1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 *  Interactivity improvements by Mike Galbraith
7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 *  Various enhancements by Dmitry Adamushko.
10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 *  Group scheduling enhancements by Srivatsa Vaddagiri
13 *  Copyright IBM Corporation, 2007
14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 *  Scaled math optimizations by Thomas Gleixner
17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38/*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 *  run vmstat and monitor the context-switches (cs) field)
49 */
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63	= SCHED_TUNABLESCALING_LOG;
64
65/*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72/*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75static unsigned int sched_nr_latency = 8;
76
77/*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83/*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96/*
97 * The exponential sliding  window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113  */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119	lw->weight += inc;
120	lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125	lw->weight -= dec;
126	lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131	lw->weight = w;
132	lw->inv_weight = 0;
133}
134
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147	unsigned int factor;
148
149	switch (sysctl_sched_tunable_scaling) {
150	case SCHED_TUNABLESCALING_NONE:
151		factor = 1;
152		break;
153	case SCHED_TUNABLESCALING_LINEAR:
154		factor = cpus;
155		break;
156	case SCHED_TUNABLESCALING_LOG:
157	default:
158		factor = 1 + ilog2(cpus);
159		break;
160	}
161
162	return factor;
163}
164
165static void update_sysctl(void)
166{
167	unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170	(sysctl_##name = (factor) * normalized_sysctl_##name)
171	SET_SYSCTL(sched_min_granularity);
172	SET_SYSCTL(sched_latency);
173	SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179	update_sysctl();
180}
181
182#define WMULT_CONST	(~0U)
183#define WMULT_SHIFT	32
184
185static void __update_inv_weight(struct load_weight *lw)
186{
187	unsigned long w;
188
189	if (likely(lw->inv_weight))
190		return;
191
192	w = scale_load_down(lw->weight);
193
194	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195		lw->inv_weight = 1;
196	else if (unlikely(!w))
197		lw->inv_weight = WMULT_CONST;
198	else
199		lw->inv_weight = WMULT_CONST / w;
200}
201
202/*
203 * delta_exec * weight / lw.weight
204 *   OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216	u64 fact = scale_load_down(weight);
217	int shift = WMULT_SHIFT;
218
219	__update_inv_weight(lw);
220
221	if (unlikely(fact >> 32)) {
222		while (fact >> 32) {
223			fact >>= 1;
224			shift--;
225		}
226	}
227
228	/* hint to use a 32x32->64 mul */
229	fact = (u64)(u32)fact * lw->inv_weight;
230
231	while (fact >> 32) {
232		fact >>= 1;
233		shift--;
234	}
235
236	return mul_u64_u32_shr(delta_exec, fact, shift);
237}
238
239
240const struct sched_class fair_sched_class;
241
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248/* cpu runqueue to which this cfs_rq is attached */
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251	return cfs_rq->rq;
252}
253
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se)	(!se->my_q)
256
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260	WARN_ON_ONCE(!entity_is_task(se));
261#endif
262	return container_of(se, struct task_struct, se);
263}
264
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267		for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271	return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277	return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283	return grp->my_q;
284}
285
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287				       int force_update);
288
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291	if (!cfs_rq->on_list) {
292		/*
293		 * Ensure we either appear before our parent (if already
294		 * enqueued) or force our parent to appear after us when it is
295		 * enqueued.  The fact that we always enqueue bottom-up
296		 * reduces this to two cases.
297		 */
298		if (cfs_rq->tg->parent &&
299		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302		} else {
303			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305		}
306
307		cfs_rq->on_list = 1;
308		/* We should have no load, but we need to update last_decay. */
309		update_cfs_rq_blocked_load(cfs_rq, 0);
310	}
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315	if (cfs_rq->on_list) {
316		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317		cfs_rq->on_list = 0;
318	}
319}
320
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
326static inline struct cfs_rq *
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329	if (se->cfs_rq == pse->cfs_rq)
330		return se->cfs_rq;
331
332	return NULL;
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337	return se->parent;
338}
339
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343	int se_depth, pse_depth;
344
345	/*
346	 * preemption test can be made between sibling entities who are in the
347	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348	 * both tasks until we find their ancestors who are siblings of common
349	 * parent.
350	 */
351
352	/* First walk up until both entities are at same depth */
353	se_depth = (*se)->depth;
354	pse_depth = (*pse)->depth;
355
356	while (se_depth > pse_depth) {
357		se_depth--;
358		*se = parent_entity(*se);
359	}
360
361	while (pse_depth > se_depth) {
362		pse_depth--;
363		*pse = parent_entity(*pse);
364	}
365
366	while (!is_same_group(*se, *pse)) {
367		*se = parent_entity(*se);
368		*pse = parent_entity(*pse);
369	}
370}
371
372#else	/* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376	return container_of(se, struct task_struct, se);
377}
378
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381	return container_of(cfs_rq, struct rq, cfs);
382}
383
384#define entity_is_task(se)	1
385
386#define for_each_sched_entity(se) \
387		for (; se; se = NULL)
388
389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390{
391	return &task_rq(p)->cfs;
392}
393
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396	struct task_struct *p = task_of(se);
397	struct rq *rq = task_rq(p);
398
399	return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405	return NULL;
406}
407
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421	return NULL;
422}
423
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
429#endif	/* CONFIG_FAIR_GROUP_SCHED */
430
431static __always_inline
432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439{
440	s64 delta = (s64)(vruntime - max_vruntime);
441	if (delta > 0)
442		max_vruntime = vruntime;
443
444	return max_vruntime;
445}
446
447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448{
449	s64 delta = (s64)(vruntime - min_vruntime);
450	if (delta < 0)
451		min_vruntime = vruntime;
452
453	return min_vruntime;
454}
455
456static inline int entity_before(struct sched_entity *a,
457				struct sched_entity *b)
458{
459	return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464	u64 vruntime = cfs_rq->min_vruntime;
465
466	if (cfs_rq->curr)
467		vruntime = cfs_rq->curr->vruntime;
468
469	if (cfs_rq->rb_leftmost) {
470		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471						   struct sched_entity,
472						   run_node);
473
474		if (!cfs_rq->curr)
475			vruntime = se->vruntime;
476		else
477			vruntime = min_vruntime(vruntime, se->vruntime);
478	}
479
480	/* ensure we never gain time by being placed backwards. */
481	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482#ifndef CONFIG_64BIT
483	smp_wmb();
484	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
486}
487
488/*
489 * Enqueue an entity into the rb-tree:
490 */
491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492{
493	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494	struct rb_node *parent = NULL;
495	struct sched_entity *entry;
496	int leftmost = 1;
497
498	/*
499	 * Find the right place in the rbtree:
500	 */
501	while (*link) {
502		parent = *link;
503		entry = rb_entry(parent, struct sched_entity, run_node);
504		/*
505		 * We dont care about collisions. Nodes with
506		 * the same key stay together.
507		 */
508		if (entity_before(se, entry)) {
509			link = &parent->rb_left;
510		} else {
511			link = &parent->rb_right;
512			leftmost = 0;
513		}
514	}
515
516	/*
517	 * Maintain a cache of leftmost tree entries (it is frequently
518	 * used):
519	 */
520	if (leftmost)
521		cfs_rq->rb_leftmost = &se->run_node;
522
523	rb_link_node(&se->run_node, parent, link);
524	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525}
526
527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528{
529	if (cfs_rq->rb_leftmost == &se->run_node) {
530		struct rb_node *next_node;
531
532		next_node = rb_next(&se->run_node);
533		cfs_rq->rb_leftmost = next_node;
534	}
535
536	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537}
538
539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540{
541	struct rb_node *left = cfs_rq->rb_leftmost;
542
543	if (!left)
544		return NULL;
545
546	return rb_entry(left, struct sched_entity, run_node);
547}
548
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551	struct rb_node *next = rb_next(&se->run_node);
552
553	if (!next)
554		return NULL;
555
556	return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561{
562	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564	if (!last)
565		return NULL;
566
567	return rb_entry(last, struct sched_entity, run_node);
568}
569
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574int sched_proc_update_handler(struct ctl_table *table, int write,
575		void __user *buffer, size_t *lenp,
576		loff_t *ppos)
577{
578	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579	int factor = get_update_sysctl_factor();
580
581	if (ret || !write)
582		return ret;
583
584	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585					sysctl_sched_min_granularity);
586
587#define WRT_SYSCTL(name) \
588	(normalized_sysctl_##name = sysctl_##name / (factor))
589	WRT_SYSCTL(sched_min_granularity);
590	WRT_SYSCTL(sched_latency);
591	WRT_SYSCTL(sched_wakeup_granularity);
592#undef WRT_SYSCTL
593
594	return 0;
595}
596#endif
597
598/*
599 * delta /= w
600 */
601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602{
603	if (unlikely(se->load.weight != NICE_0_LOAD))
604		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606	return delta;
607}
608
609/*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617static u64 __sched_period(unsigned long nr_running)
618{
619	u64 period = sysctl_sched_latency;
620	unsigned long nr_latency = sched_nr_latency;
621
622	if (unlikely(nr_running > nr_latency)) {
623		period = sysctl_sched_min_granularity;
624		period *= nr_running;
625	}
626
627	return period;
628}
629
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637{
638	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640	for_each_sched_entity(se) {
641		struct load_weight *load;
642		struct load_weight lw;
643
644		cfs_rq = cfs_rq_of(se);
645		load = &cfs_rq->load;
646
647		if (unlikely(!se->on_rq)) {
648			lw = cfs_rq->load;
649
650			update_load_add(&lw, se->load.weight);
651			load = &lw;
652		}
653		slice = __calc_delta(slice, se->load.weight, load);
654	}
655	return slice;
656}
657
658/*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664{
665	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666}
667
668#ifdef CONFIG_SMP
669static int select_idle_sibling(struct task_struct *p, int cpu);
670static unsigned long task_h_load(struct task_struct *p);
671
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673static inline void __update_task_entity_utilization(struct sched_entity *se);
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678	u32 slice;
679
680	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681	p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682	p->se.avg.avg_period = slice;
683	__update_task_entity_contrib(&p->se);
684	__update_task_entity_utilization(&p->se);
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
692/*
693 * Update the current task's runtime statistics.
694 */
695static void update_curr(struct cfs_rq *cfs_rq)
696{
697	struct sched_entity *curr = cfs_rq->curr;
698	u64 now = rq_clock_task(rq_of(cfs_rq));
699	u64 delta_exec;
700
701	if (unlikely(!curr))
702		return;
703
704	delta_exec = now - curr->exec_start;
705	if (unlikely((s64)delta_exec <= 0))
706		return;
707
708	curr->exec_start = now;
709
710	schedstat_set(curr->statistics.exec_max,
711		      max(delta_exec, curr->statistics.exec_max));
712
713	curr->sum_exec_runtime += delta_exec;
714	schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716	curr->vruntime += calc_delta_fair(delta_exec, curr);
717	update_min_vruntime(cfs_rq);
718
719	if (entity_is_task(curr)) {
720		struct task_struct *curtask = task_of(curr);
721
722		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
723		cpuacct_charge(curtask, delta_exec);
724		account_group_exec_runtime(curtask, delta_exec);
725	}
726
727	account_cfs_rq_runtime(cfs_rq, delta_exec);
728}
729
730static void update_curr_fair(struct rq *rq)
731{
732	update_curr(cfs_rq_of(&rq->curr->se));
733}
734
735static inline void
736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
737{
738	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
739}
740
741/*
742 * Task is being enqueued - update stats:
743 */
744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745{
746	/*
747	 * Are we enqueueing a waiting task? (for current tasks
748	 * a dequeue/enqueue event is a NOP)
749	 */
750	if (se != cfs_rq->curr)
751		update_stats_wait_start(cfs_rq, se);
752}
753
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
758			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
759	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
761			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762#ifdef CONFIG_SCHEDSTATS
763	if (entity_is_task(se)) {
764		trace_sched_stat_wait(task_of(se),
765			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766	}
767#endif
768	schedstat_set(se->statistics.wait_start, 0);
769}
770
771static inline void
772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773{
774	/*
775	 * Mark the end of the wait period if dequeueing a
776	 * waiting task:
777	 */
778	if (se != cfs_rq->curr)
779		update_stats_wait_end(cfs_rq, se);
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787{
788	/*
789	 * We are starting a new run period:
790	 */
791	se->exec_start = rq_clock_task(rq_of(cfs_rq));
792}
793
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
798#ifdef CONFIG_NUMA_BALANCING
799/*
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
803 */
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
809
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815	unsigned long rss = 0;
816	unsigned long nr_scan_pages;
817
818	/*
819	 * Calculations based on RSS as non-present and empty pages are skipped
820	 * by the PTE scanner and NUMA hinting faults should be trapped based
821	 * on resident pages
822	 */
823	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824	rss = get_mm_rss(p->mm);
825	if (!rss)
826		rss = nr_scan_pages;
827
828	rss = round_up(rss, nr_scan_pages);
829	return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
837	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
838	unsigned int scan, floor;
839	unsigned int windows = 1;
840
841	if (scan_size < MAX_SCAN_WINDOW)
842		windows = MAX_SCAN_WINDOW / scan_size;
843	floor = 1000 / windows;
844
845	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846	return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851	unsigned int smin = task_scan_min(p);
852	unsigned int smax;
853
854	/* Watch for min being lower than max due to floor calculations */
855	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856	return max(smin, smax);
857}
858
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861	rq->nr_numa_running += (p->numa_preferred_nid != -1);
862	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
871struct numa_group {
872	atomic_t refcount;
873
874	spinlock_t lock; /* nr_tasks, tasks */
875	int nr_tasks;
876	pid_t gid;
877
878	struct rcu_head rcu;
879	nodemask_t active_nodes;
880	unsigned long total_faults;
881	/*
882	 * Faults_cpu is used to decide whether memory should move
883	 * towards the CPU. As a consequence, these stats are weighted
884	 * more by CPU use than by memory faults.
885	 */
886	unsigned long *faults_cpu;
887	unsigned long faults[0];
888};
889
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
899pid_t task_numa_group_id(struct task_struct *p)
900{
901	return p->numa_group ? p->numa_group->gid : 0;
902}
903
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
911{
912	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
917	if (!p->numa_faults)
918		return 0;
919
920	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
922}
923
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926	if (!p->numa_group)
927		return 0;
928
929	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
931}
932
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
935	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
937}
938
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941					int maxdist, bool task)
942{
943	unsigned long score = 0;
944	int node;
945
946	/*
947	 * All nodes are directly connected, and the same distance
948	 * from each other. No need for fancy placement algorithms.
949	 */
950	if (sched_numa_topology_type == NUMA_DIRECT)
951		return 0;
952
953	/*
954	 * This code is called for each node, introducing N^2 complexity,
955	 * which should be ok given the number of nodes rarely exceeds 8.
956	 */
957	for_each_online_node(node) {
958		unsigned long faults;
959		int dist = node_distance(nid, node);
960
961		/*
962		 * The furthest away nodes in the system are not interesting
963		 * for placement; nid was already counted.
964		 */
965		if (dist == sched_max_numa_distance || node == nid)
966			continue;
967
968		/*
969		 * On systems with a backplane NUMA topology, compare groups
970		 * of nodes, and move tasks towards the group with the most
971		 * memory accesses. When comparing two nodes at distance
972		 * "hoplimit", only nodes closer by than "hoplimit" are part
973		 * of each group. Skip other nodes.
974		 */
975		if (sched_numa_topology_type == NUMA_BACKPLANE &&
976					dist > maxdist)
977			continue;
978
979		/* Add up the faults from nearby nodes. */
980		if (task)
981			faults = task_faults(p, node);
982		else
983			faults = group_faults(p, node);
984
985		/*
986		 * On systems with a glueless mesh NUMA topology, there are
987		 * no fixed "groups of nodes". Instead, nodes that are not
988		 * directly connected bounce traffic through intermediate
989		 * nodes; a numa_group can occupy any set of nodes.
990		 * The further away a node is, the less the faults count.
991		 * This seems to result in good task placement.
992		 */
993		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994			faults *= (sched_max_numa_distance - dist);
995			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996		}
997
998		score += faults;
999	}
1000
1001	return score;
1002}
1003
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node.  The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011					int dist)
1012{
1013	unsigned long faults, total_faults;
1014
1015	if (!p->numa_faults)
1016		return 0;
1017
1018	total_faults = p->total_numa_faults;
1019
1020	if (!total_faults)
1021		return 0;
1022
1023	faults = task_faults(p, nid);
1024	faults += score_nearby_nodes(p, nid, dist, true);
1025
1026	return 1000 * faults / total_faults;
1027}
1028
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030					 int dist)
1031{
1032	unsigned long faults, total_faults;
1033
1034	if (!p->numa_group)
1035		return 0;
1036
1037	total_faults = p->numa_group->total_faults;
1038
1039	if (!total_faults)
1040		return 0;
1041
1042	faults = group_faults(p, nid);
1043	faults += score_nearby_nodes(p, nid, dist, false);
1044
1045	return 1000 * faults / total_faults;
1046}
1047
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049				int src_nid, int dst_cpu)
1050{
1051	struct numa_group *ng = p->numa_group;
1052	int dst_nid = cpu_to_node(dst_cpu);
1053	int last_cpupid, this_cpupid;
1054
1055	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057	/*
1058	 * Multi-stage node selection is used in conjunction with a periodic
1059	 * migration fault to build a temporal task<->page relation. By using
1060	 * a two-stage filter we remove short/unlikely relations.
1061	 *
1062	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063	 * a task's usage of a particular page (n_p) per total usage of this
1064	 * page (n_t) (in a given time-span) to a probability.
1065	 *
1066	 * Our periodic faults will sample this probability and getting the
1067	 * same result twice in a row, given these samples are fully
1068	 * independent, is then given by P(n)^2, provided our sample period
1069	 * is sufficiently short compared to the usage pattern.
1070	 *
1071	 * This quadric squishes small probabilities, making it less likely we
1072	 * act on an unlikely task<->page relation.
1073	 */
1074	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075	if (!cpupid_pid_unset(last_cpupid) &&
1076				cpupid_to_nid(last_cpupid) != dst_nid)
1077		return false;
1078
1079	/* Always allow migrate on private faults */
1080	if (cpupid_match_pid(p, last_cpupid))
1081		return true;
1082
1083	/* A shared fault, but p->numa_group has not been set up yet. */
1084	if (!ng)
1085		return true;
1086
1087	/*
1088	 * Do not migrate if the destination is not a node that
1089	 * is actively used by this numa group.
1090	 */
1091	if (!node_isset(dst_nid, ng->active_nodes))
1092		return false;
1093
1094	/*
1095	 * Source is a node that is not actively used by this
1096	 * numa group, while the destination is. Migrate.
1097	 */
1098	if (!node_isset(src_nid, ng->active_nodes))
1099		return true;
1100
1101	/*
1102	 * Both source and destination are nodes in active
1103	 * use by this numa group. Maximize memory bandwidth
1104	 * by migrating from more heavily used groups, to less
1105	 * heavily used ones, spreading the load around.
1106	 * Use a 1/4 hysteresis to avoid spurious page movement.
1107	 */
1108	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
1111static unsigned long weighted_cpuload(const int cpu);
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
1114static unsigned long capacity_of(int cpu);
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
1117/* Cached statistics for all CPUs within a node */
1118struct numa_stats {
1119	unsigned long nr_running;
1120	unsigned long load;
1121
1122	/* Total compute capacity of CPUs on a node */
1123	unsigned long compute_capacity;
1124
1125	/* Approximate capacity in terms of runnable tasks on a node */
1126	unsigned long task_capacity;
1127	int has_free_capacity;
1128};
1129
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
1135	int smt, cpu, cpus = 0;
1136	unsigned long capacity;
1137
1138	memset(ns, 0, sizeof(*ns));
1139	for_each_cpu(cpu, cpumask_of_node(nid)) {
1140		struct rq *rq = cpu_rq(cpu);
1141
1142		ns->nr_running += rq->nr_running;
1143		ns->load += weighted_cpuload(cpu);
1144		ns->compute_capacity += capacity_of(cpu);
1145
1146		cpus++;
1147	}
1148
1149	/*
1150	 * If we raced with hotplug and there are no CPUs left in our mask
1151	 * the @ns structure is NULL'ed and task_numa_compare() will
1152	 * not find this node attractive.
1153	 *
1154	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155	 * imbalance and bail there.
1156	 */
1157	if (!cpus)
1158		return;
1159
1160	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162	capacity = cpus / smt; /* cores */
1163
1164	ns->task_capacity = min_t(unsigned, capacity,
1165		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167}
1168
1169struct task_numa_env {
1170	struct task_struct *p;
1171
1172	int src_cpu, src_nid;
1173	int dst_cpu, dst_nid;
1174
1175	struct numa_stats src_stats, dst_stats;
1176
1177	int imbalance_pct;
1178	int dist;
1179
1180	struct task_struct *best_task;
1181	long best_imp;
1182	int best_cpu;
1183};
1184
1185static void task_numa_assign(struct task_numa_env *env,
1186			     struct task_struct *p, long imp)
1187{
1188	if (env->best_task)
1189		put_task_struct(env->best_task);
1190	if (p)
1191		get_task_struct(p);
1192
1193	env->best_task = p;
1194	env->best_imp = imp;
1195	env->best_cpu = env->dst_cpu;
1196}
1197
1198static bool load_too_imbalanced(long src_load, long dst_load,
1199				struct task_numa_env *env)
1200{
1201	long src_capacity, dst_capacity;
1202	long orig_src_load;
1203	long load_a, load_b;
1204	long moved_load;
1205	long imb;
1206
1207	/*
1208	 * The load is corrected for the CPU capacity available on each node.
1209	 *
1210	 * src_load        dst_load
1211	 * ------------ vs ---------
1212	 * src_capacity    dst_capacity
1213	 */
1214	src_capacity = env->src_stats.compute_capacity;
1215	dst_capacity = env->dst_stats.compute_capacity;
1216
1217	/* We care about the slope of the imbalance, not the direction. */
1218	load_a = dst_load;
1219	load_b = src_load;
1220	if (load_a < load_b)
1221		swap(load_a, load_b);
1222
1223	/* Is the difference below the threshold? */
1224	imb = load_a * src_capacity * 100 -
1225		load_b * dst_capacity * env->imbalance_pct;
1226	if (imb <= 0)
1227		return false;
1228
1229	/*
1230	 * The imbalance is above the allowed threshold.
1231	 * Allow a move that brings us closer to a balanced situation,
1232	 * without moving things past the point of balance.
1233	 */
1234	orig_src_load = env->src_stats.load;
1235
1236	/*
1237	 * In a task swap, there will be one load moving from src to dst,
1238	 * and another moving back. This is the net sum of both moves.
1239	 * A simple task move will always have a positive value.
1240	 * Allow the move if it brings the system closer to a balanced
1241	 * situation, without crossing over the balance point.
1242	 */
1243	moved_load = orig_src_load - src_load;
1244
1245	if (moved_load > 0)
1246		/* Moving src -> dst. Did we overshoot balance? */
1247		return src_load * dst_capacity < dst_load * src_capacity;
1248	else
1249		/* Moving dst -> src. Did we overshoot balance? */
1250		return dst_load * src_capacity < src_load * dst_capacity;
1251}
1252
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
1259static void task_numa_compare(struct task_numa_env *env,
1260			      long taskimp, long groupimp)
1261{
1262	struct rq *src_rq = cpu_rq(env->src_cpu);
1263	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264	struct task_struct *cur;
1265	long src_load, dst_load;
1266	long load;
1267	long imp = env->p->numa_group ? groupimp : taskimp;
1268	long moveimp = imp;
1269	int dist = env->dist;
1270
1271	rcu_read_lock();
1272
1273	raw_spin_lock_irq(&dst_rq->lock);
1274	cur = dst_rq->curr;
1275	/*
1276	 * No need to move the exiting task, and this ensures that ->curr
1277	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278	 * is safe under RCU read lock.
1279	 * Note that rcu_read_lock() itself can't protect from the final
1280	 * put_task_struct() after the last schedule().
1281	 */
1282	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1283		cur = NULL;
1284	raw_spin_unlock_irq(&dst_rq->lock);
1285
1286	/*
1287	 * Because we have preemption enabled we can get migrated around and
1288	 * end try selecting ourselves (current == env->p) as a swap candidate.
1289	 */
1290	if (cur == env->p)
1291		goto unlock;
1292
1293	/*
1294	 * "imp" is the fault differential for the source task between the
1295	 * source and destination node. Calculate the total differential for
1296	 * the source task and potential destination task. The more negative
1297	 * the value is, the more rmeote accesses that would be expected to
1298	 * be incurred if the tasks were swapped.
1299	 */
1300	if (cur) {
1301		/* Skip this swap candidate if cannot move to the source cpu */
1302		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303			goto unlock;
1304
1305		/*
1306		 * If dst and source tasks are in the same NUMA group, or not
1307		 * in any group then look only at task weights.
1308		 */
1309		if (cur->numa_group == env->p->numa_group) {
1310			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311			      task_weight(cur, env->dst_nid, dist);
1312			/*
1313			 * Add some hysteresis to prevent swapping the
1314			 * tasks within a group over tiny differences.
1315			 */
1316			if (cur->numa_group)
1317				imp -= imp/16;
1318		} else {
1319			/*
1320			 * Compare the group weights. If a task is all by
1321			 * itself (not part of a group), use the task weight
1322			 * instead.
1323			 */
1324			if (cur->numa_group)
1325				imp += group_weight(cur, env->src_nid, dist) -
1326				       group_weight(cur, env->dst_nid, dist);
1327			else
1328				imp += task_weight(cur, env->src_nid, dist) -
1329				       task_weight(cur, env->dst_nid, dist);
1330		}
1331	}
1332
1333	if (imp <= env->best_imp && moveimp <= env->best_imp)
1334		goto unlock;
1335
1336	if (!cur) {
1337		/* Is there capacity at our destination? */
1338		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1339		    !env->dst_stats.has_free_capacity)
1340			goto unlock;
1341
1342		goto balance;
1343	}
1344
1345	/* Balance doesn't matter much if we're running a task per cpu */
1346	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347			dst_rq->nr_running == 1)
1348		goto assign;
1349
1350	/*
1351	 * In the overloaded case, try and keep the load balanced.
1352	 */
1353balance:
1354	load = task_h_load(env->p);
1355	dst_load = env->dst_stats.load + load;
1356	src_load = env->src_stats.load - load;
1357
1358	if (moveimp > imp && moveimp > env->best_imp) {
1359		/*
1360		 * If the improvement from just moving env->p direction is
1361		 * better than swapping tasks around, check if a move is
1362		 * possible. Store a slightly smaller score than moveimp,
1363		 * so an actually idle CPU will win.
1364		 */
1365		if (!load_too_imbalanced(src_load, dst_load, env)) {
1366			imp = moveimp - 1;
1367			cur = NULL;
1368			goto assign;
1369		}
1370	}
1371
1372	if (imp <= env->best_imp)
1373		goto unlock;
1374
1375	if (cur) {
1376		load = task_h_load(cur);
1377		dst_load -= load;
1378		src_load += load;
1379	}
1380
1381	if (load_too_imbalanced(src_load, dst_load, env))
1382		goto unlock;
1383
1384	/*
1385	 * One idle CPU per node is evaluated for a task numa move.
1386	 * Call select_idle_sibling to maybe find a better one.
1387	 */
1388	if (!cur)
1389		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
1391assign:
1392	task_numa_assign(env, cur, imp);
1393unlock:
1394	rcu_read_unlock();
1395}
1396
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398				long taskimp, long groupimp)
1399{
1400	int cpu;
1401
1402	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403		/* Skip this CPU if the source task cannot migrate */
1404		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405			continue;
1406
1407		env->dst_cpu = cpu;
1408		task_numa_compare(env, taskimp, groupimp);
1409	}
1410}
1411
1412static int task_numa_migrate(struct task_struct *p)
1413{
1414	struct task_numa_env env = {
1415		.p = p,
1416
1417		.src_cpu = task_cpu(p),
1418		.src_nid = task_node(p),
1419
1420		.imbalance_pct = 112,
1421
1422		.best_task = NULL,
1423		.best_imp = 0,
1424		.best_cpu = -1
1425	};
1426	struct sched_domain *sd;
1427	unsigned long taskweight, groupweight;
1428	int nid, ret, dist;
1429	long taskimp, groupimp;
1430
1431	/*
1432	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433	 * imbalance and would be the first to start moving tasks about.
1434	 *
1435	 * And we want to avoid any moving of tasks about, as that would create
1436	 * random movement of tasks -- counter the numa conditions we're trying
1437	 * to satisfy here.
1438	 */
1439	rcu_read_lock();
1440	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1441	if (sd)
1442		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1443	rcu_read_unlock();
1444
1445	/*
1446	 * Cpusets can break the scheduler domain tree into smaller
1447	 * balance domains, some of which do not cross NUMA boundaries.
1448	 * Tasks that are "trapped" in such domains cannot be migrated
1449	 * elsewhere, so there is no point in (re)trying.
1450	 */
1451	if (unlikely(!sd)) {
1452		p->numa_preferred_nid = task_node(p);
1453		return -EINVAL;
1454	}
1455
1456	env.dst_nid = p->numa_preferred_nid;
1457	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458	taskweight = task_weight(p, env.src_nid, dist);
1459	groupweight = group_weight(p, env.src_nid, dist);
1460	update_numa_stats(&env.src_stats, env.src_nid);
1461	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1463	update_numa_stats(&env.dst_stats, env.dst_nid);
1464
1465	/* Try to find a spot on the preferred nid. */
1466	task_numa_find_cpu(&env, taskimp, groupimp);
1467
1468	/*
1469	 * Look at other nodes in these cases:
1470	 * - there is no space available on the preferred_nid
1471	 * - the task is part of a numa_group that is interleaved across
1472	 *   multiple NUMA nodes; in order to better consolidate the group,
1473	 *   we need to check other locations.
1474	 */
1475	if (env.best_cpu == -1 || (p->numa_group &&
1476			nodes_weight(p->numa_group->active_nodes) > 1)) {
1477		for_each_online_node(nid) {
1478			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479				continue;
1480
1481			dist = node_distance(env.src_nid, env.dst_nid);
1482			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483						dist != env.dist) {
1484				taskweight = task_weight(p, env.src_nid, dist);
1485				groupweight = group_weight(p, env.src_nid, dist);
1486			}
1487
1488			/* Only consider nodes where both task and groups benefit */
1489			taskimp = task_weight(p, nid, dist) - taskweight;
1490			groupimp = group_weight(p, nid, dist) - groupweight;
1491			if (taskimp < 0 && groupimp < 0)
1492				continue;
1493
1494			env.dist = dist;
1495			env.dst_nid = nid;
1496			update_numa_stats(&env.dst_stats, env.dst_nid);
1497			task_numa_find_cpu(&env, taskimp, groupimp);
1498		}
1499	}
1500
1501	/*
1502	 * If the task is part of a workload that spans multiple NUMA nodes,
1503	 * and is migrating into one of the workload's active nodes, remember
1504	 * this node as the task's preferred numa node, so the workload can
1505	 * settle down.
1506	 * A task that migrated to a second choice node will be better off
1507	 * trying for a better one later. Do not set the preferred node here.
1508	 */
1509	if (p->numa_group) {
1510		if (env.best_cpu == -1)
1511			nid = env.src_nid;
1512		else
1513			nid = env.dst_nid;
1514
1515		if (node_isset(nid, p->numa_group->active_nodes))
1516			sched_setnuma(p, env.dst_nid);
1517	}
1518
1519	/* No better CPU than the current one was found. */
1520	if (env.best_cpu == -1)
1521		return -EAGAIN;
1522
1523	/*
1524	 * Reset the scan period if the task is being rescheduled on an
1525	 * alternative node to recheck if the tasks is now properly placed.
1526	 */
1527	p->numa_scan_period = task_scan_min(p);
1528
1529	if (env.best_task == NULL) {
1530		ret = migrate_task_to(p, env.best_cpu);
1531		if (ret != 0)
1532			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1533		return ret;
1534	}
1535
1536	ret = migrate_swap(p, env.best_task);
1537	if (ret != 0)
1538		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1539	put_task_struct(env.best_task);
1540	return ret;
1541}
1542
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
1546	unsigned long interval = HZ;
1547
1548	/* This task has no NUMA fault statistics yet */
1549	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1550		return;
1551
1552	/* Periodically retry migrating the task to the preferred node */
1553	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554	p->numa_migrate_retry = jiffies + interval;
1555
1556	/* Success if task is already running on preferred CPU */
1557	if (task_node(p) == p->numa_preferred_nid)
1558		return;
1559
1560	/* Otherwise, try migrate to a CPU on the preferred node */
1561	task_numa_migrate(p);
1562}
1563
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577	unsigned long faults, max_faults = 0;
1578	int nid;
1579
1580	for_each_online_node(nid) {
1581		faults = group_faults_cpu(numa_group, nid);
1582		if (faults > max_faults)
1583			max_faults = faults;
1584	}
1585
1586	for_each_online_node(nid) {
1587		faults = group_faults_cpu(numa_group, nid);
1588		if (!node_isset(nid, numa_group->active_nodes)) {
1589			if (faults > max_faults * 6 / 16)
1590				node_set(nid, numa_group->active_nodes);
1591		} else if (faults < max_faults * 3 / 16)
1592			node_clear(nid, numa_group->active_nodes);
1593	}
1594}
1595
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
1602 */
1603#define NUMA_PERIOD_SLOTS 10
1604#define NUMA_PERIOD_THRESHOLD 7
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613			unsigned long shared, unsigned long private)
1614{
1615	unsigned int period_slot;
1616	int ratio;
1617	int diff;
1618
1619	unsigned long remote = p->numa_faults_locality[0];
1620	unsigned long local = p->numa_faults_locality[1];
1621
1622	/*
1623	 * If there were no record hinting faults then either the task is
1624	 * completely idle or all activity is areas that are not of interest
1625	 * to automatic numa balancing. Related to that, if there were failed
1626	 * migration then it implies we are migrating too quickly or the local
1627	 * node is overloaded. In either case, scan slower
1628	 */
1629	if (local + shared == 0 || p->numa_faults_locality[2]) {
1630		p->numa_scan_period = min(p->numa_scan_period_max,
1631			p->numa_scan_period << 1);
1632
1633		p->mm->numa_next_scan = jiffies +
1634			msecs_to_jiffies(p->numa_scan_period);
1635
1636		return;
1637	}
1638
1639	/*
1640	 * Prepare to scale scan period relative to the current period.
1641	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1642	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644	 */
1645	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649		if (!slot)
1650			slot = 1;
1651		diff = slot * period_slot;
1652	} else {
1653		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654
1655		/*
1656		 * Scale scan rate increases based on sharing. There is an
1657		 * inverse relationship between the degree of sharing and
1658		 * the adjustment made to the scanning period. Broadly
1659		 * speaking the intent is that there is little point
1660		 * scanning faster if shared accesses dominate as it may
1661		 * simply bounce migrations uselessly
1662		 */
1663		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1664		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665	}
1666
1667	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668			task_scan_min(p), task_scan_max(p));
1669	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670}
1671
1672/*
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1678 */
1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680{
1681	u64 runtime, delta, now;
1682	/* Use the start of this time slice to avoid calculations. */
1683	now = p->se.exec_start;
1684	runtime = p->se.sum_exec_runtime;
1685
1686	if (p->last_task_numa_placement) {
1687		delta = runtime - p->last_sum_exec_runtime;
1688		*period = now - p->last_task_numa_placement;
1689	} else {
1690		delta = p->se.avg.runnable_avg_sum;
1691		*period = p->se.avg.avg_period;
1692	}
1693
1694	p->last_sum_exec_runtime = runtime;
1695	p->last_task_numa_placement = now;
1696
1697	return delta;
1698}
1699
1700/*
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1704 */
1705static int preferred_group_nid(struct task_struct *p, int nid)
1706{
1707	nodemask_t nodes;
1708	int dist;
1709
1710	/* Direct connections between all NUMA nodes. */
1711	if (sched_numa_topology_type == NUMA_DIRECT)
1712		return nid;
1713
1714	/*
1715	 * On a system with glueless mesh NUMA topology, group_weight
1716	 * scores nodes according to the number of NUMA hinting faults on
1717	 * both the node itself, and on nearby nodes.
1718	 */
1719	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720		unsigned long score, max_score = 0;
1721		int node, max_node = nid;
1722
1723		dist = sched_max_numa_distance;
1724
1725		for_each_online_node(node) {
1726			score = group_weight(p, node, dist);
1727			if (score > max_score) {
1728				max_score = score;
1729				max_node = node;
1730			}
1731		}
1732		return max_node;
1733	}
1734
1735	/*
1736	 * Finding the preferred nid in a system with NUMA backplane
1737	 * interconnect topology is more involved. The goal is to locate
1738	 * tasks from numa_groups near each other in the system, and
1739	 * untangle workloads from different sides of the system. This requires
1740	 * searching down the hierarchy of node groups, recursively searching
1741	 * inside the highest scoring group of nodes. The nodemask tricks
1742	 * keep the complexity of the search down.
1743	 */
1744	nodes = node_online_map;
1745	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746		unsigned long max_faults = 0;
1747		nodemask_t max_group = NODE_MASK_NONE;
1748		int a, b;
1749
1750		/* Are there nodes at this distance from each other? */
1751		if (!find_numa_distance(dist))
1752			continue;
1753
1754		for_each_node_mask(a, nodes) {
1755			unsigned long faults = 0;
1756			nodemask_t this_group;
1757			nodes_clear(this_group);
1758
1759			/* Sum group's NUMA faults; includes a==b case. */
1760			for_each_node_mask(b, nodes) {
1761				if (node_distance(a, b) < dist) {
1762					faults += group_faults(p, b);
1763					node_set(b, this_group);
1764					node_clear(b, nodes);
1765				}
1766			}
1767
1768			/* Remember the top group. */
1769			if (faults > max_faults) {
1770				max_faults = faults;
1771				max_group = this_group;
1772				/*
1773				 * subtle: at the smallest distance there is
1774				 * just one node left in each "group", the
1775				 * winner is the preferred nid.
1776				 */
1777				nid = a;
1778			}
1779		}
1780		/* Next round, evaluate the nodes within max_group. */
1781		if (!max_faults)
1782			break;
1783		nodes = max_group;
1784	}
1785	return nid;
1786}
1787
1788static void task_numa_placement(struct task_struct *p)
1789{
1790	int seq, nid, max_nid = -1, max_group_nid = -1;
1791	unsigned long max_faults = 0, max_group_faults = 0;
1792	unsigned long fault_types[2] = { 0, 0 };
1793	unsigned long total_faults;
1794	u64 runtime, period;
1795	spinlock_t *group_lock = NULL;
1796
1797	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1798	if (p->numa_scan_seq == seq)
1799		return;
1800	p->numa_scan_seq = seq;
1801	p->numa_scan_period_max = task_scan_max(p);
1802
1803	total_faults = p->numa_faults_locality[0] +
1804		       p->numa_faults_locality[1];
1805	runtime = numa_get_avg_runtime(p, &period);
1806
1807	/* If the task is part of a group prevent parallel updates to group stats */
1808	if (p->numa_group) {
1809		group_lock = &p->numa_group->lock;
1810		spin_lock_irq(group_lock);
1811	}
1812
1813	/* Find the node with the highest number of faults */
1814	for_each_online_node(nid) {
1815		/* Keep track of the offsets in numa_faults array */
1816		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1817		unsigned long faults = 0, group_faults = 0;
1818		int priv;
1819
1820		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1821			long diff, f_diff, f_weight;
1822
1823			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1827
1828			/* Decay existing window, copy faults since last scan */
1829			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830			fault_types[priv] += p->numa_faults[membuf_idx];
1831			p->numa_faults[membuf_idx] = 0;
1832
1833			/*
1834			 * Normalize the faults_from, so all tasks in a group
1835			 * count according to CPU use, instead of by the raw
1836			 * number of faults. Tasks with little runtime have
1837			 * little over-all impact on throughput, and thus their
1838			 * faults are less important.
1839			 */
1840			f_weight = div64_u64(runtime << 16, period + 1);
1841			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1842				   (total_faults + 1);
1843			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844			p->numa_faults[cpubuf_idx] = 0;
1845
1846			p->numa_faults[mem_idx] += diff;
1847			p->numa_faults[cpu_idx] += f_diff;
1848			faults += p->numa_faults[mem_idx];
1849			p->total_numa_faults += diff;
1850			if (p->numa_group) {
1851				/*
1852				 * safe because we can only change our own group
1853				 *
1854				 * mem_idx represents the offset for a given
1855				 * nid and priv in a specific region because it
1856				 * is at the beginning of the numa_faults array.
1857				 */
1858				p->numa_group->faults[mem_idx] += diff;
1859				p->numa_group->faults_cpu[mem_idx] += f_diff;
1860				p->numa_group->total_faults += diff;
1861				group_faults += p->numa_group->faults[mem_idx];
1862			}
1863		}
1864
1865		if (faults > max_faults) {
1866			max_faults = faults;
1867			max_nid = nid;
1868		}
1869
1870		if (group_faults > max_group_faults) {
1871			max_group_faults = group_faults;
1872			max_group_nid = nid;
1873		}
1874	}
1875
1876	update_task_scan_period(p, fault_types[0], fault_types[1]);
1877
1878	if (p->numa_group) {
1879		update_numa_active_node_mask(p->numa_group);
1880		spin_unlock_irq(group_lock);
1881		max_nid = preferred_group_nid(p, max_group_nid);
1882	}
1883
1884	if (max_faults) {
1885		/* Set the new preferred node */
1886		if (max_nid != p->numa_preferred_nid)
1887			sched_setnuma(p, max_nid);
1888
1889		if (task_node(p) != p->numa_preferred_nid)
1890			numa_migrate_preferred(p);
1891	}
1892}
1893
1894static inline int get_numa_group(struct numa_group *grp)
1895{
1896	return atomic_inc_not_zero(&grp->refcount);
1897}
1898
1899static inline void put_numa_group(struct numa_group *grp)
1900{
1901	if (atomic_dec_and_test(&grp->refcount))
1902		kfree_rcu(grp, rcu);
1903}
1904
1905static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906			int *priv)
1907{
1908	struct numa_group *grp, *my_grp;
1909	struct task_struct *tsk;
1910	bool join = false;
1911	int cpu = cpupid_to_cpu(cpupid);
1912	int i;
1913
1914	if (unlikely(!p->numa_group)) {
1915		unsigned int size = sizeof(struct numa_group) +
1916				    4*nr_node_ids*sizeof(unsigned long);
1917
1918		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919		if (!grp)
1920			return;
1921
1922		atomic_set(&grp->refcount, 1);
1923		spin_lock_init(&grp->lock);
1924		grp->gid = p->pid;
1925		/* Second half of the array tracks nids where faults happen */
1926		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927						nr_node_ids;
1928
1929		node_set(task_node(current), grp->active_nodes);
1930
1931		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1932			grp->faults[i] = p->numa_faults[i];
1933
1934		grp->total_faults = p->total_numa_faults;
1935
1936		grp->nr_tasks++;
1937		rcu_assign_pointer(p->numa_group, grp);
1938	}
1939
1940	rcu_read_lock();
1941	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1942
1943	if (!cpupid_match_pid(tsk, cpupid))
1944		goto no_join;
1945
1946	grp = rcu_dereference(tsk->numa_group);
1947	if (!grp)
1948		goto no_join;
1949
1950	my_grp = p->numa_group;
1951	if (grp == my_grp)
1952		goto no_join;
1953
1954	/*
1955	 * Only join the other group if its bigger; if we're the bigger group,
1956	 * the other task will join us.
1957	 */
1958	if (my_grp->nr_tasks > grp->nr_tasks)
1959		goto no_join;
1960
1961	/*
1962	 * Tie-break on the grp address.
1963	 */
1964	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1965		goto no_join;
1966
1967	/* Always join threads in the same process. */
1968	if (tsk->mm == current->mm)
1969		join = true;
1970
1971	/* Simple filter to avoid false positives due to PID collisions */
1972	if (flags & TNF_SHARED)
1973		join = true;
1974
1975	/* Update priv based on whether false sharing was detected */
1976	*priv = !join;
1977
1978	if (join && !get_numa_group(grp))
1979		goto no_join;
1980
1981	rcu_read_unlock();
1982
1983	if (!join)
1984		return;
1985
1986	BUG_ON(irqs_disabled());
1987	double_lock_irq(&my_grp->lock, &grp->lock);
1988
1989	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1990		my_grp->faults[i] -= p->numa_faults[i];
1991		grp->faults[i] += p->numa_faults[i];
1992	}
1993	my_grp->total_faults -= p->total_numa_faults;
1994	grp->total_faults += p->total_numa_faults;
1995
1996	my_grp->nr_tasks--;
1997	grp->nr_tasks++;
1998
1999	spin_unlock(&my_grp->lock);
2000	spin_unlock_irq(&grp->lock);
2001
2002	rcu_assign_pointer(p->numa_group, grp);
2003
2004	put_numa_group(my_grp);
2005	return;
2006
2007no_join:
2008	rcu_read_unlock();
2009	return;
2010}
2011
2012void task_numa_free(struct task_struct *p)
2013{
2014	struct numa_group *grp = p->numa_group;
2015	void *numa_faults = p->numa_faults;
2016	unsigned long flags;
2017	int i;
2018
2019	if (grp) {
2020		spin_lock_irqsave(&grp->lock, flags);
2021		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2022			grp->faults[i] -= p->numa_faults[i];
2023		grp->total_faults -= p->total_numa_faults;
2024
2025		grp->nr_tasks--;
2026		spin_unlock_irqrestore(&grp->lock, flags);
2027		RCU_INIT_POINTER(p->numa_group, NULL);
2028		put_numa_group(grp);
2029	}
2030
2031	p->numa_faults = NULL;
2032	kfree(numa_faults);
2033}
2034
2035/*
2036 * Got a PROT_NONE fault for a page on @node.
2037 */
2038void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2039{
2040	struct task_struct *p = current;
2041	bool migrated = flags & TNF_MIGRATED;
2042	int cpu_node = task_node(current);
2043	int local = !!(flags & TNF_FAULT_LOCAL);
2044	int priv;
2045
2046	if (!numabalancing_enabled)
2047		return;
2048
2049	/* for example, ksmd faulting in a user's mm */
2050	if (!p->mm)
2051		return;
2052
2053	/* Allocate buffer to track faults on a per-node basis */
2054	if (unlikely(!p->numa_faults)) {
2055		int size = sizeof(*p->numa_faults) *
2056			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2057
2058		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059		if (!p->numa_faults)
2060			return;
2061
2062		p->total_numa_faults = 0;
2063		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2064	}
2065
2066	/*
2067	 * First accesses are treated as private, otherwise consider accesses
2068	 * to be private if the accessing pid has not changed
2069	 */
2070	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071		priv = 1;
2072	} else {
2073		priv = cpupid_match_pid(p, last_cpupid);
2074		if (!priv && !(flags & TNF_NO_GROUP))
2075			task_numa_group(p, last_cpupid, flags, &priv);
2076	}
2077
2078	/*
2079	 * If a workload spans multiple NUMA nodes, a shared fault that
2080	 * occurs wholly within the set of nodes that the workload is
2081	 * actively using should be counted as local. This allows the
2082	 * scan rate to slow down when a workload has settled down.
2083	 */
2084	if (!priv && !local && p->numa_group &&
2085			node_isset(cpu_node, p->numa_group->active_nodes) &&
2086			node_isset(mem_node, p->numa_group->active_nodes))
2087		local = 1;
2088
2089	task_numa_placement(p);
2090
2091	/*
2092	 * Retry task to preferred node migration periodically, in case it
2093	 * case it previously failed, or the scheduler moved us.
2094	 */
2095	if (time_after(jiffies, p->numa_migrate_retry))
2096		numa_migrate_preferred(p);
2097
2098	if (migrated)
2099		p->numa_pages_migrated += pages;
2100	if (flags & TNF_MIGRATE_FAIL)
2101		p->numa_faults_locality[2] += pages;
2102
2103	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2105	p->numa_faults_locality[local] += pages;
2106}
2107
2108static void reset_ptenuma_scan(struct task_struct *p)
2109{
2110	ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111	p->mm->numa_scan_offset = 0;
2112}
2113
2114/*
2115 * The expensive part of numa migration is done from task_work context.
2116 * Triggered from task_tick_numa().
2117 */
2118void task_numa_work(struct callback_head *work)
2119{
2120	unsigned long migrate, next_scan, now = jiffies;
2121	struct task_struct *p = current;
2122	struct mm_struct *mm = p->mm;
2123	struct vm_area_struct *vma;
2124	unsigned long start, end;
2125	unsigned long nr_pte_updates = 0;
2126	long pages;
2127
2128	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2129
2130	work->next = work; /* protect against double add */
2131	/*
2132	 * Who cares about NUMA placement when they're dying.
2133	 *
2134	 * NOTE: make sure not to dereference p->mm before this check,
2135	 * exit_task_work() happens _after_ exit_mm() so we could be called
2136	 * without p->mm even though we still had it when we enqueued this
2137	 * work.
2138	 */
2139	if (p->flags & PF_EXITING)
2140		return;
2141
2142	if (!mm->numa_next_scan) {
2143		mm->numa_next_scan = now +
2144			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2145	}
2146
2147	/*
2148	 * Enforce maximal scan/migration frequency..
2149	 */
2150	migrate = mm->numa_next_scan;
2151	if (time_before(now, migrate))
2152		return;
2153
2154	if (p->numa_scan_period == 0) {
2155		p->numa_scan_period_max = task_scan_max(p);
2156		p->numa_scan_period = task_scan_min(p);
2157	}
2158
2159	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2160	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161		return;
2162
2163	/*
2164	 * Delay this task enough that another task of this mm will likely win
2165	 * the next time around.
2166	 */
2167	p->node_stamp += 2 * TICK_NSEC;
2168
2169	start = mm->numa_scan_offset;
2170	pages = sysctl_numa_balancing_scan_size;
2171	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172	if (!pages)
2173		return;
2174
2175	down_read(&mm->mmap_sem);
2176	vma = find_vma(mm, start);
2177	if (!vma) {
2178		reset_ptenuma_scan(p);
2179		start = 0;
2180		vma = mm->mmap;
2181	}
2182	for (; vma; vma = vma->vm_next) {
2183		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2185			continue;
2186		}
2187
2188		/*
2189		 * Shared library pages mapped by multiple processes are not
2190		 * migrated as it is expected they are cache replicated. Avoid
2191		 * hinting faults in read-only file-backed mappings or the vdso
2192		 * as migrating the pages will be of marginal benefit.
2193		 */
2194		if (!vma->vm_mm ||
2195		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196			continue;
2197
2198		/*
2199		 * Skip inaccessible VMAs to avoid any confusion between
2200		 * PROT_NONE and NUMA hinting ptes
2201		 */
2202		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203			continue;
2204
2205		do {
2206			start = max(start, vma->vm_start);
2207			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208			end = min(end, vma->vm_end);
2209			nr_pte_updates += change_prot_numa(vma, start, end);
2210
2211			/*
2212			 * Scan sysctl_numa_balancing_scan_size but ensure that
2213			 * at least one PTE is updated so that unused virtual
2214			 * address space is quickly skipped.
2215			 */
2216			if (nr_pte_updates)
2217				pages -= (end - start) >> PAGE_SHIFT;
2218
2219			start = end;
2220			if (pages <= 0)
2221				goto out;
2222
2223			cond_resched();
2224		} while (end != vma->vm_end);
2225	}
2226
2227out:
2228	/*
2229	 * It is possible to reach the end of the VMA list but the last few
2230	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231	 * would find the !migratable VMA on the next scan but not reset the
2232	 * scanner to the start so check it now.
2233	 */
2234	if (vma)
2235		mm->numa_scan_offset = start;
2236	else
2237		reset_ptenuma_scan(p);
2238	up_read(&mm->mmap_sem);
2239}
2240
2241/*
2242 * Drive the periodic memory faults..
2243 */
2244void task_tick_numa(struct rq *rq, struct task_struct *curr)
2245{
2246	struct callback_head *work = &curr->numa_work;
2247	u64 period, now;
2248
2249	/*
2250	 * We don't care about NUMA placement if we don't have memory.
2251	 */
2252	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253		return;
2254
2255	/*
2256	 * Using runtime rather than walltime has the dual advantage that
2257	 * we (mostly) drive the selection from busy threads and that the
2258	 * task needs to have done some actual work before we bother with
2259	 * NUMA placement.
2260	 */
2261	now = curr->se.sum_exec_runtime;
2262	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2263
2264	if (now - curr->node_stamp > period) {
2265		if (!curr->node_stamp)
2266			curr->numa_scan_period = task_scan_min(curr);
2267		curr->node_stamp += period;
2268
2269		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271			task_work_add(curr, work, true);
2272		}
2273	}
2274}
2275#else
2276static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2277{
2278}
2279
2280static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2281{
2282}
2283
2284static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2285{
2286}
2287#endif /* CONFIG_NUMA_BALANCING */
2288
2289static void
2290account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291{
2292	update_load_add(&cfs_rq->load, se->load.weight);
2293	if (!parent_entity(se))
2294		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2295#ifdef CONFIG_SMP
2296	if (entity_is_task(se)) {
2297		struct rq *rq = rq_of(cfs_rq);
2298
2299		account_numa_enqueue(rq, task_of(se));
2300		list_add(&se->group_node, &rq->cfs_tasks);
2301	}
2302#endif
2303	cfs_rq->nr_running++;
2304}
2305
2306static void
2307account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2308{
2309	update_load_sub(&cfs_rq->load, se->load.weight);
2310	if (!parent_entity(se))
2311		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2312	if (entity_is_task(se)) {
2313		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2314		list_del_init(&se->group_node);
2315	}
2316	cfs_rq->nr_running--;
2317}
2318
2319#ifdef CONFIG_FAIR_GROUP_SCHED
2320# ifdef CONFIG_SMP
2321static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2322{
2323	long tg_weight;
2324
2325	/*
2326	 * Use this CPU's actual weight instead of the last load_contribution
2327	 * to gain a more accurate current total weight. See
2328	 * update_cfs_rq_load_contribution().
2329	 */
2330	tg_weight = atomic_long_read(&tg->load_avg);
2331	tg_weight -= cfs_rq->tg_load_contrib;
2332	tg_weight += cfs_rq->load.weight;
2333
2334	return tg_weight;
2335}
2336
2337static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2338{
2339	long tg_weight, load, shares;
2340
2341	tg_weight = calc_tg_weight(tg, cfs_rq);
2342	load = cfs_rq->load.weight;
2343
2344	shares = (tg->shares * load);
2345	if (tg_weight)
2346		shares /= tg_weight;
2347
2348	if (shares < MIN_SHARES)
2349		shares = MIN_SHARES;
2350	if (shares > tg->shares)
2351		shares = tg->shares;
2352
2353	return shares;
2354}
2355# else /* CONFIG_SMP */
2356static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2357{
2358	return tg->shares;
2359}
2360# endif /* CONFIG_SMP */
2361static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362			    unsigned long weight)
2363{
2364	if (se->on_rq) {
2365		/* commit outstanding execution time */
2366		if (cfs_rq->curr == se)
2367			update_curr(cfs_rq);
2368		account_entity_dequeue(cfs_rq, se);
2369	}
2370
2371	update_load_set(&se->load, weight);
2372
2373	if (se->on_rq)
2374		account_entity_enqueue(cfs_rq, se);
2375}
2376
2377static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2378
2379static void update_cfs_shares(struct cfs_rq *cfs_rq)
2380{
2381	struct task_group *tg;
2382	struct sched_entity *se;
2383	long shares;
2384
2385	tg = cfs_rq->tg;
2386	se = tg->se[cpu_of(rq_of(cfs_rq))];
2387	if (!se || throttled_hierarchy(cfs_rq))
2388		return;
2389#ifndef CONFIG_SMP
2390	if (likely(se->load.weight == tg->shares))
2391		return;
2392#endif
2393	shares = calc_cfs_shares(cfs_rq, tg);
2394
2395	reweight_entity(cfs_rq_of(se), se, shares);
2396}
2397#else /* CONFIG_FAIR_GROUP_SCHED */
2398static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2399{
2400}
2401#endif /* CONFIG_FAIR_GROUP_SCHED */
2402
2403#ifdef CONFIG_SMP
2404/*
2405 * We choose a half-life close to 1 scheduling period.
2406 * Note: The tables below are dependent on this value.
2407 */
2408#define LOAD_AVG_PERIOD 32
2409#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2411
2412/* Precomputed fixed inverse multiplies for multiplication by y^n */
2413static const u32 runnable_avg_yN_inv[] = {
2414	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419	0x85aac367, 0x82cd8698,
2420};
2421
2422/*
2423 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2424 * over-estimates when re-combining.
2425 */
2426static const u32 runnable_avg_yN_sum[] = {
2427	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2430};
2431
2432/*
2433 * Approximate:
2434 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2435 */
2436static __always_inline u64 decay_load(u64 val, u64 n)
2437{
2438	unsigned int local_n;
2439
2440	if (!n)
2441		return val;
2442	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443		return 0;
2444
2445	/* after bounds checking we can collapse to 32-bit */
2446	local_n = n;
2447
2448	/*
2449	 * As y^PERIOD = 1/2, we can combine
2450	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451	 * With a look-up table which covers y^n (n<PERIOD)
2452	 *
2453	 * To achieve constant time decay_load.
2454	 */
2455	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456		val >>= local_n / LOAD_AVG_PERIOD;
2457		local_n %= LOAD_AVG_PERIOD;
2458	}
2459
2460	val *= runnable_avg_yN_inv[local_n];
2461	/* We don't use SRR here since we always want to round down. */
2462	return val >> 32;
2463}
2464
2465/*
2466 * For updates fully spanning n periods, the contribution to runnable
2467 * average will be: \Sum 1024*y^n
2468 *
2469 * We can compute this reasonably efficiently by combining:
2470 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2471 */
2472static u32 __compute_runnable_contrib(u64 n)
2473{
2474	u32 contrib = 0;
2475
2476	if (likely(n <= LOAD_AVG_PERIOD))
2477		return runnable_avg_yN_sum[n];
2478	else if (unlikely(n >= LOAD_AVG_MAX_N))
2479		return LOAD_AVG_MAX;
2480
2481	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482	do {
2483		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2485
2486		n -= LOAD_AVG_PERIOD;
2487	} while (n > LOAD_AVG_PERIOD);
2488
2489	contrib = decay_load(contrib, n);
2490	return contrib + runnable_avg_yN_sum[n];
2491}
2492
2493/*
2494 * We can represent the historical contribution to runnable average as the
2495 * coefficients of a geometric series.  To do this we sub-divide our runnable
2496 * history into segments of approximately 1ms (1024us); label the segment that
2497 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2498 *
2499 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500 *      p0            p1           p2
2501 *     (now)       (~1ms ago)  (~2ms ago)
2502 *
2503 * Let u_i denote the fraction of p_i that the entity was runnable.
2504 *
2505 * We then designate the fractions u_i as our co-efficients, yielding the
2506 * following representation of historical load:
2507 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2508 *
2509 * We choose y based on the with of a reasonably scheduling period, fixing:
2510 *   y^32 = 0.5
2511 *
2512 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513 * approximately half as much as the contribution to load within the last ms
2514 * (u_0).
2515 *
2516 * When a period "rolls over" and we have new u_0`, multiplying the previous
2517 * sum again by y is sufficient to update:
2518 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2520 */
2521static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2522							struct sched_avg *sa,
2523							int runnable,
2524							int running)
2525{
2526	u64 delta, periods;
2527	u32 runnable_contrib;
2528	int delta_w, decayed = 0;
2529	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2530
2531	delta = now - sa->last_runnable_update;
2532	/*
2533	 * This should only happen when time goes backwards, which it
2534	 * unfortunately does during sched clock init when we swap over to TSC.
2535	 */
2536	if ((s64)delta < 0) {
2537		sa->last_runnable_update = now;
2538		return 0;
2539	}
2540
2541	/*
2542	 * Use 1024ns as the unit of measurement since it's a reasonable
2543	 * approximation of 1us and fast to compute.
2544	 */
2545	delta >>= 10;
2546	if (!delta)
2547		return 0;
2548	sa->last_runnable_update = now;
2549
2550	/* delta_w is the amount already accumulated against our next period */
2551	delta_w = sa->avg_period % 1024;
2552	if (delta + delta_w >= 1024) {
2553		/* period roll-over */
2554		decayed = 1;
2555
2556		/*
2557		 * Now that we know we're crossing a period boundary, figure
2558		 * out how much from delta we need to complete the current
2559		 * period and accrue it.
2560		 */
2561		delta_w = 1024 - delta_w;
2562		if (runnable)
2563			sa->runnable_avg_sum += delta_w;
2564		if (running)
2565			sa->running_avg_sum += delta_w * scale_freq
2566				>> SCHED_CAPACITY_SHIFT;
2567		sa->avg_period += delta_w;
2568
2569		delta -= delta_w;
2570
2571		/* Figure out how many additional periods this update spans */
2572		periods = delta / 1024;
2573		delta %= 1024;
2574
2575		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576						  periods + 1);
2577		sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578						  periods + 1);
2579		sa->avg_period = decay_load(sa->avg_period,
2580						     periods + 1);
2581
2582		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583		runnable_contrib = __compute_runnable_contrib(periods);
2584		if (runnable)
2585			sa->runnable_avg_sum += runnable_contrib;
2586		if (running)
2587			sa->running_avg_sum += runnable_contrib * scale_freq
2588				>> SCHED_CAPACITY_SHIFT;
2589		sa->avg_period += runnable_contrib;
2590	}
2591
2592	/* Remainder of delta accrued against u_0` */
2593	if (runnable)
2594		sa->runnable_avg_sum += delta;
2595	if (running)
2596		sa->running_avg_sum += delta * scale_freq
2597			>> SCHED_CAPACITY_SHIFT;
2598	sa->avg_period += delta;
2599
2600	return decayed;
2601}
2602
2603/* Synchronize an entity's decay with its parenting cfs_rq.*/
2604static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2605{
2606	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2608
2609	decays -= se->avg.decay_count;
2610	se->avg.decay_count = 0;
2611	if (!decays)
2612		return 0;
2613
2614	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2615	se->avg.utilization_avg_contrib =
2616		decay_load(se->avg.utilization_avg_contrib, decays);
2617
2618	return decays;
2619}
2620
2621#ifdef CONFIG_FAIR_GROUP_SCHED
2622static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623						 int force_update)
2624{
2625	struct task_group *tg = cfs_rq->tg;
2626	long tg_contrib;
2627
2628	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629	tg_contrib -= cfs_rq->tg_load_contrib;
2630
2631	if (!tg_contrib)
2632		return;
2633
2634	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635		atomic_long_add(tg_contrib, &tg->load_avg);
2636		cfs_rq->tg_load_contrib += tg_contrib;
2637	}
2638}
2639
2640/*
2641 * Aggregate cfs_rq runnable averages into an equivalent task_group
2642 * representation for computing load contributions.
2643 */
2644static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645						  struct cfs_rq *cfs_rq)
2646{
2647	struct task_group *tg = cfs_rq->tg;
2648	long contrib;
2649
2650	/* The fraction of a cpu used by this cfs_rq */
2651	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2652			  sa->avg_period + 1);
2653	contrib -= cfs_rq->tg_runnable_contrib;
2654
2655	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656		atomic_add(contrib, &tg->runnable_avg);
2657		cfs_rq->tg_runnable_contrib += contrib;
2658	}
2659}
2660
2661static inline void __update_group_entity_contrib(struct sched_entity *se)
2662{
2663	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664	struct task_group *tg = cfs_rq->tg;
2665	int runnable_avg;
2666
2667	u64 contrib;
2668
2669	contrib = cfs_rq->tg_load_contrib * tg->shares;
2670	se->avg.load_avg_contrib = div_u64(contrib,
2671				     atomic_long_read(&tg->load_avg) + 1);
2672
2673	/*
2674	 * For group entities we need to compute a correction term in the case
2675	 * that they are consuming <1 cpu so that we would contribute the same
2676	 * load as a task of equal weight.
2677	 *
2678	 * Explicitly co-ordinating this measurement would be expensive, but
2679	 * fortunately the sum of each cpus contribution forms a usable
2680	 * lower-bound on the true value.
2681	 *
2682	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2683	 * (and the sum represents true value) or they are disjoint and we are
2684	 * understating by the aggregate of their overlap.
2685	 *
2686	 * Extending this to N cpus, for a given overlap, the maximum amount we
2687	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688	 * cpus that overlap for this interval and w_i is the interval width.
2689	 *
2690	 * On a small machine; the first term is well-bounded which bounds the
2691	 * total error since w_i is a subset of the period.  Whereas on a
2692	 * larger machine, while this first term can be larger, if w_i is the
2693	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694	 * our upper bound of 1-cpu.
2695	 */
2696	runnable_avg = atomic_read(&tg->runnable_avg);
2697	if (runnable_avg < NICE_0_LOAD) {
2698		se->avg.load_avg_contrib *= runnable_avg;
2699		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2700	}
2701}
2702
2703static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2704{
2705	__update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706			runnable, runnable);
2707	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2708}
2709#else /* CONFIG_FAIR_GROUP_SCHED */
2710static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711						 int force_update) {}
2712static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713						  struct cfs_rq *cfs_rq) {}
2714static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2715static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2716#endif /* CONFIG_FAIR_GROUP_SCHED */
2717
2718static inline void __update_task_entity_contrib(struct sched_entity *se)
2719{
2720	u32 contrib;
2721
2722	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2724	contrib /= (se->avg.avg_period + 1);
2725	se->avg.load_avg_contrib = scale_load(contrib);
2726}
2727
2728/* Compute the current contribution to load_avg by se, return any delta */
2729static long __update_entity_load_avg_contrib(struct sched_entity *se)
2730{
2731	long old_contrib = se->avg.load_avg_contrib;
2732
2733	if (entity_is_task(se)) {
2734		__update_task_entity_contrib(se);
2735	} else {
2736		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2737		__update_group_entity_contrib(se);
2738	}
2739
2740	return se->avg.load_avg_contrib - old_contrib;
2741}
2742
2743
2744static inline void __update_task_entity_utilization(struct sched_entity *se)
2745{
2746	u32 contrib;
2747
2748	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749	contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750	contrib /= (se->avg.avg_period + 1);
2751	se->avg.utilization_avg_contrib = scale_load(contrib);
2752}
2753
2754static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2755{
2756	long old_contrib = se->avg.utilization_avg_contrib;
2757
2758	if (entity_is_task(se))
2759		__update_task_entity_utilization(se);
2760	else
2761		se->avg.utilization_avg_contrib =
2762					group_cfs_rq(se)->utilization_load_avg;
2763
2764	return se->avg.utilization_avg_contrib - old_contrib;
2765}
2766
2767static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768						 long load_contrib)
2769{
2770	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771		cfs_rq->blocked_load_avg -= load_contrib;
2772	else
2773		cfs_rq->blocked_load_avg = 0;
2774}
2775
2776static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2777
2778/* Update a sched_entity's runnable average */
2779static inline void update_entity_load_avg(struct sched_entity *se,
2780					  int update_cfs_rq)
2781{
2782	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2783	long contrib_delta, utilization_delta;
2784	int cpu = cpu_of(rq_of(cfs_rq));
2785	u64 now;
2786
2787	/*
2788	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789	 * case they are the parent of a throttled hierarchy.
2790	 */
2791	if (entity_is_task(se))
2792		now = cfs_rq_clock_task(cfs_rq);
2793	else
2794		now = cfs_rq_clock_task(group_cfs_rq(se));
2795
2796	if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2797					cfs_rq->curr == se))
2798		return;
2799
2800	contrib_delta = __update_entity_load_avg_contrib(se);
2801	utilization_delta = __update_entity_utilization_avg_contrib(se);
2802
2803	if (!update_cfs_rq)
2804		return;
2805
2806	if (se->on_rq) {
2807		cfs_rq->runnable_load_avg += contrib_delta;
2808		cfs_rq->utilization_load_avg += utilization_delta;
2809	} else {
2810		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2811	}
2812}
2813
2814/*
2815 * Decay the load contributed by all blocked children and account this so that
2816 * their contribution may appropriately discounted when they wake up.
2817 */
2818static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2819{
2820	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2821	u64 decays;
2822
2823	decays = now - cfs_rq->last_decay;
2824	if (!decays && !force_update)
2825		return;
2826
2827	if (atomic_long_read(&cfs_rq->removed_load)) {
2828		unsigned long removed_load;
2829		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2830		subtract_blocked_load_contrib(cfs_rq, removed_load);
2831	}
2832
2833	if (decays) {
2834		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835						      decays);
2836		atomic64_add(decays, &cfs_rq->decay_counter);
2837		cfs_rq->last_decay = now;
2838	}
2839
2840	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2841}
2842
2843/* Add the load generated by se into cfs_rq's child load-average */
2844static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2845						  struct sched_entity *se,
2846						  int wakeup)
2847{
2848	/*
2849	 * We track migrations using entity decay_count <= 0, on a wake-up
2850	 * migration we use a negative decay count to track the remote decays
2851	 * accumulated while sleeping.
2852	 *
2853	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854	 * are seen by enqueue_entity_load_avg() as a migration with an already
2855	 * constructed load_avg_contrib.
2856	 */
2857	if (unlikely(se->avg.decay_count <= 0)) {
2858		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2859		if (se->avg.decay_count) {
2860			/*
2861			 * In a wake-up migration we have to approximate the
2862			 * time sleeping.  This is because we can't synchronize
2863			 * clock_task between the two cpus, and it is not
2864			 * guaranteed to be read-safe.  Instead, we can
2865			 * approximate this using our carried decays, which are
2866			 * explicitly atomically readable.
2867			 */
2868			se->avg.last_runnable_update -= (-se->avg.decay_count)
2869							<< 20;
2870			update_entity_load_avg(se, 0);
2871			/* Indicate that we're now synchronized and on-rq */
2872			se->avg.decay_count = 0;
2873		}
2874		wakeup = 0;
2875	} else {
2876		__synchronize_entity_decay(se);
2877	}
2878
2879	/* migrated tasks did not contribute to our blocked load */
2880	if (wakeup) {
2881		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2882		update_entity_load_avg(se, 0);
2883	}
2884
2885	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2886	cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2887	/* we force update consideration on load-balancer moves */
2888	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2889}
2890
2891/*
2892 * Remove se's load from this cfs_rq child load-average, if the entity is
2893 * transitioning to a blocked state we track its projected decay using
2894 * blocked_load_avg.
2895 */
2896static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2897						  struct sched_entity *se,
2898						  int sleep)
2899{
2900	update_entity_load_avg(se, 1);
2901	/* we force update consideration on load-balancer moves */
2902	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2903
2904	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2905	cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2906	if (sleep) {
2907		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2910}
2911
2912/*
2913 * Update the rq's load with the elapsed running time before entering
2914 * idle. if the last scheduled task is not a CFS task, idle_enter will
2915 * be the only way to update the runnable statistic.
2916 */
2917void idle_enter_fair(struct rq *this_rq)
2918{
2919	update_rq_runnable_avg(this_rq, 1);
2920}
2921
2922/*
2923 * Update the rq's load with the elapsed idle time before a task is
2924 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925 * be the only way to update the runnable statistic.
2926 */
2927void idle_exit_fair(struct rq *this_rq)
2928{
2929	update_rq_runnable_avg(this_rq, 0);
2930}
2931
2932static int idle_balance(struct rq *this_rq);
2933
2934#else /* CONFIG_SMP */
2935
2936static inline void update_entity_load_avg(struct sched_entity *se,
2937					  int update_cfs_rq) {}
2938static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2939static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2940					   struct sched_entity *se,
2941					   int wakeup) {}
2942static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2943					   struct sched_entity *se,
2944					   int sleep) {}
2945static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946					      int force_update) {}
2947
2948static inline int idle_balance(struct rq *rq)
2949{
2950	return 0;
2951}
2952
2953#endif /* CONFIG_SMP */
2954
2955static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2956{
2957#ifdef CONFIG_SCHEDSTATS
2958	struct task_struct *tsk = NULL;
2959
2960	if (entity_is_task(se))
2961		tsk = task_of(se);
2962
2963	if (se->statistics.sleep_start) {
2964		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2965
2966		if ((s64)delta < 0)
2967			delta = 0;
2968
2969		if (unlikely(delta > se->statistics.sleep_max))
2970			se->statistics.sleep_max = delta;
2971
2972		se->statistics.sleep_start = 0;
2973		se->statistics.sum_sleep_runtime += delta;
2974
2975		if (tsk) {
2976			account_scheduler_latency(tsk, delta >> 10, 1);
2977			trace_sched_stat_sleep(tsk, delta);
2978		}
2979	}
2980	if (se->statistics.block_start) {
2981		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2982
2983		if ((s64)delta < 0)
2984			delta = 0;
2985
2986		if (unlikely(delta > se->statistics.block_max))
2987			se->statistics.block_max = delta;
2988
2989		se->statistics.block_start = 0;
2990		se->statistics.sum_sleep_runtime += delta;
2991
2992		if (tsk) {
2993			if (tsk->in_iowait) {
2994				se->statistics.iowait_sum += delta;
2995				se->statistics.iowait_count++;
2996				trace_sched_stat_iowait(tsk, delta);
2997			}
2998
2999			trace_sched_stat_blocked(tsk, delta);
3000
3001			/*
3002			 * Blocking time is in units of nanosecs, so shift by
3003			 * 20 to get a milliseconds-range estimation of the
3004			 * amount of time that the task spent sleeping:
3005			 */
3006			if (unlikely(prof_on == SLEEP_PROFILING)) {
3007				profile_hits(SLEEP_PROFILING,
3008						(void *)get_wchan(tsk),
3009						delta >> 20);
3010			}
3011			account_scheduler_latency(tsk, delta >> 10, 0);
3012		}
3013	}
3014#endif
3015}
3016
3017static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018{
3019#ifdef CONFIG_SCHED_DEBUG
3020	s64 d = se->vruntime - cfs_rq->min_vruntime;
3021
3022	if (d < 0)
3023		d = -d;
3024
3025	if (d > 3*sysctl_sched_latency)
3026		schedstat_inc(cfs_rq, nr_spread_over);
3027#endif
3028}
3029
3030static void
3031place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3032{
3033	u64 vruntime = cfs_rq->min_vruntime;
3034
3035	/*
3036	 * The 'current' period is already promised to the current tasks,
3037	 * however the extra weight of the new task will slow them down a
3038	 * little, place the new task so that it fits in the slot that
3039	 * stays open at the end.
3040	 */
3041	if (initial && sched_feat(START_DEBIT))
3042		vruntime += sched_vslice(cfs_rq, se);
3043
3044	/* sleeps up to a single latency don't count. */
3045	if (!initial) {
3046		unsigned long thresh = sysctl_sched_latency;
3047
3048		/*
3049		 * Halve their sleep time's effect, to allow
3050		 * for a gentler effect of sleepers:
3051		 */
3052		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053			thresh >>= 1;
3054
3055		vruntime -= thresh;
3056	}
3057
3058	/* ensure we never gain time by being placed backwards. */
3059	se->vruntime = max_vruntime(se->vruntime, vruntime);
3060}
3061
3062static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3063
3064static void
3065enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3066{
3067	/*
3068	 * Update the normalized vruntime before updating min_vruntime
3069	 * through calling update_curr().
3070	 */
3071	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3072		se->vruntime += cfs_rq->min_vruntime;
3073
3074	/*
3075	 * Update run-time statistics of the 'current'.
3076	 */
3077	update_curr(cfs_rq);
3078	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3079	account_entity_enqueue(cfs_rq, se);
3080	update_cfs_shares(cfs_rq);
3081
3082	if (flags & ENQUEUE_WAKEUP) {
3083		place_entity(cfs_rq, se, 0);
3084		enqueue_sleeper(cfs_rq, se);
3085	}
3086
3087	update_stats_enqueue(cfs_rq, se);
3088	check_spread(cfs_rq, se);
3089	if (se != cfs_rq->curr)
3090		__enqueue_entity(cfs_rq, se);
3091	se->on_rq = 1;
3092
3093	if (cfs_rq->nr_running == 1) {
3094		list_add_leaf_cfs_rq(cfs_rq);
3095		check_enqueue_throttle(cfs_rq);
3096	}
3097}
3098
3099static void __clear_buddies_last(struct sched_entity *se)
3100{
3101	for_each_sched_entity(se) {
3102		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3103		if (cfs_rq->last != se)
3104			break;
3105
3106		cfs_rq->last = NULL;
3107	}
3108}
3109
3110static void __clear_buddies_next(struct sched_entity *se)
3111{
3112	for_each_sched_entity(se) {
3113		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114		if (cfs_rq->next != se)
3115			break;
3116
3117		cfs_rq->next = NULL;
3118	}
3119}
3120
3121static void __clear_buddies_skip(struct sched_entity *se)
3122{
3123	for_each_sched_entity(se) {
3124		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3125		if (cfs_rq->skip != se)
3126			break;
3127
3128		cfs_rq->skip = NULL;
3129	}
3130}
3131
3132static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3133{
3134	if (cfs_rq->last == se)
3135		__clear_buddies_last(se);
3136
3137	if (cfs_rq->next == se)
3138		__clear_buddies_next(se);
3139
3140	if (cfs_rq->skip == se)
3141		__clear_buddies_skip(se);
3142}
3143
3144static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3145
3146static void
3147dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3148{
3149	/*
3150	 * Update run-time statistics of the 'current'.
3151	 */
3152	update_curr(cfs_rq);
3153	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3154
3155	update_stats_dequeue(cfs_rq, se);
3156	if (flags & DEQUEUE_SLEEP) {
3157#ifdef CONFIG_SCHEDSTATS
3158		if (entity_is_task(se)) {
3159			struct task_struct *tsk = task_of(se);
3160
3161			if (tsk->state & TASK_INTERRUPTIBLE)
3162				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3163			if (tsk->state & TASK_UNINTERRUPTIBLE)
3164				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3165		}
3166#endif
3167	}
3168
3169	clear_buddies(cfs_rq, se);
3170
3171	if (se != cfs_rq->curr)
3172		__dequeue_entity(cfs_rq, se);
3173	se->on_rq = 0;
3174	account_entity_dequeue(cfs_rq, se);
3175
3176	/*
3177	 * Normalize the entity after updating the min_vruntime because the
3178	 * update can refer to the ->curr item and we need to reflect this
3179	 * movement in our normalized position.
3180	 */
3181	if (!(flags & DEQUEUE_SLEEP))
3182		se->vruntime -= cfs_rq->min_vruntime;
3183
3184	/* return excess runtime on last dequeue */
3185	return_cfs_rq_runtime(cfs_rq);
3186
3187	update_min_vruntime(cfs_rq);
3188	update_cfs_shares(cfs_rq);
3189}
3190
3191/*
3192 * Preempt the current task with a newly woken task if needed:
3193 */
3194static void
3195check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3196{
3197	unsigned long ideal_runtime, delta_exec;
3198	struct sched_entity *se;
3199	s64 delta;
3200
3201	ideal_runtime = sched_slice(cfs_rq, curr);
3202	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3203	if (delta_exec > ideal_runtime) {
3204		resched_curr(rq_of(cfs_rq));
3205		/*
3206		 * The current task ran long enough, ensure it doesn't get
3207		 * re-elected due to buddy favours.
3208		 */
3209		clear_buddies(cfs_rq, curr);
3210		return;
3211	}
3212
3213	/*
3214	 * Ensure that a task that missed wakeup preemption by a
3215	 * narrow margin doesn't have to wait for a full slice.
3216	 * This also mitigates buddy induced latencies under load.
3217	 */
3218	if (delta_exec < sysctl_sched_min_granularity)
3219		return;
3220
3221	se = __pick_first_entity(cfs_rq);
3222	delta = curr->vruntime - se->vruntime;
3223
3224	if (delta < 0)
3225		return;
3226
3227	if (delta > ideal_runtime)
3228		resched_curr(rq_of(cfs_rq));
3229}
3230
3231static void
3232set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3233{
3234	/* 'current' is not kept within the tree. */
3235	if (se->on_rq) {
3236		/*
3237		 * Any task has to be enqueued before it get to execute on
3238		 * a CPU. So account for the time it spent waiting on the
3239		 * runqueue.
3240		 */
3241		update_stats_wait_end(cfs_rq, se);
3242		__dequeue_entity(cfs_rq, se);
3243		update_entity_load_avg(se, 1);
3244	}
3245
3246	update_stats_curr_start(cfs_rq, se);
3247	cfs_rq->curr = se;
3248#ifdef CONFIG_SCHEDSTATS
3249	/*
3250	 * Track our maximum slice length, if the CPU's load is at
3251	 * least twice that of our own weight (i.e. dont track it
3252	 * when there are only lesser-weight tasks around):
3253	 */
3254	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3255		se->statistics.slice_max = max(se->statistics.slice_max,
3256			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3257	}
3258#endif
3259	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3260}
3261
3262static int
3263wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3264
3265/*
3266 * Pick the next process, keeping these things in mind, in this order:
3267 * 1) keep things fair between processes/task groups
3268 * 2) pick the "next" process, since someone really wants that to run
3269 * 3) pick the "last" process, for cache locality
3270 * 4) do not run the "skip" process, if something else is available
3271 */
3272static struct sched_entity *
3273pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3274{
3275	struct sched_entity *left = __pick_first_entity(cfs_rq);
3276	struct sched_entity *se;
3277
3278	/*
3279	 * If curr is set we have to see if its left of the leftmost entity
3280	 * still in the tree, provided there was anything in the tree at all.
3281	 */
3282	if (!left || (curr && entity_before(curr, left)))
3283		left = curr;
3284
3285	se = left; /* ideally we run the leftmost entity */
3286
3287	/*
3288	 * Avoid running the skip buddy, if running something else can
3289	 * be done without getting too unfair.
3290	 */
3291	if (cfs_rq->skip == se) {
3292		struct sched_entity *second;
3293
3294		if (se == curr) {
3295			second = __pick_first_entity(cfs_rq);
3296		} else {
3297			second = __pick_next_entity(se);
3298			if (!second || (curr && entity_before(curr, second)))
3299				second = curr;
3300		}
3301
3302		if (second && wakeup_preempt_entity(second, left) < 1)
3303			se = second;
3304	}
3305
3306	/*
3307	 * Prefer last buddy, try to return the CPU to a preempted task.
3308	 */
3309	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310		se = cfs_rq->last;
3311
3312	/*
3313	 * Someone really wants this to run. If it's not unfair, run it.
3314	 */
3315	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316		se = cfs_rq->next;
3317
3318	clear_buddies(cfs_rq, se);
3319
3320	return se;
3321}
3322
3323static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3324
3325static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3326{
3327	/*
3328	 * If still on the runqueue then deactivate_task()
3329	 * was not called and update_curr() has to be done:
3330	 */
3331	if (prev->on_rq)
3332		update_curr(cfs_rq);
3333
3334	/* throttle cfs_rqs exceeding runtime */
3335	check_cfs_rq_runtime(cfs_rq);
3336
3337	check_spread(cfs_rq, prev);
3338	if (prev->on_rq) {
3339		update_stats_wait_start(cfs_rq, prev);
3340		/* Put 'current' back into the tree. */
3341		__enqueue_entity(cfs_rq, prev);
3342		/* in !on_rq case, update occurred at dequeue */
3343		update_entity_load_avg(prev, 1);
3344	}
3345	cfs_rq->curr = NULL;
3346}
3347
3348static void
3349entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3350{
3351	/*
3352	 * Update run-time statistics of the 'current'.
3353	 */
3354	update_curr(cfs_rq);
3355
3356	/*
3357	 * Ensure that runnable average is periodically updated.
3358	 */
3359	update_entity_load_avg(curr, 1);
3360	update_cfs_rq_blocked_load(cfs_rq, 1);
3361	update_cfs_shares(cfs_rq);
3362
3363#ifdef CONFIG_SCHED_HRTICK
3364	/*
3365	 * queued ticks are scheduled to match the slice, so don't bother
3366	 * validating it and just reschedule.
3367	 */
3368	if (queued) {
3369		resched_curr(rq_of(cfs_rq));
3370		return;
3371	}
3372	/*
3373	 * don't let the period tick interfere with the hrtick preemption
3374	 */
3375	if (!sched_feat(DOUBLE_TICK) &&
3376			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377		return;
3378#endif
3379
3380	if (cfs_rq->nr_running > 1)
3381		check_preempt_tick(cfs_rq, curr);
3382}
3383
3384
3385/**************************************************
3386 * CFS bandwidth control machinery
3387 */
3388
3389#ifdef CONFIG_CFS_BANDWIDTH
3390
3391#ifdef HAVE_JUMP_LABEL
3392static struct static_key __cfs_bandwidth_used;
3393
3394static inline bool cfs_bandwidth_used(void)
3395{
3396	return static_key_false(&__cfs_bandwidth_used);
3397}
3398
3399void cfs_bandwidth_usage_inc(void)
3400{
3401	static_key_slow_inc(&__cfs_bandwidth_used);
3402}
3403
3404void cfs_bandwidth_usage_dec(void)
3405{
3406	static_key_slow_dec(&__cfs_bandwidth_used);
3407}
3408#else /* HAVE_JUMP_LABEL */
3409static bool cfs_bandwidth_used(void)
3410{
3411	return true;
3412}
3413
3414void cfs_bandwidth_usage_inc(void) {}
3415void cfs_bandwidth_usage_dec(void) {}
3416#endif /* HAVE_JUMP_LABEL */
3417
3418/*
3419 * default period for cfs group bandwidth.
3420 * default: 0.1s, units: nanoseconds
3421 */
3422static inline u64 default_cfs_period(void)
3423{
3424	return 100000000ULL;
3425}
3426
3427static inline u64 sched_cfs_bandwidth_slice(void)
3428{
3429	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3430}
3431
3432/*
3433 * Replenish runtime according to assigned quota and update expiration time.
3434 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435 * additional synchronization around rq->lock.
3436 *
3437 * requires cfs_b->lock
3438 */
3439void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3440{
3441	u64 now;
3442
3443	if (cfs_b->quota == RUNTIME_INF)
3444		return;
3445
3446	now = sched_clock_cpu(smp_processor_id());
3447	cfs_b->runtime = cfs_b->quota;
3448	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3449}
3450
3451static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3452{
3453	return &tg->cfs_bandwidth;
3454}
3455
3456/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3457static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3458{
3459	if (unlikely(cfs_rq->throttle_count))
3460		return cfs_rq->throttled_clock_task;
3461
3462	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3463}
3464
3465/* returns 0 on failure to allocate runtime */
3466static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3467{
3468	struct task_group *tg = cfs_rq->tg;
3469	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3470	u64 amount = 0, min_amount, expires;
3471
3472	/* note: this is a positive sum as runtime_remaining <= 0 */
3473	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3474
3475	raw_spin_lock(&cfs_b->lock);
3476	if (cfs_b->quota == RUNTIME_INF)
3477		amount = min_amount;
3478	else {
3479		/*
3480		 * If the bandwidth pool has become inactive, then at least one
3481		 * period must have elapsed since the last consumption.
3482		 * Refresh the global state and ensure bandwidth timer becomes
3483		 * active.
3484		 */
3485		if (!cfs_b->timer_active) {
3486			__refill_cfs_bandwidth_runtime(cfs_b);
3487			__start_cfs_bandwidth(cfs_b, false);
3488		}
3489
3490		if (cfs_b->runtime > 0) {
3491			amount = min(cfs_b->runtime, min_amount);
3492			cfs_b->runtime -= amount;
3493			cfs_b->idle = 0;
3494		}
3495	}
3496	expires = cfs_b->runtime_expires;
3497	raw_spin_unlock(&cfs_b->lock);
3498
3499	cfs_rq->runtime_remaining += amount;
3500	/*
3501	 * we may have advanced our local expiration to account for allowed
3502	 * spread between our sched_clock and the one on which runtime was
3503	 * issued.
3504	 */
3505	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3506		cfs_rq->runtime_expires = expires;
3507
3508	return cfs_rq->runtime_remaining > 0;
3509}
3510
3511/*
3512 * Note: This depends on the synchronization provided by sched_clock and the
3513 * fact that rq->clock snapshots this value.
3514 */
3515static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3516{
3517	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3518
3519	/* if the deadline is ahead of our clock, nothing to do */
3520	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3521		return;
3522
3523	if (cfs_rq->runtime_remaining < 0)
3524		return;
3525
3526	/*
3527	 * If the local deadline has passed we have to consider the
3528	 * possibility that our sched_clock is 'fast' and the global deadline
3529	 * has not truly expired.
3530	 *
3531	 * Fortunately we can check determine whether this the case by checking
3532	 * whether the global deadline has advanced. It is valid to compare
3533	 * cfs_b->runtime_expires without any locks since we only care about
3534	 * exact equality, so a partial write will still work.
3535	 */
3536
3537	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3538		/* extend local deadline, drift is bounded above by 2 ticks */
3539		cfs_rq->runtime_expires += TICK_NSEC;
3540	} else {
3541		/* global deadline is ahead, expiration has passed */
3542		cfs_rq->runtime_remaining = 0;
3543	}
3544}
3545
3546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3547{
3548	/* dock delta_exec before expiring quota (as it could span periods) */
3549	cfs_rq->runtime_remaining -= delta_exec;
3550	expire_cfs_rq_runtime(cfs_rq);
3551
3552	if (likely(cfs_rq->runtime_remaining > 0))
3553		return;
3554
3555	/*
3556	 * if we're unable to extend our runtime we resched so that the active
3557	 * hierarchy can be throttled
3558	 */
3559	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3560		resched_curr(rq_of(cfs_rq));
3561}
3562
3563static __always_inline
3564void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3565{
3566	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3567		return;
3568
3569	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3570}
3571
3572static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3573{
3574	return cfs_bandwidth_used() && cfs_rq->throttled;
3575}
3576
3577/* check whether cfs_rq, or any parent, is throttled */
3578static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3579{
3580	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3581}
3582
3583/*
3584 * Ensure that neither of the group entities corresponding to src_cpu or
3585 * dest_cpu are members of a throttled hierarchy when performing group
3586 * load-balance operations.
3587 */
3588static inline int throttled_lb_pair(struct task_group *tg,
3589				    int src_cpu, int dest_cpu)
3590{
3591	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3592
3593	src_cfs_rq = tg->cfs_rq[src_cpu];
3594	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3595
3596	return throttled_hierarchy(src_cfs_rq) ||
3597	       throttled_hierarchy(dest_cfs_rq);
3598}
3599
3600/* updated child weight may affect parent so we have to do this bottom up */
3601static int tg_unthrottle_up(struct task_group *tg, void *data)
3602{
3603	struct rq *rq = data;
3604	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3605
3606	cfs_rq->throttle_count--;
3607#ifdef CONFIG_SMP
3608	if (!cfs_rq->throttle_count) {
3609		/* adjust cfs_rq_clock_task() */
3610		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3611					     cfs_rq->throttled_clock_task;
3612	}
3613#endif
3614
3615	return 0;
3616}
3617
3618static int tg_throttle_down(struct task_group *tg, void *data)
3619{
3620	struct rq *rq = data;
3621	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3622
3623	/* group is entering throttled state, stop time */
3624	if (!cfs_rq->throttle_count)
3625		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3626	cfs_rq->throttle_count++;
3627
3628	return 0;
3629}
3630
3631static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3632{
3633	struct rq *rq = rq_of(cfs_rq);
3634	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3635	struct sched_entity *se;
3636	long task_delta, dequeue = 1;
3637
3638	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3639
3640	/* freeze hierarchy runnable averages while throttled */
3641	rcu_read_lock();
3642	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3643	rcu_read_unlock();
3644
3645	task_delta = cfs_rq->h_nr_running;
3646	for_each_sched_entity(se) {
3647		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3648		/* throttled entity or throttle-on-deactivate */
3649		if (!se->on_rq)
3650			break;
3651
3652		if (dequeue)
3653			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3654		qcfs_rq->h_nr_running -= task_delta;
3655
3656		if (qcfs_rq->load.weight)
3657			dequeue = 0;
3658	}
3659
3660	if (!se)
3661		sub_nr_running(rq, task_delta);
3662
3663	cfs_rq->throttled = 1;
3664	cfs_rq->throttled_clock = rq_clock(rq);
3665	raw_spin_lock(&cfs_b->lock);
3666	/*
3667	 * Add to the _head_ of the list, so that an already-started
3668	 * distribute_cfs_runtime will not see us
3669	 */
3670	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3671	if (!cfs_b->timer_active)
3672		__start_cfs_bandwidth(cfs_b, false);
3673	raw_spin_unlock(&cfs_b->lock);
3674}
3675
3676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3677{
3678	struct rq *rq = rq_of(cfs_rq);
3679	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680	struct sched_entity *se;
3681	int enqueue = 1;
3682	long task_delta;
3683
3684	se = cfs_rq->tg->se[cpu_of(rq)];
3685
3686	cfs_rq->throttled = 0;
3687
3688	update_rq_clock(rq);
3689
3690	raw_spin_lock(&cfs_b->lock);
3691	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3692	list_del_rcu(&cfs_rq->throttled_list);
3693	raw_spin_unlock(&cfs_b->lock);
3694
3695	/* update hierarchical throttle state */
3696	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3697
3698	if (!cfs_rq->load.weight)
3699		return;
3700
3701	task_delta = cfs_rq->h_nr_running;
3702	for_each_sched_entity(se) {
3703		if (se->on_rq)
3704			enqueue = 0;
3705
3706		cfs_rq = cfs_rq_of(se);
3707		if (enqueue)
3708			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709		cfs_rq->h_nr_running += task_delta;
3710
3711		if (cfs_rq_throttled(cfs_rq))
3712			break;
3713	}
3714
3715	if (!se)
3716		add_nr_running(rq, task_delta);
3717
3718	/* determine whether we need to wake up potentially idle cpu */
3719	if (rq->curr == rq->idle && rq->cfs.nr_running)
3720		resched_curr(rq);
3721}
3722
3723static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724		u64 remaining, u64 expires)
3725{
3726	struct cfs_rq *cfs_rq;
3727	u64 runtime;
3728	u64 starting_runtime = remaining;
3729
3730	rcu_read_lock();
3731	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732				throttled_list) {
3733		struct rq *rq = rq_of(cfs_rq);
3734
3735		raw_spin_lock(&rq->lock);
3736		if (!cfs_rq_throttled(cfs_rq))
3737			goto next;
3738
3739		runtime = -cfs_rq->runtime_remaining + 1;
3740		if (runtime > remaining)
3741			runtime = remaining;
3742		remaining -= runtime;
3743
3744		cfs_rq->runtime_remaining += runtime;
3745		cfs_rq->runtime_expires = expires;
3746
3747		/* we check whether we're throttled above */
3748		if (cfs_rq->runtime_remaining > 0)
3749			unthrottle_cfs_rq(cfs_rq);
3750
3751next:
3752		raw_spin_unlock(&rq->lock);
3753
3754		if (!remaining)
3755			break;
3756	}
3757	rcu_read_unlock();
3758
3759	return starting_runtime - remaining;
3760}
3761
3762/*
3763 * Responsible for refilling a task_group's bandwidth and unthrottling its
3764 * cfs_rqs as appropriate. If there has been no activity within the last
3765 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766 * used to track this state.
3767 */
3768static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3769{
3770	u64 runtime, runtime_expires;
3771	int throttled;
3772
3773	/* no need to continue the timer with no bandwidth constraint */
3774	if (cfs_b->quota == RUNTIME_INF)
3775		goto out_deactivate;
3776
3777	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3778	cfs_b->nr_periods += overrun;
3779
3780	/*
3781	 * idle depends on !throttled (for the case of a large deficit), and if
3782	 * we're going inactive then everything else can be deferred
3783	 */
3784	if (cfs_b->idle && !throttled)
3785		goto out_deactivate;
3786
3787	/*
3788	 * if we have relooped after returning idle once, we need to update our
3789	 * status as actually running, so that other cpus doing
3790	 * __start_cfs_bandwidth will stop trying to cancel us.
3791	 */
3792	cfs_b->timer_active = 1;
3793
3794	__refill_cfs_bandwidth_runtime(cfs_b);
3795
3796	if (!throttled) {
3797		/* mark as potentially idle for the upcoming period */
3798		cfs_b->idle = 1;
3799		return 0;
3800	}
3801
3802	/* account preceding periods in which throttling occurred */
3803	cfs_b->nr_throttled += overrun;
3804
3805	runtime_expires = cfs_b->runtime_expires;
3806
3807	/*
3808	 * This check is repeated as we are holding onto the new bandwidth while
3809	 * we unthrottle. This can potentially race with an unthrottled group
3810	 * trying to acquire new bandwidth from the global pool. This can result
3811	 * in us over-using our runtime if it is all used during this loop, but
3812	 * only by limited amounts in that extreme case.
3813	 */
3814	while (throttled && cfs_b->runtime > 0) {
3815		runtime = cfs_b->runtime;
3816		raw_spin_unlock(&cfs_b->lock);
3817		/* we can't nest cfs_b->lock while distributing bandwidth */
3818		runtime = distribute_cfs_runtime(cfs_b, runtime,
3819						 runtime_expires);
3820		raw_spin_lock(&cfs_b->lock);
3821
3822		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3823
3824		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3825	}
3826
3827	/*
3828	 * While we are ensured activity in the period following an
3829	 * unthrottle, this also covers the case in which the new bandwidth is
3830	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3831	 * timer to remain active while there are any throttled entities.)
3832	 */
3833	cfs_b->idle = 0;
3834
3835	return 0;
3836
3837out_deactivate:
3838	cfs_b->timer_active = 0;
3839	return 1;
3840}
3841
3842/* a cfs_rq won't donate quota below this amount */
3843static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3844/* minimum remaining period time to redistribute slack quota */
3845static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3846/* how long we wait to gather additional slack before distributing */
3847static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3848
3849/*
3850 * Are we near the end of the current quota period?
3851 *
3852 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3853 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3854 * migrate_hrtimers, base is never cleared, so we are fine.
3855 */
3856static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3857{
3858	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3859	u64 remaining;
3860
3861	/* if the call-back is running a quota refresh is already occurring */
3862	if (hrtimer_callback_running(refresh_timer))
3863		return 1;
3864
3865	/* is a quota refresh about to occur? */
3866	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3867	if (remaining < min_expire)
3868		return 1;
3869
3870	return 0;
3871}
3872
3873static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3874{
3875	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3876
3877	/* if there's a quota refresh soon don't bother with slack */
3878	if (runtime_refresh_within(cfs_b, min_left))
3879		return;
3880
3881	start_bandwidth_timer(&cfs_b->slack_timer,
3882				ns_to_ktime(cfs_bandwidth_slack_period));
3883}
3884
3885/* we know any runtime found here is valid as update_curr() precedes return */
3886static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3887{
3888	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3889	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3890
3891	if (slack_runtime <= 0)
3892		return;
3893
3894	raw_spin_lock(&cfs_b->lock);
3895	if (cfs_b->quota != RUNTIME_INF &&
3896	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3897		cfs_b->runtime += slack_runtime;
3898
3899		/* we are under rq->lock, defer unthrottling using a timer */
3900		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3901		    !list_empty(&cfs_b->throttled_cfs_rq))
3902			start_cfs_slack_bandwidth(cfs_b);
3903	}
3904	raw_spin_unlock(&cfs_b->lock);
3905
3906	/* even if it's not valid for return we don't want to try again */
3907	cfs_rq->runtime_remaining -= slack_runtime;
3908}
3909
3910static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911{
3912	if (!cfs_bandwidth_used())
3913		return;
3914
3915	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3916		return;
3917
3918	__return_cfs_rq_runtime(cfs_rq);
3919}
3920
3921/*
3922 * This is done with a timer (instead of inline with bandwidth return) since
3923 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3924 */
3925static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3926{
3927	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3928	u64 expires;
3929
3930	/* confirm we're still not at a refresh boundary */
3931	raw_spin_lock(&cfs_b->lock);
3932	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3933		raw_spin_unlock(&cfs_b->lock);
3934		return;
3935	}
3936
3937	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3938		runtime = cfs_b->runtime;
3939
3940	expires = cfs_b->runtime_expires;
3941	raw_spin_unlock(&cfs_b->lock);
3942
3943	if (!runtime)
3944		return;
3945
3946	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3947
3948	raw_spin_lock(&cfs_b->lock);
3949	if (expires == cfs_b->runtime_expires)
3950		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3951	raw_spin_unlock(&cfs_b->lock);
3952}
3953
3954/*
3955 * When a group wakes up we want to make sure that its quota is not already
3956 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3957 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3958 */
3959static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3960{
3961	if (!cfs_bandwidth_used())
3962		return;
3963
3964	/* an active group must be handled by the update_curr()->put() path */
3965	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3966		return;
3967
3968	/* ensure the group is not already throttled */
3969	if (cfs_rq_throttled(cfs_rq))
3970		return;
3971
3972	/* update runtime allocation */
3973	account_cfs_rq_runtime(cfs_rq, 0);
3974	if (cfs_rq->runtime_remaining <= 0)
3975		throttle_cfs_rq(cfs_rq);
3976}
3977
3978/* conditionally throttle active cfs_rq's from put_prev_entity() */
3979static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3980{
3981	if (!cfs_bandwidth_used())
3982		return false;
3983
3984	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3985		return false;
3986
3987	/*
3988	 * it's possible for a throttled entity to be forced into a running
3989	 * state (e.g. set_curr_task), in this case we're finished.
3990	 */
3991	if (cfs_rq_throttled(cfs_rq))
3992		return true;
3993
3994	throttle_cfs_rq(cfs_rq);
3995	return true;
3996}
3997
3998static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3999{
4000	struct cfs_bandwidth *cfs_b =
4001		container_of(timer, struct cfs_bandwidth, slack_timer);
4002	do_sched_cfs_slack_timer(cfs_b);
4003
4004	return HRTIMER_NORESTART;
4005}
4006
4007static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4008{
4009	struct cfs_bandwidth *cfs_b =
4010		container_of(timer, struct cfs_bandwidth, period_timer);
4011	ktime_t now;
4012	int overrun;
4013	int idle = 0;
4014
4015	raw_spin_lock(&cfs_b->lock);
4016	for (;;) {
4017		now = hrtimer_cb_get_time(timer);
4018		overrun = hrtimer_forward(timer, now, cfs_b->period);
4019
4020		if (!overrun)
4021			break;
4022
4023		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4024	}
4025	raw_spin_unlock(&cfs_b->lock);
4026
4027	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4028}
4029
4030void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4031{
4032	raw_spin_lock_init(&cfs_b->lock);
4033	cfs_b->runtime = 0;
4034	cfs_b->quota = RUNTIME_INF;
4035	cfs_b->period = ns_to_ktime(default_cfs_period());
4036
4037	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4038	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4039	cfs_b->period_timer.function = sched_cfs_period_timer;
4040	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4042}
4043
4044static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4045{
4046	cfs_rq->runtime_enabled = 0;
4047	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4048}
4049
4050/* requires cfs_b->lock, may release to reprogram timer */
4051void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
4052{
4053	/*
4054	 * The timer may be active because we're trying to set a new bandwidth
4055	 * period or because we're racing with the tear-down path
4056	 * (timer_active==0 becomes visible before the hrtimer call-back
4057	 * terminates).  In either case we ensure that it's re-programmed
4058	 */
4059	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4060	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4061		/* bounce the lock to allow do_sched_cfs_period_timer to run */
4062		raw_spin_unlock(&cfs_b->lock);
4063		cpu_relax();
4064		raw_spin_lock(&cfs_b->lock);
4065		/* if someone else restarted the timer then we're done */
4066		if (!force && cfs_b->timer_active)
4067			return;
4068	}
4069
4070	cfs_b->timer_active = 1;
4071	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4072}
4073
4074static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4075{
4076	/* init_cfs_bandwidth() was not called */
4077	if (!cfs_b->throttled_cfs_rq.next)
4078		return;
4079
4080	hrtimer_cancel(&cfs_b->period_timer);
4081	hrtimer_cancel(&cfs_b->slack_timer);
4082}
4083
4084static void __maybe_unused update_runtime_enabled(struct rq *rq)
4085{
4086	struct cfs_rq *cfs_rq;
4087
4088	for_each_leaf_cfs_rq(rq, cfs_rq) {
4089		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4090
4091		raw_spin_lock(&cfs_b->lock);
4092		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4093		raw_spin_unlock(&cfs_b->lock);
4094	}
4095}
4096
4097static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4098{
4099	struct cfs_rq *cfs_rq;
4100
4101	for_each_leaf_cfs_rq(rq, cfs_rq) {
4102		if (!cfs_rq->runtime_enabled)
4103			continue;
4104
4105		/*
4106		 * clock_task is not advancing so we just need to make sure
4107		 * there's some valid quota amount
4108		 */
4109		cfs_rq->runtime_remaining = 1;
4110		/*
4111		 * Offline rq is schedulable till cpu is completely disabled
4112		 * in take_cpu_down(), so we prevent new cfs throttling here.
4113		 */
4114		cfs_rq->runtime_enabled = 0;
4115
4116		if (cfs_rq_throttled(cfs_rq))
4117			unthrottle_cfs_rq(cfs_rq);
4118	}
4119}
4120
4121#else /* CONFIG_CFS_BANDWIDTH */
4122static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4123{
4124	return rq_clock_task(rq_of(cfs_rq));
4125}
4126
4127static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4128static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4129static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4130static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4131
4132static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4133{
4134	return 0;
4135}
4136
4137static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4138{
4139	return 0;
4140}
4141
4142static inline int throttled_lb_pair(struct task_group *tg,
4143				    int src_cpu, int dest_cpu)
4144{
4145	return 0;
4146}
4147
4148void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4149
4150#ifdef CONFIG_FAIR_GROUP_SCHED
4151static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4152#endif
4153
4154static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4155{
4156	return NULL;
4157}
4158static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4159static inline void update_runtime_enabled(struct rq *rq) {}
4160static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4161
4162#endif /* CONFIG_CFS_BANDWIDTH */
4163
4164/**************************************************
4165 * CFS operations on tasks:
4166 */
4167
4168#ifdef CONFIG_SCHED_HRTICK
4169static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4170{
4171	struct sched_entity *se = &p->se;
4172	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4173
4174	WARN_ON(task_rq(p) != rq);
4175
4176	if (cfs_rq->nr_running > 1) {
4177		u64 slice = sched_slice(cfs_rq, se);
4178		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4179		s64 delta = slice - ran;
4180
4181		if (delta < 0) {
4182			if (rq->curr == p)
4183				resched_curr(rq);
4184			return;
4185		}
4186		hrtick_start(rq, delta);
4187	}
4188}
4189
4190/*
4191 * called from enqueue/dequeue and updates the hrtick when the
4192 * current task is from our class and nr_running is low enough
4193 * to matter.
4194 */
4195static void hrtick_update(struct rq *rq)
4196{
4197	struct task_struct *curr = rq->curr;
4198
4199	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4200		return;
4201
4202	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4203		hrtick_start_fair(rq, curr);
4204}
4205#else /* !CONFIG_SCHED_HRTICK */
4206static inline void
4207hrtick_start_fair(struct rq *rq, struct task_struct *p)
4208{
4209}
4210
4211static inline void hrtick_update(struct rq *rq)
4212{
4213}
4214#endif
4215
4216/*
4217 * The enqueue_task method is called before nr_running is
4218 * increased. Here we update the fair scheduling stats and
4219 * then put the task into the rbtree:
4220 */
4221static void
4222enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4223{
4224	struct cfs_rq *cfs_rq;
4225	struct sched_entity *se = &p->se;
4226
4227	for_each_sched_entity(se) {
4228		if (se->on_rq)
4229			break;
4230		cfs_rq = cfs_rq_of(se);
4231		enqueue_entity(cfs_rq, se, flags);
4232
4233		/*
4234		 * end evaluation on encountering a throttled cfs_rq
4235		 *
4236		 * note: in the case of encountering a throttled cfs_rq we will
4237		 * post the final h_nr_running increment below.
4238		*/
4239		if (cfs_rq_throttled(cfs_rq))
4240			break;
4241		cfs_rq->h_nr_running++;
4242
4243		flags = ENQUEUE_WAKEUP;
4244	}
4245
4246	for_each_sched_entity(se) {
4247		cfs_rq = cfs_rq_of(se);
4248		cfs_rq->h_nr_running++;
4249
4250		if (cfs_rq_throttled(cfs_rq))
4251			break;
4252
4253		update_cfs_shares(cfs_rq);
4254		update_entity_load_avg(se, 1);
4255	}
4256
4257	if (!se) {
4258		update_rq_runnable_avg(rq, rq->nr_running);
4259		add_nr_running(rq, 1);
4260	}
4261	hrtick_update(rq);
4262}
4263
4264static void set_next_buddy(struct sched_entity *se);
4265
4266/*
4267 * The dequeue_task method is called before nr_running is
4268 * decreased. We remove the task from the rbtree and
4269 * update the fair scheduling stats:
4270 */
4271static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4272{
4273	struct cfs_rq *cfs_rq;
4274	struct sched_entity *se = &p->se;
4275	int task_sleep = flags & DEQUEUE_SLEEP;
4276
4277	for_each_sched_entity(se) {
4278		cfs_rq = cfs_rq_of(se);
4279		dequeue_entity(cfs_rq, se, flags);
4280
4281		/*
4282		 * end evaluation on encountering a throttled cfs_rq
4283		 *
4284		 * note: in the case of encountering a throttled cfs_rq we will
4285		 * post the final h_nr_running decrement below.
4286		*/
4287		if (cfs_rq_throttled(cfs_rq))
4288			break;
4289		cfs_rq->h_nr_running--;
4290
4291		/* Don't dequeue parent if it has other entities besides us */
4292		if (cfs_rq->load.weight) {
4293			/*
4294			 * Bias pick_next to pick a task from this cfs_rq, as
4295			 * p is sleeping when it is within its sched_slice.
4296			 */
4297			if (task_sleep && parent_entity(se))
4298				set_next_buddy(parent_entity(se));
4299
4300			/* avoid re-evaluating load for this entity */
4301			se = parent_entity(se);
4302			break;
4303		}
4304		flags |= DEQUEUE_SLEEP;
4305	}
4306
4307	for_each_sched_entity(se) {
4308		cfs_rq = cfs_rq_of(se);
4309		cfs_rq->h_nr_running--;
4310
4311		if (cfs_rq_throttled(cfs_rq))
4312			break;
4313
4314		update_cfs_shares(cfs_rq);
4315		update_entity_load_avg(se, 1);
4316	}
4317
4318	if (!se) {
4319		sub_nr_running(rq, 1);
4320		update_rq_runnable_avg(rq, 1);
4321	}
4322	hrtick_update(rq);
4323}
4324
4325#ifdef CONFIG_SMP
4326/* Used instead of source_load when we know the type == 0 */
4327static unsigned long weighted_cpuload(const int cpu)
4328{
4329	return cpu_rq(cpu)->cfs.runnable_load_avg;
4330}
4331
4332/*
4333 * Return a low guess at the load of a migration-source cpu weighted
4334 * according to the scheduling class and "nice" value.
4335 *
4336 * We want to under-estimate the load of migration sources, to
4337 * balance conservatively.
4338 */
4339static unsigned long source_load(int cpu, int type)
4340{
4341	struct rq *rq = cpu_rq(cpu);
4342	unsigned long total = weighted_cpuload(cpu);
4343
4344	if (type == 0 || !sched_feat(LB_BIAS))
4345		return total;
4346
4347	return min(rq->cpu_load[type-1], total);
4348}
4349
4350/*
4351 * Return a high guess at the load of a migration-target cpu weighted
4352 * according to the scheduling class and "nice" value.
4353 */
4354static unsigned long target_load(int cpu, int type)
4355{
4356	struct rq *rq = cpu_rq(cpu);
4357	unsigned long total = weighted_cpuload(cpu);
4358
4359	if (type == 0 || !sched_feat(LB_BIAS))
4360		return total;
4361
4362	return max(rq->cpu_load[type-1], total);
4363}
4364
4365static unsigned long capacity_of(int cpu)
4366{
4367	return cpu_rq(cpu)->cpu_capacity;
4368}
4369
4370static unsigned long capacity_orig_of(int cpu)
4371{
4372	return cpu_rq(cpu)->cpu_capacity_orig;
4373}
4374
4375static unsigned long cpu_avg_load_per_task(int cpu)
4376{
4377	struct rq *rq = cpu_rq(cpu);
4378	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4379	unsigned long load_avg = rq->cfs.runnable_load_avg;
4380
4381	if (nr_running)
4382		return load_avg / nr_running;
4383
4384	return 0;
4385}
4386
4387static void record_wakee(struct task_struct *p)
4388{
4389	/*
4390	 * Rough decay (wiping) for cost saving, don't worry
4391	 * about the boundary, really active task won't care
4392	 * about the loss.
4393	 */
4394	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4395		current->wakee_flips >>= 1;
4396		current->wakee_flip_decay_ts = jiffies;
4397	}
4398
4399	if (current->last_wakee != p) {
4400		current->last_wakee = p;
4401		current->wakee_flips++;
4402	}
4403}
4404
4405static void task_waking_fair(struct task_struct *p)
4406{
4407	struct sched_entity *se = &p->se;
4408	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4409	u64 min_vruntime;
4410
4411#ifndef CONFIG_64BIT
4412	u64 min_vruntime_copy;
4413
4414	do {
4415		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4416		smp_rmb();
4417		min_vruntime = cfs_rq->min_vruntime;
4418	} while (min_vruntime != min_vruntime_copy);
4419#else
4420	min_vruntime = cfs_rq->min_vruntime;
4421#endif
4422
4423	se->vruntime -= min_vruntime;
4424	record_wakee(p);
4425}
4426
4427#ifdef CONFIG_FAIR_GROUP_SCHED
4428/*
4429 * effective_load() calculates the load change as seen from the root_task_group
4430 *
4431 * Adding load to a group doesn't make a group heavier, but can cause movement
4432 * of group shares between cpus. Assuming the shares were perfectly aligned one
4433 * can calculate the shift in shares.
4434 *
4435 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4436 * on this @cpu and results in a total addition (subtraction) of @wg to the
4437 * total group weight.
4438 *
4439 * Given a runqueue weight distribution (rw_i) we can compute a shares
4440 * distribution (s_i) using:
4441 *
4442 *   s_i = rw_i / \Sum rw_j						(1)
4443 *
4444 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4445 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4446 * shares distribution (s_i):
4447 *
4448 *   rw_i = {   2,   4,   1,   0 }
4449 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4450 *
4451 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4452 * task used to run on and the CPU the waker is running on), we need to
4453 * compute the effect of waking a task on either CPU and, in case of a sync
4454 * wakeup, compute the effect of the current task going to sleep.
4455 *
4456 * So for a change of @wl to the local @cpu with an overall group weight change
4457 * of @wl we can compute the new shares distribution (s'_i) using:
4458 *
4459 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4460 *
4461 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4462 * differences in waking a task to CPU 0. The additional task changes the
4463 * weight and shares distributions like:
4464 *
4465 *   rw'_i = {   3,   4,   1,   0 }
4466 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4467 *
4468 * We can then compute the difference in effective weight by using:
4469 *
4470 *   dw_i = S * (s'_i - s_i)						(3)
4471 *
4472 * Where 'S' is the group weight as seen by its parent.
4473 *
4474 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4475 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4476 * 4/7) times the weight of the group.
4477 */
4478static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4479{
4480	struct sched_entity *se = tg->se[cpu];
4481
4482	if (!tg->parent)	/* the trivial, non-cgroup case */
4483		return wl;
4484
4485	for_each_sched_entity(se) {
4486		long w, W;
4487
4488		tg = se->my_q->tg;
4489
4490		/*
4491		 * W = @wg + \Sum rw_j
4492		 */
4493		W = wg + calc_tg_weight(tg, se->my_q);
4494
4495		/*
4496		 * w = rw_i + @wl
4497		 */
4498		w = se->my_q->load.weight + wl;
4499
4500		/*
4501		 * wl = S * s'_i; see (2)
4502		 */
4503		if (W > 0 && w < W)
4504			wl = (w * (long)tg->shares) / W;
4505		else
4506			wl = tg->shares;
4507
4508		/*
4509		 * Per the above, wl is the new se->load.weight value; since
4510		 * those are clipped to [MIN_SHARES, ...) do so now. See
4511		 * calc_cfs_shares().
4512		 */
4513		if (wl < MIN_SHARES)
4514			wl = MIN_SHARES;
4515
4516		/*
4517		 * wl = dw_i = S * (s'_i - s_i); see (3)
4518		 */
4519		wl -= se->load.weight;
4520
4521		/*
4522		 * Recursively apply this logic to all parent groups to compute
4523		 * the final effective load change on the root group. Since
4524		 * only the @tg group gets extra weight, all parent groups can
4525		 * only redistribute existing shares. @wl is the shift in shares
4526		 * resulting from this level per the above.
4527		 */
4528		wg = 0;
4529	}
4530
4531	return wl;
4532}
4533#else
4534
4535static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4536{
4537	return wl;
4538}
4539
4540#endif
4541
4542static int wake_wide(struct task_struct *p)
4543{
4544	int factor = this_cpu_read(sd_llc_size);
4545
4546	/*
4547	 * Yeah, it's the switching-frequency, could means many wakee or
4548	 * rapidly switch, use factor here will just help to automatically
4549	 * adjust the loose-degree, so bigger node will lead to more pull.
4550	 */
4551	if (p->wakee_flips > factor) {
4552		/*
4553		 * wakee is somewhat hot, it needs certain amount of cpu
4554		 * resource, so if waker is far more hot, prefer to leave
4555		 * it alone.
4556		 */
4557		if (current->wakee_flips > (factor * p->wakee_flips))
4558			return 1;
4559	}
4560
4561	return 0;
4562}
4563
4564static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4565{
4566	s64 this_load, load;
4567	s64 this_eff_load, prev_eff_load;
4568	int idx, this_cpu, prev_cpu;
4569	struct task_group *tg;
4570	unsigned long weight;
4571	int balanced;
4572
4573	/*
4574	 * If we wake multiple tasks be careful to not bounce
4575	 * ourselves around too much.
4576	 */
4577	if (wake_wide(p))
4578		return 0;
4579
4580	idx	  = sd->wake_idx;
4581	this_cpu  = smp_processor_id();
4582	prev_cpu  = task_cpu(p);
4583	load	  = source_load(prev_cpu, idx);
4584	this_load = target_load(this_cpu, idx);
4585
4586	/*
4587	 * If sync wakeup then subtract the (maximum possible)
4588	 * effect of the currently running task from the load
4589	 * of the current CPU:
4590	 */
4591	if (sync) {
4592		tg = task_group(current);
4593		weight = current->se.load.weight;
4594
4595		this_load += effective_load(tg, this_cpu, -weight, -weight);
4596		load += effective_load(tg, prev_cpu, 0, -weight);
4597	}
4598
4599	tg = task_group(p);
4600	weight = p->se.load.weight;
4601
4602	/*
4603	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4604	 * due to the sync cause above having dropped this_load to 0, we'll
4605	 * always have an imbalance, but there's really nothing you can do
4606	 * about that, so that's good too.
4607	 *
4608	 * Otherwise check if either cpus are near enough in load to allow this
4609	 * task to be woken on this_cpu.
4610	 */
4611	this_eff_load = 100;
4612	this_eff_load *= capacity_of(prev_cpu);
4613
4614	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4615	prev_eff_load *= capacity_of(this_cpu);
4616
4617	if (this_load > 0) {
4618		this_eff_load *= this_load +
4619			effective_load(tg, this_cpu, weight, weight);
4620
4621		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4622	}
4623
4624	balanced = this_eff_load <= prev_eff_load;
4625
4626	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4627
4628	if (!balanced)
4629		return 0;
4630
4631	schedstat_inc(sd, ttwu_move_affine);
4632	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4633
4634	return 1;
4635}
4636
4637/*
4638 * find_idlest_group finds and returns the least busy CPU group within the
4639 * domain.
4640 */
4641static struct sched_group *
4642find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4643		  int this_cpu, int sd_flag)
4644{
4645	struct sched_group *idlest = NULL, *group = sd->groups;
4646	unsigned long min_load = ULONG_MAX, this_load = 0;
4647	int load_idx = sd->forkexec_idx;
4648	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4649
4650	if (sd_flag & SD_BALANCE_WAKE)
4651		load_idx = sd->wake_idx;
4652
4653	do {
4654		unsigned long load, avg_load;
4655		int local_group;
4656		int i;
4657
4658		/* Skip over this group if it has no CPUs allowed */
4659		if (!cpumask_intersects(sched_group_cpus(group),
4660					tsk_cpus_allowed(p)))
4661			continue;
4662
4663		local_group = cpumask_test_cpu(this_cpu,
4664					       sched_group_cpus(group));
4665
4666		/* Tally up the load of all CPUs in the group */
4667		avg_load = 0;
4668
4669		for_each_cpu(i, sched_group_cpus(group)) {
4670			/* Bias balancing toward cpus of our domain */
4671			if (local_group)
4672				load = source_load(i, load_idx);
4673			else
4674				load = target_load(i, load_idx);
4675
4676			avg_load += load;
4677		}
4678
4679		/* Adjust by relative CPU capacity of the group */
4680		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4681
4682		if (local_group) {
4683			this_load = avg_load;
4684		} else if (avg_load < min_load) {
4685			min_load = avg_load;
4686			idlest = group;
4687		}
4688	} while (group = group->next, group != sd->groups);
4689
4690	if (!idlest || 100*this_load < imbalance*min_load)
4691		return NULL;
4692	return idlest;
4693}
4694
4695/*
4696 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4697 */
4698static int
4699find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4700{
4701	unsigned long load, min_load = ULONG_MAX;
4702	unsigned int min_exit_latency = UINT_MAX;
4703	u64 latest_idle_timestamp = 0;
4704	int least_loaded_cpu = this_cpu;
4705	int shallowest_idle_cpu = -1;
4706	int i;
4707
4708	/* Traverse only the allowed CPUs */
4709	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4710		if (idle_cpu(i)) {
4711			struct rq *rq = cpu_rq(i);
4712			struct cpuidle_state *idle = idle_get_state(rq);
4713			if (idle && idle->exit_latency < min_exit_latency) {
4714				/*
4715				 * We give priority to a CPU whose idle state
4716				 * has the smallest exit latency irrespective
4717				 * of any idle timestamp.
4718				 */
4719				min_exit_latency = idle->exit_latency;
4720				latest_idle_timestamp = rq->idle_stamp;
4721				shallowest_idle_cpu = i;
4722			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4723				   rq->idle_stamp > latest_idle_timestamp) {
4724				/*
4725				 * If equal or no active idle state, then
4726				 * the most recently idled CPU might have
4727				 * a warmer cache.
4728				 */
4729				latest_idle_timestamp = rq->idle_stamp;
4730				shallowest_idle_cpu = i;
4731			}
4732		} else if (shallowest_idle_cpu == -1) {
4733			load = weighted_cpuload(i);
4734			if (load < min_load || (load == min_load && i == this_cpu)) {
4735				min_load = load;
4736				least_loaded_cpu = i;
4737			}
4738		}
4739	}
4740
4741	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4742}
4743
4744/*
4745 * Try and locate an idle CPU in the sched_domain.
4746 */
4747static int select_idle_sibling(struct task_struct *p, int target)
4748{
4749	struct sched_domain *sd;
4750	struct sched_group *sg;
4751	int i = task_cpu(p);
4752
4753	if (idle_cpu(target))
4754		return target;
4755
4756	/*
4757	 * If the prevous cpu is cache affine and idle, don't be stupid.
4758	 */
4759	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4760		return i;
4761
4762	/*
4763	 * Otherwise, iterate the domains and find an elegible idle cpu.
4764	 */
4765	sd = rcu_dereference(per_cpu(sd_llc, target));
4766	for_each_lower_domain(sd) {
4767		sg = sd->groups;
4768		do {
4769			if (!cpumask_intersects(sched_group_cpus(sg),
4770						tsk_cpus_allowed(p)))
4771				goto next;
4772
4773			for_each_cpu(i, sched_group_cpus(sg)) {
4774				if (i == target || !idle_cpu(i))
4775					goto next;
4776			}
4777
4778			target = cpumask_first_and(sched_group_cpus(sg),
4779					tsk_cpus_allowed(p));
4780			goto done;
4781next:
4782			sg = sg->next;
4783		} while (sg != sd->groups);
4784	}
4785done:
4786	return target;
4787}
4788/*
4789 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4790 * tasks. The unit of the return value must be the one of capacity so we can
4791 * compare the usage with the capacity of the CPU that is available for CFS
4792 * task (ie cpu_capacity).
4793 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4794 * CPU. It represents the amount of utilization of a CPU in the range
4795 * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4796 * capacity of the CPU because it's about the running time on this CPU.
4797 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4798 * because of unfortunate rounding in avg_period and running_load_avg or just
4799 * after migrating tasks until the average stabilizes with the new running
4800 * time. So we need to check that the usage stays into the range
4801 * [0..cpu_capacity_orig] and cap if necessary.
4802 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4803 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4804 */
4805static int get_cpu_usage(int cpu)
4806{
4807	unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4808	unsigned long capacity = capacity_orig_of(cpu);
4809
4810	if (usage >= SCHED_LOAD_SCALE)
4811		return capacity;
4812
4813	return (usage * capacity) >> SCHED_LOAD_SHIFT;
4814}
4815
4816/*
4817 * select_task_rq_fair: Select target runqueue for the waking task in domains
4818 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4819 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4820 *
4821 * Balances load by selecting the idlest cpu in the idlest group, or under
4822 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4823 *
4824 * Returns the target cpu number.
4825 *
4826 * preempt must be disabled.
4827 */
4828static int
4829select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4830{
4831	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4832	int cpu = smp_processor_id();
4833	int new_cpu = cpu;
4834	int want_affine = 0;
4835	int sync = wake_flags & WF_SYNC;
4836
4837	if (sd_flag & SD_BALANCE_WAKE)
4838		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4839
4840	rcu_read_lock();
4841	for_each_domain(cpu, tmp) {
4842		if (!(tmp->flags & SD_LOAD_BALANCE))
4843			continue;
4844
4845		/*
4846		 * If both cpu and prev_cpu are part of this domain,
4847		 * cpu is a valid SD_WAKE_AFFINE target.
4848		 */
4849		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4850		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4851			affine_sd = tmp;
4852			break;
4853		}
4854
4855		if (tmp->flags & sd_flag)
4856			sd = tmp;
4857	}
4858
4859	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4860		prev_cpu = cpu;
4861
4862	if (sd_flag & SD_BALANCE_WAKE) {
4863		new_cpu = select_idle_sibling(p, prev_cpu);
4864		goto unlock;
4865	}
4866
4867	while (sd) {
4868		struct sched_group *group;
4869		int weight;
4870
4871		if (!(sd->flags & sd_flag)) {
4872			sd = sd->child;
4873			continue;
4874		}
4875
4876		group = find_idlest_group(sd, p, cpu, sd_flag);
4877		if (!group) {
4878			sd = sd->child;
4879			continue;
4880		}
4881
4882		new_cpu = find_idlest_cpu(group, p, cpu);
4883		if (new_cpu == -1 || new_cpu == cpu) {
4884			/* Now try balancing at a lower domain level of cpu */
4885			sd = sd->child;
4886			continue;
4887		}
4888
4889		/* Now try balancing at a lower domain level of new_cpu */
4890		cpu = new_cpu;
4891		weight = sd->span_weight;
4892		sd = NULL;
4893		for_each_domain(cpu, tmp) {
4894			if (weight <= tmp->span_weight)
4895				break;
4896			if (tmp->flags & sd_flag)
4897				sd = tmp;
4898		}
4899		/* while loop will break here if sd == NULL */
4900	}
4901unlock:
4902	rcu_read_unlock();
4903
4904	return new_cpu;
4905}
4906
4907/*
4908 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4909 * cfs_rq_of(p) references at time of call are still valid and identify the
4910 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4911 * other assumptions, including the state of rq->lock, should be made.
4912 */
4913static void
4914migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4915{
4916	struct sched_entity *se = &p->se;
4917	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4918
4919	/*
4920	 * Load tracking: accumulate removed load so that it can be processed
4921	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4922	 * to blocked load iff they have a positive decay-count.  It can never
4923	 * be negative here since on-rq tasks have decay-count == 0.
4924	 */
4925	if (se->avg.decay_count) {
4926		se->avg.decay_count = -__synchronize_entity_decay(se);
4927		atomic_long_add(se->avg.load_avg_contrib,
4928						&cfs_rq->removed_load);
4929	}
4930
4931	/* We have migrated, no longer consider this task hot */
4932	se->exec_start = 0;
4933}
4934#endif /* CONFIG_SMP */
4935
4936static unsigned long
4937wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4938{
4939	unsigned long gran = sysctl_sched_wakeup_granularity;
4940
4941	/*
4942	 * Since its curr running now, convert the gran from real-time
4943	 * to virtual-time in his units.
4944	 *
4945	 * By using 'se' instead of 'curr' we penalize light tasks, so
4946	 * they get preempted easier. That is, if 'se' < 'curr' then
4947	 * the resulting gran will be larger, therefore penalizing the
4948	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4949	 * be smaller, again penalizing the lighter task.
4950	 *
4951	 * This is especially important for buddies when the leftmost
4952	 * task is higher priority than the buddy.
4953	 */
4954	return calc_delta_fair(gran, se);
4955}
4956
4957/*
4958 * Should 'se' preempt 'curr'.
4959 *
4960 *             |s1
4961 *        |s2
4962 *   |s3
4963 *         g
4964 *      |<--->|c
4965 *
4966 *  w(c, s1) = -1
4967 *  w(c, s2) =  0
4968 *  w(c, s3) =  1
4969 *
4970 */
4971static int
4972wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4973{
4974	s64 gran, vdiff = curr->vruntime - se->vruntime;
4975
4976	if (vdiff <= 0)
4977		return -1;
4978
4979	gran = wakeup_gran(curr, se);
4980	if (vdiff > gran)
4981		return 1;
4982
4983	return 0;
4984}
4985
4986static void set_last_buddy(struct sched_entity *se)
4987{
4988	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4989		return;
4990
4991	for_each_sched_entity(se)
4992		cfs_rq_of(se)->last = se;
4993}
4994
4995static void set_next_buddy(struct sched_entity *se)
4996{
4997	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4998		return;
4999
5000	for_each_sched_entity(se)
5001		cfs_rq_of(se)->next = se;
5002}
5003
5004static void set_skip_buddy(struct sched_entity *se)
5005{
5006	for_each_sched_entity(se)
5007		cfs_rq_of(se)->skip = se;
5008}
5009
5010/*
5011 * Preempt the current task with a newly woken task if needed:
5012 */
5013static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5014{
5015	struct task_struct *curr = rq->curr;
5016	struct sched_entity *se = &curr->se, *pse = &p->se;
5017	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5018	int scale = cfs_rq->nr_running >= sched_nr_latency;
5019	int next_buddy_marked = 0;
5020
5021	if (unlikely(se == pse))
5022		return;
5023
5024	/*
5025	 * This is possible from callers such as attach_tasks(), in which we
5026	 * unconditionally check_prempt_curr() after an enqueue (which may have
5027	 * lead to a throttle).  This both saves work and prevents false
5028	 * next-buddy nomination below.
5029	 */
5030	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5031		return;
5032
5033	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5034		set_next_buddy(pse);
5035		next_buddy_marked = 1;
5036	}
5037
5038	/*
5039	 * We can come here with TIF_NEED_RESCHED already set from new task
5040	 * wake up path.
5041	 *
5042	 * Note: this also catches the edge-case of curr being in a throttled
5043	 * group (e.g. via set_curr_task), since update_curr() (in the
5044	 * enqueue of curr) will have resulted in resched being set.  This
5045	 * prevents us from potentially nominating it as a false LAST_BUDDY
5046	 * below.
5047	 */
5048	if (test_tsk_need_resched(curr))
5049		return;
5050
5051	/* Idle tasks are by definition preempted by non-idle tasks. */
5052	if (unlikely(curr->policy == SCHED_IDLE) &&
5053	    likely(p->policy != SCHED_IDLE))
5054		goto preempt;
5055
5056	/*
5057	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5058	 * is driven by the tick):
5059	 */
5060	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5061		return;
5062
5063	find_matching_se(&se, &pse);
5064	update_curr(cfs_rq_of(se));
5065	BUG_ON(!pse);
5066	if (wakeup_preempt_entity(se, pse) == 1) {
5067		/*
5068		 * Bias pick_next to pick the sched entity that is
5069		 * triggering this preemption.
5070		 */
5071		if (!next_buddy_marked)
5072			set_next_buddy(pse);
5073		goto preempt;
5074	}
5075
5076	return;
5077
5078preempt:
5079	resched_curr(rq);
5080	/*
5081	 * Only set the backward buddy when the current task is still
5082	 * on the rq. This can happen when a wakeup gets interleaved
5083	 * with schedule on the ->pre_schedule() or idle_balance()
5084	 * point, either of which can * drop the rq lock.
5085	 *
5086	 * Also, during early boot the idle thread is in the fair class,
5087	 * for obvious reasons its a bad idea to schedule back to it.
5088	 */
5089	if (unlikely(!se->on_rq || curr == rq->idle))
5090		return;
5091
5092	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5093		set_last_buddy(se);
5094}
5095
5096static struct task_struct *
5097pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5098{
5099	struct cfs_rq *cfs_rq = &rq->cfs;
5100	struct sched_entity *se;
5101	struct task_struct *p;
5102	int new_tasks;
5103
5104again:
5105#ifdef CONFIG_FAIR_GROUP_SCHED
5106	if (!cfs_rq->nr_running)
5107		goto idle;
5108
5109	if (prev->sched_class != &fair_sched_class)
5110		goto simple;
5111
5112	/*
5113	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5114	 * likely that a next task is from the same cgroup as the current.
5115	 *
5116	 * Therefore attempt to avoid putting and setting the entire cgroup
5117	 * hierarchy, only change the part that actually changes.
5118	 */
5119
5120	do {
5121		struct sched_entity *curr = cfs_rq->curr;
5122
5123		/*
5124		 * Since we got here without doing put_prev_entity() we also
5125		 * have to consider cfs_rq->curr. If it is still a runnable
5126		 * entity, update_curr() will update its vruntime, otherwise
5127		 * forget we've ever seen it.
5128		 */
5129		if (curr) {
5130			if (curr->on_rq)
5131				update_curr(cfs_rq);
5132			else
5133				curr = NULL;
5134
5135			/*
5136			 * This call to check_cfs_rq_runtime() will do the
5137			 * throttle and dequeue its entity in the parent(s).
5138			 * Therefore the 'simple' nr_running test will indeed
5139			 * be correct.
5140			 */
5141			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5142				goto simple;
5143		}
5144
5145		se = pick_next_entity(cfs_rq, curr);
5146		cfs_rq = group_cfs_rq(se);
5147	} while (cfs_rq);
5148
5149	p = task_of(se);
5150
5151	/*
5152	 * Since we haven't yet done put_prev_entity and if the selected task
5153	 * is a different task than we started out with, try and touch the
5154	 * least amount of cfs_rqs.
5155	 */
5156	if (prev != p) {
5157		struct sched_entity *pse = &prev->se;
5158
5159		while (!(cfs_rq = is_same_group(se, pse))) {
5160			int se_depth = se->depth;
5161			int pse_depth = pse->depth;
5162
5163			if (se_depth <= pse_depth) {
5164				put_prev_entity(cfs_rq_of(pse), pse);
5165				pse = parent_entity(pse);
5166			}
5167			if (se_depth >= pse_depth) {
5168				set_next_entity(cfs_rq_of(se), se);
5169				se = parent_entity(se);
5170			}
5171		}
5172
5173		put_prev_entity(cfs_rq, pse);
5174		set_next_entity(cfs_rq, se);
5175	}
5176
5177	if (hrtick_enabled(rq))
5178		hrtick_start_fair(rq, p);
5179
5180	return p;
5181simple:
5182	cfs_rq = &rq->cfs;
5183#endif
5184
5185	if (!cfs_rq->nr_running)
5186		goto idle;
5187
5188	put_prev_task(rq, prev);
5189
5190	do {
5191		se = pick_next_entity(cfs_rq, NULL);
5192		set_next_entity(cfs_rq, se);
5193		cfs_rq = group_cfs_rq(se);
5194	} while (cfs_rq);
5195
5196	p = task_of(se);
5197
5198	if (hrtick_enabled(rq))
5199		hrtick_start_fair(rq, p);
5200
5201	return p;
5202
5203idle:
5204	new_tasks = idle_balance(rq);
5205	/*
5206	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5207	 * possible for any higher priority task to appear. In that case we
5208	 * must re-start the pick_next_entity() loop.
5209	 */
5210	if (new_tasks < 0)
5211		return RETRY_TASK;
5212
5213	if (new_tasks > 0)
5214		goto again;
5215
5216	return NULL;
5217}
5218
5219/*
5220 * Account for a descheduled task:
5221 */
5222static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5223{
5224	struct sched_entity *se = &prev->se;
5225	struct cfs_rq *cfs_rq;
5226
5227	for_each_sched_entity(se) {
5228		cfs_rq = cfs_rq_of(se);
5229		put_prev_entity(cfs_rq, se);
5230	}
5231}
5232
5233/*
5234 * sched_yield() is very simple
5235 *
5236 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5237 */
5238static void yield_task_fair(struct rq *rq)
5239{
5240	struct task_struct *curr = rq->curr;
5241	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5242	struct sched_entity *se = &curr->se;
5243
5244	/*
5245	 * Are we the only task in the tree?
5246	 */
5247	if (unlikely(rq->nr_running == 1))
5248		return;
5249
5250	clear_buddies(cfs_rq, se);
5251
5252	if (curr->policy != SCHED_BATCH) {
5253		update_rq_clock(rq);
5254		/*
5255		 * Update run-time statistics of the 'current'.
5256		 */
5257		update_curr(cfs_rq);
5258		/*
5259		 * Tell update_rq_clock() that we've just updated,
5260		 * so we don't do microscopic update in schedule()
5261		 * and double the fastpath cost.
5262		 */
5263		rq_clock_skip_update(rq, true);
5264	}
5265
5266	set_skip_buddy(se);
5267}
5268
5269static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5270{
5271	struct sched_entity *se = &p->se;
5272
5273	/* throttled hierarchies are not runnable */
5274	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5275		return false;
5276
5277	/* Tell the scheduler that we'd really like pse to run next. */
5278	set_next_buddy(se);
5279
5280	yield_task_fair(rq);
5281
5282	return true;
5283}
5284
5285#ifdef CONFIG_SMP
5286/**************************************************
5287 * Fair scheduling class load-balancing methods.
5288 *
5289 * BASICS
5290 *
5291 * The purpose of load-balancing is to achieve the same basic fairness the
5292 * per-cpu scheduler provides, namely provide a proportional amount of compute
5293 * time to each task. This is expressed in the following equation:
5294 *
5295 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5296 *
5297 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5298 * W_i,0 is defined as:
5299 *
5300 *   W_i,0 = \Sum_j w_i,j                                             (2)
5301 *
5302 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5303 * is derived from the nice value as per prio_to_weight[].
5304 *
5305 * The weight average is an exponential decay average of the instantaneous
5306 * weight:
5307 *
5308 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5309 *
5310 * C_i is the compute capacity of cpu i, typically it is the
5311 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5312 * can also include other factors [XXX].
5313 *
5314 * To achieve this balance we define a measure of imbalance which follows
5315 * directly from (1):
5316 *
5317 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5318 *
5319 * We them move tasks around to minimize the imbalance. In the continuous
5320 * function space it is obvious this converges, in the discrete case we get
5321 * a few fun cases generally called infeasible weight scenarios.
5322 *
5323 * [XXX expand on:
5324 *     - infeasible weights;
5325 *     - local vs global optima in the discrete case. ]
5326 *
5327 *
5328 * SCHED DOMAINS
5329 *
5330 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5331 * for all i,j solution, we create a tree of cpus that follows the hardware
5332 * topology where each level pairs two lower groups (or better). This results
5333 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5334 * tree to only the first of the previous level and we decrease the frequency
5335 * of load-balance at each level inv. proportional to the number of cpus in
5336 * the groups.
5337 *
5338 * This yields:
5339 *
5340 *     log_2 n     1     n
5341 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5342 *     i = 0      2^i   2^i
5343 *                               `- size of each group
5344 *         |         |     `- number of cpus doing load-balance
5345 *         |         `- freq
5346 *         `- sum over all levels
5347 *
5348 * Coupled with a limit on how many tasks we can migrate every balance pass,
5349 * this makes (5) the runtime complexity of the balancer.
5350 *
5351 * An important property here is that each CPU is still (indirectly) connected
5352 * to every other cpu in at most O(log n) steps:
5353 *
5354 * The adjacency matrix of the resulting graph is given by:
5355 *
5356 *             log_2 n
5357 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5358 *             k = 0
5359 *
5360 * And you'll find that:
5361 *
5362 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5363 *
5364 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5365 * The task movement gives a factor of O(m), giving a convergence complexity
5366 * of:
5367 *
5368 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5369 *
5370 *
5371 * WORK CONSERVING
5372 *
5373 * In order to avoid CPUs going idle while there's still work to do, new idle
5374 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5375 * tree itself instead of relying on other CPUs to bring it work.
5376 *
5377 * This adds some complexity to both (5) and (8) but it reduces the total idle
5378 * time.
5379 *
5380 * [XXX more?]
5381 *
5382 *
5383 * CGROUPS
5384 *
5385 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5386 *
5387 *                                s_k,i
5388 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5389 *                                 S_k
5390 *
5391 * Where
5392 *
5393 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5394 *
5395 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5396 *
5397 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5398 * property.
5399 *
5400 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5401 *      rewrite all of this once again.]
5402 */
5403
5404static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5405
5406enum fbq_type { regular, remote, all };
5407
5408#define LBF_ALL_PINNED	0x01
5409#define LBF_NEED_BREAK	0x02
5410#define LBF_DST_PINNED  0x04
5411#define LBF_SOME_PINNED	0x08
5412
5413struct lb_env {
5414	struct sched_domain	*sd;
5415
5416	struct rq		*src_rq;
5417	int			src_cpu;
5418
5419	int			dst_cpu;
5420	struct rq		*dst_rq;
5421
5422	struct cpumask		*dst_grpmask;
5423	int			new_dst_cpu;
5424	enum cpu_idle_type	idle;
5425	long			imbalance;
5426	/* The set of CPUs under consideration for load-balancing */
5427	struct cpumask		*cpus;
5428
5429	unsigned int		flags;
5430
5431	unsigned int		loop;
5432	unsigned int		loop_break;
5433	unsigned int		loop_max;
5434
5435	enum fbq_type		fbq_type;
5436	struct list_head	tasks;
5437};
5438
5439/*
5440 * Is this task likely cache-hot:
5441 */
5442static int task_hot(struct task_struct *p, struct lb_env *env)
5443{
5444	s64 delta;
5445
5446	lockdep_assert_held(&env->src_rq->lock);
5447
5448	if (p->sched_class != &fair_sched_class)
5449		return 0;
5450
5451	if (unlikely(p->policy == SCHED_IDLE))
5452		return 0;
5453
5454	/*
5455	 * Buddy candidates are cache hot:
5456	 */
5457	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5458			(&p->se == cfs_rq_of(&p->se)->next ||
5459			 &p->se == cfs_rq_of(&p->se)->last))
5460		return 1;
5461
5462	if (sysctl_sched_migration_cost == -1)
5463		return 1;
5464	if (sysctl_sched_migration_cost == 0)
5465		return 0;
5466
5467	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5468
5469	return delta < (s64)sysctl_sched_migration_cost;
5470}
5471
5472#ifdef CONFIG_NUMA_BALANCING
5473/* Returns true if the destination node has incurred more faults */
5474static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5475{
5476	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5477	int src_nid, dst_nid;
5478
5479	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5480	    !(env->sd->flags & SD_NUMA)) {
5481		return false;
5482	}
5483
5484	src_nid = cpu_to_node(env->src_cpu);
5485	dst_nid = cpu_to_node(env->dst_cpu);
5486
5487	if (src_nid == dst_nid)
5488		return false;
5489
5490	if (numa_group) {
5491		/* Task is already in the group's interleave set. */
5492		if (node_isset(src_nid, numa_group->active_nodes))
5493			return false;
5494
5495		/* Task is moving into the group's interleave set. */
5496		if (node_isset(dst_nid, numa_group->active_nodes))
5497			return true;
5498
5499		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5500	}
5501
5502	/* Encourage migration to the preferred node. */
5503	if (dst_nid == p->numa_preferred_nid)
5504		return true;
5505
5506	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5507}
5508
5509
5510static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5511{
5512	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5513	int src_nid, dst_nid;
5514
5515	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5516		return false;
5517
5518	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5519		return false;
5520
5521	src_nid = cpu_to_node(env->src_cpu);
5522	dst_nid = cpu_to_node(env->dst_cpu);
5523
5524	if (src_nid == dst_nid)
5525		return false;
5526
5527	if (numa_group) {
5528		/* Task is moving within/into the group's interleave set. */
5529		if (node_isset(dst_nid, numa_group->active_nodes))
5530			return false;
5531
5532		/* Task is moving out of the group's interleave set. */
5533		if (node_isset(src_nid, numa_group->active_nodes))
5534			return true;
5535
5536		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5537	}
5538
5539	/* Migrating away from the preferred node is always bad. */
5540	if (src_nid == p->numa_preferred_nid)
5541		return true;
5542
5543	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5544}
5545
5546#else
5547static inline bool migrate_improves_locality(struct task_struct *p,
5548					     struct lb_env *env)
5549{
5550	return false;
5551}
5552
5553static inline bool migrate_degrades_locality(struct task_struct *p,
5554					     struct lb_env *env)
5555{
5556	return false;
5557}
5558#endif
5559
5560/*
5561 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5562 */
5563static
5564int can_migrate_task(struct task_struct *p, struct lb_env *env)
5565{
5566	int tsk_cache_hot = 0;
5567
5568	lockdep_assert_held(&env->src_rq->lock);
5569
5570	/*
5571	 * We do not migrate tasks that are:
5572	 * 1) throttled_lb_pair, or
5573	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5574	 * 3) running (obviously), or
5575	 * 4) are cache-hot on their current CPU.
5576	 */
5577	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5578		return 0;
5579
5580	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5581		int cpu;
5582
5583		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5584
5585		env->flags |= LBF_SOME_PINNED;
5586
5587		/*
5588		 * Remember if this task can be migrated to any other cpu in
5589		 * our sched_group. We may want to revisit it if we couldn't
5590		 * meet load balance goals by pulling other tasks on src_cpu.
5591		 *
5592		 * Also avoid computing new_dst_cpu if we have already computed
5593		 * one in current iteration.
5594		 */
5595		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5596			return 0;
5597
5598		/* Prevent to re-select dst_cpu via env's cpus */
5599		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5600			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5601				env->flags |= LBF_DST_PINNED;
5602				env->new_dst_cpu = cpu;
5603				break;
5604			}
5605		}
5606
5607		return 0;
5608	}
5609
5610	/* Record that we found atleast one task that could run on dst_cpu */
5611	env->flags &= ~LBF_ALL_PINNED;
5612
5613	if (task_running(env->src_rq, p)) {
5614		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5615		return 0;
5616	}
5617
5618	/*
5619	 * Aggressive migration if:
5620	 * 1) destination numa is preferred
5621	 * 2) task is cache cold, or
5622	 * 3) too many balance attempts have failed.
5623	 */
5624	tsk_cache_hot = task_hot(p, env);
5625	if (!tsk_cache_hot)
5626		tsk_cache_hot = migrate_degrades_locality(p, env);
5627
5628	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5629	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5630		if (tsk_cache_hot) {
5631			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5632			schedstat_inc(p, se.statistics.nr_forced_migrations);
5633		}
5634		return 1;
5635	}
5636
5637	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5638	return 0;
5639}
5640
5641/*
5642 * detach_task() -- detach the task for the migration specified in env
5643 */
5644static void detach_task(struct task_struct *p, struct lb_env *env)
5645{
5646	lockdep_assert_held(&env->src_rq->lock);
5647
5648	deactivate_task(env->src_rq, p, 0);
5649	p->on_rq = TASK_ON_RQ_MIGRATING;
5650	set_task_cpu(p, env->dst_cpu);
5651}
5652
5653/*
5654 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5655 * part of active balancing operations within "domain".
5656 *
5657 * Returns a task if successful and NULL otherwise.
5658 */
5659static struct task_struct *detach_one_task(struct lb_env *env)
5660{
5661	struct task_struct *p, *n;
5662
5663	lockdep_assert_held(&env->src_rq->lock);
5664
5665	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5666		if (!can_migrate_task(p, env))
5667			continue;
5668
5669		detach_task(p, env);
5670
5671		/*
5672		 * Right now, this is only the second place where
5673		 * lb_gained[env->idle] is updated (other is detach_tasks)
5674		 * so we can safely collect stats here rather than
5675		 * inside detach_tasks().
5676		 */
5677		schedstat_inc(env->sd, lb_gained[env->idle]);
5678		return p;
5679	}
5680	return NULL;
5681}
5682
5683static const unsigned int sched_nr_migrate_break = 32;
5684
5685/*
5686 * detach_tasks() -- tries to detach up to imbalance weighted load from
5687 * busiest_rq, as part of a balancing operation within domain "sd".
5688 *
5689 * Returns number of detached tasks if successful and 0 otherwise.
5690 */
5691static int detach_tasks(struct lb_env *env)
5692{
5693	struct list_head *tasks = &env->src_rq->cfs_tasks;
5694	struct task_struct *p;
5695	unsigned long load;
5696	int detached = 0;
5697
5698	lockdep_assert_held(&env->src_rq->lock);
5699
5700	if (env->imbalance <= 0)
5701		return 0;
5702
5703	while (!list_empty(tasks)) {
5704		p = list_first_entry(tasks, struct task_struct, se.group_node);
5705
5706		env->loop++;
5707		/* We've more or less seen every task there is, call it quits */
5708		if (env->loop > env->loop_max)
5709			break;
5710
5711		/* take a breather every nr_migrate tasks */
5712		if (env->loop > env->loop_break) {
5713			env->loop_break += sched_nr_migrate_break;
5714			env->flags |= LBF_NEED_BREAK;
5715			break;
5716		}
5717
5718		if (!can_migrate_task(p, env))
5719			goto next;
5720
5721		load = task_h_load(p);
5722
5723		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5724			goto next;
5725
5726		if ((load / 2) > env->imbalance)
5727			goto next;
5728
5729		detach_task(p, env);
5730		list_add(&p->se.group_node, &env->tasks);
5731
5732		detached++;
5733		env->imbalance -= load;
5734
5735#ifdef CONFIG_PREEMPT
5736		/*
5737		 * NEWIDLE balancing is a source of latency, so preemptible
5738		 * kernels will stop after the first task is detached to minimize
5739		 * the critical section.
5740		 */
5741		if (env->idle == CPU_NEWLY_IDLE)
5742			break;
5743#endif
5744
5745		/*
5746		 * We only want to steal up to the prescribed amount of
5747		 * weighted load.
5748		 */
5749		if (env->imbalance <= 0)
5750			break;
5751
5752		continue;
5753next:
5754		list_move_tail(&p->se.group_node, tasks);
5755	}
5756
5757	/*
5758	 * Right now, this is one of only two places we collect this stat
5759	 * so we can safely collect detach_one_task() stats here rather
5760	 * than inside detach_one_task().
5761	 */
5762	schedstat_add(env->sd, lb_gained[env->idle], detached);
5763
5764	return detached;
5765}
5766
5767/*
5768 * attach_task() -- attach the task detached by detach_task() to its new rq.
5769 */
5770static void attach_task(struct rq *rq, struct task_struct *p)
5771{
5772	lockdep_assert_held(&rq->lock);
5773
5774	BUG_ON(task_rq(p) != rq);
5775	p->on_rq = TASK_ON_RQ_QUEUED;
5776	activate_task(rq, p, 0);
5777	check_preempt_curr(rq, p, 0);
5778}
5779
5780/*
5781 * attach_one_task() -- attaches the task returned from detach_one_task() to
5782 * its new rq.
5783 */
5784static void attach_one_task(struct rq *rq, struct task_struct *p)
5785{
5786	raw_spin_lock(&rq->lock);
5787	attach_task(rq, p);
5788	raw_spin_unlock(&rq->lock);
5789}
5790
5791/*
5792 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5793 * new rq.
5794 */
5795static void attach_tasks(struct lb_env *env)
5796{
5797	struct list_head *tasks = &env->tasks;
5798	struct task_struct *p;
5799
5800	raw_spin_lock(&env->dst_rq->lock);
5801
5802	while (!list_empty(tasks)) {
5803		p = list_first_entry(tasks, struct task_struct, se.group_node);
5804		list_del_init(&p->se.group_node);
5805
5806		attach_task(env->dst_rq, p);
5807	}
5808
5809	raw_spin_unlock(&env->dst_rq->lock);
5810}
5811
5812#ifdef CONFIG_FAIR_GROUP_SCHED
5813/*
5814 * update tg->load_weight by folding this cpu's load_avg
5815 */
5816static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5817{
5818	struct sched_entity *se = tg->se[cpu];
5819	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5820
5821	/* throttled entities do not contribute to load */
5822	if (throttled_hierarchy(cfs_rq))
5823		return;
5824
5825	update_cfs_rq_blocked_load(cfs_rq, 1);
5826
5827	if (se) {
5828		update_entity_load_avg(se, 1);
5829		/*
5830		 * We pivot on our runnable average having decayed to zero for
5831		 * list removal.  This generally implies that all our children
5832		 * have also been removed (modulo rounding error or bandwidth
5833		 * control); however, such cases are rare and we can fix these
5834		 * at enqueue.
5835		 *
5836		 * TODO: fix up out-of-order children on enqueue.
5837		 */
5838		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5839			list_del_leaf_cfs_rq(cfs_rq);
5840	} else {
5841		struct rq *rq = rq_of(cfs_rq);
5842		update_rq_runnable_avg(rq, rq->nr_running);
5843	}
5844}
5845
5846static void update_blocked_averages(int cpu)
5847{
5848	struct rq *rq = cpu_rq(cpu);
5849	struct cfs_rq *cfs_rq;
5850	unsigned long flags;
5851
5852	raw_spin_lock_irqsave(&rq->lock, flags);
5853	update_rq_clock(rq);
5854	/*
5855	 * Iterates the task_group tree in a bottom up fashion, see
5856	 * list_add_leaf_cfs_rq() for details.
5857	 */
5858	for_each_leaf_cfs_rq(rq, cfs_rq) {
5859		/*
5860		 * Note: We may want to consider periodically releasing
5861		 * rq->lock about these updates so that creating many task
5862		 * groups does not result in continually extending hold time.
5863		 */
5864		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5865	}
5866
5867	raw_spin_unlock_irqrestore(&rq->lock, flags);
5868}
5869
5870/*
5871 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5872 * This needs to be done in a top-down fashion because the load of a child
5873 * group is a fraction of its parents load.
5874 */
5875static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5876{
5877	struct rq *rq = rq_of(cfs_rq);
5878	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5879	unsigned long now = jiffies;
5880	unsigned long load;
5881
5882	if (cfs_rq->last_h_load_update == now)
5883		return;
5884
5885	cfs_rq->h_load_next = NULL;
5886	for_each_sched_entity(se) {
5887		cfs_rq = cfs_rq_of(se);
5888		cfs_rq->h_load_next = se;
5889		if (cfs_rq->last_h_load_update == now)
5890			break;
5891	}
5892
5893	if (!se) {
5894		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5895		cfs_rq->last_h_load_update = now;
5896	}
5897
5898	while ((se = cfs_rq->h_load_next) != NULL) {
5899		load = cfs_rq->h_load;
5900		load = div64_ul(load * se->avg.load_avg_contrib,
5901				cfs_rq->runnable_load_avg + 1);
5902		cfs_rq = group_cfs_rq(se);
5903		cfs_rq->h_load = load;
5904		cfs_rq->last_h_load_update = now;
5905	}
5906}
5907
5908static unsigned long task_h_load(struct task_struct *p)
5909{
5910	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5911
5912	update_cfs_rq_h_load(cfs_rq);
5913	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5914			cfs_rq->runnable_load_avg + 1);
5915}
5916#else
5917static inline void update_blocked_averages(int cpu)
5918{
5919}
5920
5921static unsigned long task_h_load(struct task_struct *p)
5922{
5923	return p->se.avg.load_avg_contrib;
5924}
5925#endif
5926
5927/********** Helpers for find_busiest_group ************************/
5928
5929enum group_type {
5930	group_other = 0,
5931	group_imbalanced,
5932	group_overloaded,
5933};
5934
5935/*
5936 * sg_lb_stats - stats of a sched_group required for load_balancing
5937 */
5938struct sg_lb_stats {
5939	unsigned long avg_load; /*Avg load across the CPUs of the group */
5940	unsigned long group_load; /* Total load over the CPUs of the group */
5941	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5942	unsigned long load_per_task;
5943	unsigned long group_capacity;
5944	unsigned long group_usage; /* Total usage of the group */
5945	unsigned int sum_nr_running; /* Nr tasks running in the group */
5946	unsigned int idle_cpus;
5947	unsigned int group_weight;
5948	enum group_type group_type;
5949	int group_no_capacity;
5950#ifdef CONFIG_NUMA_BALANCING
5951	unsigned int nr_numa_running;
5952	unsigned int nr_preferred_running;
5953#endif
5954};
5955
5956/*
5957 * sd_lb_stats - Structure to store the statistics of a sched_domain
5958 *		 during load balancing.
5959 */
5960struct sd_lb_stats {
5961	struct sched_group *busiest;	/* Busiest group in this sd */
5962	struct sched_group *local;	/* Local group in this sd */
5963	unsigned long total_load;	/* Total load of all groups in sd */
5964	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5965	unsigned long avg_load;	/* Average load across all groups in sd */
5966
5967	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5968	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5969};
5970
5971static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5972{
5973	/*
5974	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5975	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5976	 * We must however clear busiest_stat::avg_load because
5977	 * update_sd_pick_busiest() reads this before assignment.
5978	 */
5979	*sds = (struct sd_lb_stats){
5980		.busiest = NULL,
5981		.local = NULL,
5982		.total_load = 0UL,
5983		.total_capacity = 0UL,
5984		.busiest_stat = {
5985			.avg_load = 0UL,
5986			.sum_nr_running = 0,
5987			.group_type = group_other,
5988		},
5989	};
5990}
5991
5992/**
5993 * get_sd_load_idx - Obtain the load index for a given sched domain.
5994 * @sd: The sched_domain whose load_idx is to be obtained.
5995 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5996 *
5997 * Return: The load index.
5998 */
5999static inline int get_sd_load_idx(struct sched_domain *sd,
6000					enum cpu_idle_type idle)
6001{
6002	int load_idx;
6003
6004	switch (idle) {
6005	case CPU_NOT_IDLE:
6006		load_idx = sd->busy_idx;
6007		break;
6008
6009	case CPU_NEWLY_IDLE:
6010		load_idx = sd->newidle_idx;
6011		break;
6012	default:
6013		load_idx = sd->idle_idx;
6014		break;
6015	}
6016
6017	return load_idx;
6018}
6019
6020static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6021{
6022	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6023		return sd->smt_gain / sd->span_weight;
6024
6025	return SCHED_CAPACITY_SCALE;
6026}
6027
6028unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6029{
6030	return default_scale_cpu_capacity(sd, cpu);
6031}
6032
6033static unsigned long scale_rt_capacity(int cpu)
6034{
6035	struct rq *rq = cpu_rq(cpu);
6036	u64 total, used, age_stamp, avg;
6037	s64 delta;
6038
6039	/*
6040	 * Since we're reading these variables without serialization make sure
6041	 * we read them once before doing sanity checks on them.
6042	 */
6043	age_stamp = ACCESS_ONCE(rq->age_stamp);
6044	avg = ACCESS_ONCE(rq->rt_avg);
6045	delta = __rq_clock_broken(rq) - age_stamp;
6046
6047	if (unlikely(delta < 0))
6048		delta = 0;
6049
6050	total = sched_avg_period() + delta;
6051
6052	used = div_u64(avg, total);
6053
6054	if (likely(used < SCHED_CAPACITY_SCALE))
6055		return SCHED_CAPACITY_SCALE - used;
6056
6057	return 1;
6058}
6059
6060static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6061{
6062	unsigned long capacity = SCHED_CAPACITY_SCALE;
6063	struct sched_group *sdg = sd->groups;
6064
6065	if (sched_feat(ARCH_CAPACITY))
6066		capacity *= arch_scale_cpu_capacity(sd, cpu);
6067	else
6068		capacity *= default_scale_cpu_capacity(sd, cpu);
6069
6070	capacity >>= SCHED_CAPACITY_SHIFT;
6071
6072	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6073
6074	capacity *= scale_rt_capacity(cpu);
6075	capacity >>= SCHED_CAPACITY_SHIFT;
6076
6077	if (!capacity)
6078		capacity = 1;
6079
6080	cpu_rq(cpu)->cpu_capacity = capacity;
6081	sdg->sgc->capacity = capacity;
6082}
6083
6084void update_group_capacity(struct sched_domain *sd, int cpu)
6085{
6086	struct sched_domain *child = sd->child;
6087	struct sched_group *group, *sdg = sd->groups;
6088	unsigned long capacity;
6089	unsigned long interval;
6090
6091	interval = msecs_to_jiffies(sd->balance_interval);
6092	interval = clamp(interval, 1UL, max_load_balance_interval);
6093	sdg->sgc->next_update = jiffies + interval;
6094
6095	if (!child) {
6096		update_cpu_capacity(sd, cpu);
6097		return;
6098	}
6099
6100	capacity = 0;
6101
6102	if (child->flags & SD_OVERLAP) {
6103		/*
6104		 * SD_OVERLAP domains cannot assume that child groups
6105		 * span the current group.
6106		 */
6107
6108		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6109			struct sched_group_capacity *sgc;
6110			struct rq *rq = cpu_rq(cpu);
6111
6112			/*
6113			 * build_sched_domains() -> init_sched_groups_capacity()
6114			 * gets here before we've attached the domains to the
6115			 * runqueues.
6116			 *
6117			 * Use capacity_of(), which is set irrespective of domains
6118			 * in update_cpu_capacity().
6119			 *
6120			 * This avoids capacity from being 0 and
6121			 * causing divide-by-zero issues on boot.
6122			 */
6123			if (unlikely(!rq->sd)) {
6124				capacity += capacity_of(cpu);
6125				continue;
6126			}
6127
6128			sgc = rq->sd->groups->sgc;
6129			capacity += sgc->capacity;
6130		}
6131	} else  {
6132		/*
6133		 * !SD_OVERLAP domains can assume that child groups
6134		 * span the current group.
6135		 */
6136
6137		group = child->groups;
6138		do {
6139			capacity += group->sgc->capacity;
6140			group = group->next;
6141		} while (group != child->groups);
6142	}
6143
6144	sdg->sgc->capacity = capacity;
6145}
6146
6147/*
6148 * Check whether the capacity of the rq has been noticeably reduced by side
6149 * activity. The imbalance_pct is used for the threshold.
6150 * Return true is the capacity is reduced
6151 */
6152static inline int
6153check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6154{
6155	return ((rq->cpu_capacity * sd->imbalance_pct) <
6156				(rq->cpu_capacity_orig * 100));
6157}
6158
6159/*
6160 * Group imbalance indicates (and tries to solve) the problem where balancing
6161 * groups is inadequate due to tsk_cpus_allowed() constraints.
6162 *
6163 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6164 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6165 * Something like:
6166 *
6167 * 	{ 0 1 2 3 } { 4 5 6 7 }
6168 * 	        *     * * *
6169 *
6170 * If we were to balance group-wise we'd place two tasks in the first group and
6171 * two tasks in the second group. Clearly this is undesired as it will overload
6172 * cpu 3 and leave one of the cpus in the second group unused.
6173 *
6174 * The current solution to this issue is detecting the skew in the first group
6175 * by noticing the lower domain failed to reach balance and had difficulty
6176 * moving tasks due to affinity constraints.
6177 *
6178 * When this is so detected; this group becomes a candidate for busiest; see
6179 * update_sd_pick_busiest(). And calculate_imbalance() and
6180 * find_busiest_group() avoid some of the usual balance conditions to allow it
6181 * to create an effective group imbalance.
6182 *
6183 * This is a somewhat tricky proposition since the next run might not find the
6184 * group imbalance and decide the groups need to be balanced again. A most
6185 * subtle and fragile situation.
6186 */
6187
6188static inline int sg_imbalanced(struct sched_group *group)
6189{
6190	return group->sgc->imbalance;
6191}
6192
6193/*
6194 * group_has_capacity returns true if the group has spare capacity that could
6195 * be used by some tasks.
6196 * We consider that a group has spare capacity if the  * number of task is
6197 * smaller than the number of CPUs or if the usage is lower than the available
6198 * capacity for CFS tasks.
6199 * For the latter, we use a threshold to stabilize the state, to take into
6200 * account the variance of the tasks' load and to return true if the available
6201 * capacity in meaningful for the load balancer.
6202 * As an example, an available capacity of 1% can appear but it doesn't make
6203 * any benefit for the load balance.
6204 */
6205static inline bool
6206group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6207{
6208	if (sgs->sum_nr_running < sgs->group_weight)
6209		return true;
6210
6211	if ((sgs->group_capacity * 100) >
6212			(sgs->group_usage * env->sd->imbalance_pct))
6213		return true;
6214
6215	return false;
6216}
6217
6218/*
6219 *  group_is_overloaded returns true if the group has more tasks than it can
6220 *  handle.
6221 *  group_is_overloaded is not equals to !group_has_capacity because a group
6222 *  with the exact right number of tasks, has no more spare capacity but is not
6223 *  overloaded so both group_has_capacity and group_is_overloaded return
6224 *  false.
6225 */
6226static inline bool
6227group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6228{
6229	if (sgs->sum_nr_running <= sgs->group_weight)
6230		return false;
6231
6232	if ((sgs->group_capacity * 100) <
6233			(sgs->group_usage * env->sd->imbalance_pct))
6234		return true;
6235
6236	return false;
6237}
6238
6239static enum group_type group_classify(struct lb_env *env,
6240		struct sched_group *group,
6241		struct sg_lb_stats *sgs)
6242{
6243	if (sgs->group_no_capacity)
6244		return group_overloaded;
6245
6246	if (sg_imbalanced(group))
6247		return group_imbalanced;
6248
6249	return group_other;
6250}
6251
6252/**
6253 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6254 * @env: The load balancing environment.
6255 * @group: sched_group whose statistics are to be updated.
6256 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6257 * @local_group: Does group contain this_cpu.
6258 * @sgs: variable to hold the statistics for this group.
6259 * @overload: Indicate more than one runnable task for any CPU.
6260 */
6261static inline void update_sg_lb_stats(struct lb_env *env,
6262			struct sched_group *group, int load_idx,
6263			int local_group, struct sg_lb_stats *sgs,
6264			bool *overload)
6265{
6266	unsigned long load;
6267	int i;
6268
6269	memset(sgs, 0, sizeof(*sgs));
6270
6271	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6272		struct rq *rq = cpu_rq(i);
6273
6274		/* Bias balancing toward cpus of our domain */
6275		if (local_group)
6276			load = target_load(i, load_idx);
6277		else
6278			load = source_load(i, load_idx);
6279
6280		sgs->group_load += load;
6281		sgs->group_usage += get_cpu_usage(i);
6282		sgs->sum_nr_running += rq->cfs.h_nr_running;
6283
6284		if (rq->nr_running > 1)
6285			*overload = true;
6286
6287#ifdef CONFIG_NUMA_BALANCING
6288		sgs->nr_numa_running += rq->nr_numa_running;
6289		sgs->nr_preferred_running += rq->nr_preferred_running;
6290#endif
6291		sgs->sum_weighted_load += weighted_cpuload(i);
6292		if (idle_cpu(i))
6293			sgs->idle_cpus++;
6294	}
6295
6296	/* Adjust by relative CPU capacity of the group */
6297	sgs->group_capacity = group->sgc->capacity;
6298	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6299
6300	if (sgs->sum_nr_running)
6301		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6302
6303	sgs->group_weight = group->group_weight;
6304
6305	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6306	sgs->group_type = group_classify(env, group, sgs);
6307}
6308
6309/**
6310 * update_sd_pick_busiest - return 1 on busiest group
6311 * @env: The load balancing environment.
6312 * @sds: sched_domain statistics
6313 * @sg: sched_group candidate to be checked for being the busiest
6314 * @sgs: sched_group statistics
6315 *
6316 * Determine if @sg is a busier group than the previously selected
6317 * busiest group.
6318 *
6319 * Return: %true if @sg is a busier group than the previously selected
6320 * busiest group. %false otherwise.
6321 */
6322static bool update_sd_pick_busiest(struct lb_env *env,
6323				   struct sd_lb_stats *sds,
6324				   struct sched_group *sg,
6325				   struct sg_lb_stats *sgs)
6326{
6327	struct sg_lb_stats *busiest = &sds->busiest_stat;
6328
6329	if (sgs->group_type > busiest->group_type)
6330		return true;
6331
6332	if (sgs->group_type < busiest->group_type)
6333		return false;
6334
6335	if (sgs->avg_load <= busiest->avg_load)
6336		return false;
6337
6338	/* This is the busiest node in its class. */
6339	if (!(env->sd->flags & SD_ASYM_PACKING))
6340		return true;
6341
6342	/*
6343	 * ASYM_PACKING needs to move all the work to the lowest
6344	 * numbered CPUs in the group, therefore mark all groups
6345	 * higher than ourself as busy.
6346	 */
6347	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6348		if (!sds->busiest)
6349			return true;
6350
6351		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6352			return true;
6353	}
6354
6355	return false;
6356}
6357
6358#ifdef CONFIG_NUMA_BALANCING
6359static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6360{
6361	if (sgs->sum_nr_running > sgs->nr_numa_running)
6362		return regular;
6363	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6364		return remote;
6365	return all;
6366}
6367
6368static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6369{
6370	if (rq->nr_running > rq->nr_numa_running)
6371		return regular;
6372	if (rq->nr_running > rq->nr_preferred_running)
6373		return remote;
6374	return all;
6375}
6376#else
6377static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6378{
6379	return all;
6380}
6381
6382static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6383{
6384	return regular;
6385}
6386#endif /* CONFIG_NUMA_BALANCING */
6387
6388/**
6389 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6390 * @env: The load balancing environment.
6391 * @sds: variable to hold the statistics for this sched_domain.
6392 */
6393static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6394{
6395	struct sched_domain *child = env->sd->child;
6396	struct sched_group *sg = env->sd->groups;
6397	struct sg_lb_stats tmp_sgs;
6398	int load_idx, prefer_sibling = 0;
6399	bool overload = false;
6400
6401	if (child && child->flags & SD_PREFER_SIBLING)
6402		prefer_sibling = 1;
6403
6404	load_idx = get_sd_load_idx(env->sd, env->idle);
6405
6406	do {
6407		struct sg_lb_stats *sgs = &tmp_sgs;
6408		int local_group;
6409
6410		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6411		if (local_group) {
6412			sds->local = sg;
6413			sgs = &sds->local_stat;
6414
6415			if (env->idle != CPU_NEWLY_IDLE ||
6416			    time_after_eq(jiffies, sg->sgc->next_update))
6417				update_group_capacity(env->sd, env->dst_cpu);
6418		}
6419
6420		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6421						&overload);
6422
6423		if (local_group)
6424			goto next_group;
6425
6426		/*
6427		 * In case the child domain prefers tasks go to siblings
6428		 * first, lower the sg capacity so that we'll try
6429		 * and move all the excess tasks away. We lower the capacity
6430		 * of a group only if the local group has the capacity to fit
6431		 * these excess tasks. The extra check prevents the case where
6432		 * you always pull from the heaviest group when it is already
6433		 * under-utilized (possible with a large weight task outweighs
6434		 * the tasks on the system).
6435		 */
6436		if (prefer_sibling && sds->local &&
6437		    group_has_capacity(env, &sds->local_stat) &&
6438		    (sgs->sum_nr_running > 1)) {
6439			sgs->group_no_capacity = 1;
6440			sgs->group_type = group_overloaded;
6441		}
6442
6443		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6444			sds->busiest = sg;
6445			sds->busiest_stat = *sgs;
6446		}
6447
6448next_group:
6449		/* Now, start updating sd_lb_stats */
6450		sds->total_load += sgs->group_load;
6451		sds->total_capacity += sgs->group_capacity;
6452
6453		sg = sg->next;
6454	} while (sg != env->sd->groups);
6455
6456	if (env->sd->flags & SD_NUMA)
6457		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6458
6459	if (!env->sd->parent) {
6460		/* update overload indicator if we are at root domain */
6461		if (env->dst_rq->rd->overload != overload)
6462			env->dst_rq->rd->overload = overload;
6463	}
6464
6465}
6466
6467/**
6468 * check_asym_packing - Check to see if the group is packed into the
6469 *			sched doman.
6470 *
6471 * This is primarily intended to used at the sibling level.  Some
6472 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6473 * case of POWER7, it can move to lower SMT modes only when higher
6474 * threads are idle.  When in lower SMT modes, the threads will
6475 * perform better since they share less core resources.  Hence when we
6476 * have idle threads, we want them to be the higher ones.
6477 *
6478 * This packing function is run on idle threads.  It checks to see if
6479 * the busiest CPU in this domain (core in the P7 case) has a higher
6480 * CPU number than the packing function is being run on.  Here we are
6481 * assuming lower CPU number will be equivalent to lower a SMT thread
6482 * number.
6483 *
6484 * Return: 1 when packing is required and a task should be moved to
6485 * this CPU.  The amount of the imbalance is returned in *imbalance.
6486 *
6487 * @env: The load balancing environment.
6488 * @sds: Statistics of the sched_domain which is to be packed
6489 */
6490static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6491{
6492	int busiest_cpu;
6493
6494	if (!(env->sd->flags & SD_ASYM_PACKING))
6495		return 0;
6496
6497	if (!sds->busiest)
6498		return 0;
6499
6500	busiest_cpu = group_first_cpu(sds->busiest);
6501	if (env->dst_cpu > busiest_cpu)
6502		return 0;
6503
6504	env->imbalance = DIV_ROUND_CLOSEST(
6505		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6506		SCHED_CAPACITY_SCALE);
6507
6508	return 1;
6509}
6510
6511/**
6512 * fix_small_imbalance - Calculate the minor imbalance that exists
6513 *			amongst the groups of a sched_domain, during
6514 *			load balancing.
6515 * @env: The load balancing environment.
6516 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6517 */
6518static inline
6519void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6520{
6521	unsigned long tmp, capa_now = 0, capa_move = 0;
6522	unsigned int imbn = 2;
6523	unsigned long scaled_busy_load_per_task;
6524	struct sg_lb_stats *local, *busiest;
6525
6526	local = &sds->local_stat;
6527	busiest = &sds->busiest_stat;
6528
6529	if (!local->sum_nr_running)
6530		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6531	else if (busiest->load_per_task > local->load_per_task)
6532		imbn = 1;
6533
6534	scaled_busy_load_per_task =
6535		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6536		busiest->group_capacity;
6537
6538	if (busiest->avg_load + scaled_busy_load_per_task >=
6539	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6540		env->imbalance = busiest->load_per_task;
6541		return;
6542	}
6543
6544	/*
6545	 * OK, we don't have enough imbalance to justify moving tasks,
6546	 * however we may be able to increase total CPU capacity used by
6547	 * moving them.
6548	 */
6549
6550	capa_now += busiest->group_capacity *
6551			min(busiest->load_per_task, busiest->avg_load);
6552	capa_now += local->group_capacity *
6553			min(local->load_per_task, local->avg_load);
6554	capa_now /= SCHED_CAPACITY_SCALE;
6555
6556	/* Amount of load we'd subtract */
6557	if (busiest->avg_load > scaled_busy_load_per_task) {
6558		capa_move += busiest->group_capacity *
6559			    min(busiest->load_per_task,
6560				busiest->avg_load - scaled_busy_load_per_task);
6561	}
6562
6563	/* Amount of load we'd add */
6564	if (busiest->avg_load * busiest->group_capacity <
6565	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6566		tmp = (busiest->avg_load * busiest->group_capacity) /
6567		      local->group_capacity;
6568	} else {
6569		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6570		      local->group_capacity;
6571	}
6572	capa_move += local->group_capacity *
6573		    min(local->load_per_task, local->avg_load + tmp);
6574	capa_move /= SCHED_CAPACITY_SCALE;
6575
6576	/* Move if we gain throughput */
6577	if (capa_move > capa_now)
6578		env->imbalance = busiest->load_per_task;
6579}
6580
6581/**
6582 * calculate_imbalance - Calculate the amount of imbalance present within the
6583 *			 groups of a given sched_domain during load balance.
6584 * @env: load balance environment
6585 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6586 */
6587static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6588{
6589	unsigned long max_pull, load_above_capacity = ~0UL;
6590	struct sg_lb_stats *local, *busiest;
6591
6592	local = &sds->local_stat;
6593	busiest = &sds->busiest_stat;
6594
6595	if (busiest->group_type == group_imbalanced) {
6596		/*
6597		 * In the group_imb case we cannot rely on group-wide averages
6598		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6599		 */
6600		busiest->load_per_task =
6601			min(busiest->load_per_task, sds->avg_load);
6602	}
6603
6604	/*
6605	 * In the presence of smp nice balancing, certain scenarios can have
6606	 * max load less than avg load(as we skip the groups at or below
6607	 * its cpu_capacity, while calculating max_load..)
6608	 */
6609	if (busiest->avg_load <= sds->avg_load ||
6610	    local->avg_load >= sds->avg_load) {
6611		env->imbalance = 0;
6612		return fix_small_imbalance(env, sds);
6613	}
6614
6615	/*
6616	 * If there aren't any idle cpus, avoid creating some.
6617	 */
6618	if (busiest->group_type == group_overloaded &&
6619	    local->group_type   == group_overloaded) {
6620		load_above_capacity = busiest->sum_nr_running *
6621					SCHED_LOAD_SCALE;
6622		if (load_above_capacity > busiest->group_capacity)
6623			load_above_capacity -= busiest->group_capacity;
6624		else
6625			load_above_capacity = ~0UL;
6626	}
6627
6628	/*
6629	 * We're trying to get all the cpus to the average_load, so we don't
6630	 * want to push ourselves above the average load, nor do we wish to
6631	 * reduce the max loaded cpu below the average load. At the same time,
6632	 * we also don't want to reduce the group load below the group capacity
6633	 * (so that we can implement power-savings policies etc). Thus we look
6634	 * for the minimum possible imbalance.
6635	 */
6636	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6637
6638	/* How much load to actually move to equalise the imbalance */
6639	env->imbalance = min(
6640		max_pull * busiest->group_capacity,
6641		(sds->avg_load - local->avg_load) * local->group_capacity
6642	) / SCHED_CAPACITY_SCALE;
6643
6644	/*
6645	 * if *imbalance is less than the average load per runnable task
6646	 * there is no guarantee that any tasks will be moved so we'll have
6647	 * a think about bumping its value to force at least one task to be
6648	 * moved
6649	 */
6650	if (env->imbalance < busiest->load_per_task)
6651		return fix_small_imbalance(env, sds);
6652}
6653
6654/******* find_busiest_group() helpers end here *********************/
6655
6656/**
6657 * find_busiest_group - Returns the busiest group within the sched_domain
6658 * if there is an imbalance. If there isn't an imbalance, and
6659 * the user has opted for power-savings, it returns a group whose
6660 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6661 * such a group exists.
6662 *
6663 * Also calculates the amount of weighted load which should be moved
6664 * to restore balance.
6665 *
6666 * @env: The load balancing environment.
6667 *
6668 * Return:	- The busiest group if imbalance exists.
6669 *		- If no imbalance and user has opted for power-savings balance,
6670 *		   return the least loaded group whose CPUs can be
6671 *		   put to idle by rebalancing its tasks onto our group.
6672 */
6673static struct sched_group *find_busiest_group(struct lb_env *env)
6674{
6675	struct sg_lb_stats *local, *busiest;
6676	struct sd_lb_stats sds;
6677
6678	init_sd_lb_stats(&sds);
6679
6680	/*
6681	 * Compute the various statistics relavent for load balancing at
6682	 * this level.
6683	 */
6684	update_sd_lb_stats(env, &sds);
6685	local = &sds.local_stat;
6686	busiest = &sds.busiest_stat;
6687
6688	/* ASYM feature bypasses nice load balance check */
6689	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6690	    check_asym_packing(env, &sds))
6691		return sds.busiest;
6692
6693	/* There is no busy sibling group to pull tasks from */
6694	if (!sds.busiest || busiest->sum_nr_running == 0)
6695		goto out_balanced;
6696
6697	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6698						/ sds.total_capacity;
6699
6700	/*
6701	 * If the busiest group is imbalanced the below checks don't
6702	 * work because they assume all things are equal, which typically
6703	 * isn't true due to cpus_allowed constraints and the like.
6704	 */
6705	if (busiest->group_type == group_imbalanced)
6706		goto force_balance;
6707
6708	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6709	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6710	    busiest->group_no_capacity)
6711		goto force_balance;
6712
6713	/*
6714	 * If the local group is busier than the selected busiest group
6715	 * don't try and pull any tasks.
6716	 */
6717	if (local->avg_load >= busiest->avg_load)
6718		goto out_balanced;
6719
6720	/*
6721	 * Don't pull any tasks if this group is already above the domain
6722	 * average load.
6723	 */
6724	if (local->avg_load >= sds.avg_load)
6725		goto out_balanced;
6726
6727	if (env->idle == CPU_IDLE) {
6728		/*
6729		 * This cpu is idle. If the busiest group is not overloaded
6730		 * and there is no imbalance between this and busiest group
6731		 * wrt idle cpus, it is balanced. The imbalance becomes
6732		 * significant if the diff is greater than 1 otherwise we
6733		 * might end up to just move the imbalance on another group
6734		 */
6735		if ((busiest->group_type != group_overloaded) &&
6736				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6737			goto out_balanced;
6738	} else {
6739		/*
6740		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6741		 * imbalance_pct to be conservative.
6742		 */
6743		if (100 * busiest->avg_load <=
6744				env->sd->imbalance_pct * local->avg_load)
6745			goto out_balanced;
6746	}
6747
6748force_balance:
6749	/* Looks like there is an imbalance. Compute it */
6750	calculate_imbalance(env, &sds);
6751	return sds.busiest;
6752
6753out_balanced:
6754	env->imbalance = 0;
6755	return NULL;
6756}
6757
6758/*
6759 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6760 */
6761static struct rq *find_busiest_queue(struct lb_env *env,
6762				     struct sched_group *group)
6763{
6764	struct rq *busiest = NULL, *rq;
6765	unsigned long busiest_load = 0, busiest_capacity = 1;
6766	int i;
6767
6768	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6769		unsigned long capacity, wl;
6770		enum fbq_type rt;
6771
6772		rq = cpu_rq(i);
6773		rt = fbq_classify_rq(rq);
6774
6775		/*
6776		 * We classify groups/runqueues into three groups:
6777		 *  - regular: there are !numa tasks
6778		 *  - remote:  there are numa tasks that run on the 'wrong' node
6779		 *  - all:     there is no distinction
6780		 *
6781		 * In order to avoid migrating ideally placed numa tasks,
6782		 * ignore those when there's better options.
6783		 *
6784		 * If we ignore the actual busiest queue to migrate another
6785		 * task, the next balance pass can still reduce the busiest
6786		 * queue by moving tasks around inside the node.
6787		 *
6788		 * If we cannot move enough load due to this classification
6789		 * the next pass will adjust the group classification and
6790		 * allow migration of more tasks.
6791		 *
6792		 * Both cases only affect the total convergence complexity.
6793		 */
6794		if (rt > env->fbq_type)
6795			continue;
6796
6797		capacity = capacity_of(i);
6798
6799		wl = weighted_cpuload(i);
6800
6801		/*
6802		 * When comparing with imbalance, use weighted_cpuload()
6803		 * which is not scaled with the cpu capacity.
6804		 */
6805
6806		if (rq->nr_running == 1 && wl > env->imbalance &&
6807		    !check_cpu_capacity(rq, env->sd))
6808			continue;
6809
6810		/*
6811		 * For the load comparisons with the other cpu's, consider
6812		 * the weighted_cpuload() scaled with the cpu capacity, so
6813		 * that the load can be moved away from the cpu that is
6814		 * potentially running at a lower capacity.
6815		 *
6816		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6817		 * multiplication to rid ourselves of the division works out
6818		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6819		 * our previous maximum.
6820		 */
6821		if (wl * busiest_capacity > busiest_load * capacity) {
6822			busiest_load = wl;
6823			busiest_capacity = capacity;
6824			busiest = rq;
6825		}
6826	}
6827
6828	return busiest;
6829}
6830
6831/*
6832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6833 * so long as it is large enough.
6834 */
6835#define MAX_PINNED_INTERVAL	512
6836
6837/* Working cpumask for load_balance and load_balance_newidle. */
6838DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6839
6840static int need_active_balance(struct lb_env *env)
6841{
6842	struct sched_domain *sd = env->sd;
6843
6844	if (env->idle == CPU_NEWLY_IDLE) {
6845
6846		/*
6847		 * ASYM_PACKING needs to force migrate tasks from busy but
6848		 * higher numbered CPUs in order to pack all tasks in the
6849		 * lowest numbered CPUs.
6850		 */
6851		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6852			return 1;
6853	}
6854
6855	/*
6856	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6857	 * It's worth migrating the task if the src_cpu's capacity is reduced
6858	 * because of other sched_class or IRQs if more capacity stays
6859	 * available on dst_cpu.
6860	 */
6861	if ((env->idle != CPU_NOT_IDLE) &&
6862	    (env->src_rq->cfs.h_nr_running == 1)) {
6863		if ((check_cpu_capacity(env->src_rq, sd)) &&
6864		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6865			return 1;
6866	}
6867
6868	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6869}
6870
6871static int active_load_balance_cpu_stop(void *data);
6872
6873static int should_we_balance(struct lb_env *env)
6874{
6875	struct sched_group *sg = env->sd->groups;
6876	struct cpumask *sg_cpus, *sg_mask;
6877	int cpu, balance_cpu = -1;
6878
6879	/*
6880	 * In the newly idle case, we will allow all the cpu's
6881	 * to do the newly idle load balance.
6882	 */
6883	if (env->idle == CPU_NEWLY_IDLE)
6884		return 1;
6885
6886	sg_cpus = sched_group_cpus(sg);
6887	sg_mask = sched_group_mask(sg);
6888	/* Try to find first idle cpu */
6889	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6890		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6891			continue;
6892
6893		balance_cpu = cpu;
6894		break;
6895	}
6896
6897	if (balance_cpu == -1)
6898		balance_cpu = group_balance_cpu(sg);
6899
6900	/*
6901	 * First idle cpu or the first cpu(busiest) in this sched group
6902	 * is eligible for doing load balancing at this and above domains.
6903	 */
6904	return balance_cpu == env->dst_cpu;
6905}
6906
6907/*
6908 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6909 * tasks if there is an imbalance.
6910 */
6911static int load_balance(int this_cpu, struct rq *this_rq,
6912			struct sched_domain *sd, enum cpu_idle_type idle,
6913			int *continue_balancing)
6914{
6915	int ld_moved, cur_ld_moved, active_balance = 0;
6916	struct sched_domain *sd_parent = sd->parent;
6917	struct sched_group *group;
6918	struct rq *busiest;
6919	unsigned long flags;
6920	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6921
6922	struct lb_env env = {
6923		.sd		= sd,
6924		.dst_cpu	= this_cpu,
6925		.dst_rq		= this_rq,
6926		.dst_grpmask    = sched_group_cpus(sd->groups),
6927		.idle		= idle,
6928		.loop_break	= sched_nr_migrate_break,
6929		.cpus		= cpus,
6930		.fbq_type	= all,
6931		.tasks		= LIST_HEAD_INIT(env.tasks),
6932	};
6933
6934	/*
6935	 * For NEWLY_IDLE load_balancing, we don't need to consider
6936	 * other cpus in our group
6937	 */
6938	if (idle == CPU_NEWLY_IDLE)
6939		env.dst_grpmask = NULL;
6940
6941	cpumask_copy(cpus, cpu_active_mask);
6942
6943	schedstat_inc(sd, lb_count[idle]);
6944
6945redo:
6946	if (!should_we_balance(&env)) {
6947		*continue_balancing = 0;
6948		goto out_balanced;
6949	}
6950
6951	group = find_busiest_group(&env);
6952	if (!group) {
6953		schedstat_inc(sd, lb_nobusyg[idle]);
6954		goto out_balanced;
6955	}
6956
6957	busiest = find_busiest_queue(&env, group);
6958	if (!busiest) {
6959		schedstat_inc(sd, lb_nobusyq[idle]);
6960		goto out_balanced;
6961	}
6962
6963	BUG_ON(busiest == env.dst_rq);
6964
6965	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6966
6967	env.src_cpu = busiest->cpu;
6968	env.src_rq = busiest;
6969
6970	ld_moved = 0;
6971	if (busiest->nr_running > 1) {
6972		/*
6973		 * Attempt to move tasks. If find_busiest_group has found
6974		 * an imbalance but busiest->nr_running <= 1, the group is
6975		 * still unbalanced. ld_moved simply stays zero, so it is
6976		 * correctly treated as an imbalance.
6977		 */
6978		env.flags |= LBF_ALL_PINNED;
6979		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6980
6981more_balance:
6982		raw_spin_lock_irqsave(&busiest->lock, flags);
6983
6984		/*
6985		 * cur_ld_moved - load moved in current iteration
6986		 * ld_moved     - cumulative load moved across iterations
6987		 */
6988		cur_ld_moved = detach_tasks(&env);
6989
6990		/*
6991		 * We've detached some tasks from busiest_rq. Every
6992		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6993		 * unlock busiest->lock, and we are able to be sure
6994		 * that nobody can manipulate the tasks in parallel.
6995		 * See task_rq_lock() family for the details.
6996		 */
6997
6998		raw_spin_unlock(&busiest->lock);
6999
7000		if (cur_ld_moved) {
7001			attach_tasks(&env);
7002			ld_moved += cur_ld_moved;
7003		}
7004
7005		local_irq_restore(flags);
7006
7007		if (env.flags & LBF_NEED_BREAK) {
7008			env.flags &= ~LBF_NEED_BREAK;
7009			goto more_balance;
7010		}
7011
7012		/*
7013		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7014		 * us and move them to an alternate dst_cpu in our sched_group
7015		 * where they can run. The upper limit on how many times we
7016		 * iterate on same src_cpu is dependent on number of cpus in our
7017		 * sched_group.
7018		 *
7019		 * This changes load balance semantics a bit on who can move
7020		 * load to a given_cpu. In addition to the given_cpu itself
7021		 * (or a ilb_cpu acting on its behalf where given_cpu is
7022		 * nohz-idle), we now have balance_cpu in a position to move
7023		 * load to given_cpu. In rare situations, this may cause
7024		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7025		 * _independently_ and at _same_ time to move some load to
7026		 * given_cpu) causing exceess load to be moved to given_cpu.
7027		 * This however should not happen so much in practice and
7028		 * moreover subsequent load balance cycles should correct the
7029		 * excess load moved.
7030		 */
7031		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7032
7033			/* Prevent to re-select dst_cpu via env's cpus */
7034			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7035
7036			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7037			env.dst_cpu	 = env.new_dst_cpu;
7038			env.flags	&= ~LBF_DST_PINNED;
7039			env.loop	 = 0;
7040			env.loop_break	 = sched_nr_migrate_break;
7041
7042			/*
7043			 * Go back to "more_balance" rather than "redo" since we
7044			 * need to continue with same src_cpu.
7045			 */
7046			goto more_balance;
7047		}
7048
7049		/*
7050		 * We failed to reach balance because of affinity.
7051		 */
7052		if (sd_parent) {
7053			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7054
7055			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7056				*group_imbalance = 1;
7057		}
7058
7059		/* All tasks on this runqueue were pinned by CPU affinity */
7060		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7061			cpumask_clear_cpu(cpu_of(busiest), cpus);
7062			if (!cpumask_empty(cpus)) {
7063				env.loop = 0;
7064				env.loop_break = sched_nr_migrate_break;
7065				goto redo;
7066			}
7067			goto out_all_pinned;
7068		}
7069	}
7070
7071	if (!ld_moved) {
7072		schedstat_inc(sd, lb_failed[idle]);
7073		/*
7074		 * Increment the failure counter only on periodic balance.
7075		 * We do not want newidle balance, which can be very
7076		 * frequent, pollute the failure counter causing
7077		 * excessive cache_hot migrations and active balances.
7078		 */
7079		if (idle != CPU_NEWLY_IDLE)
7080			sd->nr_balance_failed++;
7081
7082		if (need_active_balance(&env)) {
7083			raw_spin_lock_irqsave(&busiest->lock, flags);
7084
7085			/* don't kick the active_load_balance_cpu_stop,
7086			 * if the curr task on busiest cpu can't be
7087			 * moved to this_cpu
7088			 */
7089			if (!cpumask_test_cpu(this_cpu,
7090					tsk_cpus_allowed(busiest->curr))) {
7091				raw_spin_unlock_irqrestore(&busiest->lock,
7092							    flags);
7093				env.flags |= LBF_ALL_PINNED;
7094				goto out_one_pinned;
7095			}
7096
7097			/*
7098			 * ->active_balance synchronizes accesses to
7099			 * ->active_balance_work.  Once set, it's cleared
7100			 * only after active load balance is finished.
7101			 */
7102			if (!busiest->active_balance) {
7103				busiest->active_balance = 1;
7104				busiest->push_cpu = this_cpu;
7105				active_balance = 1;
7106			}
7107			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7108
7109			if (active_balance) {
7110				stop_one_cpu_nowait(cpu_of(busiest),
7111					active_load_balance_cpu_stop, busiest,
7112					&busiest->active_balance_work);
7113			}
7114
7115			/*
7116			 * We've kicked active balancing, reset the failure
7117			 * counter.
7118			 */
7119			sd->nr_balance_failed = sd->cache_nice_tries+1;
7120		}
7121	} else
7122		sd->nr_balance_failed = 0;
7123
7124	if (likely(!active_balance)) {
7125		/* We were unbalanced, so reset the balancing interval */
7126		sd->balance_interval = sd->min_interval;
7127	} else {
7128		/*
7129		 * If we've begun active balancing, start to back off. This
7130		 * case may not be covered by the all_pinned logic if there
7131		 * is only 1 task on the busy runqueue (because we don't call
7132		 * detach_tasks).
7133		 */
7134		if (sd->balance_interval < sd->max_interval)
7135			sd->balance_interval *= 2;
7136	}
7137
7138	goto out;
7139
7140out_balanced:
7141	/*
7142	 * We reach balance although we may have faced some affinity
7143	 * constraints. Clear the imbalance flag if it was set.
7144	 */
7145	if (sd_parent) {
7146		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7147
7148		if (*group_imbalance)
7149			*group_imbalance = 0;
7150	}
7151
7152out_all_pinned:
7153	/*
7154	 * We reach balance because all tasks are pinned at this level so
7155	 * we can't migrate them. Let the imbalance flag set so parent level
7156	 * can try to migrate them.
7157	 */
7158	schedstat_inc(sd, lb_balanced[idle]);
7159
7160	sd->nr_balance_failed = 0;
7161
7162out_one_pinned:
7163	/* tune up the balancing interval */
7164	if (((env.flags & LBF_ALL_PINNED) &&
7165			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7166			(sd->balance_interval < sd->max_interval))
7167		sd->balance_interval *= 2;
7168
7169	ld_moved = 0;
7170out:
7171	return ld_moved;
7172}
7173
7174static inline unsigned long
7175get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7176{
7177	unsigned long interval = sd->balance_interval;
7178
7179	if (cpu_busy)
7180		interval *= sd->busy_factor;
7181
7182	/* scale ms to jiffies */
7183	interval = msecs_to_jiffies(interval);
7184	interval = clamp(interval, 1UL, max_load_balance_interval);
7185
7186	return interval;
7187}
7188
7189static inline void
7190update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7191{
7192	unsigned long interval, next;
7193
7194	interval = get_sd_balance_interval(sd, cpu_busy);
7195	next = sd->last_balance + interval;
7196
7197	if (time_after(*next_balance, next))
7198		*next_balance = next;
7199}
7200
7201/*
7202 * idle_balance is called by schedule() if this_cpu is about to become
7203 * idle. Attempts to pull tasks from other CPUs.
7204 */
7205static int idle_balance(struct rq *this_rq)
7206{
7207	unsigned long next_balance = jiffies + HZ;
7208	int this_cpu = this_rq->cpu;
7209	struct sched_domain *sd;
7210	int pulled_task = 0;
7211	u64 curr_cost = 0;
7212
7213	idle_enter_fair(this_rq);
7214
7215	/*
7216	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7217	 * measure the duration of idle_balance() as idle time.
7218	 */
7219	this_rq->idle_stamp = rq_clock(this_rq);
7220
7221	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7222	    !this_rq->rd->overload) {
7223		rcu_read_lock();
7224		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7225		if (sd)
7226			update_next_balance(sd, 0, &next_balance);
7227		rcu_read_unlock();
7228
7229		goto out;
7230	}
7231
7232	/*
7233	 * Drop the rq->lock, but keep IRQ/preempt disabled.
7234	 */
7235	raw_spin_unlock(&this_rq->lock);
7236
7237	update_blocked_averages(this_cpu);
7238	rcu_read_lock();
7239	for_each_domain(this_cpu, sd) {
7240		int continue_balancing = 1;
7241		u64 t0, domain_cost;
7242
7243		if (!(sd->flags & SD_LOAD_BALANCE))
7244			continue;
7245
7246		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7247			update_next_balance(sd, 0, &next_balance);
7248			break;
7249		}
7250
7251		if (sd->flags & SD_BALANCE_NEWIDLE) {
7252			t0 = sched_clock_cpu(this_cpu);
7253
7254			pulled_task = load_balance(this_cpu, this_rq,
7255						   sd, CPU_NEWLY_IDLE,
7256						   &continue_balancing);
7257
7258			domain_cost = sched_clock_cpu(this_cpu) - t0;
7259			if (domain_cost > sd->max_newidle_lb_cost)
7260				sd->max_newidle_lb_cost = domain_cost;
7261
7262			curr_cost += domain_cost;
7263		}
7264
7265		update_next_balance(sd, 0, &next_balance);
7266
7267		/*
7268		 * Stop searching for tasks to pull if there are
7269		 * now runnable tasks on this rq.
7270		 */
7271		if (pulled_task || this_rq->nr_running > 0)
7272			break;
7273	}
7274	rcu_read_unlock();
7275
7276	raw_spin_lock(&this_rq->lock);
7277
7278	if (curr_cost > this_rq->max_idle_balance_cost)
7279		this_rq->max_idle_balance_cost = curr_cost;
7280
7281	/*
7282	 * While browsing the domains, we released the rq lock, a task could
7283	 * have been enqueued in the meantime. Since we're not going idle,
7284	 * pretend we pulled a task.
7285	 */
7286	if (this_rq->cfs.h_nr_running && !pulled_task)
7287		pulled_task = 1;
7288
7289out:
7290	/* Move the next balance forward */
7291	if (time_after(this_rq->next_balance, next_balance))
7292		this_rq->next_balance = next_balance;
7293
7294	/* Is there a task of a high priority class? */
7295	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7296		pulled_task = -1;
7297
7298	if (pulled_task) {
7299		idle_exit_fair(this_rq);
7300		this_rq->idle_stamp = 0;
7301	}
7302
7303	return pulled_task;
7304}
7305
7306/*
7307 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7308 * running tasks off the busiest CPU onto idle CPUs. It requires at
7309 * least 1 task to be running on each physical CPU where possible, and
7310 * avoids physical / logical imbalances.
7311 */
7312static int active_load_balance_cpu_stop(void *data)
7313{
7314	struct rq *busiest_rq = data;
7315	int busiest_cpu = cpu_of(busiest_rq);
7316	int target_cpu = busiest_rq->push_cpu;
7317	struct rq *target_rq = cpu_rq(target_cpu);
7318	struct sched_domain *sd;
7319	struct task_struct *p = NULL;
7320
7321	raw_spin_lock_irq(&busiest_rq->lock);
7322
7323	/* make sure the requested cpu hasn't gone down in the meantime */
7324	if (unlikely(busiest_cpu != smp_processor_id() ||
7325		     !busiest_rq->active_balance))
7326		goto out_unlock;
7327
7328	/* Is there any task to move? */
7329	if (busiest_rq->nr_running <= 1)
7330		goto out_unlock;
7331
7332	/*
7333	 * This condition is "impossible", if it occurs
7334	 * we need to fix it. Originally reported by
7335	 * Bjorn Helgaas on a 128-cpu setup.
7336	 */
7337	BUG_ON(busiest_rq == target_rq);
7338
7339	/* Search for an sd spanning us and the target CPU. */
7340	rcu_read_lock();
7341	for_each_domain(target_cpu, sd) {
7342		if ((sd->flags & SD_LOAD_BALANCE) &&
7343		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7344				break;
7345	}
7346
7347	if (likely(sd)) {
7348		struct lb_env env = {
7349			.sd		= sd,
7350			.dst_cpu	= target_cpu,
7351			.dst_rq		= target_rq,
7352			.src_cpu	= busiest_rq->cpu,
7353			.src_rq		= busiest_rq,
7354			.idle		= CPU_IDLE,
7355		};
7356
7357		schedstat_inc(sd, alb_count);
7358
7359		p = detach_one_task(&env);
7360		if (p)
7361			schedstat_inc(sd, alb_pushed);
7362		else
7363			schedstat_inc(sd, alb_failed);
7364	}
7365	rcu_read_unlock();
7366out_unlock:
7367	busiest_rq->active_balance = 0;
7368	raw_spin_unlock(&busiest_rq->lock);
7369
7370	if (p)
7371		attach_one_task(target_rq, p);
7372
7373	local_irq_enable();
7374
7375	return 0;
7376}
7377
7378static inline int on_null_domain(struct rq *rq)
7379{
7380	return unlikely(!rcu_dereference_sched(rq->sd));
7381}
7382
7383#ifdef CONFIG_NO_HZ_COMMON
7384/*
7385 * idle load balancing details
7386 * - When one of the busy CPUs notice that there may be an idle rebalancing
7387 *   needed, they will kick the idle load balancer, which then does idle
7388 *   load balancing for all the idle CPUs.
7389 */
7390static struct {
7391	cpumask_var_t idle_cpus_mask;
7392	atomic_t nr_cpus;
7393	unsigned long next_balance;     /* in jiffy units */
7394} nohz ____cacheline_aligned;
7395
7396static inline int find_new_ilb(void)
7397{
7398	int ilb = cpumask_first(nohz.idle_cpus_mask);
7399
7400	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7401		return ilb;
7402
7403	return nr_cpu_ids;
7404}
7405
7406/*
7407 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7408 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7409 * CPU (if there is one).
7410 */
7411static void nohz_balancer_kick(void)
7412{
7413	int ilb_cpu;
7414
7415	nohz.next_balance++;
7416
7417	ilb_cpu = find_new_ilb();
7418
7419	if (ilb_cpu >= nr_cpu_ids)
7420		return;
7421
7422	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7423		return;
7424	/*
7425	 * Use smp_send_reschedule() instead of resched_cpu().
7426	 * This way we generate a sched IPI on the target cpu which
7427	 * is idle. And the softirq performing nohz idle load balance
7428	 * will be run before returning from the IPI.
7429	 */
7430	smp_send_reschedule(ilb_cpu);
7431	return;
7432}
7433
7434static inline void nohz_balance_exit_idle(int cpu)
7435{
7436	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7437		/*
7438		 * Completely isolated CPUs don't ever set, so we must test.
7439		 */
7440		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7441			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7442			atomic_dec(&nohz.nr_cpus);
7443		}
7444		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7445	}
7446}
7447
7448static inline void set_cpu_sd_state_busy(void)
7449{
7450	struct sched_domain *sd;
7451	int cpu = smp_processor_id();
7452
7453	rcu_read_lock();
7454	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7455
7456	if (!sd || !sd->nohz_idle)
7457		goto unlock;
7458	sd->nohz_idle = 0;
7459
7460	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7461unlock:
7462	rcu_read_unlock();
7463}
7464
7465void set_cpu_sd_state_idle(void)
7466{
7467	struct sched_domain *sd;
7468	int cpu = smp_processor_id();
7469
7470	rcu_read_lock();
7471	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7472
7473	if (!sd || sd->nohz_idle)
7474		goto unlock;
7475	sd->nohz_idle = 1;
7476
7477	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7478unlock:
7479	rcu_read_unlock();
7480}
7481
7482/*
7483 * This routine will record that the cpu is going idle with tick stopped.
7484 * This info will be used in performing idle load balancing in the future.
7485 */
7486void nohz_balance_enter_idle(int cpu)
7487{
7488	/*
7489	 * If this cpu is going down, then nothing needs to be done.
7490	 */
7491	if (!cpu_active(cpu))
7492		return;
7493
7494	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7495		return;
7496
7497	/*
7498	 * If we're a completely isolated CPU, we don't play.
7499	 */
7500	if (on_null_domain(cpu_rq(cpu)))
7501		return;
7502
7503	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7504	atomic_inc(&nohz.nr_cpus);
7505	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7506}
7507
7508static int sched_ilb_notifier(struct notifier_block *nfb,
7509					unsigned long action, void *hcpu)
7510{
7511	switch (action & ~CPU_TASKS_FROZEN) {
7512	case CPU_DYING:
7513		nohz_balance_exit_idle(smp_processor_id());
7514		return NOTIFY_OK;
7515	default:
7516		return NOTIFY_DONE;
7517	}
7518}
7519#endif
7520
7521static DEFINE_SPINLOCK(balancing);
7522
7523/*
7524 * Scale the max load_balance interval with the number of CPUs in the system.
7525 * This trades load-balance latency on larger machines for less cross talk.
7526 */
7527void update_max_interval(void)
7528{
7529	max_load_balance_interval = HZ*num_online_cpus()/10;
7530}
7531
7532/*
7533 * It checks each scheduling domain to see if it is due to be balanced,
7534 * and initiates a balancing operation if so.
7535 *
7536 * Balancing parameters are set up in init_sched_domains.
7537 */
7538static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7539{
7540	int continue_balancing = 1;
7541	int cpu = rq->cpu;
7542	unsigned long interval;
7543	struct sched_domain *sd;
7544	/* Earliest time when we have to do rebalance again */
7545	unsigned long next_balance = jiffies + 60*HZ;
7546	int update_next_balance = 0;
7547	int need_serialize, need_decay = 0;
7548	u64 max_cost = 0;
7549
7550	update_blocked_averages(cpu);
7551
7552	rcu_read_lock();
7553	for_each_domain(cpu, sd) {
7554		/*
7555		 * Decay the newidle max times here because this is a regular
7556		 * visit to all the domains. Decay ~1% per second.
7557		 */
7558		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7559			sd->max_newidle_lb_cost =
7560				(sd->max_newidle_lb_cost * 253) / 256;
7561			sd->next_decay_max_lb_cost = jiffies + HZ;
7562			need_decay = 1;
7563		}
7564		max_cost += sd->max_newidle_lb_cost;
7565
7566		if (!(sd->flags & SD_LOAD_BALANCE))
7567			continue;
7568
7569		/*
7570		 * Stop the load balance at this level. There is another
7571		 * CPU in our sched group which is doing load balancing more
7572		 * actively.
7573		 */
7574		if (!continue_balancing) {
7575			if (need_decay)
7576				continue;
7577			break;
7578		}
7579
7580		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7581
7582		need_serialize = sd->flags & SD_SERIALIZE;
7583		if (need_serialize) {
7584			if (!spin_trylock(&balancing))
7585				goto out;
7586		}
7587
7588		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7589			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7590				/*
7591				 * The LBF_DST_PINNED logic could have changed
7592				 * env->dst_cpu, so we can't know our idle
7593				 * state even if we migrated tasks. Update it.
7594				 */
7595				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7596			}
7597			sd->last_balance = jiffies;
7598			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7599		}
7600		if (need_serialize)
7601			spin_unlock(&balancing);
7602out:
7603		if (time_after(next_balance, sd->last_balance + interval)) {
7604			next_balance = sd->last_balance + interval;
7605			update_next_balance = 1;
7606		}
7607	}
7608	if (need_decay) {
7609		/*
7610		 * Ensure the rq-wide value also decays but keep it at a
7611		 * reasonable floor to avoid funnies with rq->avg_idle.
7612		 */
7613		rq->max_idle_balance_cost =
7614			max((u64)sysctl_sched_migration_cost, max_cost);
7615	}
7616	rcu_read_unlock();
7617
7618	/*
7619	 * next_balance will be updated only when there is a need.
7620	 * When the cpu is attached to null domain for ex, it will not be
7621	 * updated.
7622	 */
7623	if (likely(update_next_balance))
7624		rq->next_balance = next_balance;
7625}
7626
7627#ifdef CONFIG_NO_HZ_COMMON
7628/*
7629 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7630 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7631 */
7632static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7633{
7634	int this_cpu = this_rq->cpu;
7635	struct rq *rq;
7636	int balance_cpu;
7637
7638	if (idle != CPU_IDLE ||
7639	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7640		goto end;
7641
7642	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7643		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7644			continue;
7645
7646		/*
7647		 * If this cpu gets work to do, stop the load balancing
7648		 * work being done for other cpus. Next load
7649		 * balancing owner will pick it up.
7650		 */
7651		if (need_resched())
7652			break;
7653
7654		rq = cpu_rq(balance_cpu);
7655
7656		/*
7657		 * If time for next balance is due,
7658		 * do the balance.
7659		 */
7660		if (time_after_eq(jiffies, rq->next_balance)) {
7661			raw_spin_lock_irq(&rq->lock);
7662			update_rq_clock(rq);
7663			update_idle_cpu_load(rq);
7664			raw_spin_unlock_irq(&rq->lock);
7665			rebalance_domains(rq, CPU_IDLE);
7666		}
7667
7668		if (time_after(this_rq->next_balance, rq->next_balance))
7669			this_rq->next_balance = rq->next_balance;
7670	}
7671	nohz.next_balance = this_rq->next_balance;
7672end:
7673	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7674}
7675
7676/*
7677 * Current heuristic for kicking the idle load balancer in the presence
7678 * of an idle cpu in the system.
7679 *   - This rq has more than one task.
7680 *   - This rq has at least one CFS task and the capacity of the CPU is
7681 *     significantly reduced because of RT tasks or IRQs.
7682 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7683 *     multiple busy cpu.
7684 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7685 *     domain span are idle.
7686 */
7687static inline bool nohz_kick_needed(struct rq *rq)
7688{
7689	unsigned long now = jiffies;
7690	struct sched_domain *sd;
7691	struct sched_group_capacity *sgc;
7692	int nr_busy, cpu = rq->cpu;
7693	bool kick = false;
7694
7695	if (unlikely(rq->idle_balance))
7696		return false;
7697
7698       /*
7699	* We may be recently in ticked or tickless idle mode. At the first
7700	* busy tick after returning from idle, we will update the busy stats.
7701	*/
7702	set_cpu_sd_state_busy();
7703	nohz_balance_exit_idle(cpu);
7704
7705	/*
7706	 * None are in tickless mode and hence no need for NOHZ idle load
7707	 * balancing.
7708	 */
7709	if (likely(!atomic_read(&nohz.nr_cpus)))
7710		return false;
7711
7712	if (time_before(now, nohz.next_balance))
7713		return false;
7714
7715	if (rq->nr_running >= 2)
7716		return true;
7717
7718	rcu_read_lock();
7719	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7720	if (sd) {
7721		sgc = sd->groups->sgc;
7722		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7723
7724		if (nr_busy > 1) {
7725			kick = true;
7726			goto unlock;
7727		}
7728
7729	}
7730
7731	sd = rcu_dereference(rq->sd);
7732	if (sd) {
7733		if ((rq->cfs.h_nr_running >= 1) &&
7734				check_cpu_capacity(rq, sd)) {
7735			kick = true;
7736			goto unlock;
7737		}
7738	}
7739
7740	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7741	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7742				  sched_domain_span(sd)) < cpu)) {
7743		kick = true;
7744		goto unlock;
7745	}
7746
7747unlock:
7748	rcu_read_unlock();
7749	return kick;
7750}
7751#else
7752static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7753#endif
7754
7755/*
7756 * run_rebalance_domains is triggered when needed from the scheduler tick.
7757 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7758 */
7759static void run_rebalance_domains(struct softirq_action *h)
7760{
7761	struct rq *this_rq = this_rq();
7762	enum cpu_idle_type idle = this_rq->idle_balance ?
7763						CPU_IDLE : CPU_NOT_IDLE;
7764
7765	/*
7766	 * If this cpu has a pending nohz_balance_kick, then do the
7767	 * balancing on behalf of the other idle cpus whose ticks are
7768	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7769	 * give the idle cpus a chance to load balance. Else we may
7770	 * load balance only within the local sched_domain hierarchy
7771	 * and abort nohz_idle_balance altogether if we pull some load.
7772	 */
7773	nohz_idle_balance(this_rq, idle);
7774	rebalance_domains(this_rq, idle);
7775}
7776
7777/*
7778 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7779 */
7780void trigger_load_balance(struct rq *rq)
7781{
7782	/* Don't need to rebalance while attached to NULL domain */
7783	if (unlikely(on_null_domain(rq)))
7784		return;
7785
7786	if (time_after_eq(jiffies, rq->next_balance))
7787		raise_softirq(SCHED_SOFTIRQ);
7788#ifdef CONFIG_NO_HZ_COMMON
7789	if (nohz_kick_needed(rq))
7790		nohz_balancer_kick();
7791#endif
7792}
7793
7794static void rq_online_fair(struct rq *rq)
7795{
7796	update_sysctl();
7797
7798	update_runtime_enabled(rq);
7799}
7800
7801static void rq_offline_fair(struct rq *rq)
7802{
7803	update_sysctl();
7804
7805	/* Ensure any throttled groups are reachable by pick_next_task */
7806	unthrottle_offline_cfs_rqs(rq);
7807}
7808
7809#endif /* CONFIG_SMP */
7810
7811/*
7812 * scheduler tick hitting a task of our scheduling class:
7813 */
7814static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7815{
7816	struct cfs_rq *cfs_rq;
7817	struct sched_entity *se = &curr->se;
7818
7819	for_each_sched_entity(se) {
7820		cfs_rq = cfs_rq_of(se);
7821		entity_tick(cfs_rq, se, queued);
7822	}
7823
7824	if (numabalancing_enabled)
7825		task_tick_numa(rq, curr);
7826
7827	update_rq_runnable_avg(rq, 1);
7828}
7829
7830/*
7831 * called on fork with the child task as argument from the parent's context
7832 *  - child not yet on the tasklist
7833 *  - preemption disabled
7834 */
7835static void task_fork_fair(struct task_struct *p)
7836{
7837	struct cfs_rq *cfs_rq;
7838	struct sched_entity *se = &p->se, *curr;
7839	int this_cpu = smp_processor_id();
7840	struct rq *rq = this_rq();
7841	unsigned long flags;
7842
7843	raw_spin_lock_irqsave(&rq->lock, flags);
7844
7845	update_rq_clock(rq);
7846
7847	cfs_rq = task_cfs_rq(current);
7848	curr = cfs_rq->curr;
7849
7850	/*
7851	 * Not only the cpu but also the task_group of the parent might have
7852	 * been changed after parent->se.parent,cfs_rq were copied to
7853	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7854	 * of child point to valid ones.
7855	 */
7856	rcu_read_lock();
7857	__set_task_cpu(p, this_cpu);
7858	rcu_read_unlock();
7859
7860	update_curr(cfs_rq);
7861
7862	if (curr)
7863		se->vruntime = curr->vruntime;
7864	place_entity(cfs_rq, se, 1);
7865
7866	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7867		/*
7868		 * Upon rescheduling, sched_class::put_prev_task() will place
7869		 * 'current' within the tree based on its new key value.
7870		 */
7871		swap(curr->vruntime, se->vruntime);
7872		resched_curr(rq);
7873	}
7874
7875	se->vruntime -= cfs_rq->min_vruntime;
7876
7877	raw_spin_unlock_irqrestore(&rq->lock, flags);
7878}
7879
7880/*
7881 * Priority of the task has changed. Check to see if we preempt
7882 * the current task.
7883 */
7884static void
7885prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7886{
7887	if (!task_on_rq_queued(p))
7888		return;
7889
7890	/*
7891	 * Reschedule if we are currently running on this runqueue and
7892	 * our priority decreased, or if we are not currently running on
7893	 * this runqueue and our priority is higher than the current's
7894	 */
7895	if (rq->curr == p) {
7896		if (p->prio > oldprio)
7897			resched_curr(rq);
7898	} else
7899		check_preempt_curr(rq, p, 0);
7900}
7901
7902static void switched_from_fair(struct rq *rq, struct task_struct *p)
7903{
7904	struct sched_entity *se = &p->se;
7905	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7906
7907	/*
7908	 * Ensure the task's vruntime is normalized, so that when it's
7909	 * switched back to the fair class the enqueue_entity(.flags=0) will
7910	 * do the right thing.
7911	 *
7912	 * If it's queued, then the dequeue_entity(.flags=0) will already
7913	 * have normalized the vruntime, if it's !queued, then only when
7914	 * the task is sleeping will it still have non-normalized vruntime.
7915	 */
7916	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7917		/*
7918		 * Fix up our vruntime so that the current sleep doesn't
7919		 * cause 'unlimited' sleep bonus.
7920		 */
7921		place_entity(cfs_rq, se, 0);
7922		se->vruntime -= cfs_rq->min_vruntime;
7923	}
7924
7925#ifdef CONFIG_SMP
7926	/*
7927	* Remove our load from contribution when we leave sched_fair
7928	* and ensure we don't carry in an old decay_count if we
7929	* switch back.
7930	*/
7931	if (se->avg.decay_count) {
7932		__synchronize_entity_decay(se);
7933		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7934	}
7935#endif
7936}
7937
7938/*
7939 * We switched to the sched_fair class.
7940 */
7941static void switched_to_fair(struct rq *rq, struct task_struct *p)
7942{
7943#ifdef CONFIG_FAIR_GROUP_SCHED
7944	struct sched_entity *se = &p->se;
7945	/*
7946	 * Since the real-depth could have been changed (only FAIR
7947	 * class maintain depth value), reset depth properly.
7948	 */
7949	se->depth = se->parent ? se->parent->depth + 1 : 0;
7950#endif
7951	if (!task_on_rq_queued(p))
7952		return;
7953
7954	/*
7955	 * We were most likely switched from sched_rt, so
7956	 * kick off the schedule if running, otherwise just see
7957	 * if we can still preempt the current task.
7958	 */
7959	if (rq->curr == p)
7960		resched_curr(rq);
7961	else
7962		check_preempt_curr(rq, p, 0);
7963}
7964
7965/* Account for a task changing its policy or group.
7966 *
7967 * This routine is mostly called to set cfs_rq->curr field when a task
7968 * migrates between groups/classes.
7969 */
7970static void set_curr_task_fair(struct rq *rq)
7971{
7972	struct sched_entity *se = &rq->curr->se;
7973
7974	for_each_sched_entity(se) {
7975		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7976
7977		set_next_entity(cfs_rq, se);
7978		/* ensure bandwidth has been allocated on our new cfs_rq */
7979		account_cfs_rq_runtime(cfs_rq, 0);
7980	}
7981}
7982
7983void init_cfs_rq(struct cfs_rq *cfs_rq)
7984{
7985	cfs_rq->tasks_timeline = RB_ROOT;
7986	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7987#ifndef CONFIG_64BIT
7988	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7989#endif
7990#ifdef CONFIG_SMP
7991	atomic64_set(&cfs_rq->decay_counter, 1);
7992	atomic_long_set(&cfs_rq->removed_load, 0);
7993#endif
7994}
7995
7996#ifdef CONFIG_FAIR_GROUP_SCHED
7997static void task_move_group_fair(struct task_struct *p, int queued)
7998{
7999	struct sched_entity *se = &p->se;
8000	struct cfs_rq *cfs_rq;
8001
8002	/*
8003	 * If the task was not on the rq at the time of this cgroup movement
8004	 * it must have been asleep, sleeping tasks keep their ->vruntime
8005	 * absolute on their old rq until wakeup (needed for the fair sleeper
8006	 * bonus in place_entity()).
8007	 *
8008	 * If it was on the rq, we've just 'preempted' it, which does convert
8009	 * ->vruntime to a relative base.
8010	 *
8011	 * Make sure both cases convert their relative position when migrating
8012	 * to another cgroup's rq. This does somewhat interfere with the
8013	 * fair sleeper stuff for the first placement, but who cares.
8014	 */
8015	/*
8016	 * When !queued, vruntime of the task has usually NOT been normalized.
8017	 * But there are some cases where it has already been normalized:
8018	 *
8019	 * - Moving a forked child which is waiting for being woken up by
8020	 *   wake_up_new_task().
8021	 * - Moving a task which has been woken up by try_to_wake_up() and
8022	 *   waiting for actually being woken up by sched_ttwu_pending().
8023	 *
8024	 * To prevent boost or penalty in the new cfs_rq caused by delta
8025	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8026	 */
8027	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8028		queued = 1;
8029
8030	if (!queued)
8031		se->vruntime -= cfs_rq_of(se)->min_vruntime;
8032	set_task_rq(p, task_cpu(p));
8033	se->depth = se->parent ? se->parent->depth + 1 : 0;
8034	if (!queued) {
8035		cfs_rq = cfs_rq_of(se);
8036		se->vruntime += cfs_rq->min_vruntime;
8037#ifdef CONFIG_SMP
8038		/*
8039		 * migrate_task_rq_fair() will have removed our previous
8040		 * contribution, but we must synchronize for ongoing future
8041		 * decay.
8042		 */
8043		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8044		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8045#endif
8046	}
8047}
8048
8049void free_fair_sched_group(struct task_group *tg)
8050{
8051	int i;
8052
8053	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8054
8055	for_each_possible_cpu(i) {
8056		if (tg->cfs_rq)
8057			kfree(tg->cfs_rq[i]);
8058		if (tg->se)
8059			kfree(tg->se[i]);
8060	}
8061
8062	kfree(tg->cfs_rq);
8063	kfree(tg->se);
8064}
8065
8066int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8067{
8068	struct cfs_rq *cfs_rq;
8069	struct sched_entity *se;
8070	int i;
8071
8072	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8073	if (!tg->cfs_rq)
8074		goto err;
8075	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8076	if (!tg->se)
8077		goto err;
8078
8079	tg->shares = NICE_0_LOAD;
8080
8081	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8082
8083	for_each_possible_cpu(i) {
8084		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8085				      GFP_KERNEL, cpu_to_node(i));
8086		if (!cfs_rq)
8087			goto err;
8088
8089		se = kzalloc_node(sizeof(struct sched_entity),
8090				  GFP_KERNEL, cpu_to_node(i));
8091		if (!se)
8092			goto err_free_rq;
8093
8094		init_cfs_rq(cfs_rq);
8095		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8096	}
8097
8098	return 1;
8099
8100err_free_rq:
8101	kfree(cfs_rq);
8102err:
8103	return 0;
8104}
8105
8106void unregister_fair_sched_group(struct task_group *tg, int cpu)
8107{
8108	struct rq *rq = cpu_rq(cpu);
8109	unsigned long flags;
8110
8111	/*
8112	* Only empty task groups can be destroyed; so we can speculatively
8113	* check on_list without danger of it being re-added.
8114	*/
8115	if (!tg->cfs_rq[cpu]->on_list)
8116		return;
8117
8118	raw_spin_lock_irqsave(&rq->lock, flags);
8119	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8120	raw_spin_unlock_irqrestore(&rq->lock, flags);
8121}
8122
8123void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8124			struct sched_entity *se, int cpu,
8125			struct sched_entity *parent)
8126{
8127	struct rq *rq = cpu_rq(cpu);
8128
8129	cfs_rq->tg = tg;
8130	cfs_rq->rq = rq;
8131	init_cfs_rq_runtime(cfs_rq);
8132
8133	tg->cfs_rq[cpu] = cfs_rq;
8134	tg->se[cpu] = se;
8135
8136	/* se could be NULL for root_task_group */
8137	if (!se)
8138		return;
8139
8140	if (!parent) {
8141		se->cfs_rq = &rq->cfs;
8142		se->depth = 0;
8143	} else {
8144		se->cfs_rq = parent->my_q;
8145		se->depth = parent->depth + 1;
8146	}
8147
8148	se->my_q = cfs_rq;
8149	/* guarantee group entities always have weight */
8150	update_load_set(&se->load, NICE_0_LOAD);
8151	se->parent = parent;
8152}
8153
8154static DEFINE_MUTEX(shares_mutex);
8155
8156int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8157{
8158	int i;
8159	unsigned long flags;
8160
8161	/*
8162	 * We can't change the weight of the root cgroup.
8163	 */
8164	if (!tg->se[0])
8165		return -EINVAL;
8166
8167	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8168
8169	mutex_lock(&shares_mutex);
8170	if (tg->shares == shares)
8171		goto done;
8172
8173	tg->shares = shares;
8174	for_each_possible_cpu(i) {
8175		struct rq *rq = cpu_rq(i);
8176		struct sched_entity *se;
8177
8178		se = tg->se[i];
8179		/* Propagate contribution to hierarchy */
8180		raw_spin_lock_irqsave(&rq->lock, flags);
8181
8182		/* Possible calls to update_curr() need rq clock */
8183		update_rq_clock(rq);
8184		for_each_sched_entity(se)
8185			update_cfs_shares(group_cfs_rq(se));
8186		raw_spin_unlock_irqrestore(&rq->lock, flags);
8187	}
8188
8189done:
8190	mutex_unlock(&shares_mutex);
8191	return 0;
8192}
8193#else /* CONFIG_FAIR_GROUP_SCHED */
8194
8195void free_fair_sched_group(struct task_group *tg) { }
8196
8197int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8198{
8199	return 1;
8200}
8201
8202void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8203
8204#endif /* CONFIG_FAIR_GROUP_SCHED */
8205
8206
8207static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8208{
8209	struct sched_entity *se = &task->se;
8210	unsigned int rr_interval = 0;
8211
8212	/*
8213	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8214	 * idle runqueue:
8215	 */
8216	if (rq->cfs.load.weight)
8217		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8218
8219	return rr_interval;
8220}
8221
8222/*
8223 * All the scheduling class methods:
8224 */
8225const struct sched_class fair_sched_class = {
8226	.next			= &idle_sched_class,
8227	.enqueue_task		= enqueue_task_fair,
8228	.dequeue_task		= dequeue_task_fair,
8229	.yield_task		= yield_task_fair,
8230	.yield_to_task		= yield_to_task_fair,
8231
8232	.check_preempt_curr	= check_preempt_wakeup,
8233
8234	.pick_next_task		= pick_next_task_fair,
8235	.put_prev_task		= put_prev_task_fair,
8236
8237#ifdef CONFIG_SMP
8238	.select_task_rq		= select_task_rq_fair,
8239	.migrate_task_rq	= migrate_task_rq_fair,
8240
8241	.rq_online		= rq_online_fair,
8242	.rq_offline		= rq_offline_fair,
8243
8244	.task_waking		= task_waking_fair,
8245#endif
8246
8247	.set_curr_task          = set_curr_task_fair,
8248	.task_tick		= task_tick_fair,
8249	.task_fork		= task_fork_fair,
8250
8251	.prio_changed		= prio_changed_fair,
8252	.switched_from		= switched_from_fair,
8253	.switched_to		= switched_to_fair,
8254
8255	.get_rr_interval	= get_rr_interval_fair,
8256
8257	.update_curr		= update_curr_fair,
8258
8259#ifdef CONFIG_FAIR_GROUP_SCHED
8260	.task_move_group	= task_move_group_fair,
8261#endif
8262};
8263
8264#ifdef CONFIG_SCHED_DEBUG
8265void print_cfs_stats(struct seq_file *m, int cpu)
8266{
8267	struct cfs_rq *cfs_rq;
8268
8269	rcu_read_lock();
8270	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8271		print_cfs_rq(m, cpu, cfs_rq);
8272	rcu_read_unlock();
8273}
8274#endif
8275
8276__init void init_sched_fair_class(void)
8277{
8278#ifdef CONFIG_SMP
8279	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8280
8281#ifdef CONFIG_NO_HZ_COMMON
8282	nohz.next_balance = jiffies;
8283	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8284	cpu_notifier(sched_ilb_notifier, 0);
8285#endif
8286#endif /* SMP */
8287
8288}
8289