1/*
2 *  linux/kernel/sys.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
47#include <linux/kprobes.h>
48#include <linux/user_namespace.h>
49#include <linux/binfmts.h>
50
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
56#include <linux/kmsg_dump.h>
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
59
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a, b)	(-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a, b)	(-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a, b)	(-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a, b)	(-EINVAL)
81#endif
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a, b)	(-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a, b)	(-EINVAL)
87#endif
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a)		(-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a)		(-EINVAL)
93#endif
94#ifndef MPX_ENABLE_MANAGEMENT
95# define MPX_ENABLE_MANAGEMENT(a)	(-EINVAL)
96#endif
97#ifndef MPX_DISABLE_MANAGEMENT
98# define MPX_DISABLE_MANAGEMENT(a)	(-EINVAL)
99#endif
100#ifndef GET_FP_MODE
101# define GET_FP_MODE(a)		(-EINVAL)
102#endif
103#ifndef SET_FP_MODE
104# define SET_FP_MODE(a,b)	(-EINVAL)
105#endif
106
107/*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112int overflowuid = DEFAULT_OVERFLOWUID;
113int overflowgid = DEFAULT_OVERFLOWGID;
114
115EXPORT_SYMBOL(overflowuid);
116EXPORT_SYMBOL(overflowgid);
117
118/*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126EXPORT_SYMBOL(fs_overflowuid);
127EXPORT_SYMBOL(fs_overflowgid);
128
129/*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135static bool set_one_prio_perm(struct task_struct *p)
136{
137	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
139	if (uid_eq(pcred->uid,  cred->euid) ||
140	    uid_eq(pcred->euid, cred->euid))
141		return true;
142	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
143		return true;
144	return false;
145}
146
147/*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
151static int set_one_prio(struct task_struct *p, int niceval, int error)
152{
153	int no_nice;
154
155	if (!set_one_prio_perm(p)) {
156		error = -EPERM;
157		goto out;
158	}
159	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
160		error = -EACCES;
161		goto out;
162	}
163	no_nice = security_task_setnice(p, niceval);
164	if (no_nice) {
165		error = no_nice;
166		goto out;
167	}
168	if (error == -ESRCH)
169		error = 0;
170	set_user_nice(p, niceval);
171out:
172	return error;
173}
174
175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
176{
177	struct task_struct *g, *p;
178	struct user_struct *user;
179	const struct cred *cred = current_cred();
180	int error = -EINVAL;
181	struct pid *pgrp;
182	kuid_t uid;
183
184	if (which > PRIO_USER || which < PRIO_PROCESS)
185		goto out;
186
187	/* normalize: avoid signed division (rounding problems) */
188	error = -ESRCH;
189	if (niceval < MIN_NICE)
190		niceval = MIN_NICE;
191	if (niceval > MAX_NICE)
192		niceval = MAX_NICE;
193
194	rcu_read_lock();
195	read_lock(&tasklist_lock);
196	switch (which) {
197	case PRIO_PROCESS:
198		if (who)
199			p = find_task_by_vpid(who);
200		else
201			p = current;
202		if (p)
203			error = set_one_prio(p, niceval, error);
204		break;
205	case PRIO_PGRP:
206		if (who)
207			pgrp = find_vpid(who);
208		else
209			pgrp = task_pgrp(current);
210		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211			error = set_one_prio(p, niceval, error);
212		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213		break;
214	case PRIO_USER:
215		uid = make_kuid(cred->user_ns, who);
216		user = cred->user;
217		if (!who)
218			uid = cred->uid;
219		else if (!uid_eq(uid, cred->uid)) {
220			user = find_user(uid);
221			if (!user)
222				goto out_unlock;	/* No processes for this user */
223		}
224		do_each_thread(g, p) {
225			if (uid_eq(task_uid(p), uid))
226				error = set_one_prio(p, niceval, error);
227		} while_each_thread(g, p);
228		if (!uid_eq(uid, cred->uid))
229			free_uid(user);		/* For find_user() */
230		break;
231	}
232out_unlock:
233	read_unlock(&tasklist_lock);
234	rcu_read_unlock();
235out:
236	return error;
237}
238
239/*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
245SYSCALL_DEFINE2(getpriority, int, which, int, who)
246{
247	struct task_struct *g, *p;
248	struct user_struct *user;
249	const struct cred *cred = current_cred();
250	long niceval, retval = -ESRCH;
251	struct pid *pgrp;
252	kuid_t uid;
253
254	if (which > PRIO_USER || which < PRIO_PROCESS)
255		return -EINVAL;
256
257	rcu_read_lock();
258	read_lock(&tasklist_lock);
259	switch (which) {
260	case PRIO_PROCESS:
261		if (who)
262			p = find_task_by_vpid(who);
263		else
264			p = current;
265		if (p) {
266			niceval = nice_to_rlimit(task_nice(p));
267			if (niceval > retval)
268				retval = niceval;
269		}
270		break;
271	case PRIO_PGRP:
272		if (who)
273			pgrp = find_vpid(who);
274		else
275			pgrp = task_pgrp(current);
276		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277			niceval = nice_to_rlimit(task_nice(p));
278			if (niceval > retval)
279				retval = niceval;
280		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281		break;
282	case PRIO_USER:
283		uid = make_kuid(cred->user_ns, who);
284		user = cred->user;
285		if (!who)
286			uid = cred->uid;
287		else if (!uid_eq(uid, cred->uid)) {
288			user = find_user(uid);
289			if (!user)
290				goto out_unlock;	/* No processes for this user */
291		}
292		do_each_thread(g, p) {
293			if (uid_eq(task_uid(p), uid)) {
294				niceval = nice_to_rlimit(task_nice(p));
295				if (niceval > retval)
296					retval = niceval;
297			}
298		} while_each_thread(g, p);
299		if (!uid_eq(uid, cred->uid))
300			free_uid(user);		/* for find_user() */
301		break;
302	}
303out_unlock:
304	read_unlock(&tasklist_lock);
305	rcu_read_unlock();
306
307	return retval;
308}
309
310/*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa.  (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD.  A program which uses just setgid() will be
323 * 100% compatible with POSIX with saved IDs.
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 *      operations (as far as semantic preservation is concerned).
327 */
328#ifdef CONFIG_MULTIUSER
329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
330{
331	struct user_namespace *ns = current_user_ns();
332	const struct cred *old;
333	struct cred *new;
334	int retval;
335	kgid_t krgid, kegid;
336
337	krgid = make_kgid(ns, rgid);
338	kegid = make_kgid(ns, egid);
339
340	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341		return -EINVAL;
342	if ((egid != (gid_t) -1) && !gid_valid(kegid))
343		return -EINVAL;
344
345	new = prepare_creds();
346	if (!new)
347		return -ENOMEM;
348	old = current_cred();
349
350	retval = -EPERM;
351	if (rgid != (gid_t) -1) {
352		if (gid_eq(old->gid, krgid) ||
353		    gid_eq(old->egid, krgid) ||
354		    ns_capable(old->user_ns, CAP_SETGID))
355			new->gid = krgid;
356		else
357			goto error;
358	}
359	if (egid != (gid_t) -1) {
360		if (gid_eq(old->gid, kegid) ||
361		    gid_eq(old->egid, kegid) ||
362		    gid_eq(old->sgid, kegid) ||
363		    ns_capable(old->user_ns, CAP_SETGID))
364			new->egid = kegid;
365		else
366			goto error;
367	}
368
369	if (rgid != (gid_t) -1 ||
370	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
371		new->sgid = new->egid;
372	new->fsgid = new->egid;
373
374	return commit_creds(new);
375
376error:
377	abort_creds(new);
378	return retval;
379}
380
381/*
382 * setgid() is implemented like SysV w/ SAVED_IDS
383 *
384 * SMP: Same implicit races as above.
385 */
386SYSCALL_DEFINE1(setgid, gid_t, gid)
387{
388	struct user_namespace *ns = current_user_ns();
389	const struct cred *old;
390	struct cred *new;
391	int retval;
392	kgid_t kgid;
393
394	kgid = make_kgid(ns, gid);
395	if (!gid_valid(kgid))
396		return -EINVAL;
397
398	new = prepare_creds();
399	if (!new)
400		return -ENOMEM;
401	old = current_cred();
402
403	retval = -EPERM;
404	if (ns_capable(old->user_ns, CAP_SETGID))
405		new->gid = new->egid = new->sgid = new->fsgid = kgid;
406	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407		new->egid = new->fsgid = kgid;
408	else
409		goto error;
410
411	return commit_creds(new);
412
413error:
414	abort_creds(new);
415	return retval;
416}
417
418/*
419 * change the user struct in a credentials set to match the new UID
420 */
421static int set_user(struct cred *new)
422{
423	struct user_struct *new_user;
424
425	new_user = alloc_uid(new->uid);
426	if (!new_user)
427		return -EAGAIN;
428
429	/*
430	 * We don't fail in case of NPROC limit excess here because too many
431	 * poorly written programs don't check set*uid() return code, assuming
432	 * it never fails if called by root.  We may still enforce NPROC limit
433	 * for programs doing set*uid()+execve() by harmlessly deferring the
434	 * failure to the execve() stage.
435	 */
436	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
437			new_user != INIT_USER)
438		current->flags |= PF_NPROC_EXCEEDED;
439	else
440		current->flags &= ~PF_NPROC_EXCEEDED;
441
442	free_uid(new->user);
443	new->user = new_user;
444	return 0;
445}
446
447/*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa.  (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD.  A program which uses just setuid() will be
460 * 100% compatible with POSIX with saved IDs.
461 */
462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
463{
464	struct user_namespace *ns = current_user_ns();
465	const struct cred *old;
466	struct cred *new;
467	int retval;
468	kuid_t kruid, keuid;
469
470	kruid = make_kuid(ns, ruid);
471	keuid = make_kuid(ns, euid);
472
473	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474		return -EINVAL;
475	if ((euid != (uid_t) -1) && !uid_valid(keuid))
476		return -EINVAL;
477
478	new = prepare_creds();
479	if (!new)
480		return -ENOMEM;
481	old = current_cred();
482
483	retval = -EPERM;
484	if (ruid != (uid_t) -1) {
485		new->uid = kruid;
486		if (!uid_eq(old->uid, kruid) &&
487		    !uid_eq(old->euid, kruid) &&
488		    !ns_capable(old->user_ns, CAP_SETUID))
489			goto error;
490	}
491
492	if (euid != (uid_t) -1) {
493		new->euid = keuid;
494		if (!uid_eq(old->uid, keuid) &&
495		    !uid_eq(old->euid, keuid) &&
496		    !uid_eq(old->suid, keuid) &&
497		    !ns_capable(old->user_ns, CAP_SETUID))
498			goto error;
499	}
500
501	if (!uid_eq(new->uid, old->uid)) {
502		retval = set_user(new);
503		if (retval < 0)
504			goto error;
505	}
506	if (ruid != (uid_t) -1 ||
507	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
508		new->suid = new->euid;
509	new->fsuid = new->euid;
510
511	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512	if (retval < 0)
513		goto error;
514
515	return commit_creds(new);
516
517error:
518	abort_creds(new);
519	return retval;
520}
521
522/*
523 * setuid() is implemented like SysV with SAVED_IDS
524 *
525 * Note that SAVED_ID's is deficient in that a setuid root program
526 * like sendmail, for example, cannot set its uid to be a normal
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too.  If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
531 * regain them by swapping the real and effective uid.
532 */
533SYSCALL_DEFINE1(setuid, uid_t, uid)
534{
535	struct user_namespace *ns = current_user_ns();
536	const struct cred *old;
537	struct cred *new;
538	int retval;
539	kuid_t kuid;
540
541	kuid = make_kuid(ns, uid);
542	if (!uid_valid(kuid))
543		return -EINVAL;
544
545	new = prepare_creds();
546	if (!new)
547		return -ENOMEM;
548	old = current_cred();
549
550	retval = -EPERM;
551	if (ns_capable(old->user_ns, CAP_SETUID)) {
552		new->suid = new->uid = kuid;
553		if (!uid_eq(kuid, old->uid)) {
554			retval = set_user(new);
555			if (retval < 0)
556				goto error;
557		}
558	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
559		goto error;
560	}
561
562	new->fsuid = new->euid = kuid;
563
564	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565	if (retval < 0)
566		goto error;
567
568	return commit_creds(new);
569
570error:
571	abort_creds(new);
572	return retval;
573}
574
575
576/*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid.  This allows you to implement the 4.4 compatible seteuid().
579 */
580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
581{
582	struct user_namespace *ns = current_user_ns();
583	const struct cred *old;
584	struct cred *new;
585	int retval;
586	kuid_t kruid, keuid, ksuid;
587
588	kruid = make_kuid(ns, ruid);
589	keuid = make_kuid(ns, euid);
590	ksuid = make_kuid(ns, suid);
591
592	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593		return -EINVAL;
594
595	if ((euid != (uid_t) -1) && !uid_valid(keuid))
596		return -EINVAL;
597
598	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599		return -EINVAL;
600
601	new = prepare_creds();
602	if (!new)
603		return -ENOMEM;
604
605	old = current_cred();
606
607	retval = -EPERM;
608	if (!ns_capable(old->user_ns, CAP_SETUID)) {
609		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
610		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
611			goto error;
612		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
613		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
614			goto error;
615		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
616		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
617			goto error;
618	}
619
620	if (ruid != (uid_t) -1) {
621		new->uid = kruid;
622		if (!uid_eq(kruid, old->uid)) {
623			retval = set_user(new);
624			if (retval < 0)
625				goto error;
626		}
627	}
628	if (euid != (uid_t) -1)
629		new->euid = keuid;
630	if (suid != (uid_t) -1)
631		new->suid = ksuid;
632	new->fsuid = new->euid;
633
634	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635	if (retval < 0)
636		goto error;
637
638	return commit_creds(new);
639
640error:
641	abort_creds(new);
642	return retval;
643}
644
645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
646{
647	const struct cred *cred = current_cred();
648	int retval;
649	uid_t ruid, euid, suid;
650
651	ruid = from_kuid_munged(cred->user_ns, cred->uid);
652	euid = from_kuid_munged(cred->user_ns, cred->euid);
653	suid = from_kuid_munged(cred->user_ns, cred->suid);
654
655	retval = put_user(ruid, ruidp);
656	if (!retval) {
657		retval = put_user(euid, euidp);
658		if (!retval)
659			return put_user(suid, suidp);
660	}
661	return retval;
662}
663
664/*
665 * Same as above, but for rgid, egid, sgid.
666 */
667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
668{
669	struct user_namespace *ns = current_user_ns();
670	const struct cred *old;
671	struct cred *new;
672	int retval;
673	kgid_t krgid, kegid, ksgid;
674
675	krgid = make_kgid(ns, rgid);
676	kegid = make_kgid(ns, egid);
677	ksgid = make_kgid(ns, sgid);
678
679	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680		return -EINVAL;
681	if ((egid != (gid_t) -1) && !gid_valid(kegid))
682		return -EINVAL;
683	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684		return -EINVAL;
685
686	new = prepare_creds();
687	if (!new)
688		return -ENOMEM;
689	old = current_cred();
690
691	retval = -EPERM;
692	if (!ns_capable(old->user_ns, CAP_SETGID)) {
693		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
694		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
695			goto error;
696		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
697		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
698			goto error;
699		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
700		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
701			goto error;
702	}
703
704	if (rgid != (gid_t) -1)
705		new->gid = krgid;
706	if (egid != (gid_t) -1)
707		new->egid = kegid;
708	if (sgid != (gid_t) -1)
709		new->sgid = ksgid;
710	new->fsgid = new->egid;
711
712	return commit_creds(new);
713
714error:
715	abort_creds(new);
716	return retval;
717}
718
719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
720{
721	const struct cred *cred = current_cred();
722	int retval;
723	gid_t rgid, egid, sgid;
724
725	rgid = from_kgid_munged(cred->user_ns, cred->gid);
726	egid = from_kgid_munged(cred->user_ns, cred->egid);
727	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
728
729	retval = put_user(rgid, rgidp);
730	if (!retval) {
731		retval = put_user(egid, egidp);
732		if (!retval)
733			retval = put_user(sgid, sgidp);
734	}
735
736	return retval;
737}
738
739
740/*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
747{
748	const struct cred *old;
749	struct cred *new;
750	uid_t old_fsuid;
751	kuid_t kuid;
752
753	old = current_cred();
754	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756	kuid = make_kuid(old->user_ns, uid);
757	if (!uid_valid(kuid))
758		return old_fsuid;
759
760	new = prepare_creds();
761	if (!new)
762		return old_fsuid;
763
764	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
765	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
766	    ns_capable(old->user_ns, CAP_SETUID)) {
767		if (!uid_eq(kuid, old->fsuid)) {
768			new->fsuid = kuid;
769			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770				goto change_okay;
771		}
772	}
773
774	abort_creds(new);
775	return old_fsuid;
776
777change_okay:
778	commit_creds(new);
779	return old_fsuid;
780}
781
782/*
783 * Samma på svenska..
784 */
785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
786{
787	const struct cred *old;
788	struct cred *new;
789	gid_t old_fsgid;
790	kgid_t kgid;
791
792	old = current_cred();
793	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795	kgid = make_kgid(old->user_ns, gid);
796	if (!gid_valid(kgid))
797		return old_fsgid;
798
799	new = prepare_creds();
800	if (!new)
801		return old_fsgid;
802
803	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
804	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
805	    ns_capable(old->user_ns, CAP_SETGID)) {
806		if (!gid_eq(kgid, old->fsgid)) {
807			new->fsgid = kgid;
808			goto change_okay;
809		}
810	}
811
812	abort_creds(new);
813	return old_fsgid;
814
815change_okay:
816	commit_creds(new);
817	return old_fsgid;
818}
819#endif /* CONFIG_MULTIUSER */
820
821/**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid.  The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830SYSCALL_DEFINE0(getpid)
831{
832	return task_tgid_vnr(current);
833}
834
835/* Thread ID - the internal kernel "pid" */
836SYSCALL_DEFINE0(gettid)
837{
838	return task_pid_vnr(current);
839}
840
841/*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847SYSCALL_DEFINE0(getppid)
848{
849	int pid;
850
851	rcu_read_lock();
852	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853	rcu_read_unlock();
854
855	return pid;
856}
857
858SYSCALL_DEFINE0(getuid)
859{
860	/* Only we change this so SMP safe */
861	return from_kuid_munged(current_user_ns(), current_uid());
862}
863
864SYSCALL_DEFINE0(geteuid)
865{
866	/* Only we change this so SMP safe */
867	return from_kuid_munged(current_user_ns(), current_euid());
868}
869
870SYSCALL_DEFINE0(getgid)
871{
872	/* Only we change this so SMP safe */
873	return from_kgid_munged(current_user_ns(), current_gid());
874}
875
876SYSCALL_DEFINE0(getegid)
877{
878	/* Only we change this so SMP safe */
879	return from_kgid_munged(current_user_ns(), current_egid());
880}
881
882void do_sys_times(struct tms *tms)
883{
884	cputime_t tgutime, tgstime, cutime, cstime;
885
886	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
887	cutime = current->signal->cutime;
888	cstime = current->signal->cstime;
889	tms->tms_utime = cputime_to_clock_t(tgutime);
890	tms->tms_stime = cputime_to_clock_t(tgstime);
891	tms->tms_cutime = cputime_to_clock_t(cutime);
892	tms->tms_cstime = cputime_to_clock_t(cstime);
893}
894
895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
896{
897	if (tbuf) {
898		struct tms tmp;
899
900		do_sys_times(&tmp);
901		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902			return -EFAULT;
903	}
904	force_successful_syscall_return();
905	return (long) jiffies_64_to_clock_t(get_jiffies_64());
906}
907
908/*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another.  -TYT, 12/12/91
916 *
917 * !PF_FORKNOEXEC check to conform completely to POSIX.
918 */
919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
920{
921	struct task_struct *p;
922	struct task_struct *group_leader = current->group_leader;
923	struct pid *pgrp;
924	int err;
925
926	if (!pid)
927		pid = task_pid_vnr(group_leader);
928	if (!pgid)
929		pgid = pid;
930	if (pgid < 0)
931		return -EINVAL;
932	rcu_read_lock();
933
934	/* From this point forward we keep holding onto the tasklist lock
935	 * so that our parent does not change from under us. -DaveM
936	 */
937	write_lock_irq(&tasklist_lock);
938
939	err = -ESRCH;
940	p = find_task_by_vpid(pid);
941	if (!p)
942		goto out;
943
944	err = -EINVAL;
945	if (!thread_group_leader(p))
946		goto out;
947
948	if (same_thread_group(p->real_parent, group_leader)) {
949		err = -EPERM;
950		if (task_session(p) != task_session(group_leader))
951			goto out;
952		err = -EACCES;
953		if (!(p->flags & PF_FORKNOEXEC))
954			goto out;
955	} else {
956		err = -ESRCH;
957		if (p != group_leader)
958			goto out;
959	}
960
961	err = -EPERM;
962	if (p->signal->leader)
963		goto out;
964
965	pgrp = task_pid(p);
966	if (pgid != pid) {
967		struct task_struct *g;
968
969		pgrp = find_vpid(pgid);
970		g = pid_task(pgrp, PIDTYPE_PGID);
971		if (!g || task_session(g) != task_session(group_leader))
972			goto out;
973	}
974
975	err = security_task_setpgid(p, pgid);
976	if (err)
977		goto out;
978
979	if (task_pgrp(p) != pgrp)
980		change_pid(p, PIDTYPE_PGID, pgrp);
981
982	err = 0;
983out:
984	/* All paths lead to here, thus we are safe. -DaveM */
985	write_unlock_irq(&tasklist_lock);
986	rcu_read_unlock();
987	return err;
988}
989
990SYSCALL_DEFINE1(getpgid, pid_t, pid)
991{
992	struct task_struct *p;
993	struct pid *grp;
994	int retval;
995
996	rcu_read_lock();
997	if (!pid)
998		grp = task_pgrp(current);
999	else {
1000		retval = -ESRCH;
1001		p = find_task_by_vpid(pid);
1002		if (!p)
1003			goto out;
1004		grp = task_pgrp(p);
1005		if (!grp)
1006			goto out;
1007
1008		retval = security_task_getpgid(p);
1009		if (retval)
1010			goto out;
1011	}
1012	retval = pid_vnr(grp);
1013out:
1014	rcu_read_unlock();
1015	return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022	return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029	struct task_struct *p;
1030	struct pid *sid;
1031	int retval;
1032
1033	rcu_read_lock();
1034	if (!pid)
1035		sid = task_session(current);
1036	else {
1037		retval = -ESRCH;
1038		p = find_task_by_vpid(pid);
1039		if (!p)
1040			goto out;
1041		sid = task_session(p);
1042		if (!sid)
1043			goto out;
1044
1045		retval = security_task_getsid(p);
1046		if (retval)
1047			goto out;
1048	}
1049	retval = pid_vnr(sid);
1050out:
1051	rcu_read_unlock();
1052	return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057	struct task_struct *curr = current->group_leader;
1058
1059	if (task_session(curr) != pid)
1060		change_pid(curr, PIDTYPE_SID, pid);
1061
1062	if (task_pgrp(curr) != pid)
1063		change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068	struct task_struct *group_leader = current->group_leader;
1069	struct pid *sid = task_pid(group_leader);
1070	pid_t session = pid_vnr(sid);
1071	int err = -EPERM;
1072
1073	write_lock_irq(&tasklist_lock);
1074	/* Fail if I am already a session leader */
1075	if (group_leader->signal->leader)
1076		goto out;
1077
1078	/* Fail if a process group id already exists that equals the
1079	 * proposed session id.
1080	 */
1081	if (pid_task(sid, PIDTYPE_PGID))
1082		goto out;
1083
1084	group_leader->signal->leader = 1;
1085	set_special_pids(sid);
1086
1087	proc_clear_tty(group_leader);
1088
1089	err = session;
1090out:
1091	write_unlock_irq(&tasklist_lock);
1092	if (err > 0) {
1093		proc_sid_connector(group_leader);
1094		sched_autogroup_create_attach(group_leader);
1095	}
1096	return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103	(personality(current->personality) == PER_LINUX32 && \
1104	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105		      sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name)	0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117	int ret = 0;
1118
1119	if (current->personality & UNAME26) {
1120		const char *rest = UTS_RELEASE;
1121		char buf[65] = { 0 };
1122		int ndots = 0;
1123		unsigned v;
1124		size_t copy;
1125
1126		while (*rest) {
1127			if (*rest == '.' && ++ndots >= 3)
1128				break;
1129			if (!isdigit(*rest) && *rest != '.')
1130				break;
1131			rest++;
1132		}
1133		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134		copy = clamp_t(size_t, len, 1, sizeof(buf));
1135		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136		ret = copy_to_user(release, buf, copy + 1);
1137	}
1138	return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143	int errno = 0;
1144
1145	down_read(&uts_sem);
1146	if (copy_to_user(name, utsname(), sizeof *name))
1147		errno = -EFAULT;
1148	up_read(&uts_sem);
1149
1150	if (!errno && override_release(name->release, sizeof(name->release)))
1151		errno = -EFAULT;
1152	if (!errno && override_architecture(name))
1153		errno = -EFAULT;
1154	return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163	int error = 0;
1164
1165	if (!name)
1166		return -EFAULT;
1167
1168	down_read(&uts_sem);
1169	if (copy_to_user(name, utsname(), sizeof(*name)))
1170		error = -EFAULT;
1171	up_read(&uts_sem);
1172
1173	if (!error && override_release(name->release, sizeof(name->release)))
1174		error = -EFAULT;
1175	if (!error && override_architecture(name))
1176		error = -EFAULT;
1177	return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182	int error;
1183
1184	if (!name)
1185		return -EFAULT;
1186	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187		return -EFAULT;
1188
1189	down_read(&uts_sem);
1190	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191			       __OLD_UTS_LEN);
1192	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194				__OLD_UTS_LEN);
1195	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196	error |= __copy_to_user(&name->release, &utsname()->release,
1197				__OLD_UTS_LEN);
1198	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199	error |= __copy_to_user(&name->version, &utsname()->version,
1200				__OLD_UTS_LEN);
1201	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202	error |= __copy_to_user(&name->machine, &utsname()->machine,
1203				__OLD_UTS_LEN);
1204	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205	up_read(&uts_sem);
1206
1207	if (!error && override_architecture(name))
1208		error = -EFAULT;
1209	if (!error && override_release(name->release, sizeof(name->release)))
1210		error = -EFAULT;
1211	return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217	int errno;
1218	char tmp[__NEW_UTS_LEN];
1219
1220	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221		return -EPERM;
1222
1223	if (len < 0 || len > __NEW_UTS_LEN)
1224		return -EINVAL;
1225	down_write(&uts_sem);
1226	errno = -EFAULT;
1227	if (!copy_from_user(tmp, name, len)) {
1228		struct new_utsname *u = utsname();
1229
1230		memcpy(u->nodename, tmp, len);
1231		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232		errno = 0;
1233		uts_proc_notify(UTS_PROC_HOSTNAME);
1234	}
1235	up_write(&uts_sem);
1236	return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243	int i, errno;
1244	struct new_utsname *u;
1245
1246	if (len < 0)
1247		return -EINVAL;
1248	down_read(&uts_sem);
1249	u = utsname();
1250	i = 1 + strlen(u->nodename);
1251	if (i > len)
1252		i = len;
1253	errno = 0;
1254	if (copy_to_user(name, u->nodename, i))
1255		errno = -EFAULT;
1256	up_read(&uts_sem);
1257	return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268	int errno;
1269	char tmp[__NEW_UTS_LEN];
1270
1271	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272		return -EPERM;
1273	if (len < 0 || len > __NEW_UTS_LEN)
1274		return -EINVAL;
1275
1276	down_write(&uts_sem);
1277	errno = -EFAULT;
1278	if (!copy_from_user(tmp, name, len)) {
1279		struct new_utsname *u = utsname();
1280
1281		memcpy(u->domainname, tmp, len);
1282		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283		errno = 0;
1284		uts_proc_notify(UTS_PROC_DOMAINNAME);
1285	}
1286	up_write(&uts_sem);
1287	return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292	struct rlimit value;
1293	int ret;
1294
1295	ret = do_prlimit(current, resource, NULL, &value);
1296	if (!ret)
1297		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299	return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 *	Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308		struct rlimit __user *, rlim)
1309{
1310	struct rlimit x;
1311	if (resource >= RLIM_NLIMITS)
1312		return -EINVAL;
1313
1314	task_lock(current->group_leader);
1315	x = current->signal->rlim[resource];
1316	task_unlock(current->group_leader);
1317	if (x.rlim_cur > 0x7FFFFFFF)
1318		x.rlim_cur = 0x7FFFFFFF;
1319	if (x.rlim_max > 0x7FFFFFFF)
1320		x.rlim_max = 0x7FFFFFFF;
1321	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329	return rlim64 >= ULONG_MAX;
1330#else
1331	return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337	if (rlim->rlim_cur == RLIM_INFINITY)
1338		rlim64->rlim_cur = RLIM64_INFINITY;
1339	else
1340		rlim64->rlim_cur = rlim->rlim_cur;
1341	if (rlim->rlim_max == RLIM_INFINITY)
1342		rlim64->rlim_max = RLIM64_INFINITY;
1343	else
1344		rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349	if (rlim64_is_infinity(rlim64->rlim_cur))
1350		rlim->rlim_cur = RLIM_INFINITY;
1351	else
1352		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353	if (rlim64_is_infinity(rlim64->rlim_max))
1354		rlim->rlim_max = RLIM_INFINITY;
1355	else
1356		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361		struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363	struct rlimit *rlim;
1364	int retval = 0;
1365
1366	if (resource >= RLIM_NLIMITS)
1367		return -EINVAL;
1368	if (new_rlim) {
1369		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370			return -EINVAL;
1371		if (resource == RLIMIT_NOFILE &&
1372				new_rlim->rlim_max > sysctl_nr_open)
1373			return -EPERM;
1374	}
1375
1376	/* protect tsk->signal and tsk->sighand from disappearing */
1377	read_lock(&tasklist_lock);
1378	if (!tsk->sighand) {
1379		retval = -ESRCH;
1380		goto out;
1381	}
1382
1383	rlim = tsk->signal->rlim + resource;
1384	task_lock(tsk->group_leader);
1385	if (new_rlim) {
1386		/* Keep the capable check against init_user_ns until
1387		   cgroups can contain all limits */
1388		if (new_rlim->rlim_max > rlim->rlim_max &&
1389				!capable(CAP_SYS_RESOURCE))
1390			retval = -EPERM;
1391		if (!retval)
1392			retval = security_task_setrlimit(tsk->group_leader,
1393					resource, new_rlim);
1394		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395			/*
1396			 * The caller is asking for an immediate RLIMIT_CPU
1397			 * expiry.  But we use the zero value to mean "it was
1398			 * never set".  So let's cheat and make it one second
1399			 * instead
1400			 */
1401			new_rlim->rlim_cur = 1;
1402		}
1403	}
1404	if (!retval) {
1405		if (old_rlim)
1406			*old_rlim = *rlim;
1407		if (new_rlim)
1408			*rlim = *new_rlim;
1409	}
1410	task_unlock(tsk->group_leader);
1411
1412	/*
1413	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1414	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1415	 * very long-standing error, and fixing it now risks breakage of
1416	 * applications, so we live with it
1417	 */
1418	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419			 new_rlim->rlim_cur != RLIM_INFINITY)
1420		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1421out:
1422	read_unlock(&tasklist_lock);
1423	return retval;
1424}
1425
1426/* rcu lock must be held */
1427static int check_prlimit_permission(struct task_struct *task)
1428{
1429	const struct cred *cred = current_cred(), *tcred;
1430
1431	if (current == task)
1432		return 0;
1433
1434	tcred = __task_cred(task);
1435	if (uid_eq(cred->uid, tcred->euid) &&
1436	    uid_eq(cred->uid, tcred->suid) &&
1437	    uid_eq(cred->uid, tcred->uid)  &&
1438	    gid_eq(cred->gid, tcred->egid) &&
1439	    gid_eq(cred->gid, tcred->sgid) &&
1440	    gid_eq(cred->gid, tcred->gid))
1441		return 0;
1442	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1443		return 0;
1444
1445	return -EPERM;
1446}
1447
1448SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1449		const struct rlimit64 __user *, new_rlim,
1450		struct rlimit64 __user *, old_rlim)
1451{
1452	struct rlimit64 old64, new64;
1453	struct rlimit old, new;
1454	struct task_struct *tsk;
1455	int ret;
1456
1457	if (new_rlim) {
1458		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1459			return -EFAULT;
1460		rlim64_to_rlim(&new64, &new);
1461	}
1462
1463	rcu_read_lock();
1464	tsk = pid ? find_task_by_vpid(pid) : current;
1465	if (!tsk) {
1466		rcu_read_unlock();
1467		return -ESRCH;
1468	}
1469	ret = check_prlimit_permission(tsk);
1470	if (ret) {
1471		rcu_read_unlock();
1472		return ret;
1473	}
1474	get_task_struct(tsk);
1475	rcu_read_unlock();
1476
1477	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1478			old_rlim ? &old : NULL);
1479
1480	if (!ret && old_rlim) {
1481		rlim_to_rlim64(&old, &old64);
1482		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1483			ret = -EFAULT;
1484	}
1485
1486	put_task_struct(tsk);
1487	return ret;
1488}
1489
1490SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491{
1492	struct rlimit new_rlim;
1493
1494	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1495		return -EFAULT;
1496	return do_prlimit(current, resource, &new_rlim, NULL);
1497}
1498
1499/*
1500 * It would make sense to put struct rusage in the task_struct,
1501 * except that would make the task_struct be *really big*.  After
1502 * task_struct gets moved into malloc'ed memory, it would
1503 * make sense to do this.  It will make moving the rest of the information
1504 * a lot simpler!  (Which we're not doing right now because we're not
1505 * measuring them yet).
1506 *
1507 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1508 * races with threads incrementing their own counters.  But since word
1509 * reads are atomic, we either get new values or old values and we don't
1510 * care which for the sums.  We always take the siglock to protect reading
1511 * the c* fields from p->signal from races with exit.c updating those
1512 * fields when reaping, so a sample either gets all the additions of a
1513 * given child after it's reaped, or none so this sample is before reaping.
1514 *
1515 * Locking:
1516 * We need to take the siglock for CHILDEREN, SELF and BOTH
1517 * for  the cases current multithreaded, non-current single threaded
1518 * non-current multithreaded.  Thread traversal is now safe with
1519 * the siglock held.
1520 * Strictly speaking, we donot need to take the siglock if we are current and
1521 * single threaded,  as no one else can take our signal_struct away, no one
1522 * else can  reap the  children to update signal->c* counters, and no one else
1523 * can race with the signal-> fields. If we do not take any lock, the
1524 * signal-> fields could be read out of order while another thread was just
1525 * exiting. So we should  place a read memory barrier when we avoid the lock.
1526 * On the writer side,  write memory barrier is implied in  __exit_signal
1527 * as __exit_signal releases  the siglock spinlock after updating the signal->
1528 * fields. But we don't do this yet to keep things simple.
1529 *
1530 */
1531
1532static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1533{
1534	r->ru_nvcsw += t->nvcsw;
1535	r->ru_nivcsw += t->nivcsw;
1536	r->ru_minflt += t->min_flt;
1537	r->ru_majflt += t->maj_flt;
1538	r->ru_inblock += task_io_get_inblock(t);
1539	r->ru_oublock += task_io_get_oublock(t);
1540}
1541
1542static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1543{
1544	struct task_struct *t;
1545	unsigned long flags;
1546	cputime_t tgutime, tgstime, utime, stime;
1547	unsigned long maxrss = 0;
1548
1549	memset((char *)r, 0, sizeof (*r));
1550	utime = stime = 0;
1551
1552	if (who == RUSAGE_THREAD) {
1553		task_cputime_adjusted(current, &utime, &stime);
1554		accumulate_thread_rusage(p, r);
1555		maxrss = p->signal->maxrss;
1556		goto out;
1557	}
1558
1559	if (!lock_task_sighand(p, &flags))
1560		return;
1561
1562	switch (who) {
1563	case RUSAGE_BOTH:
1564	case RUSAGE_CHILDREN:
1565		utime = p->signal->cutime;
1566		stime = p->signal->cstime;
1567		r->ru_nvcsw = p->signal->cnvcsw;
1568		r->ru_nivcsw = p->signal->cnivcsw;
1569		r->ru_minflt = p->signal->cmin_flt;
1570		r->ru_majflt = p->signal->cmaj_flt;
1571		r->ru_inblock = p->signal->cinblock;
1572		r->ru_oublock = p->signal->coublock;
1573		maxrss = p->signal->cmaxrss;
1574
1575		if (who == RUSAGE_CHILDREN)
1576			break;
1577
1578	case RUSAGE_SELF:
1579		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1580		utime += tgutime;
1581		stime += tgstime;
1582		r->ru_nvcsw += p->signal->nvcsw;
1583		r->ru_nivcsw += p->signal->nivcsw;
1584		r->ru_minflt += p->signal->min_flt;
1585		r->ru_majflt += p->signal->maj_flt;
1586		r->ru_inblock += p->signal->inblock;
1587		r->ru_oublock += p->signal->oublock;
1588		if (maxrss < p->signal->maxrss)
1589			maxrss = p->signal->maxrss;
1590		t = p;
1591		do {
1592			accumulate_thread_rusage(t, r);
1593		} while_each_thread(p, t);
1594		break;
1595
1596	default:
1597		BUG();
1598	}
1599	unlock_task_sighand(p, &flags);
1600
1601out:
1602	cputime_to_timeval(utime, &r->ru_utime);
1603	cputime_to_timeval(stime, &r->ru_stime);
1604
1605	if (who != RUSAGE_CHILDREN) {
1606		struct mm_struct *mm = get_task_mm(p);
1607
1608		if (mm) {
1609			setmax_mm_hiwater_rss(&maxrss, mm);
1610			mmput(mm);
1611		}
1612	}
1613	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1614}
1615
1616int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1617{
1618	struct rusage r;
1619
1620	k_getrusage(p, who, &r);
1621	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1622}
1623
1624SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1625{
1626	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1627	    who != RUSAGE_THREAD)
1628		return -EINVAL;
1629	return getrusage(current, who, ru);
1630}
1631
1632#ifdef CONFIG_COMPAT
1633COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1634{
1635	struct rusage r;
1636
1637	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1638	    who != RUSAGE_THREAD)
1639		return -EINVAL;
1640
1641	k_getrusage(current, who, &r);
1642	return put_compat_rusage(&r, ru);
1643}
1644#endif
1645
1646SYSCALL_DEFINE1(umask, int, mask)
1647{
1648	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1649	return mask;
1650}
1651
1652static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1653{
1654	struct fd exe;
1655	struct file *old_exe, *exe_file;
1656	struct inode *inode;
1657	int err;
1658
1659	exe = fdget(fd);
1660	if (!exe.file)
1661		return -EBADF;
1662
1663	inode = file_inode(exe.file);
1664
1665	/*
1666	 * Because the original mm->exe_file points to executable file, make
1667	 * sure that this one is executable as well, to avoid breaking an
1668	 * overall picture.
1669	 */
1670	err = -EACCES;
1671	if (!S_ISREG(inode->i_mode)	||
1672	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1673		goto exit;
1674
1675	err = inode_permission(inode, MAY_EXEC);
1676	if (err)
1677		goto exit;
1678
1679	/*
1680	 * Forbid mm->exe_file change if old file still mapped.
1681	 */
1682	exe_file = get_mm_exe_file(mm);
1683	err = -EBUSY;
1684	if (exe_file) {
1685		struct vm_area_struct *vma;
1686
1687		down_read(&mm->mmap_sem);
1688		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689			if (!vma->vm_file)
1690				continue;
1691			if (path_equal(&vma->vm_file->f_path,
1692				       &exe_file->f_path))
1693				goto exit_err;
1694		}
1695
1696		up_read(&mm->mmap_sem);
1697		fput(exe_file);
1698	}
1699
1700	/*
1701	 * The symlink can be changed only once, just to disallow arbitrary
1702	 * transitions malicious software might bring in. This means one
1703	 * could make a snapshot over all processes running and monitor
1704	 * /proc/pid/exe changes to notice unusual activity if needed.
1705	 */
1706	err = -EPERM;
1707	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1708		goto exit;
1709
1710	err = 0;
1711	/* set the new file, lockless */
1712	get_file(exe.file);
1713	old_exe = xchg(&mm->exe_file, exe.file);
1714	if (old_exe)
1715		fput(old_exe);
1716exit:
1717	fdput(exe);
1718	return err;
1719exit_err:
1720	up_read(&mm->mmap_sem);
1721	fput(exe_file);
1722	goto exit;
1723}
1724
1725#ifdef CONFIG_CHECKPOINT_RESTORE
1726/*
1727 * WARNING: we don't require any capability here so be very careful
1728 * in what is allowed for modification from userspace.
1729 */
1730static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1731{
1732	unsigned long mmap_max_addr = TASK_SIZE;
1733	struct mm_struct *mm = current->mm;
1734	int error = -EINVAL, i;
1735
1736	static const unsigned char offsets[] = {
1737		offsetof(struct prctl_mm_map, start_code),
1738		offsetof(struct prctl_mm_map, end_code),
1739		offsetof(struct prctl_mm_map, start_data),
1740		offsetof(struct prctl_mm_map, end_data),
1741		offsetof(struct prctl_mm_map, start_brk),
1742		offsetof(struct prctl_mm_map, brk),
1743		offsetof(struct prctl_mm_map, start_stack),
1744		offsetof(struct prctl_mm_map, arg_start),
1745		offsetof(struct prctl_mm_map, arg_end),
1746		offsetof(struct prctl_mm_map, env_start),
1747		offsetof(struct prctl_mm_map, env_end),
1748	};
1749
1750	/*
1751	 * Make sure the members are not somewhere outside
1752	 * of allowed address space.
1753	 */
1754	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1755		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1756
1757		if ((unsigned long)val >= mmap_max_addr ||
1758		    (unsigned long)val < mmap_min_addr)
1759			goto out;
1760	}
1761
1762	/*
1763	 * Make sure the pairs are ordered.
1764	 */
1765#define __prctl_check_order(__m1, __op, __m2)				\
1766	((unsigned long)prctl_map->__m1 __op				\
1767	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1768	error  = __prctl_check_order(start_code, <, end_code);
1769	error |= __prctl_check_order(start_data, <, end_data);
1770	error |= __prctl_check_order(start_brk, <=, brk);
1771	error |= __prctl_check_order(arg_start, <=, arg_end);
1772	error |= __prctl_check_order(env_start, <=, env_end);
1773	if (error)
1774		goto out;
1775#undef __prctl_check_order
1776
1777	error = -EINVAL;
1778
1779	/*
1780	 * @brk should be after @end_data in traditional maps.
1781	 */
1782	if (prctl_map->start_brk <= prctl_map->end_data ||
1783	    prctl_map->brk <= prctl_map->end_data)
1784		goto out;
1785
1786	/*
1787	 * Neither we should allow to override limits if they set.
1788	 */
1789	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1790			      prctl_map->start_brk, prctl_map->end_data,
1791			      prctl_map->start_data))
1792			goto out;
1793
1794	/*
1795	 * Someone is trying to cheat the auxv vector.
1796	 */
1797	if (prctl_map->auxv_size) {
1798		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1799			goto out;
1800	}
1801
1802	/*
1803	 * Finally, make sure the caller has the rights to
1804	 * change /proc/pid/exe link: only local root should
1805	 * be allowed to.
1806	 */
1807	if (prctl_map->exe_fd != (u32)-1) {
1808		struct user_namespace *ns = current_user_ns();
1809		const struct cred *cred = current_cred();
1810
1811		if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1812		    !gid_eq(cred->gid, make_kgid(ns, 0)))
1813			goto out;
1814	}
1815
1816	error = 0;
1817out:
1818	return error;
1819}
1820
1821static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1822{
1823	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1824	unsigned long user_auxv[AT_VECTOR_SIZE];
1825	struct mm_struct *mm = current->mm;
1826	int error;
1827
1828	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1829	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1830
1831	if (opt == PR_SET_MM_MAP_SIZE)
1832		return put_user((unsigned int)sizeof(prctl_map),
1833				(unsigned int __user *)addr);
1834
1835	if (data_size != sizeof(prctl_map))
1836		return -EINVAL;
1837
1838	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1839		return -EFAULT;
1840
1841	error = validate_prctl_map(&prctl_map);
1842	if (error)
1843		return error;
1844
1845	if (prctl_map.auxv_size) {
1846		memset(user_auxv, 0, sizeof(user_auxv));
1847		if (copy_from_user(user_auxv,
1848				   (const void __user *)prctl_map.auxv,
1849				   prctl_map.auxv_size))
1850			return -EFAULT;
1851
1852		/* Last entry must be AT_NULL as specification requires */
1853		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1854		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1855	}
1856
1857	if (prctl_map.exe_fd != (u32)-1) {
1858		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1859		if (error)
1860			return error;
1861	}
1862
1863	down_write(&mm->mmap_sem);
1864
1865	/*
1866	 * We don't validate if these members are pointing to
1867	 * real present VMAs because application may have correspond
1868	 * VMAs already unmapped and kernel uses these members for statistics
1869	 * output in procfs mostly, except
1870	 *
1871	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
1872	 *    for VMAs when updating these memvers so anything wrong written
1873	 *    here cause kernel to swear at userspace program but won't lead
1874	 *    to any problem in kernel itself
1875	 */
1876
1877	mm->start_code	= prctl_map.start_code;
1878	mm->end_code	= prctl_map.end_code;
1879	mm->start_data	= prctl_map.start_data;
1880	mm->end_data	= prctl_map.end_data;
1881	mm->start_brk	= prctl_map.start_brk;
1882	mm->brk		= prctl_map.brk;
1883	mm->start_stack	= prctl_map.start_stack;
1884	mm->arg_start	= prctl_map.arg_start;
1885	mm->arg_end	= prctl_map.arg_end;
1886	mm->env_start	= prctl_map.env_start;
1887	mm->env_end	= prctl_map.env_end;
1888
1889	/*
1890	 * Note this update of @saved_auxv is lockless thus
1891	 * if someone reads this member in procfs while we're
1892	 * updating -- it may get partly updated results. It's
1893	 * known and acceptable trade off: we leave it as is to
1894	 * not introduce additional locks here making the kernel
1895	 * more complex.
1896	 */
1897	if (prctl_map.auxv_size)
1898		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1899
1900	up_write(&mm->mmap_sem);
1901	return 0;
1902}
1903#endif /* CONFIG_CHECKPOINT_RESTORE */
1904
1905static int prctl_set_mm(int opt, unsigned long addr,
1906			unsigned long arg4, unsigned long arg5)
1907{
1908	struct mm_struct *mm = current->mm;
1909	struct vm_area_struct *vma;
1910	int error;
1911
1912	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1913			      opt != PR_SET_MM_MAP &&
1914			      opt != PR_SET_MM_MAP_SIZE)))
1915		return -EINVAL;
1916
1917#ifdef CONFIG_CHECKPOINT_RESTORE
1918	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1919		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1920#endif
1921
1922	if (!capable(CAP_SYS_RESOURCE))
1923		return -EPERM;
1924
1925	if (opt == PR_SET_MM_EXE_FILE)
1926		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1927
1928	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1929		return -EINVAL;
1930
1931	error = -EINVAL;
1932
1933	down_write(&mm->mmap_sem);
1934	vma = find_vma(mm, addr);
1935
1936	switch (opt) {
1937	case PR_SET_MM_START_CODE:
1938		mm->start_code = addr;
1939		break;
1940	case PR_SET_MM_END_CODE:
1941		mm->end_code = addr;
1942		break;
1943	case PR_SET_MM_START_DATA:
1944		mm->start_data = addr;
1945		break;
1946	case PR_SET_MM_END_DATA:
1947		mm->end_data = addr;
1948		break;
1949
1950	case PR_SET_MM_START_BRK:
1951		if (addr <= mm->end_data)
1952			goto out;
1953
1954		if (check_data_rlimit(rlimit(RLIMIT_DATA), mm->brk, addr,
1955				      mm->end_data, mm->start_data))
1956			goto out;
1957
1958		mm->start_brk = addr;
1959		break;
1960
1961	case PR_SET_MM_BRK:
1962		if (addr <= mm->end_data)
1963			goto out;
1964
1965		if (check_data_rlimit(rlimit(RLIMIT_DATA), addr, mm->start_brk,
1966				      mm->end_data, mm->start_data))
1967			goto out;
1968
1969		mm->brk = addr;
1970		break;
1971
1972	/*
1973	 * If command line arguments and environment
1974	 * are placed somewhere else on stack, we can
1975	 * set them up here, ARG_START/END to setup
1976	 * command line argumets and ENV_START/END
1977	 * for environment.
1978	 */
1979	case PR_SET_MM_START_STACK:
1980	case PR_SET_MM_ARG_START:
1981	case PR_SET_MM_ARG_END:
1982	case PR_SET_MM_ENV_START:
1983	case PR_SET_MM_ENV_END:
1984		if (!vma) {
1985			error = -EFAULT;
1986			goto out;
1987		}
1988		if (opt == PR_SET_MM_START_STACK)
1989			mm->start_stack = addr;
1990		else if (opt == PR_SET_MM_ARG_START)
1991			mm->arg_start = addr;
1992		else if (opt == PR_SET_MM_ARG_END)
1993			mm->arg_end = addr;
1994		else if (opt == PR_SET_MM_ENV_START)
1995			mm->env_start = addr;
1996		else if (opt == PR_SET_MM_ENV_END)
1997			mm->env_end = addr;
1998		break;
1999
2000	/*
2001	 * This doesn't move auxiliary vector itself
2002	 * since it's pinned to mm_struct, but allow
2003	 * to fill vector with new values. It's up
2004	 * to a caller to provide sane values here
2005	 * otherwise user space tools which use this
2006	 * vector might be unhappy.
2007	 */
2008	case PR_SET_MM_AUXV: {
2009		unsigned long user_auxv[AT_VECTOR_SIZE];
2010
2011		if (arg4 > sizeof(user_auxv))
2012			goto out;
2013		up_read(&mm->mmap_sem);
2014
2015		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2016			return -EFAULT;
2017
2018		/* Make sure the last entry is always AT_NULL */
2019		user_auxv[AT_VECTOR_SIZE - 2] = 0;
2020		user_auxv[AT_VECTOR_SIZE - 1] = 0;
2021
2022		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2023
2024		task_lock(current);
2025		memcpy(mm->saved_auxv, user_auxv, arg4);
2026		task_unlock(current);
2027
2028		return 0;
2029	}
2030	default:
2031		goto out;
2032	}
2033
2034	error = 0;
2035out:
2036	up_write(&mm->mmap_sem);
2037	return error;
2038}
2039
2040#ifdef CONFIG_CHECKPOINT_RESTORE
2041static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2042{
2043	return put_user(me->clear_child_tid, tid_addr);
2044}
2045#else
2046static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2047{
2048	return -EINVAL;
2049}
2050#endif
2051
2052SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2053		unsigned long, arg4, unsigned long, arg5)
2054{
2055	struct task_struct *me = current;
2056	unsigned char comm[sizeof(me->comm)];
2057	long error;
2058
2059	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2060	if (error != -ENOSYS)
2061		return error;
2062
2063	error = 0;
2064	switch (option) {
2065	case PR_SET_PDEATHSIG:
2066		if (!valid_signal(arg2)) {
2067			error = -EINVAL;
2068			break;
2069		}
2070		me->pdeath_signal = arg2;
2071		break;
2072	case PR_GET_PDEATHSIG:
2073		error = put_user(me->pdeath_signal, (int __user *)arg2);
2074		break;
2075	case PR_GET_DUMPABLE:
2076		error = get_dumpable(me->mm);
2077		break;
2078	case PR_SET_DUMPABLE:
2079		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2080			error = -EINVAL;
2081			break;
2082		}
2083		set_dumpable(me->mm, arg2);
2084		break;
2085
2086	case PR_SET_UNALIGN:
2087		error = SET_UNALIGN_CTL(me, arg2);
2088		break;
2089	case PR_GET_UNALIGN:
2090		error = GET_UNALIGN_CTL(me, arg2);
2091		break;
2092	case PR_SET_FPEMU:
2093		error = SET_FPEMU_CTL(me, arg2);
2094		break;
2095	case PR_GET_FPEMU:
2096		error = GET_FPEMU_CTL(me, arg2);
2097		break;
2098	case PR_SET_FPEXC:
2099		error = SET_FPEXC_CTL(me, arg2);
2100		break;
2101	case PR_GET_FPEXC:
2102		error = GET_FPEXC_CTL(me, arg2);
2103		break;
2104	case PR_GET_TIMING:
2105		error = PR_TIMING_STATISTICAL;
2106		break;
2107	case PR_SET_TIMING:
2108		if (arg2 != PR_TIMING_STATISTICAL)
2109			error = -EINVAL;
2110		break;
2111	case PR_SET_NAME:
2112		comm[sizeof(me->comm) - 1] = 0;
2113		if (strncpy_from_user(comm, (char __user *)arg2,
2114				      sizeof(me->comm) - 1) < 0)
2115			return -EFAULT;
2116		set_task_comm(me, comm);
2117		proc_comm_connector(me);
2118		break;
2119	case PR_GET_NAME:
2120		get_task_comm(comm, me);
2121		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2122			return -EFAULT;
2123		break;
2124	case PR_GET_ENDIAN:
2125		error = GET_ENDIAN(me, arg2);
2126		break;
2127	case PR_SET_ENDIAN:
2128		error = SET_ENDIAN(me, arg2);
2129		break;
2130	case PR_GET_SECCOMP:
2131		error = prctl_get_seccomp();
2132		break;
2133	case PR_SET_SECCOMP:
2134		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2135		break;
2136	case PR_GET_TSC:
2137		error = GET_TSC_CTL(arg2);
2138		break;
2139	case PR_SET_TSC:
2140		error = SET_TSC_CTL(arg2);
2141		break;
2142	case PR_TASK_PERF_EVENTS_DISABLE:
2143		error = perf_event_task_disable();
2144		break;
2145	case PR_TASK_PERF_EVENTS_ENABLE:
2146		error = perf_event_task_enable();
2147		break;
2148	case PR_GET_TIMERSLACK:
2149		error = current->timer_slack_ns;
2150		break;
2151	case PR_SET_TIMERSLACK:
2152		if (arg2 <= 0)
2153			current->timer_slack_ns =
2154					current->default_timer_slack_ns;
2155		else
2156			current->timer_slack_ns = arg2;
2157		break;
2158	case PR_MCE_KILL:
2159		if (arg4 | arg5)
2160			return -EINVAL;
2161		switch (arg2) {
2162		case PR_MCE_KILL_CLEAR:
2163			if (arg3 != 0)
2164				return -EINVAL;
2165			current->flags &= ~PF_MCE_PROCESS;
2166			break;
2167		case PR_MCE_KILL_SET:
2168			current->flags |= PF_MCE_PROCESS;
2169			if (arg3 == PR_MCE_KILL_EARLY)
2170				current->flags |= PF_MCE_EARLY;
2171			else if (arg3 == PR_MCE_KILL_LATE)
2172				current->flags &= ~PF_MCE_EARLY;
2173			else if (arg3 == PR_MCE_KILL_DEFAULT)
2174				current->flags &=
2175						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2176			else
2177				return -EINVAL;
2178			break;
2179		default:
2180			return -EINVAL;
2181		}
2182		break;
2183	case PR_MCE_KILL_GET:
2184		if (arg2 | arg3 | arg4 | arg5)
2185			return -EINVAL;
2186		if (current->flags & PF_MCE_PROCESS)
2187			error = (current->flags & PF_MCE_EARLY) ?
2188				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2189		else
2190			error = PR_MCE_KILL_DEFAULT;
2191		break;
2192	case PR_SET_MM:
2193		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2194		break;
2195	case PR_GET_TID_ADDRESS:
2196		error = prctl_get_tid_address(me, (int __user **)arg2);
2197		break;
2198	case PR_SET_CHILD_SUBREAPER:
2199		me->signal->is_child_subreaper = !!arg2;
2200		break;
2201	case PR_GET_CHILD_SUBREAPER:
2202		error = put_user(me->signal->is_child_subreaper,
2203				 (int __user *)arg2);
2204		break;
2205	case PR_SET_NO_NEW_PRIVS:
2206		if (arg2 != 1 || arg3 || arg4 || arg5)
2207			return -EINVAL;
2208
2209		task_set_no_new_privs(current);
2210		break;
2211	case PR_GET_NO_NEW_PRIVS:
2212		if (arg2 || arg3 || arg4 || arg5)
2213			return -EINVAL;
2214		return task_no_new_privs(current) ? 1 : 0;
2215	case PR_GET_THP_DISABLE:
2216		if (arg2 || arg3 || arg4 || arg5)
2217			return -EINVAL;
2218		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2219		break;
2220	case PR_SET_THP_DISABLE:
2221		if (arg3 || arg4 || arg5)
2222			return -EINVAL;
2223		down_write(&me->mm->mmap_sem);
2224		if (arg2)
2225			me->mm->def_flags |= VM_NOHUGEPAGE;
2226		else
2227			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2228		up_write(&me->mm->mmap_sem);
2229		break;
2230	case PR_MPX_ENABLE_MANAGEMENT:
2231		if (arg2 || arg3 || arg4 || arg5)
2232			return -EINVAL;
2233		error = MPX_ENABLE_MANAGEMENT(me);
2234		break;
2235	case PR_MPX_DISABLE_MANAGEMENT:
2236		if (arg2 || arg3 || arg4 || arg5)
2237			return -EINVAL;
2238		error = MPX_DISABLE_MANAGEMENT(me);
2239		break;
2240	case PR_SET_FP_MODE:
2241		error = SET_FP_MODE(me, arg2);
2242		break;
2243	case PR_GET_FP_MODE:
2244		error = GET_FP_MODE(me);
2245		break;
2246	default:
2247		error = -EINVAL;
2248		break;
2249	}
2250	return error;
2251}
2252
2253SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2254		struct getcpu_cache __user *, unused)
2255{
2256	int err = 0;
2257	int cpu = raw_smp_processor_id();
2258
2259	if (cpup)
2260		err |= put_user(cpu, cpup);
2261	if (nodep)
2262		err |= put_user(cpu_to_node(cpu), nodep);
2263	return err ? -EFAULT : 0;
2264}
2265
2266/**
2267 * do_sysinfo - fill in sysinfo struct
2268 * @info: pointer to buffer to fill
2269 */
2270static int do_sysinfo(struct sysinfo *info)
2271{
2272	unsigned long mem_total, sav_total;
2273	unsigned int mem_unit, bitcount;
2274	struct timespec tp;
2275
2276	memset(info, 0, sizeof(struct sysinfo));
2277
2278	get_monotonic_boottime(&tp);
2279	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2280
2281	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2282
2283	info->procs = nr_threads;
2284
2285	si_meminfo(info);
2286	si_swapinfo(info);
2287
2288	/*
2289	 * If the sum of all the available memory (i.e. ram + swap)
2290	 * is less than can be stored in a 32 bit unsigned long then
2291	 * we can be binary compatible with 2.2.x kernels.  If not,
2292	 * well, in that case 2.2.x was broken anyways...
2293	 *
2294	 *  -Erik Andersen <andersee@debian.org>
2295	 */
2296
2297	mem_total = info->totalram + info->totalswap;
2298	if (mem_total < info->totalram || mem_total < info->totalswap)
2299		goto out;
2300	bitcount = 0;
2301	mem_unit = info->mem_unit;
2302	while (mem_unit > 1) {
2303		bitcount++;
2304		mem_unit >>= 1;
2305		sav_total = mem_total;
2306		mem_total <<= 1;
2307		if (mem_total < sav_total)
2308			goto out;
2309	}
2310
2311	/*
2312	 * If mem_total did not overflow, multiply all memory values by
2313	 * info->mem_unit and set it to 1.  This leaves things compatible
2314	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2315	 * kernels...
2316	 */
2317
2318	info->mem_unit = 1;
2319	info->totalram <<= bitcount;
2320	info->freeram <<= bitcount;
2321	info->sharedram <<= bitcount;
2322	info->bufferram <<= bitcount;
2323	info->totalswap <<= bitcount;
2324	info->freeswap <<= bitcount;
2325	info->totalhigh <<= bitcount;
2326	info->freehigh <<= bitcount;
2327
2328out:
2329	return 0;
2330}
2331
2332SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2333{
2334	struct sysinfo val;
2335
2336	do_sysinfo(&val);
2337
2338	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2339		return -EFAULT;
2340
2341	return 0;
2342}
2343
2344#ifdef CONFIG_COMPAT
2345struct compat_sysinfo {
2346	s32 uptime;
2347	u32 loads[3];
2348	u32 totalram;
2349	u32 freeram;
2350	u32 sharedram;
2351	u32 bufferram;
2352	u32 totalswap;
2353	u32 freeswap;
2354	u16 procs;
2355	u16 pad;
2356	u32 totalhigh;
2357	u32 freehigh;
2358	u32 mem_unit;
2359	char _f[20-2*sizeof(u32)-sizeof(int)];
2360};
2361
2362COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2363{
2364	struct sysinfo s;
2365
2366	do_sysinfo(&s);
2367
2368	/* Check to see if any memory value is too large for 32-bit and scale
2369	 *  down if needed
2370	 */
2371	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2372		int bitcount = 0;
2373
2374		while (s.mem_unit < PAGE_SIZE) {
2375			s.mem_unit <<= 1;
2376			bitcount++;
2377		}
2378
2379		s.totalram >>= bitcount;
2380		s.freeram >>= bitcount;
2381		s.sharedram >>= bitcount;
2382		s.bufferram >>= bitcount;
2383		s.totalswap >>= bitcount;
2384		s.freeswap >>= bitcount;
2385		s.totalhigh >>= bitcount;
2386		s.freehigh >>= bitcount;
2387	}
2388
2389	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2390	    __put_user(s.uptime, &info->uptime) ||
2391	    __put_user(s.loads[0], &info->loads[0]) ||
2392	    __put_user(s.loads[1], &info->loads[1]) ||
2393	    __put_user(s.loads[2], &info->loads[2]) ||
2394	    __put_user(s.totalram, &info->totalram) ||
2395	    __put_user(s.freeram, &info->freeram) ||
2396	    __put_user(s.sharedram, &info->sharedram) ||
2397	    __put_user(s.bufferram, &info->bufferram) ||
2398	    __put_user(s.totalswap, &info->totalswap) ||
2399	    __put_user(s.freeswap, &info->freeswap) ||
2400	    __put_user(s.procs, &info->procs) ||
2401	    __put_user(s.totalhigh, &info->totalhigh) ||
2402	    __put_user(s.freehigh, &info->freehigh) ||
2403	    __put_user(s.mem_unit, &info->mem_unit))
2404		return -EFAULT;
2405
2406	return 0;
2407}
2408#endif /* CONFIG_COMPAT */
2409