}
602	rcu_prepare_for_idle();
603	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
604	smp_mb__before_atomic();  /* See above. */
605	atomic_inc(&rdtp->dynticks);
606	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
607	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
608	rcu_dynticks_task_enter();
609
610	/*
611	 * It is illegal to enter an extended quiescent state while
612	 * in an RCU read-side critical section.
613	 */
614	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
615			   "Illegal idle entry in RCU read-side critical section.");
616	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
617			   "Illegal idle entry in RCU-bh read-side critical section.");
618	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
619			   "Illegal idle entry in RCU-sched read-side critical section.");
620}
621
622/*
623 * Enter an RCU extended quiescent state, which can be either the
624 * idle loop or adaptive-tickless usermode execution.
625 */
626static void rcu_eqs_enter(bool user)
627{
628	long long oldval;
629	struct rcu_dynticks *rdtp;
630
631	rdtp = this_cpu_ptr(&rcu_dynticks);
632	oldval = rdtp->dynticks_nesting;
633	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
634	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
635		rdtp->dynticks_nesting = 0;
636		rcu_eqs_enter_common(oldval, user);
637	} else {
638		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
639	}
640}
641
642/**
643 * rcu_idle_enter - inform RCU that current CPU is entering idle
644 *
645 * Enter idle mode, in other words, -leave- the mode in which RCU
646 * read-side critical sections can occur.  (Though RCU read-side
647 * critical sections can occur in irq handlers in idle, a possibility
648 * handled by irq_enter() and irq_exit().)
649 *
650 * We crowbar the ->dynticks_nesting field to zero to allow for
651 * the possibility of usermode upcalls having messed up our count
652 * of interrupt nesting level during the prior busy period.
653 */
654void rcu_idle_enter(void)
655{
656	unsigned long flags;
657
658	local_irq_save(flags);
659	rcu_eqs_enter(false);
660	rcu_sysidle_enter(0);
661	local_irq_restore(flags);
662}
663EXPORT_SYMBOL_GPL(rcu_idle_enter);
664
665#ifdef CONFIG_RCU_USER_QS
666/**
667 * rcu_user_enter - inform RCU that we are resuming userspace.
668 *
669 * Enter RCU idle mode right before resuming userspace.  No use of RCU
670 * is permitted between this call and rcu_user_exit(). This way the
671 * CPU doesn't need to maintain the tick for RCU maintenance purposes
672 * when the CPU runs in userspace.
673 */
674void rcu_user_enter(void)
675{
676	rcu_eqs_enter(1);
677}
678#endif /* CONFIG_RCU_USER_QS */
679
680/**
681 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
682 *
683 * Exit from an interrupt handler, which might possibly result in entering
684 * idle mode, in other words, leaving the mode in which read-side critical
685 * sections can occur.
686 *
687 * This code assumes that the idle loop never does anything that might
688 * result in unbalanced calls to irq_enter() and irq_exit().  If your
689 * architecture violates this assumption, RCU will give you what you
690 * deserve, good and hard.  But very infrequently and irreproducibly.
691 *
692 * Use things like work queues to work around this limitation.
693 *
694 * You have been warned.
695 */
696void rcu_irq_exit(void)
697{
698	unsigned long flags;
699	long long oldval;
700	struct rcu_dynticks *rdtp;
701
702	local_irq_save(flags);
703	rdtp = this_cpu_ptr(&rcu_dynticks);
704	oldval = rdtp->dynticks_nesting;
705	rdtp->dynticks_nesting--;
706	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
707	if (rdtp->dynticks_nesting)
708		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
709	else
710		rcu_eqs_enter_common(oldval, true);
711	rcu_sysidle_enter(1);
712	local_irq_restore(flags);
713}
714
715/*
716 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
717 *
718 * If the new value of the ->dynticks_nesting counter was previously zero,
719 * we really have exited idle, and must do the appropriate accounting.
720 * The caller must have disabled interrupts.
721 */
722static void rcu_eqs_exit_common(long long oldval, int user)
723{
724	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
725
726	rcu_dynticks_task_exit();
727	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
728	atomic_inc(&rdtp->dynticks);
729	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
730	smp_mb__after_atomic();  /* See above. */
731	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
732	rcu_cleanup_after_idle();
733	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
734	if (!user && !is_idle_task(current)) {
735		struct task_struct *idle __maybe_unused =
736			idle_task(smp_processor_id());
737
738		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
739				  oldval, rdtp->dynticks_nesting);
740		ftrace_dump(DUMP_ORIG);
741		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
742			  current->pid, current->comm,
743			  idle->pid, idle->comm); /* must be idle task! */
744	}
745}
746
747/*
748 * Exit an RCU extended quiescent state, which can be either the
749 * idle loop or adaptive-tickless usermode execution.
750 */
751static void rcu_eqs_exit(bool user)
752{
753	struct rcu_dynticks *rdtp;
754	long long oldval;
755
756	rdtp = this_cpu_ptr(&rcu_dynticks);
757	oldval = rdtp->dynticks_nesting;
758	WARN_ON_ONCE(oldval < 0);
759	if (oldval & DYNTICK_TASK_NEST_MASK) {
760		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
761	} else {
762		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
763		rcu_eqs_exit_common(oldval, user);
764	}
765}
766
767/**
768 * rcu_idle_exit - inform RCU that current CPU is leaving idle
769 *
770 * Exit idle mode, in other words, -enter- the mode in which RCU
771 * read-side critical sections can occur.
772 *
773 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
774 * allow for the possibility of usermode upcalls messing up our count
775 * of interrupt nesting level during the busy period that is just
776 * now starting.
777 */
778void rcu_idle_exit(void)
779{
780	unsigned long flags;
781
782	local_irq_save(flags);
783	rcu_eqs_exit(false);
784	rcu_sysidle_exit(0);
785	local_irq_restore(flags);
786}
787EXPORT_SYMBOL_GPL(rcu_idle_exit);
788
789#ifdef CONFIG_RCU_USER_QS
790/**
791 * rcu_user_exit - inform RCU that we are exiting userspace.
792 *
793 * Exit RCU idle mode while entering the kernel because it can
794 * run a RCU read side critical section anytime.
795 */
796void rcu_user_exit(void)
797{
798	rcu_eqs_exit(1);
799}
800#endif /* CONFIG_RCU_USER_QS */
801
802/**
803 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
804 *
805 * Enter an interrupt handler, which might possibly result in exiting
806 * idle mode, in other words, entering the mode in which read-side critical
807 * sections can occur.
808 *
809 * Note that the Linux kernel is fully capable of entering an interrupt
810 * handler that it never exits, for example when doing upcalls to
811 * user mode!  This code assumes that the idle loop never does upcalls to
812 * user mode.  If your architecture does do upcalls from the idle loop (or
813 * does anything else that results in unbalanced calls to the irq_enter()
814 * and irq_exit() functions), RCU will give you what you deserve, good
815 * and hard.  But very infrequently and irreproducibly.
816 *
817 * Use things like work queues to work around this limitation.
818 *
819 * You have been warned.
820 */
821void rcu_irq_enter(void)
822{
823	unsigned long flags;
824	struct rcu_dynticks *rdtp;
825	long long oldval;
826
827	local_irq_save(flags);
828	rdtp = this_cpu_ptr(&rcu_dynticks);
829	oldval = rdtp->dynticks_nesting;
830	rdtp->dynticks_nesting++;
831	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
832	if (oldval)
833		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
834	else
835		rcu_eqs_exit_common(oldval, true);
836	rcu_sysidle_exit(1);
837	local_irq_restore(flags);
838}
839
840/**
841 * rcu_nmi_enter - inform RCU of entry to NMI context
842 *
843 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
844 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
845 * that the CPU is active.  This implementation permits nested NMIs, as
846 * long as the nesting level does not overflow an int.  (You will probably
847 * run out of stack space first.)
848 */
849void rcu_nmi_enter(void)
850{
851	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
852	int incby = 2;
853
854	/* Complain about underflow. */
855	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
856
857	/*
858	 * If idle from RCU viewpoint, atomically increment ->dynticks
859	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
860	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
861	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
862	 * to be in the outermost NMI handler that interrupted an RCU-idle
863	 * period (observation due to Andy Lutomirski).
864	 */
865	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
866		smp_mb__before_atomic();  /* Force delay from prior write. */
867		atomic_inc(&rdtp->dynticks);
868		/* atomic_inc() before later RCU read-side crit sects */
869		smp_mb__after_atomic();  /* See above. */
870		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
871		incby = 1;
872	}
873	rdtp->dynticks_nmi_nesting += incby;
874	barrier();
875}
876
877/**
878 * rcu_nmi_exit - inform RCU of exit from NMI context
879 *
880 * If we are returning from the outermost NMI handler that interrupted an
881 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
882 * to let the RCU grace-period handling know that the CPU is back to
883 * being RCU-idle.
884 */
885void rcu_nmi_exit(void)
886{
887	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
888
889	/*
890	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
891	 * (We are exiting an NMI handler, so RCU better be paying attention
892	 * to us!)
893	 */
894	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
895	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
896
897	/*
898	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
899	 * leave it in non-RCU-idle state.
900	 */
901	if (rdtp->dynticks_nmi_nesting != 1) {
902		rdtp->dynticks_nmi_nesting -= 2;
903		return;
904	}
905
906	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
907	rdtp->dynticks_nmi_nesting = 0;
908	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
909	smp_mb__before_atomic();  /* See above. */
910	atomic_inc(&rdtp->dynticks);
911	smp_mb__after_atomic();  /* Force delay to next write. */
912	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
913}
914
915/**
916 * __rcu_is_watching - are RCU read-side critical sections safe?
917 *
918 * Return true if RCU is watching the running CPU, which means that
919 * this CPU can safely enter RCU read-side critical sections.  Unlike
920 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
921 * least disabled preemption.
922 */
923bool notrace __rcu_is_watching(void)
924{
925	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
926}
927
928/**
929 * rcu_is_watching - see if RCU thinks that the current CPU is idle
930 *
931 * If the current CPU is in its idle loop and is neither in an interrupt
932 * or NMI handler, return true.
933 */
934bool notrace rcu_is_watching(void)
935{
936	bool ret;
937
938	preempt_disable();
939	ret = __rcu_is_watching();
940	preempt_enable();
941	return ret;
942}
943EXPORT_SYMBOL_GPL(rcu_is_watching);
944
945#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
946
947/*
948 * Is the current CPU online?  Disable preemption to avoid false positives
949 * that could otherwise happen due to the current CPU number being sampled,
950 * this task being preempted, its old CPU being taken offline, resuming
951 * on some other CPU, then determining that its old CPU is now offline.
952 * It is OK to use RCU on an offline processor during initial boot, hence
953 * the check for rcu_scheduler_fully_active.  Note also that it is OK
954 * for a CPU coming online to use RCU for one jiffy prior to marking itself
955 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
956 * offline to continue to use RCU for one jiffy after marking itself
957 * offline in the cpu_online_mask.  This leniency is necessary given the
958 * non-atomic nature of the online and offline processing, for example,
959 * the fact that a CPU enters the scheduler after completing the CPU_DYING
960 * notifiers.
961 *
962 * This is also why RCU internally marks CPUs online during the
963 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
964 *
965 * Disable checking if in an NMI handler because we cannot safely report
966 * errors from NMI handlers anyway.
967 */
968bool rcu_lockdep_current_cpu_online(void)
969{
970	struct rcu_data *rdp;
971	struct rcu_node *rnp;
972	bool ret;
973
974	if (in_nmi())
975		return true;
976	preempt_disable();
977	rdp = this_cpu_ptr(&rcu_sched_data);
978	rnp = rdp->mynode;
979	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
980	      !rcu_scheduler_fully_active;
981	preempt_enable();
982	return ret;
983}
984EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
985
986#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
987
988/**
989 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
990 *
991 * If the current CPU is idle or running at a first-level (not nested)
992 * interrupt from idle, return true.  The caller must have at least
993 * disabled preemption.
994 */
995static int rcu_is_cpu_rrupt_from_idle(void)
996{
997	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
998}
999
1000/*
1001 * Snapshot the specified CPU's dynticks counter so that we can later
1002 * credit them with an implicit quiescent state.  Return 1 if this CPU
1003 * is in dynticks idle mode, which is an extended quiescent state.
1004 */
1005static int dyntick_save_progress_counter(struct rcu_data *rdp,
1006					 bool *isidle, unsigned long *maxj)
1007{
1008	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1009	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1010	if ((rdp->dynticks_snap & 0x1) == 0) {
1011		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1012		return 1;
1013	} else {
1014		if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1015				 rdp->mynode->gpnum))
1016			ACCESS_ONCE(rdp->gpwrap) = true;
1017		return 0;
1018	}
1019}
1020
1021/*
1022 * Return true if the specified CPU has passed through a quiescent
1023 * state by virtue of being in or having passed through an dynticks
1024 * idle state since the last call to dyntick_save_progress_counter()
1025 * for this same CPU, or by virtue of having been offline.
1026 */
1027static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1028				    bool *isidle, unsigned long *maxj)
1029{
1030	unsigned int curr;
1031	int *rcrmp;
1032	unsigned int snap;
1033
1034	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1035	snap = (unsigned int)rdp->dynticks_snap;
1036
1037	/*
1038	 * If the CPU passed through or entered a dynticks idle phase with
1039	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1040	 * already acknowledged the request to pass through a quiescent
1041	 * state.  Either way, that CPU cannot possibly be in an RCU
1042	 * read-side critical section that started before the beginning
1043	 * of the current RCU grace period.
1044	 */
1045	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1046		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1047		rdp->dynticks_fqs++;
1048		return 1;
1049	}
1050
1051	/*
1052	 * Check for the CPU being offline, but only if the grace period
1053	 * is old enough.  We don't need to worry about the CPU changing
1054	 * state: If we see it offline even once, it has been through a
1055	 * quiescent state.
1056	 *
1057	 * The reason for insisting that the grace period be at least
1058	 * one jiffy old is that CPUs that are not quite online and that
1059	 * have just gone offline can still execute RCU read-side critical
1060	 * sections.
1061	 */
1062	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1063		return 0;  /* Grace period is not old enough. */
1064	barrier();
1065	if (cpu_is_offline(rdp->cpu)) {
1066		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1067		rdp->offline_fqs++;
1068		return 1;
1069	}
1070
1071	/*
1072	 * A CPU running for an extended time within the kernel can
1073	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1074	 * even context-switching back and forth between a pair of
1075	 * in-kernel CPU-bound tasks cannot advance grace periods.
1076	 * So if the grace period is old enough, make the CPU pay attention.
1077	 * Note that the unsynchronized assignments to the per-CPU
1078	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1079	 * bits can be lost, but they will be set again on the next
1080	 * force-quiescent-state pass.  So lost bit sets do not result
1081	 * in incorrect behavior, merely in a grace period lasting
1082	 * a few jiffies longer than it might otherwise.  Because
1083	 * there are at most four threads involved, and because the
1084	 * updates are only once every few jiffies, the probability of
1085	 * lossage (and thus of slight grace-period extension) is
1086	 * quite low.
1087	 *
1088	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1089	 * is set too high, we override with half of the RCU CPU stall
1090	 * warning delay.
1091	 */
1092	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1093	if (ULONG_CMP_GE(jiffies,
1094			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1095	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1096		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1097			ACCESS_ONCE(rdp->cond_resched_completed) =
1098				ACCESS_ONCE(rdp->mynode->completed);
1099			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1100			ACCESS_ONCE(*rcrmp) =
1101				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1102			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1103			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1104		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1105			/* Time to beat on that CPU again! */
1106			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1107			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1108		}
1109	}
1110
1111	return 0;
1112}
1113
1114static void record_gp_stall_check_time(struct rcu_state *rsp)
1115{
1116	unsigned long j = jiffies;
1117	unsigned long j1;
1118
1119	rsp->gp_start = j;
1120	smp_wmb(); /* Record start time before stall time. */
1121	j1 = rcu_jiffies_till_stall_check();
1122	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1123	rsp->jiffies_resched = j + j1 / 2;
1124	rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1125}
1126
1127/*
1128 * Complain about starvation of grace-period kthread.
1129 */
1130static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1131{
1132	unsigned long gpa;
1133	unsigned long j;
1134
1135	j = jiffies;
1136	gpa = ACCESS_ONCE(rsp->gp_activity);
1137	if (j - gpa > 2 * HZ)
1138		pr_err("%s kthread starved for %ld jiffies!\n",
1139		       rsp->name, j - gpa);
1140}
1141
1142/*
1143 * Dump stacks of all tasks running on stalled CPUs.
1144 */
1145static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1146{
1147	int cpu;
1148	unsigned long flags;
1149	struct rcu_node *rnp;
1150
1151	rcu_for_each_leaf_node(rsp, rnp) {
1152		raw_spin_lock_irqsave(&rnp->lock, flags);
1153		if (rnp->qsmask != 0) {
1154			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1155				if (rnp->qsmask & (1UL << cpu))
1156					dump_cpu_task(rnp->grplo + cpu);
1157		}
1158		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1159	}
1160}
1161
1162static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1163{
1164	int cpu;
1165	long delta;
1166	unsigned long flags;
1167	unsigned long gpa;
1168	unsigned long j;
1169	int ndetected = 0;
1170	struct rcu_node *rnp = rcu_get_root(rsp);
1171	long totqlen = 0;
1172
1173	/* Only let one CPU complain about others per time interval. */
1174
1175	raw_spin_lock_irqsave(&rnp->lock, flags);
1176	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1177	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1178		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179		return;
1180	}
1181	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1182	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183
1184	/*
1185	 * OK, time to rat on our buddy...
1186	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1187	 * RCU CPU stall warnings.
1188	 */
1189	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1190	       rsp->name);
1191	print_cpu_stall_info_begin();
1192	rcu_for_each_leaf_node(rsp, rnp) {
1193		raw_spin_lock_irqsave(&rnp->lock, flags);
1194		ndetected += rcu_print_task_stall(rnp);
1195		if (rnp->qsmask != 0) {
1196			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1197				if (rnp->qsmask & (1UL << cpu)) {
1198					print_cpu_stall_info(rsp,
1199							     rnp->grplo + cpu);
1200					ndetected++;
1201				}
1202		}
1203		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1204	}
1205
1206	print_cpu_stall_info_end();
1207	for_each_possible_cpu(cpu)
1208		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1209	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1210	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1211	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1212	if (ndetected) {
1213		rcu_dump_cpu_stacks(rsp);
1214	} else {
1215		if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1216		    ACCESS_ONCE(rsp->completed) == gpnum) {
1217			pr_err("INFO: Stall ended before state dump start\n");
1218		} else {
1219			j = jiffies;
1220			gpa = ACCESS_ONCE(rsp->gp_activity);
1221			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1222			       rsp->name, j - gpa, j, gpa,
1223			       jiffies_till_next_fqs,
1224			       rcu_get_root(rsp)->qsmask);
1225			/* In this case, the current CPU might be at fault. */
1226			sched_show_task(current);
1227		}
1228	}
1229
1230	/* Complain about tasks blocking the grace period. */
1231	rcu_print_detail_task_stall(rsp);
1232
1233	rcu_check_gp_kthread_starvation(rsp);
1234
1235	force_quiescent_state(rsp);  /* Kick them all. */
1236}
1237
1238static void print_cpu_stall(struct rcu_state *rsp)
1239{
1240	int cpu;
1241	unsigned long flags;
1242	struct rcu_node *rnp = rcu_get_root(rsp);
1243	long totqlen = 0;
1244
1245	/*
1246	 * OK, time to rat on ourselves...
1247	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1248	 * RCU CPU stall warnings.
1249	 */
1250	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1251	print_cpu_stall_info_begin();
1252	print_cpu_stall_info(rsp, smp_processor_id());
1253	print_cpu_stall_info_end();
1254	for_each_possible_cpu(cpu)
1255		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1256	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1257		jiffies - rsp->gp_start,
1258		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1259
1260	rcu_check_gp_kthread_starvation(rsp);
1261
1262	rcu_dump_cpu_stacks(rsp);
1263
1264	raw_spin_lock_irqsave(&rnp->lock, flags);
1265	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1266		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1267				     3 * rcu_jiffies_till_stall_check() + 3;
1268	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1269
1270	/*
1271	 * Attempt to revive the RCU machinery by forcing a context switch.
1272	 *
1273	 * A context switch would normally allow the RCU state machine to make
1274	 * progress and it could be we're stuck in kernel space without context
1275	 * switches for an entirely unreasonable amount of time.
1276	 */
1277	resched_cpu(smp_processor_id());
1278}
1279
1280static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1281{
1282	unsigned long completed;
1283	unsigned long gpnum;
1284	unsigned long gps;
1285	unsigned long j;
1286	unsigned long js;
1287	struct rcu_node *rnp;
1288
1289	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1290		return;
1291	j = jiffies;
1292
1293	/*
1294	 * Lots of memory barriers to reject false positives.
1295	 *
1296	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1297	 * then rsp->gp_start, and finally rsp->completed.  These values
1298	 * are updated in the opposite order with memory barriers (or
1299	 * equivalent) during grace-period initialization and cleanup.
1300	 * Now, a false positive can occur if we get an new value of
1301	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1302	 * the memory barriers, the only way that this can happen is if one
1303	 * grace period ends and another starts between these two fetches.
1304	 * Detect this by comparing rsp->completed with the previous fetch
1305	 * from rsp->gpnum.
1306	 *
1307	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1308	 * and rsp->gp_start suffice to forestall false positives.
1309	 */
1310	gpnum = ACCESS_ONCE(rsp->gpnum);
1311	smp_rmb(); /* Pick up ->gpnum first... */
1312	js = ACCESS_ONCE(rsp->jiffies_stall);
1313	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1314	gps = ACCESS_ONCE(rsp->gp_start);
1315	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1316	completed = ACCESS_ONCE(rsp->completed);
1317	if (ULONG_CMP_GE(completed, gpnum) ||
1318	    ULONG_CMP_LT(j, js) ||
1319	    ULONG_CMP_GE(gps, js))
1320		return; /* No stall or GP completed since entering function. */
1321	rnp = rdp->mynode;
1322	if (rcu_gp_in_progress(rsp) &&
1323	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1324
1325		/* We haven't checked in, so go dump stack. */
1326		print_cpu_stall(rsp);
1327
1328	} else if (rcu_gp_in_progress(rsp) &&
1329		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1330
1331		/* They had a few time units to dump stack, so complain. */
1332		print_other_cpu_stall(rsp, gpnum);
1333	}
1334}
1335
1336/**
1337 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1338 *
1339 * Set the stall-warning timeout way off into the future, thus preventing
1340 * any RCU CPU stall-warning messages from appearing in the current set of
1341 * RCU grace periods.
1342 *
1343 * The caller must disable hard irqs.
1344 */
1345void rcu_cpu_stall_reset(void)
1346{
1347	struct rcu_state *rsp;
1348
1349	for_each_rcu_flavor(rsp)
1350		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1351}
1352
1353/*
1354 * Initialize the specified rcu_data structure's default callback list
1355 * to empty.  The default callback list is the one that is not used by
1356 * no-callbacks CPUs.
1357 */
1358static void init_default_callback_list(struct rcu_data *rdp)
1359{
1360	int i;
1361
1362	rdp->nxtlist = NULL;
1363	for (i = 0; i < RCU_NEXT_SIZE; i++)
1364		rdp->nxttail[i] = &rdp->nxtlist;
1365}
1366
1367/*
1368 * Initialize the specified rcu_data structure's callback list to empty.
1369 */
1370static void init_callback_list(struct rcu_data *rdp)
1371{
1372	if (init_nocb_callback_list(rdp))
1373		return;
1374	init_default_callback_list(rdp);
1375}
1376
1377/*
1378 * Determine the value that ->completed will have at the end of the
1379 * next subsequent grace period.  This is used to tag callbacks so that
1380 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1381 * been dyntick-idle for an extended period with callbacks under the
1382 * influence of RCU_FAST_NO_HZ.
1383 *
1384 * The caller must hold rnp->lock with interrupts disabled.
1385 */
1386static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1387				       struct rcu_node *rnp)
1388{
1389	/*
1390	 * If RCU is idle, we just wait for the next grace period.
1391	 * But we can only be sure that RCU is idle if we are looking
1392	 * at the root rcu_node structure -- otherwise, a new grace
1393	 * period might have started, but just not yet gotten around
1394	 * to initializing the current non-root rcu_node structure.
1395	 */
1396	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1397		return rnp->completed + 1;
1398
1399	/*
1400	 * Otherwise, wait for a possible partial grace period and
1401	 * then the subsequent full grace period.
1402	 */
1403	return rnp->completed + 2;
1404}
1405
1406/*
1407 * Trace-event helper function for rcu_start_future_gp() and
1408 * rcu_nocb_wait_gp().
1409 */
1410static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1411				unsigned long c, const char *s)
1412{
1413	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1414				      rnp->completed, c, rnp->level,
1415				      rnp->grplo, rnp->grphi, s);
1416}
1417
1418/*
1419 * Start some future grace period, as needed to handle newly arrived
1420 * callbacks.  The required future grace periods are recorded in each
1421 * rcu_node structure's ->need_future_gp field.  Returns true if there
1422 * is reason to awaken the grace-period kthread.
1423 *
1424 * The caller must hold the specified rcu_node structure's ->lock.
1425 */
1426static bool __maybe_unused
1427rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1428		    unsigned long *c_out)
1429{
1430	unsigned long c;
1431	int i;
1432	bool ret = false;
1433	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1434
1435	/*
1436	 * Pick up grace-period number for new callbacks.  If this
1437	 * grace period is already marked as needed, return to the caller.
1438	 */
1439	c = rcu_cbs_completed(rdp->rsp, rnp);
1440	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1441	if (rnp->need_future_gp[c & 0x1]) {
1442		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1443		goto out;
1444	}
1445
1446	/*
1447	 * If either this rcu_node structure or the root rcu_node structure
1448	 * believe that a grace period is in progress, then we must wait
1449	 * for the one following, which is in "c".  Because our request
1450	 * will be noticed at the end of the current grace period, we don't
1451	 * need to explicitly start one.  We only do the lockless check
1452	 * of rnp_root's fields if the current rcu_node structure thinks
1453	 * there is no grace period in flight, and because we hold rnp->lock,
1454	 * the only possible change is when rnp_root's two fields are
1455	 * equal, in which case rnp_root->gpnum might be concurrently
1456	 * incremented.  But that is OK, as it will just result in our
1457	 * doing some extra useless work.
1458	 */
1459	if (rnp->gpnum != rnp->completed ||
1460	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1461		rnp->need_future_gp[c & 0x1]++;
1462		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1463		goto out;
1464	}
1465
1466	/*
1467	 * There might be no grace period in progress.  If we don't already
1468	 * hold it, acquire the root rcu_node structure's lock in order to
1469	 * start one (if needed).
1470	 */
1471	if (rnp != rnp_root) {
1472		raw_spin_lock(&rnp_root->lock);
1473		smp_mb__after_unlock_lock();
1474	}
1475
1476	/*
1477	 * Get a new grace-period number.  If there really is no grace
1478	 * period in progress, it will be smaller than the one we obtained
1479	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1480	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1481	 */
1482	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1483	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1484		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1485			rdp->nxtcompleted[i] = c;
1486
1487	/*
1488	 * If the needed for the required grace period is already
1489	 * recorded, trace and leave.
1490	 */
1491	if (rnp_root->need_future_gp[c & 0x1]) {
1492		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1493		goto unlock_out;
1494	}
1495
1496	/* Record the need for the future grace period. */
1497	rnp_root->need_future_gp[c & 0x1]++;
1498
1499	/* If a grace period is not already in progress, start one. */
1500	if (rnp_root->gpnum != rnp_root->completed) {
1501		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1502	} else {
1503		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1504		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1505	}
1506unlock_out:
1507	if (rnp != rnp_root)
1508		raw_spin_unlock(&rnp_root->lock);
1509out:
1510	if (c_out != NULL)
1511		*c_out = c;
1512	return ret;
1513}
1514
1515/*
1516 * Clean up any old requests for the just-ended grace period.  Also return
1517 * whether any additional grace periods have been requested.  Also invoke
1518 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1519 * waiting for this grace period to complete.
1520 */
1521static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1522{
1523	int c = rnp->completed;
1524	int needmore;
1525	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1526
1527	rcu_nocb_gp_cleanup(rsp, rnp);
1528	rnp->need_future_gp[c & 0x1] = 0;
1529	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1530	trace_rcu_future_gp(rnp, rdp, c,
1531			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1532	return needmore;
1533}
1534
1535/*
1536 * Awaken the grace-period kthread for the specified flavor of RCU.
1537 * Don't do a self-awaken, and don't bother awakening when there is
1538 * nothing for the grace-period kthread to do (as in several CPUs
1539 * raced to awaken, and we lost), and finally don't try to awaken
1540 * a kthread that has not yet been created.
1541 */
1542static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1543{
1544	if (current == rsp->gp_kthread ||
1545	    !ACCESS_ONCE(rsp->gp_flags) ||
1546	    !rsp->gp_kthread)
1547		return;
1548	wake_up(&rsp->gp_wq);
1549}
1550
1551/*
1552 * If there is room, assign a ->completed number to any callbacks on
1553 * this CPU that have not already been assigned.  Also accelerate any
1554 * callbacks that were previously assigned a ->completed number that has
1555 * since proven to be too conservative, which can happen if callbacks get
1556 * assigned a ->completed number while RCU is idle, but with reference to
1557 * a non-root rcu_node structure.  This function is idempotent, so it does
1558 * not hurt to call it repeatedly.  Returns an flag saying that we should
1559 * awaken the RCU grace-period kthread.
1560 *
1561 * The caller must hold rnp->lock with interrupts disabled.
1562 */
1563static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1564			       struct rcu_data *rdp)
1565{
1566	unsigned long c;
1567	int i;
1568	bool ret;
1569
1570	/* If the CPU has no callbacks, nothing to do. */
1571	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1572		return false;
1573
1574	/*
1575	 * Starting from the sublist containing the callbacks most
1576	 * recently assigned a ->completed number and working down, find the
1577	 * first sublist that is not assignable to an upcoming grace period.
1578	 * Such a sublist has something in it (first two tests) and has
1579	 * a ->completed number assigned that will complete sooner than
1580	 * the ->completed number for newly arrived callbacks (last test).
1581	 *
1582	 * The key point is that any later sublist can be assigned the
1583	 * same ->completed number as the newly arrived callbacks, which
1584	 * means that the callbacks in any of these later sublist can be
1585	 * grouped into a single sublist, whether or not they have already
1586	 * been assigned a ->completed number.
1587	 */
1588	c = rcu_cbs_completed(rsp, rnp);
1589	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1590		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1591		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1592			break;
1593
1594	/*
1595	 * If there are no sublist for unassigned callbacks, leave.
1596	 * At the same time, advance "i" one sublist, so that "i" will
1597	 * index into the sublist where all the remaining callbacks should
1598	 * be grouped into.
1599	 */
1600	if (++i >= RCU_NEXT_TAIL)
1601		return false;
1602
1603	/*
1604	 * Assign all subsequent callbacks' ->completed number to the next
1605	 * full grace period and group them all in the sublist initially
1606	 * indexed by "i".
1607	 */
1608	for (; i <= RCU_NEXT_TAIL; i++) {
1609		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1610		rdp->nxtcompleted[i] = c;
1611	}
1612	/* Record any needed additional grace periods. */
1613	ret = rcu_start_future_gp(rnp, rdp, NULL);
1614
1615	/* Trace depending on how much we were able to accelerate. */
1616	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1617		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1618	else
1619		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1620	return ret;
1621}
1622
1623/*
1624 * Move any callbacks whose grace period has completed to the
1625 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1626 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1627 * sublist.  This function is idempotent, so it does not hurt to
1628 * invoke it repeatedly.  As long as it is not invoked -too- often...
1629 * Returns true if the RCU grace-period kthread needs to be awakened.
1630 *
1631 * The caller must hold rnp->lock with interrupts disabled.
1632 */
1633static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1634			    struct rcu_data *rdp)
1635{
1636	int i, j;
1637
1638	/* If the CPU has no callbacks, nothing to do. */
1639	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1640		return false;
1641
1642	/*
1643	 * Find all callbacks whose ->completed numbers indicate that they
1644	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1645	 */
1646	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1647		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1648			break;
1649		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1650	}
1651	/* Clean up any sublist tail pointers that were misordered above. */
1652	for (j = RCU_WAIT_TAIL; j < i; j++)
1653		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1654
1655	/* Copy down callbacks to fill in empty sublists. */
1656	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1657		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1658			break;
1659		rdp->nxttail[j] = rdp->nxttail[i];
1660		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1661	}
1662
1663	/* Classify any remaining callbacks. */
1664	return rcu_accelerate_cbs(rsp, rnp, rdp);
1665}
1666
1667/*
1668 * Update CPU-local rcu_data state to record the beginnings and ends of
1669 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1670 * structure corresponding to the current CPU, and must have irqs disabled.
1671 * Returns true if the grace-period kthread needs to be awakened.
1672 */
1673static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1674			      struct rcu_data *rdp)
1675{
1676	bool ret;
1677
1678	/* Handle the ends of any preceding grace periods first. */
1679	if (rdp->completed == rnp->completed &&
1680	    !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1681
1682		/* No grace period end, so just accelerate recent callbacks. */
1683		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1684
1685	} else {
1686
1687		/* Advance callbacks. */
1688		ret = rcu_advance_cbs(rsp, rnp, rdp);
1689
1690		/* Remember that we saw this grace-period completion. */
1691		rdp->completed = rnp->completed;
1692		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1693	}
1694
1695	if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1696		/*
1697		 * If the current grace period is waiting for this CPU,
1698		 * set up to detect a quiescent state, otherwise don't
1699		 * go looking for one.
1700		 */
1701		rdp->gpnum = rnp->gpnum;
1702		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1703		rdp->passed_quiesce = 0;
1704		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1705		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1706		zero_cpu_stall_ticks(rdp);
1707		ACCESS_ONCE(rdp->gpwrap) = false;
1708	}
1709	return ret;
1710}
1711
1712static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1713{
1714	unsigned long flags;
1715	bool needwake;
1716	struct rcu_node *rnp;
1717
1718	local_irq_save(flags);
1719	rnp = rdp->mynode;
1720	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1721	     rdp->completed == ACCESS_ONCE(rnp->completed) &&
1722	     !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1723	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1724		local_irq_restore(flags);
1725		return;
1726	}
1727	smp_mb__after_unlock_lock();
1728	needwake = __note_gp_changes(rsp, rnp, rdp);
1729	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1730	if (needwake)
1731		rcu_gp_kthread_wake(rsp);
1732}
1733
1734/*
1735 * Initialize a new grace period.  Return 0 if no grace period required.
1736 */
1737static int rcu_gp_init(struct rcu_state *rsp)
1738{
1739	unsigned long oldmask;
1740	struct rcu_data *rdp;
1741	struct rcu_node *rnp = rcu_get_root(rsp);
1742
1743	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1744	raw_spin_lock_irq(&rnp->lock);
1745	smp_mb__after_unlock_lock();
1746	if (!ACCESS_ONCE(rsp->gp_flags)) {
1747		/* Spurious wakeup, tell caller to go back to sleep.  */
1748		raw_spin_unlock_irq(&rnp->lock);
1749		return 0;
1750	}
1751	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1752
1753	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1754		/*
1755		 * Grace period already in progress, don't start another.
1756		 * Not supposed to be able to happen.
1757		 */
1758		raw_spin_unlock_irq(&rnp->lock);
1759		return 0;
1760	}
1761
1762	/* Advance to a new grace period and initialize state. */
1763	record_gp_stall_check_time(rsp);
1764	/* Record GP times before starting GP, hence smp_store_release(). */
1765	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1766	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1767	raw_spin_unlock_irq(&rnp->lock);
1768
1769	/*
1770	 * Apply per-leaf buffered online and offline operations to the
1771	 * rcu_node tree.  Note that this new grace period need not wait
1772	 * for subsequent online CPUs, and that quiescent-state forcing
1773	 * will handle subsequent offline CPUs.
1774	 */
1775	rcu_for_each_leaf_node(rsp, rnp) {
1776		raw_spin_lock_irq(&rnp->lock);
1777		smp_mb__after_unlock_lock();
1778		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1779		    !rnp->wait_blkd_tasks) {
1780			/* Nothing to do on this leaf rcu_node structure. */
1781			raw_spin_unlock_irq(&rnp->lock);
1782			continue;
1783		}
1784
1785		/* Record old state, apply changes to ->qsmaskinit field. */
1786		oldmask = rnp->qsmaskinit;
1787		rnp->qsmaskinit = rnp->qsmaskinitnext;
1788
1789		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1790		if (!oldmask != !rnp->qsmaskinit) {
1791			if (!oldmask) /* First online CPU for this rcu_node. */
1792				rcu_init_new_rnp(rnp);
1793			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1794				rnp->wait_blkd_tasks = true;
1795			else /* Last offline CPU and can propagate. */
1796				rcu_cleanup_dead_rnp(rnp);
1797		}
1798
1799		/*
1800		 * If all waited-on tasks from prior grace period are
1801		 * done, and if all this rcu_node structure's CPUs are
1802		 * still offline, propagate up the rcu_node tree and
1803		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1804		 * rcu_node structure's CPUs has since come back online,
1805		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1806		 * checks for this, so just call it unconditionally).
1807		 */
1808		if (rnp->wait_blkd_tasks &&
1809		    (!rcu_preempt_has_tasks(rnp) ||
1810		     rnp->qsmaskinit)) {
1811			rnp->wait_blkd_tasks = false;
1812			rcu_cleanup_dead_rnp(rnp);
1813		}
1814
1815		raw_spin_unlock_irq(&rnp->lock);
1816	}
1817
1818	/*
1819	 * Set the quiescent-state-needed bits in all the rcu_node
1820	 * structures for all currently online CPUs in breadth-first order,
1821	 * starting from the root rcu_node structure, relying on the layout
1822	 * of the tree within the rsp->node[] array.  Note that other CPUs
1823	 * will access only the leaves of the hierarchy, thus seeing that no
1824	 * grace period is in progress, at least until the corresponding
1825	 * leaf node has been initialized.  In addition, we have excluded
1826	 * CPU-hotplug operations.
1827	 *
1828	 * The grace period cannot complete until the initialization
1829	 * process finishes, because this kthread handles both.
1830	 */
1831	rcu_for_each_node_breadth_first(rsp, rnp) {
1832		raw_spin_lock_irq(&rnp->lock);
1833		smp_mb__after_unlock_lock();
1834		rdp = this_cpu_ptr(rsp->rda);
1835		rcu_preempt_check_blocked_tasks(rnp);
1836		rnp->qsmask = rnp->qsmaskinit;
1837		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1838		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1839			ACCESS_ONCE(rnp->completed) = rsp->completed;
1840		if (rnp == rdp->mynode)
1841			(void)__note_gp_changes(rsp, rnp, rdp);
1842		rcu_preempt_boost_start_gp(rnp);
1843		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1844					    rnp->level, rnp->grplo,
1845					    rnp->grphi, rnp->qsmask);
1846		raw_spin_unlock_irq(&rnp->lock);
1847		cond_resched_rcu_qs();
1848		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1849		if (gp_init_delay > 0 &&
1850		    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
1851			schedule_timeout_uninterruptible(gp_init_delay);
1852	}
1853
1854	return 1;
1855}
1856
1857/*
1858 * Do one round of quiescent-state forcing.
1859 */
1860static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1861{
1862	int fqs_state = fqs_state_in;
1863	bool isidle = false;
1864	unsigned long maxj;
1865	struct rcu_node *rnp = rcu_get_root(rsp);
1866
1867	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1868	rsp->n_force_qs++;
1869	if (fqs_state == RCU_SAVE_DYNTICK) {
1870		/* Collect dyntick-idle snapshots. */
1871		if (is_sysidle_rcu_state(rsp)) {
1872			isidle = true;
1873			maxj = jiffies - ULONG_MAX / 4;
1874		}
1875		force_qs_rnp(rsp, dyntick_save_progress_counter,
1876			     &isidle, &maxj);
1877		rcu_sysidle_report_gp(rsp, isidle, maxj);
1878		fqs_state = RCU_FORCE_QS;
1879	} else {
1880		/* Handle dyntick-idle and offline CPUs. */
1881		isidle = true;
1882		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1883	}
1884	/* Clear flag to prevent immediate re-entry. */
1885	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1886		raw_spin_lock_irq(&rnp->lock);
1887		smp_mb__after_unlock_lock();
1888		ACCESS_ONCE(rsp->gp_flags) =
1889			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1890		raw_spin_unlock_irq(&rnp->lock);
1891	}
1892	return fqs_state;
1893}
1894
1895/*
1896 * Clean up after the old grace period.
1897 */
1898static void rcu_gp_cleanup(struct rcu_state *rsp)
1899{
1900	unsigned long gp_duration;
1901	bool needgp = false;
1902	int nocb = 0;
1903	struct rcu_data *rdp;
1904	struct rcu_node *rnp = rcu_get_root(rsp);
1905
1906	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1907	raw_spin_lock_irq(&rnp->lock);
1908	smp_mb__after_unlock_lock();
1909	gp_duration = jiffies - rsp->gp_start;
1910	if (gp_duration > rsp->gp_max)
1911		rsp->gp_max = gp_duration;
1912
1913	/*
1914	 * We know the grace period is complete, but to everyone else
1915	 * it appears to still be ongoing.  But it is also the case
1916	 * that to everyone else it looks like there is nothing that
1917	 * they can do to advance the grace period.  It is therefore
1918	 * safe for us to drop the lock in order to mark the grace
1919	 * period as completed in all of the rcu_node structures.
1920	 */
1921	raw_spin_unlock_irq(&rnp->lock);
1922
1923	/*
1924	 * Propagate new ->completed value to rcu_node structures so
1925	 * that other CPUs don't have to wait until the start of the next
1926	 * grace period to process their callbacks.  This also avoids
1927	 * some nasty RCU grace-period initialization races by forcing
1928	 * the end of the current grace period to be completely recorded in
1929	 * all of the rcu_node structures before the beginning of the next
1930	 * grace period is recorded in any of the rcu_node structures.
1931	 */
1932	rcu_for_each_node_breadth_first(rsp, rnp) {
1933		raw_spin_lock_irq(&rnp->lock);
1934		smp_mb__after_unlock_lock();
1935		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1936		WARN_ON_ONCE(rnp->qsmask);
1937		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1938		rdp = this_cpu_ptr(rsp->rda);
1939		if (rnp == rdp->mynode)
1940			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1941		/* smp_mb() provided by prior unlock-lock pair. */
1942		nocb += rcu_future_gp_cleanup(rsp, rnp);
1943		raw_spin_unlock_irq(&rnp->lock);
1944		cond_resched_rcu_qs();
1945		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1946	}
1947	rnp = rcu_get_root(rsp);
1948	raw_spin_lock_irq(&rnp->lock);
1949	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1950	rcu_nocb_gp_set(rnp, nocb);
1951
1952	/* Declare grace period done. */
1953	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1954	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1955	rsp->fqs_state = RCU_GP_IDLE;
1956	rdp = this_cpu_ptr(rsp->rda);
1957	/* Advance CBs to reduce false positives below. */
1958	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1959	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1960		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1961		trace_rcu_grace_period(rsp->name,
1962				       ACCESS_ONCE(rsp->gpnum),
1963				       TPS("newreq"));
1964	}
1965	raw_spin_unlock_irq(&rnp->lock);
1966}
1967
1968/*
1969 * Body of kthread that handles grace periods.
1970 */
1971static int __noreturn rcu_gp_kthread(void *arg)
1972{
1973	int fqs_state;
1974	int gf;
1975	unsigned long j;
1976	int ret;
1977	struct rcu_state *rsp = arg;
1978	struct rcu_node *rnp = rcu_get_root(rsp);
1979
1980	rcu_bind_gp_kthread();
1981	for (;;) {
1982
1983		/* Handle grace-period start. */
1984		for (;;) {
1985			trace_rcu_grace_period(rsp->name,
1986					       ACCESS_ONCE(rsp->gpnum),
1987					       TPS("reqwait"));
1988			rsp->gp_state = RCU_GP_WAIT_GPS;
1989			wait_event_interruptible(rsp->gp_wq,
1990						 ACCESS_ONCE(rsp->gp_flags) &
1991						 RCU_GP_FLAG_INIT);
1992			/* Locking provides needed memory barrier. */
1993			if (rcu_gp_init(rsp))
1994				break;
1995			cond_resched_rcu_qs();
1996			ACCESS_ONCE(rsp->gp_activity) = jiffies;
1997			WARN_ON(signal_pending(current));
1998			trace_rcu_grace_period(rsp->name,
1999					       ACCESS_ONCE(rsp->gpnum),
2000					       TPS("reqwaitsig"));
2001		}
2002
2003		/* Handle quiescent-state forcing. */
2004		fqs_state = RCU_SAVE_DYNTICK;
2005		j = jiffies_till_first_fqs;
2006		if (j > HZ) {
2007			j = HZ;
2008			jiffies_till_first_fqs = HZ;
2009		}
2010		ret = 0;
2011		for (;;) {
2012			if (!ret)
2013				rsp->jiffies_force_qs = jiffies + j;
2014			trace_rcu_grace_period(rsp->name,
2015					       ACCESS_ONCE(rsp->gpnum),
2016					       TPS("fqswait"));
2017			rsp->gp_state = RCU_GP_WAIT_FQS;
2018			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2019					((gf = ACCESS_ONCE(rsp->gp_flags)) &
2020					 RCU_GP_FLAG_FQS) ||
2021					(!ACCESS_ONCE(rnp->qsmask) &&
2022					 !rcu_preempt_blocked_readers_cgp(rnp)),
2023					j);
2024			/* Locking provides needed memory barriers. */
2025			/* If grace period done, leave loop. */
2026			if (!ACCESS_ONCE(rnp->qsmask) &&
2027			    !rcu_preempt_blocked_readers_cgp(rnp))
2028				break;
2029			/* If time for quiescent-state forcing, do it. */
2030			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2031			    (gf & RCU_GP_FLAG_FQS)) {
2032				trace_rcu_grace_period(rsp->name,
2033						       ACCESS_ONCE(rsp->gpnum),
2034						       TPS("fqsstart"));
2035				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2036				trace_rcu_grace_period(rsp->name,
2037						       ACCESS_ONCE(rsp->gpnum),
2038						       TPS("fqsend"));
2039				cond_resched_rcu_qs();
2040				ACCESS_ONCE(rsp->gp_activity) = jiffies;
2041			} else {
2042				/* Deal with stray signal. */
2043				cond_resched_rcu_qs();
2044				ACCESS_ONCE(rsp->gp_activity) = jiffies;
2045				WARN_ON(signal_pending(current));
2046				trace_rcu_grace_period(rsp->name,
2047						       ACCESS_ONCE(rsp->gpnum),
2048						       TPS("fqswaitsig"));
2049			}
2050			j = jiffies_till_next_fqs;
2051			if (j > HZ) {
2052				j = HZ;
2053				jiffies_till_next_fqs = HZ;
2054			} else if (j < 1) {
2055				j = 1;
2056				jiffies_till_next_fqs = 1;
2057			}
2058		}
2059
2060		/* Handle grace-period end. */
2061		rcu_gp_cleanup(rsp);
2062	}
2063}
2064
2065/*
2066 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2067 * in preparation for detecting the next grace period.  The caller must hold
2068 * the root node's ->lock and hard irqs must be disabled.
2069 *
2070 * Note that it is legal for a dying CPU (which is marked as offline) to
2071 * invoke this function.  This can happen when the dying CPU reports its
2072 * quiescent state.
2073 *
2074 * Returns true if the grace-period kthread must be awakened.
2075 */
2076static bool
2077rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2078		      struct rcu_data *rdp)
2079{
2080	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2081		/*
2082		 * Either we have not yet spawned the grace-period
2083		 * task, this CPU does not need another grace period,
2084		 * or a grace period is already in progress.
2085		 * Either way, don't start a new grace period.
2086		 */
2087		return false;
2088	}
2089	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2090	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2091			       TPS("newreq"));
2092
2093	/*
2094	 * We can't do wakeups while holding the rnp->lock, as that
2095	 * could cause possible deadlocks with the rq->lock. Defer
2096	 * the wakeup to our caller.
2097	 */
2098	return true;
2099}
2100
2101/*
2102 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2103 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2104 * is invoked indirectly from rcu_advance_cbs(), which would result in
2105 * endless recursion -- or would do so if it wasn't for the self-deadlock
2106 * that is encountered beforehand.
2107 *
2108 * Returns true if the grace-period kthread needs to be awakened.
2109 */
2110static bool rcu_start_gp(struct rcu_state *rsp)
2111{
2112	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2113	struct rcu_node *rnp = rcu_get_root(rsp);
2114	bool ret = false;
2115
2116	/*
2117	 * If there is no grace period in progress right now, any
2118	 * callbacks we have up to this point will be satisfied by the
2119	 * next grace period.  Also, advancing the callbacks reduces the
2120	 * probability of false positives from cpu_needs_another_gp()
2121	 * resulting in pointless grace periods.  So, advance callbacks
2122	 * then start the grace period!
2123	 */
2124	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2125	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2126	return ret;
2127}
2128
2129/*
2130 * Report a full set of quiescent states to the specified rcu_state
2131 * data structure.  This involves cleaning up after the prior grace
2132 * period and letting rcu_start_gp() start up the next grace period
2133 * if one is needed.  Note that the caller must hold rnp->lock, which
2134 * is released before return.
2135 */
2136static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2137	__releases(rcu_get_root(rsp)->lock)
2138{
2139	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2140	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2141	rcu_gp_kthread_wake(rsp);
2142}
2143
2144/*
2145 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2146 * Allows quiescent states for a group of CPUs to be reported at one go
2147 * to the specified rcu_node structure, though all the CPUs in the group
2148 * must be represented by the same rcu_node structure (which need not be a
2149 * leaf rcu_node structure, though it often will be).  The gps parameter
2150 * is the grace-period snapshot, which means that the quiescent states
2151 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2152 * must be held upon entry, and it is released before return.
2153 */
2154static void
2155rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2156		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2157	__releases(rnp->lock)
2158{
2159	unsigned long oldmask = 0;
2160	struct rcu_node *rnp_c;
2161
2162	/* Walk up the rcu_node hierarchy. */
2163	for (;;) {
2164		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2165
2166			/*
2167			 * Our bit has already been cleared, or the
2168			 * relevant grace period is already over, so done.
2169			 */
2170			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2171			return;
2172		}
2173		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2174		rnp->qsmask &= ~mask;
2175		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2176						 mask, rnp->qsmask, rnp->level,
2177						 rnp->grplo, rnp->grphi,
2178						 !!rnp->gp_tasks);
2179		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2180
2181			/* Other bits still set at this level, so done. */
2182			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2183			return;
2184		}
2185		mask = rnp->grpmask;
2186		if (rnp->parent == NULL) {
2187
2188			/* No more levels.  Exit loop holding root lock. */
2189
2190			break;
2191		}
2192		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2193		rnp_c = rnp;
2194		rnp = rnp->parent;
2195		raw_spin_lock_irqsave(&rnp->lock, flags);
2196		smp_mb__after_unlock_lock();
2197		oldmask = rnp_c->qsmask;
2198	}
2199
2200	/*
2201	 * Get here if we are the last CPU to pass through a quiescent
2202	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2203	 * to clean up and start the next grace period if one is needed.
2204	 */
2205	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2206}
2207
2208/*
2209 * Record a quiescent state for all tasks that were previously queued
2210 * on the specified rcu_node structure and that were blocking the current
2211 * RCU grace period.  The caller must hold the specified rnp->lock with
2212 * irqs disabled, and this lock is released upon return, but irqs remain
2213 * disabled.
2214 */
2215static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2216				      struct rcu_node *rnp, unsigned long flags)
2217	__releases(rnp->lock)
2218{
2219	unsigned long gps;
2220	unsigned long mask;
2221	struct rcu_node *rnp_p;
2222
2223	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2224	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2225		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2226		return;  /* Still need more quiescent states! */
2227	}
2228
2229	rnp_p = rnp->parent;
2230	if (rnp_p == NULL) {
2231		/*
2232		 * Only one rcu_node structure in the tree, so don't
2233		 * try to report up to its nonexistent parent!
2234		 */
2235		rcu_report_qs_rsp(rsp, flags);
2236		return;
2237	}
2238
2239	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2240	gps = rnp->gpnum;
2241	mask = rnp->grpmask;
2242	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2243	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
2244	smp_mb__after_unlock_lock();
2245	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2246}
2247
2248/*
2249 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2250 * structure.  This must be either called from the specified CPU, or
2251 * called when the specified CPU is known to be offline (and when it is
2252 * also known that no other CPU is concurrently trying to help the offline
2253 * CPU).  The lastcomp argument is used to make sure we are still in the
2254 * grace period of interest.  We don't want to end the current grace period
2255 * based on quiescent states detected in an earlier grace period!
2256 */
2257static void
2258rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2259{
2260	unsigned long flags;
2261	unsigned long mask;
2262	bool needwake;
2263	struct rcu_node *rnp;
2264
2265	rnp = rdp->mynode;
2266	raw_spin_lock_irqsave(&rnp->lock, flags);
2267	smp_mb__after_unlock_lock();
2268	if ((rdp->passed_quiesce == 0 &&
2269	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2270	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2271	    rdp->gpwrap) {
2272
2273		/*
2274		 * The grace period in which this quiescent state was
2275		 * recorded has ended, so don't report it upwards.
2276		 * We will instead need a new quiescent state that lies
2277		 * within the current grace period.
2278		 */
2279		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2280		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2281		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2282		return;
2283	}
2284	mask = rdp->grpmask;
2285	if ((rnp->qsmask & mask) == 0) {
2286		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2287	} else {
2288		rdp->qs_pending = 0;
2289
2290		/*
2291		 * This GP can't end until cpu checks in, so all of our
2292		 * callbacks can be processed during the next GP.
2293		 */
2294		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2295
2296		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2297		/* ^^^ Released rnp->lock */
2298		if (needwake)
2299			rcu_gp_kthread_wake(rsp);
2300	}
2301}
2302
2303/*
2304 * Check to see if there is a new grace period of which this CPU
2305 * is not yet aware, and if so, set up local rcu_data state for it.
2306 * Otherwise, see if this CPU has just passed through its first
2307 * quiescent state for this grace period, and record that fact if so.
2308 */
2309static void
2310rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2311{
2312	/* Check for grace-period ends and beginnings. */
2313	note_gp_changes(rsp, rdp);
2314
2315	/*
2316	 * Does this CPU still need to do its part for current grace period?
2317	 * If no, return and let the other CPUs do their part as well.
2318	 */
2319	if (!rdp->qs_pending)
2320		return;
2321
2322	/*
2323	 * Was there a quiescent state since the beginning of the grace
2324	 * period? If no, then exit and wait for the next call.
2325	 */
2326	if (!rdp->passed_quiesce &&
2327	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2328		return;
2329
2330	/*
2331	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2332	 * judge of that).
2333	 */
2334	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2335}
2336
2337#ifdef CONFIG_HOTPLUG_CPU
2338
2339/*
2340 * Send the specified CPU's RCU callbacks to the orphanage.  The
2341 * specified CPU must be offline, and the caller must hold the
2342 * ->orphan_lock.
2343 */
2344static void
2345rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2346			  struct rcu_node *rnp, struct rcu_data *rdp)
2347{
2348	/* No-CBs CPUs do not have orphanable callbacks. */
2349	if (rcu_is_nocb_cpu(rdp->cpu))
2350		return;
2351
2352	/*
2353	 * Orphan the callbacks.  First adjust the counts.  This is safe
2354	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2355	 * cannot be running now.  Thus no memory barrier is required.
2356	 */
2357	if (rdp->nxtlist != NULL) {
2358		rsp->qlen_lazy += rdp->qlen_lazy;
2359		rsp->qlen += rdp->qlen;
2360		rdp->n_cbs_orphaned += rdp->qlen;
2361		rdp->qlen_lazy = 0;
2362		ACCESS_ONCE(rdp->qlen) = 0;
2363	}
2364
2365	/*
2366	 * Next, move those callbacks still needing a grace period to
2367	 * the orphanage, where some other CPU will pick them up.
2368	 * Some of the callbacks might have gone partway through a grace
2369	 * period, but that is too bad.  They get to start over because we
2370	 * cannot assume that grace periods are synchronized across CPUs.
2371	 * We don't bother updating the ->nxttail[] array yet, instead
2372	 * we just reset the whole thing later on.
2373	 */
2374	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2375		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2376		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2377		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2378	}
2379
2380	/*
2381	 * Then move the ready-to-invoke callbacks to the orphanage,
2382	 * where some other CPU will pick them up.  These will not be
2383	 * required to pass though another grace period: They are done.
2384	 */
2385	if (rdp->nxtlist != NULL) {
2386		*rsp->orphan_donetail = rdp->nxtlist;
2387		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2388	}
2389
2390	/*
2391	 * Finally, initialize the rcu_data structure's list to empty and
2392	 * disallow further callbacks on this CPU.
2393	 */
2394	init_callback_list(rdp);
2395	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2396}
2397
2398/*
2399 * Adopt the RCU callbacks from the specified rcu_state structure's
2400 * orphanage.  The caller must hold the ->orphan_lock.
2401 */
2402static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2403{
2404	int i;
2405	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2406
2407	/* No-CBs CPUs are handled specially. */
2408	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2409		return;
2410
2411	/* Do the accounting first. */
2412	rdp->qlen_lazy += rsp->qlen_lazy;
2413	rdp->qlen += rsp->qlen;
2414	rdp->n_cbs_adopted += rsp->qlen;
2415	if (rsp->qlen_lazy != rsp->qlen)
2416		rcu_idle_count_callbacks_posted();
2417	rsp->qlen_lazy = 0;
2418	rsp->qlen = 0;
2419
2420	/*
2421	 * We do not need a memory barrier here because the only way we
2422	 * can get here if there is an rcu_barrier() in flight is if
2423	 * we are the task doing the rcu_barrier().
2424	 */
2425
2426	/* First adopt the ready-to-invoke callbacks. */
2427	if (rsp->orphan_donelist != NULL) {
2428		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2429		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2430		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2431			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2432				rdp->nxttail[i] = rsp->orphan_donetail;
2433		rsp->orphan_donelist = NULL;
2434		rsp->orphan_donetail = &rsp->orphan_donelist;
2435	}
2436
2437	/* And then adopt the callbacks that still need a grace period. */
2438	if (rsp->orphan_nxtlist != NULL) {
2439		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2440		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2441		rsp->orphan_nxtlist = NULL;
2442		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2443	}
2444}
2445
2446/*
2447 * Trace the fact that this CPU is going offline.
2448 */
2449static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2450{
2451	RCU_TRACE(unsigned long mask);
2452	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2453	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2454
2455	RCU_TRACE(mask = rdp->grpmask);
2456	trace_rcu_grace_period(rsp->name,
2457			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2458			       TPS("cpuofl"));
2459}
2460
2461/*
2462 * All CPUs for the specified rcu_node structure have gone offline,
2463 * and all tasks that were preempted within an RCU read-side critical
2464 * section while running on one of those CPUs have since exited their RCU
2465 * read-side critical section.  Some other CPU is reporting this fact with
2466 * the specified rcu_node structure's ->lock held and interrupts disabled.
2467 * This function therefore goes up the tree of rcu_node structures,
2468 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2469 * the leaf rcu_node structure's ->qsmaskinit field has already been
2470 * updated
2471 *
2472 * This function does check that the specified rcu_node structure has
2473 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2474 * prematurely.  That said, invoking it after the fact will cost you
2475 * a needless lock acquisition.  So once it has done its work, don't
2476 * invoke it again.
2477 */
2478static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2479{
2480	long mask;
2481	struct rcu_node *rnp = rnp_leaf;
2482
2483	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2484		return;
2485	for (;;) {
2486		mask = rnp->grpmask;
2487		rnp = rnp->parent;
2488		if (!rnp)
2489			break;
2490		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2491		smp_mb__after_unlock_lock(); /* GP memory ordering. */
2492		rnp->qsmaskinit &= ~mask;
2493		rnp->qsmask &= ~mask;
2494		if (rnp->qsmaskinit) {
2495			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2496			return;
2497		}
2498		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2499	}
2500}
2501
2502/*
2503 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2504 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
2505 * bit masks.
2506 */
2507static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2508{
2509	unsigned long flags;
2510	unsigned long mask;
2511	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2512	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2513
2514	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2515	mask = rdp->grpmask;
2516	raw_spin_lock_irqsave(&rnp->lock, flags);
2517	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
2518	rnp->qsmaskinitnext &= ~mask;
2519	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2520}
2521
2522/*
2523 * The CPU has been completely removed, and some other CPU is reporting
2524 * this fact from process context.  Do the remainder of the cleanup,
2525 * including orphaning the outgoing CPU's RCU callbacks, and also
2526 * adopting them.  There can only be one CPU hotplug operation at a time,
2527 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2528 */
2529static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2530{
2531	unsigned long flags;
2532	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2533	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2534
2535	/* Adjust any no-longer-needed kthreads. */
2536	rcu_boost_kthread_setaffinity(rnp, -1);
2537
2538	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2539	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2540	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2541	rcu_adopt_orphan_cbs(rsp, flags);
2542	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2543
2544	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2545		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2546		  cpu, rdp->qlen, rdp->nxtlist);
2547}
2548
2549#else /* #ifdef CONFIG_HOTPLUG_CPU */
2550
2551static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2552{
2553}
2554
2555static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2556{
2557}
2558
2559static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2560{
2561}
2562
2563static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2564{
2565}
2566
2567#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2568
2569/*
2570 * Invoke any RCU callbacks that have made it to the end of their grace
2571 * period.  Thottle as specified by rdp->blimit.
2572 */
2573static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2574{
2575	unsigned long flags;
2576	struct rcu_head *next, *list, **tail;
2577	long bl, count, count_lazy;
2578	int i;
2579
2580	/* If no callbacks are ready, just return. */
2581	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2582		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2583		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2584				    need_resched(), is_idle_task(current),
2585				    rcu_is_callbacks_kthread());
2586		return;
2587	}
2588
2589	/*
2590	 * Extract the list of ready callbacks, disabling to prevent
2591	 * races with call_rcu() from interrupt handlers.
2592	 */
2593	local_irq_save(flags);
2594	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2595	bl = rdp->blimit;
2596	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2597	list = rdp->nxtlist;
2598	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2599	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2600	tail = rdp->nxttail[RCU_DONE_TAIL];
2601	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2602		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2603			rdp->nxttail[i] = &rdp->nxtlist;
2604	local_irq_restore(flags);
2605
2606	/* Invoke callbacks. */
2607	count = count_lazy = 0;
2608	while (list) {
2609		next = list->next;
2610		prefetch(next);
2611		debug_rcu_head_unqueue(list);
2612		if (__rcu_reclaim(rsp->name, list))
2613			count_lazy++;
2614		list = next;
2615		/* Stop only if limit reached and CPU has something to do. */
2616		if (++count >= bl &&
2617		    (need_resched() ||
2618		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2619			break;
2620	}
2621
2622	local_irq_save(flags);
2623	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2624			    is_idle_task(current),
2625			    rcu_is_callbacks_kthread());
2626
2627	/* Update count, and requeue any remaining callbacks. */
2628	if (list != NULL) {
2629		*tail = rdp->nxtlist;
2630		rdp->nxtlist = list;
2631		for (i = 0; i < RCU_NEXT_SIZE; i++)
2632			if (&rdp->nxtlist == rdp->nxttail[i])
2633				rdp->nxttail[i] = tail;
2634			else
2635				break;
2636	}
2637	smp_mb(); /* List handling before counting for rcu_barrier(). */
2638	rdp->qlen_lazy -= count_lazy;
2639	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2640	rdp->n_cbs_invoked += count;
2641
2642	/* Reinstate batch limit if we have worked down the excess. */
2643	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2644		rdp->blimit = blimit;
2645
2646	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2647	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2648		rdp->qlen_last_fqs_check = 0;
2649		rdp->n_force_qs_snap = rsp->n_force_qs;
2650	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2651		rdp->qlen_last_fqs_check = rdp->qlen;
2652	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2653
2654	local_irq_restore(flags);
2655
2656	/* Re-invoke RCU core processing if there are callbacks remaining. */
2657	if (cpu_has_callbacks_ready_to_invoke(rdp))
2658		invoke_rcu_core();
2659}
2660
2661/*
2662 * Check to see if this CPU is in a non-context-switch quiescent state
2663 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2664 * Also schedule RCU core processing.
2665 *
2666 * This function must be called from hardirq context.  It is normally
2667 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2668 * false, there is no point in invoking rcu_check_callbacks().
2669 */
2670void rcu_check_callbacks(int user)
2671{
2672	trace_rcu_utilization(TPS("Start scheduler-tick"));
2673	increment_cpu_stall_ticks();
2674	if (user || rcu_is_cpu_rrupt_from_idle()) {
2675
2676		/*
2677		 * Get here if this CPU took its interrupt from user
2678		 * mode or from the idle loop, and if this is not a
2679		 * nested interrupt.  In this case, the CPU is in
2680		 * a quiescent state, so note it.
2681		 *
2682		 * No memory barrier is required here because both
2683		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2684		 * variables that other CPUs neither access nor modify,
2685		 * at least not while the corresponding CPU is online.
2686		 */
2687
2688		rcu_sched_qs();
2689		rcu_bh_qs();
2690
2691	} else if (!in_softirq()) {
2692
2693		/*
2694		 * Get here if this CPU did not take its interrupt from
2695		 * softirq, in other words, if it is not interrupting
2696		 * a rcu_bh read-side critical section.  This is an _bh
2697		 * critical section, so note it.
2698		 */
2699
2700		rcu_bh_qs();
2701	}
2702	rcu_preempt_check_callbacks();
2703	if (rcu_pending())
2704		invoke_rcu_core();
2705	if (user)
2706		rcu_note_voluntary_context_switch(current);
2707	trace_rcu_utilization(TPS("End scheduler-tick"));
2708}
2709
2710/*
2711 * Scan the leaf rcu_node structures, processing dyntick state for any that
2712 * have not yet encountered a quiescent state, using the function specified.
2713 * Also initiate boosting for any threads blocked on the root rcu_node.
2714 *
2715 * The caller must have suppressed start of new grace periods.
2716 */
2717static void force_qs_rnp(struct rcu_state *rsp,
2718			 int (*f)(struct rcu_data *rsp, bool *isidle,
2719				  unsigned long *maxj),
2720			 bool *isidle, unsigned long *maxj)
2721{
2722	unsigned long bit;
2723	int cpu;
2724	unsigned long flags;
2725	unsigned long mask;
2726	struct rcu_node *rnp;
2727
2728	rcu_for_each_leaf_node(rsp, rnp) {
2729		cond_resched_rcu_qs();
2730		mask = 0;
2731		raw_spin_lock_irqsave(&rnp->lock, flags);
2732		smp_mb__after_unlock_lock();
2733		if (!rcu_gp_in_progress(rsp)) {
2734			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2735			return;
2736		}
2737		if (rnp->qsmask == 0) {
2738			if (rcu_state_p == &rcu_sched_state ||
2739			    rsp != rcu_state_p ||
2740			    rcu_preempt_blocked_readers_cgp(rnp)) {
2741				/*
2742				 * No point in scanning bits because they
2743				 * are all zero.  But we might need to
2744				 * priority-boost blocked readers.
2745				 */
2746				rcu_initiate_boost(rnp, flags);
2747				/* rcu_initiate_boost() releases rnp->lock */
2748				continue;
2749			}
2750			if (rnp->parent &&
2751			    (rnp->parent->qsmask & rnp->grpmask)) {
2752				/*
2753				 * Race between grace-period
2754				 * initialization and task exiting RCU
2755				 * read-side critical section: Report.
2756				 */
2757				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2758				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2759				continue;
2760			}
2761		}
2762		cpu = rnp->grplo;
2763		bit = 1;
2764		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2765			if ((rnp->qsmask & bit) != 0) {
2766				if ((rnp->qsmaskinit & bit) == 0)
2767					*isidle = false; /* Pending hotplug. */
2768				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2769					mask |= bit;
2770			}
2771		}
2772		if (mask != 0) {
2773			/* Idle/offline CPUs, report (releases rnp->lock. */
2774			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2775		} else {
2776			/* Nothing to do here, so just drop the lock. */
2777			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2778		}
2779	}
2780}
2781
2782/*
2783 * Force quiescent states on reluctant CPUs, and also detect which
2784 * CPUs are in dyntick-idle mode.
2785 */
2786static void force_quiescent_state(struct rcu_state *rsp)
2787{
2788	unsigned long flags;
2789	bool ret;
2790	struct rcu_node *rnp;
2791	struct rcu_node *rnp_old = NULL;
2792
2793	/* Funnel through hierarchy to reduce memory contention. */
2794	rnp = __this_cpu_read(rsp->rda->mynode);
2795	for (; rnp != NULL; rnp = rnp->parent) {
2796		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2797		      !raw_spin_trylock(&rnp->fqslock);
2798		if (rnp_old != NULL)
2799			raw_spin_unlock(&rnp_old->fqslock);
2800		if (ret) {
2801			rsp->n_force_qs_lh++;
2802			return;
2803		}
2804		rnp_old = rnp;
2805	}
2806	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2807
2808	/* Reached the root of the rcu_node tree, acquire lock. */
2809	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2810	smp_mb__after_unlock_lock();
2811	raw_spin_unlock(&rnp_old->fqslock);
2812	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2813		rsp->n_force_qs_lh++;
2814		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2815		return;  /* Someone beat us to it. */
2816	}
2817	ACCESS_ONCE(rsp->gp_flags) =
2818		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2819	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2820	rcu_gp_kthread_wake(rsp);
2821}
2822
2823/*
2824 * This does the RCU core processing work for the specified rcu_state
2825 * and rcu_data structures.  This may be called only from the CPU to
2826 * whom the rdp belongs.
2827 */
2828static void
2829__rcu_process_callbacks(struct rcu_state *rsp)
2830{
2831	unsigned long flags;
2832	bool needwake;
2833	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2834
2835	WARN_ON_ONCE(rdp->beenonline == 0);
2836
2837	/* Update RCU state based on any recent quiescent states. */
2838	rcu_check_quiescent_state(rsp, rdp);
2839
2840	/* Does this CPU require a not-yet-started grace period? */
2841	local_irq_save(flags);
2842	if (cpu_needs_another_gp(rsp, rdp)) {
2843		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2844		needwake = rcu_start_gp(rsp);
2845		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2846		if (needwake)
2847			rcu_gp_kthread_wake(rsp);
2848	} else {
2849		local_irq_restore(flags);
2850	}
2851
2852	/* If there are callbacks ready, invoke them. */
2853	if (cpu_has_callbacks_ready_to_invoke(rdp))
2854		invoke_rcu_callbacks(rsp, rdp);
2855
2856	/* Do any needed deferred wakeups of rcuo kthreads. */
2857	do_nocb_deferred_wakeup(rdp);
2858}
2859
2860/*
2861 * Do RCU core processing for the current CPU.
2862 */
2863static void rcu_process_callbacks(struct softirq_action *unused)
2864{
2865	struct rcu_state *rsp;
2866
2867	if (cpu_is_offline(smp_processor_id()))
2868		return;
2869	trace_rcu_utilization(TPS("Start RCU core"));
2870	for_each_rcu_flavor(rsp)
2871		__rcu_process_callbacks(rsp);
2872	trace_rcu_utilization(TPS("End RCU core"));
2873}
2874
2875/*
2876 * Schedule RCU callback invocation.  If the specified type of RCU
2877 * does not support RCU priority boosting, just do a direct call,
2878 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2879 * are running on the current CPU with softirqs disabled, the
2880 * rcu_cpu_kthread_task cannot disappear out from under us.
2881 */
2882static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2883{
2884	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2885		return;
2886	if (likely(!rsp->boost)) {
2887		rcu_do_batch(rsp, rdp);
2888		return;
2889	}
2890	invoke_rcu_callbacks_kthread();
2891}
2892
2893static void invoke_rcu_core(void)
2894{
2895	if (cpu_online(smp_processor_id()))
2896		raise_softirq(RCU_SOFTIRQ);
2897}
2898
2899/*
2900 * Handle any core-RCU processing required by a call_rcu() invocation.
2901 */
2902static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2903			    struct rcu_head *head, unsigned long flags)
2904{
2905	bool needwake;
2906
2907	/*
2908	 * If called from an extended quiescent state, invoke the RCU
2909	 * core in order to force a re-evaluation of RCU's idleness.
2910	 */
2911	if (!rcu_is_watching())
2912		invoke_rcu_core();
2913
2914	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2915	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2916		return;
2917
2918	/*
2919	 * Force the grace period if too many callbacks or too long waiting.
2920	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2921	 * if some other CPU has recently done so.  Also, don't bother
2922	 * invoking force_quiescent_state() if the newly enqueued callback
2923	 * is the only one waiting for a grace period to complete.
2924	 */
2925	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2926
2927		/* Are we ignoring a completed grace period? */
2928		note_gp_changes(rsp, rdp);
2929
2930		/* Start a new grace period if one not already started. */
2931		if (!rcu_gp_in_progress(rsp)) {
2932			struct rcu_node *rnp_root = rcu_get_root(rsp);
2933
2934			raw_spin_lock(&rnp_root->lock);
2935			smp_mb__after_unlock_lock();
2936			needwake = rcu_start_gp(rsp);
2937			raw_spin_unlock(&rnp_root->lock);
2938			if (needwake)
2939				rcu_gp_kthread_wake(rsp);
2940		} else {
2941			/* Give the grace period a kick. */
2942			rdp->blimit = LONG_MAX;
2943			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2944			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2945				force_quiescent_state(rsp);
2946			rdp->n_force_qs_snap = rsp->n_force_qs;
2947			rdp->qlen_last_fqs_check = rdp->qlen;
2948		}
2949	}
2950}
2951
2952/*
2953 * RCU callback function to leak a callback.
2954 */
2955static void rcu_leak_callback(struct rcu_head *rhp)
2956{
2957}
2958
2959/*
2960 * Helper function for call_rcu() and friends.  The cpu argument will
2961 * normally be -1, indicating "currently running CPU".  It may specify
2962 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2963 * is expected to specify a CPU.
2964 */
2965static void
2966__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2967	   struct rcu_state *rsp, int cpu, bool lazy)
2968{
2969	unsigned long flags;
2970	struct rcu_data *rdp;
2971
2972	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2973	if (debug_rcu_head_queue(head)) {
2974		/* Probable double call_rcu(), so leak the callback. */
2975		ACCESS_ONCE(head->func) = rcu_leak_callback;
2976		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2977		return;
2978	}
2979	head->func = func;
2980	head->next = NULL;
2981
2982	/*
2983	 * Opportunistically note grace-period endings and beginnings.
2984	 * Note that we might see a beginning right after we see an
2985	 * end, but never vice versa, since this CPU has to pass through
2986	 * a quiescent state betweentimes.
2987	 */
2988	local_irq_save(flags);
2989	rdp = this_cpu_ptr(rsp->rda);
2990
2991	/* Add the callback to our list. */
2992	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2993		int offline;
2994
2995		if (cpu != -1)
2996			rdp = per_cpu_ptr(rsp->rda, cpu);
2997		if (likely(rdp->mynode)) {
2998			/* Post-boot, so this should be for a no-CBs CPU. */
2999			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3000			WARN_ON_ONCE(offline);
3001			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3002			local_irq_restore(flags);
3003			return;
3004		}
3005		/*
3006		 * Very early boot, before rcu_init().  Initialize if needed
3007		 * and then drop through to queue the callback.
3008		 */
3009		BUG_ON(cpu != -1);
3010		WARN_ON_ONCE(!rcu_is_watching());
3011		if (!likely(rdp->nxtlist))
3012			init_default_callback_list(rdp);
3013	}
3014	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
3015	if (lazy)
3016		rdp->qlen_lazy++;
3017	else
3018		rcu_idle_count_callbacks_posted();
3019	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3020	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3021	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3022
3023	if (__is_kfree_rcu_offset((unsigned long)func))
3024		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3025					 rdp->qlen_lazy, rdp->qlen);
3026	else
3027		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3028
3029	/* Go handle any RCU core processing required. */
3030	__call_rcu_core(rsp, rdp, head, flags);
3031	local_irq_restore(flags);
3032}
3033
3034/*
3035 * Queue an RCU-sched callback for invocation after a grace period.
3036 */
3037void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3038{
3039	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3040}
3041EXPORT_SYMBOL_GPL(call_rcu_sched);
3042
3043/*
3044 * Queue an RCU callback for invocation after a quicker grace period.
3045 */
3046void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3047{
3048	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3049}
3050EXPORT_SYMBOL_GPL(call_rcu_bh);
3051
3052/*
3053 * Queue an RCU callback for lazy invocation after a grace period.
3054 * This will likely be later named something like "call_rcu_lazy()",
3055 * but this change will require some way of tagging the lazy RCU
3056 * callbacks in the list of pending callbacks. Until then, this
3057 * function may only be called from __kfree_rcu().
3058 */
3059void kfree_call_rcu(struct rcu_head *head,
3060		    void (*func)(struct rcu_head *rcu))
3061{
3062	__call_rcu(head, func, rcu_state_p, -1, 1);
3063}
3064EXPORT_SYMBOL_GPL(kfree_call_rcu);
3065
3066/*
3067 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3068 * any blocking grace-period wait automatically implies a grace period
3069 * if there is only one CPU online at any point time during execution
3070 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3071 * occasionally incorrectly indicate that there are multiple CPUs online
3072 * when there was in fact only one the whole time, as this just adds
3073 * some overhead: RCU still operates correctly.
3074 */
3075static inline int rcu_blocking_is_gp(void)
3076{
3077	int ret;
3078
3079	might_sleep();  /* Check for RCU read-side critical section. */
3080	preempt_disable();
3081	ret = num_online_cpus() <= 1;
3082	preempt_enable();
3083	return ret;
3084}
3085
3086/**
3087 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3088 *
3089 * Control will return to the caller some time after a full rcu-sched
3090 * grace period has elapsed, in other words after all currently executing
3091 * rcu-sched read-side critical sections have completed.   These read-side
3092 * critical sections are delimited by rcu_read_lock_sched() and
3093 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3094 * local_irq_disable(), and so on may be used in place of
3095 * rcu_read_lock_sched().
3096 *
3097 * This means that all preempt_disable code sequences, including NMI and
3098 * non-threaded hardware-interrupt handlers, in progress on entry will
3099 * have completed before this primitive returns.  However, this does not
3100 * guarantee that softirq handlers will have completed, since in some
3101 * kernels, these handlers can run in process context, and can block.
3102 *
3103 * Note that this guarantee implies further memory-ordering guarantees.
3104 * On systems with more than one CPU, when synchronize_sched() returns,
3105 * each CPU is guaranteed to have executed a full memory barrier since the
3106 * end of its last RCU-sched read-side critical section whose beginning
3107 * preceded the call to synchronize_sched().  In addition, each CPU having
3108 * an RCU read-side critical section that extends beyond the return from
3109 * synchronize_sched() is guaranteed to have executed a full memory barrier
3110 * after the beginning of synchronize_sched() and before the beginning of
3111 * that RCU read-side critical section.  Note that these guarantees include
3112 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3113 * that are executing in the kernel.
3114 *
3115 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3116 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3117 * to have executed a full memory barrier during the execution of
3118 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3119 * again only if the system has more than one CPU).
3120 *
3121 * This primitive provides the guarantees made by the (now removed)
3122 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3123 * guarantees that rcu_read_lock() sections will have completed.
3124 * In "classic RCU", these two guarantees happen to be one and
3125 * the same, but can differ in realtime RCU implementations.
3126 */
3127void synchronize_sched(void)
3128{
3129	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3130			   !lock_is_held(&rcu_lock_map) &&
3131			   !lock_is_held(&rcu_sched_lock_map),
3132			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3133	if (rcu_blocking_is_gp())
3134		return;
3135	if (rcu_gp_is_expedited())
3136		synchronize_sched_expedited();
3137	else
3138		wait_rcu_gp(call_rcu_sched);
3139}
3140EXPORT_SYMBOL_GPL(synchronize_sched);
3141
3142/**
3143 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3144 *
3145 * Control will return to the caller some time after a full rcu_bh grace
3146 * period has elapsed, in other words after all currently executing rcu_bh
3147 * read-side critical sections have completed.  RCU read-side critical
3148 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3149 * and may be nested.
3150 *
3151 * See the description of synchronize_sched() for more detailed information
3152 * on memory ordering guarantees.
3153 */
3154void synchronize_rcu_bh(void)
3155{
3156	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3157			   !lock_is_held(&rcu_lock_map) &&
3158			   !lock_is_held(&rcu_sched_lock_map),
3159			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3160	if (rcu_blocking_is_gp())
3161		return;
3162	if (rcu_gp_is_expedited())
3163		synchronize_rcu_bh_expedited();
3164	else
3165		wait_rcu_gp(call_rcu_bh);
3166}
3167EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3168
3169/**
3170 * get_state_synchronize_rcu - Snapshot current RCU state
3171 *
3172 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3173 * to determine whether or not a full grace period has elapsed in the
3174 * meantime.
3175 */
3176unsigned long get_state_synchronize_rcu(void)
3177{
3178	/*
3179	 * Any prior manipulation of RCU-protected data must happen
3180	 * before the load from ->gpnum.
3181	 */
3182	smp_mb();  /* ^^^ */
3183
3184	/*
3185	 * Make sure this load happens before the purportedly
3186	 * time-consuming work between get_state_synchronize_rcu()
3187	 * and cond_synchronize_rcu().
3188	 */
3189	return smp_load_acquire(&rcu_state_p->gpnum);
3190}
3191EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3192
3193/**
3194 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3195 *
3196 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3197 *
3198 * If a full RCU grace period has elapsed since the earlier call to
3199 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3200 * synchronize_rcu() to wait for a full grace period.
3201 *
3202 * Yes, this function does not take counter wrap into account.  But
3203 * counter wrap is harmless.  If the counter wraps, we have waited for
3204 * more than 2 billion grace periods (and way more on a 64-bit system!),
3205 * so waiting for one additional grace period should be just fine.
3206 */
3207void cond_synchronize_rcu(unsigned long oldstate)
3208{
3209	unsigned long newstate;
3210
3211	/*
3212	 * Ensure that this load happens before any RCU-destructive
3213	 * actions the caller might carry out after we return.
3214	 */
3215	newstate = smp_load_acquire(&rcu_state_p->completed);
3216	if (ULONG_CMP_GE(oldstate, newstate))
3217		synchronize_rcu();
3218}
3219EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3220
3221static int synchronize_sched_expedited_cpu_stop(void *data)
3222{
3223	/*
3224	 * There must be a full memory barrier on each affected CPU
3225	 * between the time that try_stop_cpus() is called and the
3226	 * time that it returns.
3227	 *
3228	 * In the current initial implementation of cpu_stop, the
3229	 * above condition is already met when the control reaches
3230	 * this point and the following smp_mb() is not strictly
3231	 * necessary.  Do smp_mb() anyway for documentation and
3232	 * robustness against future implementation changes.
3233	 */
3234	smp_mb(); /* See above comment block. */
3235	return 0;
3236}
3237
3238/**
3239 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3240 *
3241 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3242 * approach to force the grace period to end quickly.  This consumes
3243 * significant time on all CPUs and is unfriendly to real-time workloads,
3244 * so is thus not recommended for any sort of common-case code.  In fact,
3245 * if you are using synchronize_sched_expedited() in a loop, please
3246 * restructure your code to batch your updates, and then use a single
3247 * synchronize_sched() instead.
3248 *
3249 * This implementation can be thought of as an application of ticket
3250 * locking to RCU, with sync_sched_expedited_started and
3251 * sync_sched_expedited_done taking on the roles of the halves
3252 * of the ticket-lock word.  Each task atomically increments
3253 * sync_sched_expedited_started upon entry, snapshotting the old value,
3254 * then attempts to stop all the CPUs.  If this succeeds, then each
3255 * CPU will have executed a context switch, resulting in an RCU-sched
3256 * grace period.  We are then done, so we use atomic_cmpxchg() to
3257 * update sync_sched_expedited_done to match our snapshot -- but
3258 * only if someone else has not already advanced past our snapshot.
3259 *
3260 * On the other hand, if try_stop_cpus() fails, we check the value
3261 * of sync_sched_expedited_done.  If it has advanced past our
3262 * initial snapshot, then someone else must have forced a grace period
3263 * some time after we took our snapshot.  In this case, our work is
3264 * done for us, and we can simply return.  Otherwise, we try again,
3265 * but keep our initial snapshot for purposes of checking for someone
3266 * doing our work for us.
3267 *
3268 * If we fail too many times in a row, we fall back to synchronize_sched().
3269 */
3270void synchronize_sched_expedited(void)
3271{
3272	cpumask_var_t cm;
3273	bool cma = false;
3274	int cpu;
3275	long firstsnap, s, snap;
3276	int trycount = 0;
3277	struct rcu_state *rsp = &rcu_sched_state;
3278
3279	/*
3280	 * If we are in danger of counter wrap, just do synchronize_sched().
3281	 * By allowing sync_sched_expedited_started to advance no more than
3282	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3283	 * that more than 3.5 billion CPUs would be required to force a
3284	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
3285	 * course be required on a 64-bit system.
3286	 */
3287	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3288			 (ulong)atomic_long_read(&rsp->expedited_done) +
3289			 ULONG_MAX / 8)) {
3290		synchronize_sched();
3291		atomic_long_inc(&rsp->expedited_wrap);
3292		return;
3293	}
3294
3295	/*
3296	 * Take a ticket.  Note that atomic_inc_return() implies a
3297	 * full memory barrier.
3298	 */
3299	snap = atomic_long_inc_return(&rsp->expedited_start);
3300	firstsnap = snap;
3301	if (!try_get_online_cpus()) {
3302		/* CPU hotplug operation in flight, fall back to normal GP. */
3303		wait_rcu_gp(call_rcu_sched);
3304		atomic_long_inc(&rsp->expedited_normal);
3305		return;
3306	}
3307	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3308
3309	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3310	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3311	if (cma) {
3312		cpumask_copy(cm, cpu_online_mask);
3313		cpumask_clear_cpu(raw_smp_processor_id(), cm);
3314		for_each_cpu(cpu, cm) {
3315			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3316
3317			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3318				cpumask_clear_cpu(cpu, cm);
3319		}
3320		if (cpumask_weight(cm) == 0)
3321			goto all_cpus_idle;
3322	}
3323
3324	/*
3325	 * Each pass through the following loop attempts to force a
3326	 * context switch on each CPU.
3327	 */
3328	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3329			     synchronize_sched_expedited_cpu_stop,
3330			     NULL) == -EAGAIN) {
3331		put_online_cpus();
3332		atomic_long_inc(&rsp->expedited_tryfail);
3333
3334		/* Check to see if someone else did our work for us. */
3335		s = atomic_long_read(&rsp->expedited_done);
3336		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3337			/* ensure test happens before caller kfree */
3338			smp_mb__before_atomic(); /* ^^^ */
3339			atomic_long_inc(&rsp->expedited_workdone1);
3340			free_cpumask_var(cm);
3341			return;
3342		}
3343
3344		/* No joy, try again later.  Or just synchronize_sched(). */
3345		if (trycount++ < 10) {
3346			udelay(trycount * num_online_cpus());
3347		} else {
3348			wait_rcu_gp(call_rcu_sched);
3349			atomic_long_inc(&rsp->expedited_normal);
3350			free_cpumask_var(cm);
3351			return;
3352		}
3353
3354		/* Recheck to see if someone else did our work for us. */
3355		s = atomic_long_read(&rsp->expedited_done);
3356		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3357			/* ensure test happens before caller kfree */
3358			smp_mb__before_atomic(); /* ^^^ */
3359			atomic_long_inc(&rsp->expedited_workdone2);
3360			free_cpumask_var(cm);
3361			return;
3362		}
3363
3364		/*
3365		 * Refetching sync_sched_expedited_started allows later
3366		 * callers to piggyback on our grace period.  We retry
3367		 * after they started, so our grace period works for them,
3368		 * and they started after our first try, so their grace
3369		 * period works for us.
3370		 */
3371		if (!try_get_online_cpus()) {
3372			/* CPU hotplug operation in flight, use normal GP. */
3373			wait_rcu_gp(call_rcu_sched);
3374			atomic_long_inc(&rsp->expedited_normal);
3375			free_cpumask_var(cm);
3376			return;
3377		}
3378		snap = atomic_long_read(&rsp->expedited_start);
3379		smp_mb(); /* ensure read is before try_stop_cpus(). */
3380	}
3381	atomic_long_inc(&rsp->expedited_stoppedcpus);
3382
3383all_cpus_idle:
3384	free_cpumask_var(cm);
3385
3386	/*
3387	 * Everyone up to our most recent fetch is covered by our grace
3388	 * period.  Update the counter, but only if our work is still
3389	 * relevant -- which it won't be if someone who started later
3390	 * than we did already did their update.
3391	 */
3392	do {
3393		atomic_long_inc(&rsp->expedited_done_tries);
3394		s = atomic_long_read(&rsp->expedited_done);
3395		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3396			/* ensure test happens before caller kfree */
3397			smp_mb__before_atomic(); /* ^^^ */
3398			atomic_long_inc(&rsp->expedited_done_lost);
3399			break;
3400		}
3401	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3402	atomic_long_inc(&rsp->expedited_done_exit);
3403
3404	put_online_cpus();
3405}
3406EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3407
3408/*
3409 * Check to see if there is any immediate RCU-related work to be done
3410 * by the current CPU, for the specified type of RCU, returning 1 if so.
3411 * The checks are in order of increasing expense: checks that can be
3412 * carried out against CPU-local state are performed first.  However,
3413 * we must check for CPU stalls first, else we might not get a chance.
3414 */
3415static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3416{
3417	struct rcu_node *rnp = rdp->mynode;
3418
3419	rdp->n_rcu_pending++;
3420
3421	/* Check for CPU stalls, if enabled. */
3422	check_cpu_stall(rsp, rdp);
3423
3424	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3425	if (rcu_nohz_full_cpu(rsp))
3426		return 0;
3427
3428	/* Is the RCU core waiting for a quiescent state from this CPU? */
3429	if (rcu_scheduler_fully_active &&
3430	    rdp->qs_pending && !rdp->passed_quiesce &&
3431	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3432		rdp->n_rp_qs_pending++;
3433	} else if (rdp->qs_pending &&
3434		   (rdp->passed_quiesce ||
3435		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3436		rdp->n_rp_report_qs++;
3437		return 1;
3438	}
3439
3440	/* Does this CPU have callbacks ready to invoke? */
3441	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3442		rdp->n_rp_cb_ready++;
3443		return 1;
3444	}
3445
3446	/* Has RCU gone idle with this CPU needing another grace period? */
3447	if (cpu_needs_another_gp(rsp, rdp)) {
3448		rdp->n_rp_cpu_needs_gp++;
3449		return 1;
3450	}
3451
3452	/* Has another RCU grace period completed?  */
3453	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3454		rdp->n_rp_gp_completed++;
3455		return 1;
3456	}
3457
3458	/* Has a new RCU grace period started? */
3459	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3460	    unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3461		rdp->n_rp_gp_started++;
3462		return 1;
3463	}
3464
3465	/* Does this CPU need a deferred NOCB wakeup? */
3466	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3467		rdp->n_rp_nocb_defer_wakeup++;
3468		return 1;
3469	}
3470
3471	/* nothing to do */
3472	rdp->n_rp_need_nothing++;
3473	return 0;
3474}
3475
3476/*
3477 * Check to see if there is any immediate RCU-related work to be done
3478 * by the current CPU, returning 1 if so.  This function is part of the
3479 * RCU implementation; it is -not- an exported member of the RCU API.
3480 */
3481static int rcu_pending(void)
3482{
3483	struct rcu_state *rsp;
3484
3485	for_each_rcu_flavor(rsp)
3486		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3487			return 1;
3488	return 0;
3489}
3490
3491/*
3492 * Return true if the specified CPU has any callback.  If all_lazy is
3493 * non-NULL, store an indication of whether all callbacks are lazy.
3494 * (If there are no callbacks, all of them are deemed to be lazy.)
3495 */
3496static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3497{
3498	bool al = true;
3499	bool hc = false;
3500	struct rcu_data *rdp;
3501	struct rcu_state *rsp;
3502
3503	for_each_rcu_flavor(rsp) {
3504		rdp = this_cpu_ptr(rsp->rda);
3505		if (!rdp->nxtlist)
3506			continue;
3507		hc = true;
3508		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3509			al = false;
3510			break;
3511		}
3512	}
3513	if (all_lazy)
3514		*all_lazy = al;
3515	return hc;
3516}
3517
3518/*
3519 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3520 * the compiler is expected to optimize this away.
3521 */
3522static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3523			       int cpu, unsigned long done)
3524{
3525	trace_rcu_barrier(rsp->name, s, cpu,
3526			  atomic_read(&rsp->barrier_cpu_count), done);
3527}
3528
3529/*
3530 * RCU callback function for _rcu_barrier().  If we are last, wake
3531 * up the task executing _rcu_barrier().
3532 */
3533static void rcu_barrier_callback(struct rcu_head *rhp)
3534{
3535	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3536	struct rcu_state *rsp = rdp->rsp;
3537
3538	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3539		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3540		complete(&rsp->barrier_completion);
3541	} else {
3542		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3543	}
3544}
3545
3546/*
3547 * Called with preemption disabled, and from cross-cpu IRQ context.
3548 */
3549static void rcu_barrier_func(void *type)
3550{
3551	struct rcu_state *rsp = type;
3552	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3553
3554	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3555	atomic_inc(&rsp->barrier_cpu_count);
3556	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3557}
3558
3559/*
3560 * Orchestrate the specified type of RCU barrier, waiting for all
3561 * RCU callbacks of the specified type to complete.
3562 */
3563static void _rcu_barrier(struct rcu_state *rsp)
3564{
3565	int cpu;
3566	struct rcu_data *rdp;
3567	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3568	unsigned long snap_done;
3569
3570	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3571
3572	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3573	mutex_lock(&rsp->barrier_mutex);
3574
3575	/*
3576	 * Ensure that all prior references, including to ->n_barrier_done,
3577	 * are ordered before the _rcu_barrier() machinery.
3578	 */
3579	smp_mb();  /* See above block comment. */
3580
3581	/*
3582	 * Recheck ->n_barrier_done to see if others did our work for us.
3583	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3584	 * transition.  The "if" expression below therefore rounds the old
3585	 * value up to the next even number and adds two before comparing.
3586	 */
3587	snap_done = rsp->n_barrier_done;
3588	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3589
3590	/*
3591	 * If the value in snap is odd, we needed to wait for the current
3592	 * rcu_barrier() to complete, then wait for the next one, in other
3593	 * words, we need the value of snap_done to be three larger than
3594	 * the value of snap.  On the other hand, if the value in snap is
3595	 * even, we only had to wait for the next rcu_barrier() to complete,
3596	 * in other words, we need the value of snap_done to be only two
3597	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3598	 * this for us (thank you, Linus!).
3599	 */
3600	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3601		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3602		smp_mb(); /* caller's subsequent code after above check. */
3603		mutex_unlock(&rsp->barrier_mutex);
3604		return;
3605	}
3606
3607	/*
3608	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3609	 * ACCESS_ONCE() to prevent the compiler from speculating
3610	 * the increment to precede the early-exit check.
3611	 */
3612	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3613	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3614	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3615	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3616
3617	/*
3618	 * Initialize the count to one rather than to zero in order to
3619	 * avoid a too-soon return to zero in case of a short grace period
3620	 * (or preemption of this task).  Exclude CPU-hotplug operations
3621	 * to ensure that no offline CPU has callbacks queued.
3622	 */
3623	init_completion(&rsp->barrier_completion);
3624	atomic_set(&rsp->barrier_cpu_count, 1);
3625	get_online_cpus();
3626
3627	/*
3628	 * Force each CPU with callbacks to register a new callback.
3629	 * When that callback is invoked, we will know that all of the
3630	 * corresponding CPU's preceding callbacks have been invoked.
3631	 */
3632	for_each_possible_cpu(cpu) {
3633		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3634			continue;
3635		rdp = per_cpu_ptr(rsp->rda, cpu);
3636		if (rcu_is_nocb_cpu(cpu)) {
3637			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3638				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3639						   rsp->n_barrier_done);
3640			} else {
3641				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3642						   rsp->n_barrier_done);
3643				smp_mb__before_atomic();
3644				atomic_inc(&rsp->barrier_cpu_count);
3645				__call_rcu(&rdp->barrier_head,
3646					   rcu_barrier_callback, rsp, cpu, 0);
3647			}
3648		} else if (ACCESS_ONCE(rdp->qlen)) {
3649			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3650					   rsp->n_barrier_done);
3651			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3652		} else {
3653			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3654					   rsp->n_barrier_done);
3655		}
3656	}
3657	put_online_cpus();
3658
3659	/*
3660	 * Now that we have an rcu_barrier_callback() callback on each
3661	 * CPU, and thus each counted, remove the initial count.
3662	 */
3663	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3664		complete(&rsp->barrier_completion);
3665
3666	/* Increment ->n_barrier_done to prevent duplicate work. */
3667	smp_mb(); /* Keep increment after above mechanism. */
3668	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3669	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3670	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3671	smp_mb(); /* Keep increment before caller's subsequent code. */
3672
3673	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3674	wait_for_completion(&rsp->barrier_completion);
3675
3676	/* Other rcu_barrier() invocations can now safely proceed. */
3677	mutex_unlock(&rsp->barrier_mutex);
3678}
3679
3680/**
3681 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3682 */
3683void rcu_barrier_bh(void)
3684{
3685	_rcu_barrier(&rcu_bh_state);
3686}
3687EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3688
3689/**
3690 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3691 */
3692void rcu_barrier_sched(void)
3693{
3694	_rcu_barrier(&rcu_sched_state);
3695}
3696EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3697
3698/*
3699 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3700 * first CPU in a given leaf rcu_node structure coming online.  The caller
3701 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3702 * disabled.
3703 */
3704static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3705{
3706	long mask;
3707	struct rcu_node *rnp = rnp_leaf;
3708
3709	for (;;) {
3710		mask = rnp->grpmask;
3711		rnp = rnp->parent;
3712		if (rnp == NULL)
3713			return;
3714		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3715		rnp->qsmaskinit |= mask;
3716		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3717	}
3718}
3719
3720/*
3721 * Do boot-time initialization of a CPU's per-CPU RCU data.
3722 */
3723static void __init
3724rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3725{
3726	unsigned long flags;
3727	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3728	struct rcu_node *rnp = rcu_get_root(rsp);
3729
3730	/* Set up local state, ensuring consistent view of global state. */
3731	raw_spin_lock_irqsave(&rnp->lock, flags);
3732	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3733	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3734	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3735	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3736	rdp->cpu = cpu;
3737	rdp->rsp = rsp;
3738	rcu_boot_init_nocb_percpu_data(rdp);
3739	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3740}
3741
3742/*
3743 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3744 * offline event can be happening at a given time.  Note also that we
3745 * can accept some slop in the rsp->completed access due to the fact
3746 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3747 */
3748static void
3749rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3750{
3751	unsigned long flags;
3752	unsigned long mask;
3753	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3754	struct rcu_node *rnp = rcu_get_root(rsp);
3755
3756	/* Set up local state, ensuring consistent view of global state. */
3757	raw_spin_lock_irqsave(&rnp->lock, flags);
3758	rdp->beenonline = 1;	 /* We have now been online. */
3759	rdp->qlen_last_fqs_check = 0;
3760	rdp->n_force_qs_snap = rsp->n_force_qs;
3761	rdp->blimit = blimit;
3762	if (!rdp->nxtlist)
3763		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3764	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3765	rcu_sysidle_init_percpu_data(rdp->dynticks);
3766	atomic_set(&rdp->dynticks->dynticks,
3767		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3768	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3769
3770	/*
3771	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3772	 * propagation up the rcu_node tree will happen at the beginning
3773	 * of the next grace period.
3774	 */
3775	rnp = rdp->mynode;
3776	mask = rdp->grpmask;
3777	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
3778	smp_mb__after_unlock_lock();
3779	rnp->qsmaskinitnext |= mask;
3780	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3781	rdp->completed = rnp->completed;
3782	rdp->passed_quiesce = false;
3783	rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3784	rdp->qs_pending = false;
3785	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3786	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3787}
3788
3789static void rcu_prepare_cpu(int cpu)
3790{
3791	struct rcu_state *rsp;
3792
3793	for_each_rcu_flavor(rsp)
3794		rcu_init_percpu_data(cpu, rsp);
3795}
3796
3797/*
3798 * Handle CPU online/offline notification events.
3799 */
3800int rcu_cpu_notify(struct notifier_block *self,
3801		   unsigned long action, void *hcpu)
3802{
3803	long cpu = (long)hcpu;
3804	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3805	struct rcu_node *rnp = rdp->mynode;
3806	struct rcu_state *rsp;
3807
3808	switch (action) {
3809	case CPU_UP_PREPARE:
3810	case CPU_UP_PREPARE_FROZEN:
3811		rcu_prepare_cpu(cpu);
3812		rcu_prepare_kthreads(cpu);
3813		rcu_spawn_all_nocb_kthreads(cpu);
3814		break;
3815	case CPU_ONLINE:
3816	case CPU_DOWN_FAILED:
3817		rcu_boost_kthread_setaffinity(rnp, -1);
3818		break;
3819	case CPU_DOWN_PREPARE:
3820		rcu_boost_kthread_setaffinity(rnp, cpu);
3821		break;
3822	case CPU_DYING:
3823	case CPU_DYING_FROZEN:
3824		for_each_rcu_flavor(rsp)
3825			rcu_cleanup_dying_cpu(rsp);
3826		break;
3827	case CPU_DYING_IDLE:
3828		for_each_rcu_flavor(rsp) {
3829			rcu_cleanup_dying_idle_cpu(cpu, rsp);
3830		}
3831		break;
3832	case CPU_DEAD:
3833	case CPU_DEAD_FROZEN:
3834	case CPU_UP_CANCELED:
3835	case CPU_UP_CANCELED_FROZEN:
3836		for_each_rcu_flavor(rsp) {
3837			rcu_cleanup_dead_cpu(cpu, rsp);
3838			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3839		}
3840		break;
3841	default:
3842		break;
3843	}
3844	return NOTIFY_OK;
3845}
3846
3847static int rcu_pm_notify(struct notifier_block *self,
3848			 unsigned long action, void *hcpu)
3849{
3850	switch (action) {
3851	case PM_HIBERNATION_PREPARE:
3852	case PM_SUSPEND_PREPARE:
3853		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3854			rcu_expedite_gp();
3855		break;
3856	case PM_POST_HIBERNATION:
3857	case PM_POST_SUSPEND:
3858		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3859			rcu_unexpedite_gp();
3860		break;
3861	default:
3862		break;
3863	}
3864	return NOTIFY_OK;
3865}
3866
3867/*
3868 * Spawn the kthreads that handle each RCU flavor's grace periods.
3869 */
3870static int __init rcu_spawn_gp_kthread(void)
3871{
3872	unsigned long flags;
3873	int kthread_prio_in = kthread_prio;
3874	struct rcu_node *rnp;
3875	struct rcu_state *rsp;
3876	struct sched_param sp;
3877	struct task_struct *t;
3878
3879	/* Force priority into range. */
3880	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3881		kthread_prio = 1;
3882	else if (kthread_prio < 0)
3883		kthread_prio = 0;
3884	else if (kthread_prio > 99)
3885		kthread_prio = 99;
3886	if (kthread_prio != kthread_prio_in)
3887		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3888			 kthread_prio, kthread_prio_in);
3889
3890	rcu_scheduler_fully_active = 1;
3891	for_each_rcu_flavor(rsp) {
3892		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3893		BUG_ON(IS_ERR(t));
3894		rnp = rcu_get_root(rsp);
3895		raw_spin_lock_irqsave(&rnp->lock, flags);
3896		rsp->gp_kthread = t;
3897		if (kthread_prio) {
3898			sp.sched_priority = kthread_prio;
3899			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3900		}
3901		wake_up_process(t);
3902		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3903	}
3904	rcu_spawn_nocb_kthreads();
3905	rcu_spawn_boost_kthreads();
3906	return 0;
3907}
3908early_initcall(rcu_spawn_gp_kthread);
3909
3910/*
3911 * This function is invoked towards the end of the scheduler's initialization
3912 * process.  Before this is called, the idle task might contain
3913 * RCU read-side critical sections (during which time, this idle
3914 * task is booting the system).  After this function is called, the
3915 * idle tasks are prohibited from containing RCU read-side critical
3916 * sections.  This function also enables RCU lockdep checking.
3917 */
3918void rcu_scheduler_starting(void)
3919{
3920	WARN_ON(num_online_cpus() != 1);
3921	WARN_ON(nr_context_switches() > 0);
3922	rcu_scheduler_active = 1;
3923}
3924
3925/*
3926 * Compute the per-level fanout, either using the exact fanout specified
3927 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3928 */
3929static void __init rcu_init_levelspread(struct rcu_state *rsp)
3930{
3931	int i;
3932
3933	if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3934		rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3935		for (i = rcu_num_lvls - 2; i >= 0; i--)
3936			rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3937	} else {
3938		int ccur;
3939		int cprv;
3940
3941		cprv = nr_cpu_ids;
3942		for (i = rcu_num_lvls - 1; i >= 0; i--) {
3943			ccur = rsp->levelcnt[i];
3944			rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3945			cprv = ccur;
3946		}
3947	}
3948}
3949
3950/*
3951 * Helper function for rcu_init() that initializes one rcu_state structure.
3952 */
3953static void __init rcu_init_one(struct rcu_state *rsp,
3954		struct rcu_data __percpu *rda)
3955{
3956	static const char * const buf[] = {
3957		"rcu_node_0",
3958		"rcu_node_1",
3959		"rcu_node_2",
3960		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
3961	static const char * const fqs[] = {
3962		"rcu_node_fqs_0",
3963		"rcu_node_fqs_1",
3964		"rcu_node_fqs_2",
3965		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3966	static u8 fl_mask = 0x1;
3967	int cpustride = 1;
3968	int i;
3969	int j;
3970	struct rcu_node *rnp;
3971
3972	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3973
3974	/* Silence gcc 4.8 warning about array index out of range. */
3975	if (rcu_num_lvls > RCU_NUM_LVLS)
3976		panic("rcu_init_one: rcu_num_lvls overflow");
3977
3978	/* Initialize the level-tracking arrays. */
3979
3980	for (i = 0; i < rcu_num_lvls; i++)
3981		rsp->levelcnt[i] = num_rcu_lvl[i];
3982	for (i = 1; i < rcu_num_lvls; i++)
3983		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3984	rcu_init_levelspread(rsp);
3985	rsp->flavor_mask = fl_mask;
3986	fl_mask <<= 1;
3987
3988	/* Initialize the elements themselves, starting from the leaves. */
3989
3990	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3991		cpustride *= rsp->levelspread[i];
3992		rnp = rsp->level[i];
3993		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3994			raw_spin_lock_init(&rnp->lock);
3995			lockdep_set_class_and_name(&rnp->lock,
3996						   &rcu_node_class[i], buf[i]);
3997			raw_spin_lock_init(&rnp->fqslock);
3998			lockdep_set_class_and_name(&rnp->fqslock,
3999						   &rcu_fqs_class[i], fqs[i]);
4000			rnp->gpnum = rsp->gpnum;
4001			rnp->completed = rsp->completed;
4002			rnp->qsmask = 0;
4003			rnp->qsmaskinit = 0;
4004			rnp->grplo = j * cpustride;
4005			rnp->grphi = (j + 1) * cpustride - 1;
4006			if (rnp->grphi >= nr_cpu_ids)
4007				rnp->grphi = nr_cpu_ids - 1;
4008			if (i == 0) {
4009				rnp->grpnum = 0;
4010				rnp->grpmask = 0;
4011				rnp->parent = NULL;
4012			} else {
4013				rnp->grpnum = j % rsp->levelspread[i - 1];
4014				rnp->grpmask = 1UL << rnp->grpnum;
4015				rnp->parent = rsp->level[i - 1] +
4016					      j / rsp->levelspread[i - 1];
4017			}
4018			rnp->level = i;
4019			INIT_LIST_HEAD(&rnp->blkd_tasks);
4020			rcu_init_one_nocb(rnp);
4021		}
4022	}
4023
4024	init_waitqueue_head(&rsp->gp_wq);
4025	rnp = rsp->level[rcu_num_lvls - 1];
4026	for_each_possible_cpu(i) {
4027		while (i > rnp->grphi)
4028			rnp++;
4029		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4030		rcu_boot_init_percpu_data(i, rsp);
4031	}
4032	list_add(&rsp->flavors, &rcu_struct_flavors);
4033}
4034
4035/*
4036 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4037 * replace the definitions in tree.h because those are needed to size
4038 * the ->node array in the rcu_state structure.
4039 */
4040static void __init rcu_init_geometry(void)
4041{
4042	ulong d;
4043	int i;
4044	int j;
4045	int n = nr_cpu_ids;
4046	int rcu_capacity[MAX_RCU_LVLS + 1];
4047
4048	/*
4049	 * Initialize any unspecified boot parameters.
4050	 * The default values of jiffies_till_first_fqs and
4051	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4052	 * value, which is a function of HZ, then adding one for each
4053	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4054	 */
4055	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4056	if (jiffies_till_first_fqs == ULONG_MAX)
4057		jiffies_till_first_fqs = d;
4058	if (jiffies_till_next_fqs == ULONG_MAX)
4059		jiffies_till_next_fqs = d;
4060
4061	/* If the compile-time values are accurate, just leave. */
4062	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4063	    nr_cpu_ids == NR_CPUS)
4064		return;
4065	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4066		rcu_fanout_leaf, nr_cpu_ids);
4067
4068	/*
4069	 * Compute number of nodes that can be handled an rcu_node tree
4070	 * with the given number of levels.  Setting rcu_capacity[0] makes
4071	 * some of the arithmetic easier.
4072	 */
4073	rcu_capacity[0] = 1;
4074	rcu_capacity[1] = rcu_fanout_leaf;
4075	for (i = 2; i <= MAX_RCU_LVLS; i++)
4076		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4077
4078	/*
4079	 * The boot-time rcu_fanout_leaf parameter is only permitted
4080	 * to increase the leaf-level fanout, not decrease it.  Of course,
4081	 * the leaf-level fanout cannot exceed the number of bits in
4082	 * the rcu_node masks.  Finally, the tree must be able to accommodate
4083	 * the configured number of CPUs.  Complain and fall back to the
4084	 * compile-time values if these limits are exceeded.
4085	 */
4086	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4087	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4088	    n > rcu_capacity[MAX_RCU_LVLS]) {
4089		WARN_ON(1);
4090		return;
4091	}
4092
4093	/* Calculate the number of rcu_nodes at each level of the tree. */
4094	for (i = 1; i <= MAX_RCU_LVLS; i++)
4095		if (n <= rcu_capacity[i]) {
4096			for (j = 0; j <= i; j++)
4097				num_rcu_lvl[j] =
4098					DIV_ROUND_UP(n, rcu_capacity[i - j]);
4099			rcu_num_lvls = i;
4100			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4101				num_rcu_lvl[j] = 0;
4102			break;
4103		}
4104
4105	/* Calculate the total number of rcu_node structures. */
4106	rcu_num_nodes = 0;
4107	for (i = 0; i <= MAX_RCU_LVLS; i++)
4108		rcu_num_nodes += num_rcu_lvl[i];
4109	rcu_num_nodes -= n;
4110}
4111
4112void __init rcu_init(void)
4113{
4114	int cpu;
4115
4116	rcu_early_boot_tests();
4117
4118	rcu_bootup_announce();
4119	rcu_init_geometry();
4120	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4121	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4122	__rcu_init_preempt();
4123	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4124
4125	/*
4126	 * We don't need protection against CPU-hotplug here because
4127	 * this is called early in boot, before either interrupts
4128	 * or the scheduler are operational.
4129	 */
4130	cpu_notifier(rcu_cpu_notify, 0);
4131	pm_notifier(rcu_pm_notify, 0);
4132	for_each_online_cpu(cpu)
4133		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4134}
4135
4136#include "tree_plugin.h"
4137