1/*
2 * Generic binary BCH encoding/decoding library
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 51
15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Copyright © 2011 Parrot S.A.
18 *
19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
20 *
21 * Description:
22 *
23 * This library provides runtime configurable encoding/decoding of binary
24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
25 *
26 * Call init_bch to get a pointer to a newly allocated bch_control structure for
27 * the given m (Galois field order), t (error correction capability) and
28 * (optional) primitive polynomial parameters.
29 *
30 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
31 * Call decode_bch to detect and locate errors in received data.
32 *
33 * On systems supporting hw BCH features, intermediate results may be provided
34 * to decode_bch in order to skip certain steps. See decode_bch() documentation
35 * for details.
36 *
37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38 * parameters m and t; thus allowing extra compiler optimizations and providing
39 * better (up to 2x) encoding performance. Using this option makes sense when
40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41 * on a particular NAND flash device.
42 *
43 * Algorithmic details:
44 *
45 * Encoding is performed by processing 32 input bits in parallel, using 4
46 * remainder lookup tables.
47 *
48 * The final stage of decoding involves the following internal steps:
49 * a. Syndrome computation
50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51 * c. Error locator root finding (by far the most expensive step)
52 *
53 * In this implementation, step c is not performed using the usual Chien search.
54 * Instead, an alternative approach described in [1] is used. It consists in
55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58 * much better performance than Chien search for usual (m,t) values (typically
59 * m >= 13, t < 32, see [1]).
60 *
61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66 */
67
68#include <linux/kernel.h>
69#include <linux/errno.h>
70#include <linux/init.h>
71#include <linux/module.h>
72#include <linux/slab.h>
73#include <linux/bitops.h>
74#include <asm/byteorder.h>
75#include <linux/bch.h>
76
77#if defined(CONFIG_BCH_CONST_PARAMS)
78#define GF_M(_p)               (CONFIG_BCH_CONST_M)
79#define GF_T(_p)               (CONFIG_BCH_CONST_T)
80#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
81#else
82#define GF_M(_p)               ((_p)->m)
83#define GF_T(_p)               ((_p)->t)
84#define GF_N(_p)               ((_p)->n)
85#endif
86
87#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
88#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
89
90#ifndef dbg
91#define dbg(_fmt, args...)     do {} while (0)
92#endif
93
94/*
95 * represent a polynomial over GF(2^m)
96 */
97struct gf_poly {
98	unsigned int deg;    /* polynomial degree */
99	unsigned int c[0];   /* polynomial terms */
100};
101
102/* given its degree, compute a polynomial size in bytes */
103#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
104
105/* polynomial of degree 1 */
106struct gf_poly_deg1 {
107	struct gf_poly poly;
108	unsigned int   c[2];
109};
110
111/*
112 * same as encode_bch(), but process input data one byte at a time
113 */
114static void encode_bch_unaligned(struct bch_control *bch,
115				 const unsigned char *data, unsigned int len,
116				 uint32_t *ecc)
117{
118	int i;
119	const uint32_t *p;
120	const int l = BCH_ECC_WORDS(bch)-1;
121
122	while (len--) {
123		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
124
125		for (i = 0; i < l; i++)
126			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
127
128		ecc[l] = (ecc[l] << 8)^(*p);
129	}
130}
131
132/*
133 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
134 */
135static void load_ecc8(struct bch_control *bch, uint32_t *dst,
136		      const uint8_t *src)
137{
138	uint8_t pad[4] = {0, 0, 0, 0};
139	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
140
141	for (i = 0; i < nwords; i++, src += 4)
142		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
143
144	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
145	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
146}
147
148/*
149 * convert 32-bit ecc words to ecc bytes
150 */
151static void store_ecc8(struct bch_control *bch, uint8_t *dst,
152		       const uint32_t *src)
153{
154	uint8_t pad[4];
155	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
156
157	for (i = 0; i < nwords; i++) {
158		*dst++ = (src[i] >> 24);
159		*dst++ = (src[i] >> 16) & 0xff;
160		*dst++ = (src[i] >>  8) & 0xff;
161		*dst++ = (src[i] >>  0) & 0xff;
162	}
163	pad[0] = (src[nwords] >> 24);
164	pad[1] = (src[nwords] >> 16) & 0xff;
165	pad[2] = (src[nwords] >>  8) & 0xff;
166	pad[3] = (src[nwords] >>  0) & 0xff;
167	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
168}
169
170/**
171 * encode_bch - calculate BCH ecc parity of data
172 * @bch:   BCH control structure
173 * @data:  data to encode
174 * @len:   data length in bytes
175 * @ecc:   ecc parity data, must be initialized by caller
176 *
177 * The @ecc parity array is used both as input and output parameter, in order to
178 * allow incremental computations. It should be of the size indicated by member
179 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
180 *
181 * The exact number of computed ecc parity bits is given by member @ecc_bits of
182 * @bch; it may be less than m*t for large values of t.
183 */
184void encode_bch(struct bch_control *bch, const uint8_t *data,
185		unsigned int len, uint8_t *ecc)
186{
187	const unsigned int l = BCH_ECC_WORDS(bch)-1;
188	unsigned int i, mlen;
189	unsigned long m;
190	uint32_t w, r[l+1];
191	const uint32_t * const tab0 = bch->mod8_tab;
192	const uint32_t * const tab1 = tab0 + 256*(l+1);
193	const uint32_t * const tab2 = tab1 + 256*(l+1);
194	const uint32_t * const tab3 = tab2 + 256*(l+1);
195	const uint32_t *pdata, *p0, *p1, *p2, *p3;
196
197	if (ecc) {
198		/* load ecc parity bytes into internal 32-bit buffer */
199		load_ecc8(bch, bch->ecc_buf, ecc);
200	} else {
201		memset(bch->ecc_buf, 0, sizeof(r));
202	}
203
204	/* process first unaligned data bytes */
205	m = ((unsigned long)data) & 3;
206	if (m) {
207		mlen = (len < (4-m)) ? len : 4-m;
208		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
209		data += mlen;
210		len  -= mlen;
211	}
212
213	/* process 32-bit aligned data words */
214	pdata = (uint32_t *)data;
215	mlen  = len/4;
216	data += 4*mlen;
217	len  -= 4*mlen;
218	memcpy(r, bch->ecc_buf, sizeof(r));
219
220	/*
221	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
222	 *
223	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
224	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
225	 *                               tttttttt  mod g = r0 (precomputed)
226	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
227	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
228	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
229	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
230	 */
231	while (mlen--) {
232		/* input data is read in big-endian format */
233		w = r[0]^cpu_to_be32(*pdata++);
234		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
235		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
236		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
237		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
238
239		for (i = 0; i < l; i++)
240			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
241
242		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
243	}
244	memcpy(bch->ecc_buf, r, sizeof(r));
245
246	/* process last unaligned bytes */
247	if (len)
248		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
249
250	/* store ecc parity bytes into original parity buffer */
251	if (ecc)
252		store_ecc8(bch, ecc, bch->ecc_buf);
253}
254EXPORT_SYMBOL_GPL(encode_bch);
255
256static inline int modulo(struct bch_control *bch, unsigned int v)
257{
258	const unsigned int n = GF_N(bch);
259	while (v >= n) {
260		v -= n;
261		v = (v & n) + (v >> GF_M(bch));
262	}
263	return v;
264}
265
266/*
267 * shorter and faster modulo function, only works when v < 2N.
268 */
269static inline int mod_s(struct bch_control *bch, unsigned int v)
270{
271	const unsigned int n = GF_N(bch);
272	return (v < n) ? v : v-n;
273}
274
275static inline int deg(unsigned int poly)
276{
277	/* polynomial degree is the most-significant bit index */
278	return fls(poly)-1;
279}
280
281static inline int parity(unsigned int x)
282{
283	/*
284	 * public domain code snippet, lifted from
285	 * http://www-graphics.stanford.edu/~seander/bithacks.html
286	 */
287	x ^= x >> 1;
288	x ^= x >> 2;
289	x = (x & 0x11111111U) * 0x11111111U;
290	return (x >> 28) & 1;
291}
292
293/* Galois field basic operations: multiply, divide, inverse, etc. */
294
295static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
296				  unsigned int b)
297{
298	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
299					       bch->a_log_tab[b])] : 0;
300}
301
302static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
303{
304	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
305}
306
307static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
308				  unsigned int b)
309{
310	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
311					GF_N(bch)-bch->a_log_tab[b])] : 0;
312}
313
314static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
315{
316	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
317}
318
319static inline unsigned int a_pow(struct bch_control *bch, int i)
320{
321	return bch->a_pow_tab[modulo(bch, i)];
322}
323
324static inline int a_log(struct bch_control *bch, unsigned int x)
325{
326	return bch->a_log_tab[x];
327}
328
329static inline int a_ilog(struct bch_control *bch, unsigned int x)
330{
331	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
332}
333
334/*
335 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
336 */
337static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
338			      unsigned int *syn)
339{
340	int i, j, s;
341	unsigned int m;
342	uint32_t poly;
343	const int t = GF_T(bch);
344
345	s = bch->ecc_bits;
346
347	/* make sure extra bits in last ecc word are cleared */
348	m = ((unsigned int)s) & 31;
349	if (m)
350		ecc[s/32] &= ~((1u << (32-m))-1);
351	memset(syn, 0, 2*t*sizeof(*syn));
352
353	/* compute v(a^j) for j=1 .. 2t-1 */
354	do {
355		poly = *ecc++;
356		s -= 32;
357		while (poly) {
358			i = deg(poly);
359			for (j = 0; j < 2*t; j += 2)
360				syn[j] ^= a_pow(bch, (j+1)*(i+s));
361
362			poly ^= (1 << i);
363		}
364	} while (s > 0);
365
366	/* v(a^(2j)) = v(a^j)^2 */
367	for (j = 0; j < t; j++)
368		syn[2*j+1] = gf_sqr(bch, syn[j]);
369}
370
371static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
372{
373	memcpy(dst, src, GF_POLY_SZ(src->deg));
374}
375
376static int compute_error_locator_polynomial(struct bch_control *bch,
377					    const unsigned int *syn)
378{
379	const unsigned int t = GF_T(bch);
380	const unsigned int n = GF_N(bch);
381	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
382	struct gf_poly *elp = bch->elp;
383	struct gf_poly *pelp = bch->poly_2t[0];
384	struct gf_poly *elp_copy = bch->poly_2t[1];
385	int k, pp = -1;
386
387	memset(pelp, 0, GF_POLY_SZ(2*t));
388	memset(elp, 0, GF_POLY_SZ(2*t));
389
390	pelp->deg = 0;
391	pelp->c[0] = 1;
392	elp->deg = 0;
393	elp->c[0] = 1;
394
395	/* use simplified binary Berlekamp-Massey algorithm */
396	for (i = 0; (i < t) && (elp->deg <= t); i++) {
397		if (d) {
398			k = 2*i-pp;
399			gf_poly_copy(elp_copy, elp);
400			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
401			tmp = a_log(bch, d)+n-a_log(bch, pd);
402			for (j = 0; j <= pelp->deg; j++) {
403				if (pelp->c[j]) {
404					l = a_log(bch, pelp->c[j]);
405					elp->c[j+k] ^= a_pow(bch, tmp+l);
406				}
407			}
408			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
409			tmp = pelp->deg+k;
410			if (tmp > elp->deg) {
411				elp->deg = tmp;
412				gf_poly_copy(pelp, elp_copy);
413				pd = d;
414				pp = 2*i;
415			}
416		}
417		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
418		if (i < t-1) {
419			d = syn[2*i+2];
420			for (j = 1; j <= elp->deg; j++)
421				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
422		}
423	}
424	dbg("elp=%s\n", gf_poly_str(elp));
425	return (elp->deg > t) ? -1 : (int)elp->deg;
426}
427
428/*
429 * solve a m x m linear system in GF(2) with an expected number of solutions,
430 * and return the number of found solutions
431 */
432static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
433			       unsigned int *sol, int nsol)
434{
435	const int m = GF_M(bch);
436	unsigned int tmp, mask;
437	int rem, c, r, p, k, param[m];
438
439	k = 0;
440	mask = 1 << m;
441
442	/* Gaussian elimination */
443	for (c = 0; c < m; c++) {
444		rem = 0;
445		p = c-k;
446		/* find suitable row for elimination */
447		for (r = p; r < m; r++) {
448			if (rows[r] & mask) {
449				if (r != p) {
450					tmp = rows[r];
451					rows[r] = rows[p];
452					rows[p] = tmp;
453				}
454				rem = r+1;
455				break;
456			}
457		}
458		if (rem) {
459			/* perform elimination on remaining rows */
460			tmp = rows[p];
461			for (r = rem; r < m; r++) {
462				if (rows[r] & mask)
463					rows[r] ^= tmp;
464			}
465		} else {
466			/* elimination not needed, store defective row index */
467			param[k++] = c;
468		}
469		mask >>= 1;
470	}
471	/* rewrite system, inserting fake parameter rows */
472	if (k > 0) {
473		p = k;
474		for (r = m-1; r >= 0; r--) {
475			if ((r > m-1-k) && rows[r])
476				/* system has no solution */
477				return 0;
478
479			rows[r] = (p && (r == param[p-1])) ?
480				p--, 1u << (m-r) : rows[r-p];
481		}
482	}
483
484	if (nsol != (1 << k))
485		/* unexpected number of solutions */
486		return 0;
487
488	for (p = 0; p < nsol; p++) {
489		/* set parameters for p-th solution */
490		for (c = 0; c < k; c++)
491			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
492
493		/* compute unique solution */
494		tmp = 0;
495		for (r = m-1; r >= 0; r--) {
496			mask = rows[r] & (tmp|1);
497			tmp |= parity(mask) << (m-r);
498		}
499		sol[p] = tmp >> 1;
500	}
501	return nsol;
502}
503
504/*
505 * this function builds and solves a linear system for finding roots of a degree
506 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
507 */
508static int find_affine4_roots(struct bch_control *bch, unsigned int a,
509			      unsigned int b, unsigned int c,
510			      unsigned int *roots)
511{
512	int i, j, k;
513	const int m = GF_M(bch);
514	unsigned int mask = 0xff, t, rows[16] = {0,};
515
516	j = a_log(bch, b);
517	k = a_log(bch, a);
518	rows[0] = c;
519
520	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
521	for (i = 0; i < m; i++) {
522		rows[i+1] = bch->a_pow_tab[4*i]^
523			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
524			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
525		j++;
526		k += 2;
527	}
528	/*
529	 * transpose 16x16 matrix before passing it to linear solver
530	 * warning: this code assumes m < 16
531	 */
532	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
533		for (k = 0; k < 16; k = (k+j+1) & ~j) {
534			t = ((rows[k] >> j)^rows[k+j]) & mask;
535			rows[k] ^= (t << j);
536			rows[k+j] ^= t;
537		}
538	}
539	return solve_linear_system(bch, rows, roots, 4);
540}
541
542/*
543 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
544 */
545static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
546				unsigned int *roots)
547{
548	int n = 0;
549
550	if (poly->c[0])
551		/* poly[X] = bX+c with c!=0, root=c/b */
552		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
553				   bch->a_log_tab[poly->c[1]]);
554	return n;
555}
556
557/*
558 * compute roots of a degree 2 polynomial over GF(2^m)
559 */
560static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
561				unsigned int *roots)
562{
563	int n = 0, i, l0, l1, l2;
564	unsigned int u, v, r;
565
566	if (poly->c[0] && poly->c[1]) {
567
568		l0 = bch->a_log_tab[poly->c[0]];
569		l1 = bch->a_log_tab[poly->c[1]];
570		l2 = bch->a_log_tab[poly->c[2]];
571
572		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
573		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
574		/*
575		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
576		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
577		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
578		 * i.e. r and r+1 are roots iff Tr(u)=0
579		 */
580		r = 0;
581		v = u;
582		while (v) {
583			i = deg(v);
584			r ^= bch->xi_tab[i];
585			v ^= (1 << i);
586		}
587		/* verify root */
588		if ((gf_sqr(bch, r)^r) == u) {
589			/* reverse z=a/bX transformation and compute log(1/r) */
590			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
591					    bch->a_log_tab[r]+l2);
592			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
593					    bch->a_log_tab[r^1]+l2);
594		}
595	}
596	return n;
597}
598
599/*
600 * compute roots of a degree 3 polynomial over GF(2^m)
601 */
602static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
603				unsigned int *roots)
604{
605	int i, n = 0;
606	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
607
608	if (poly->c[0]) {
609		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
610		e3 = poly->c[3];
611		c2 = gf_div(bch, poly->c[0], e3);
612		b2 = gf_div(bch, poly->c[1], e3);
613		a2 = gf_div(bch, poly->c[2], e3);
614
615		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
616		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
617		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
618		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
619
620		/* find the 4 roots of this affine polynomial */
621		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
622			/* remove a2 from final list of roots */
623			for (i = 0; i < 4; i++) {
624				if (tmp[i] != a2)
625					roots[n++] = a_ilog(bch, tmp[i]);
626			}
627		}
628	}
629	return n;
630}
631
632/*
633 * compute roots of a degree 4 polynomial over GF(2^m)
634 */
635static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
636				unsigned int *roots)
637{
638	int i, l, n = 0;
639	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
640
641	if (poly->c[0] == 0)
642		return 0;
643
644	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
645	e4 = poly->c[4];
646	d = gf_div(bch, poly->c[0], e4);
647	c = gf_div(bch, poly->c[1], e4);
648	b = gf_div(bch, poly->c[2], e4);
649	a = gf_div(bch, poly->c[3], e4);
650
651	/* use Y=1/X transformation to get an affine polynomial */
652	if (a) {
653		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
654		if (c) {
655			/* compute e such that e^2 = c/a */
656			f = gf_div(bch, c, a);
657			l = a_log(bch, f);
658			l += (l & 1) ? GF_N(bch) : 0;
659			e = a_pow(bch, l/2);
660			/*
661			 * use transformation z=X+e:
662			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
663			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
664			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
665			 * z^4 + az^3 +     b'z^2 + d'
666			 */
667			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
668			b = gf_mul(bch, a, e)^b;
669		}
670		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
671		if (d == 0)
672			/* assume all roots have multiplicity 1 */
673			return 0;
674
675		c2 = gf_inv(bch, d);
676		b2 = gf_div(bch, a, d);
677		a2 = gf_div(bch, b, d);
678	} else {
679		/* polynomial is already affine */
680		c2 = d;
681		b2 = c;
682		a2 = b;
683	}
684	/* find the 4 roots of this affine polynomial */
685	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
686		for (i = 0; i < 4; i++) {
687			/* post-process roots (reverse transformations) */
688			f = a ? gf_inv(bch, roots[i]) : roots[i];
689			roots[i] = a_ilog(bch, f^e);
690		}
691		n = 4;
692	}
693	return n;
694}
695
696/*
697 * build monic, log-based representation of a polynomial
698 */
699static void gf_poly_logrep(struct bch_control *bch,
700			   const struct gf_poly *a, int *rep)
701{
702	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
703
704	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
705	for (i = 0; i < d; i++)
706		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
707}
708
709/*
710 * compute polynomial Euclidean division remainder in GF(2^m)[X]
711 */
712static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
713			const struct gf_poly *b, int *rep)
714{
715	int la, p, m;
716	unsigned int i, j, *c = a->c;
717	const unsigned int d = b->deg;
718
719	if (a->deg < d)
720		return;
721
722	/* reuse or compute log representation of denominator */
723	if (!rep) {
724		rep = bch->cache;
725		gf_poly_logrep(bch, b, rep);
726	}
727
728	for (j = a->deg; j >= d; j--) {
729		if (c[j]) {
730			la = a_log(bch, c[j]);
731			p = j-d;
732			for (i = 0; i < d; i++, p++) {
733				m = rep[i];
734				if (m >= 0)
735					c[p] ^= bch->a_pow_tab[mod_s(bch,
736								     m+la)];
737			}
738		}
739	}
740	a->deg = d-1;
741	while (!c[a->deg] && a->deg)
742		a->deg--;
743}
744
745/*
746 * compute polynomial Euclidean division quotient in GF(2^m)[X]
747 */
748static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
749			const struct gf_poly *b, struct gf_poly *q)
750{
751	if (a->deg >= b->deg) {
752		q->deg = a->deg-b->deg;
753		/* compute a mod b (modifies a) */
754		gf_poly_mod(bch, a, b, NULL);
755		/* quotient is stored in upper part of polynomial a */
756		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
757	} else {
758		q->deg = 0;
759		q->c[0] = 0;
760	}
761}
762
763/*
764 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
765 */
766static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
767				   struct gf_poly *b)
768{
769	struct gf_poly *tmp;
770
771	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
772
773	if (a->deg < b->deg) {
774		tmp = b;
775		b = a;
776		a = tmp;
777	}
778
779	while (b->deg > 0) {
780		gf_poly_mod(bch, a, b, NULL);
781		tmp = b;
782		b = a;
783		a = tmp;
784	}
785
786	dbg("%s\n", gf_poly_str(a));
787
788	return a;
789}
790
791/*
792 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
793 * This is used in Berlekamp Trace algorithm for splitting polynomials
794 */
795static void compute_trace_bk_mod(struct bch_control *bch, int k,
796				 const struct gf_poly *f, struct gf_poly *z,
797				 struct gf_poly *out)
798{
799	const int m = GF_M(bch);
800	int i, j;
801
802	/* z contains z^2j mod f */
803	z->deg = 1;
804	z->c[0] = 0;
805	z->c[1] = bch->a_pow_tab[k];
806
807	out->deg = 0;
808	memset(out, 0, GF_POLY_SZ(f->deg));
809
810	/* compute f log representation only once */
811	gf_poly_logrep(bch, f, bch->cache);
812
813	for (i = 0; i < m; i++) {
814		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
815		for (j = z->deg; j >= 0; j--) {
816			out->c[j] ^= z->c[j];
817			z->c[2*j] = gf_sqr(bch, z->c[j]);
818			z->c[2*j+1] = 0;
819		}
820		if (z->deg > out->deg)
821			out->deg = z->deg;
822
823		if (i < m-1) {
824			z->deg *= 2;
825			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
826			gf_poly_mod(bch, z, f, bch->cache);
827		}
828	}
829	while (!out->c[out->deg] && out->deg)
830		out->deg--;
831
832	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
833}
834
835/*
836 * factor a polynomial using Berlekamp Trace algorithm (BTA)
837 */
838static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
839			      struct gf_poly **g, struct gf_poly **h)
840{
841	struct gf_poly *f2 = bch->poly_2t[0];
842	struct gf_poly *q  = bch->poly_2t[1];
843	struct gf_poly *tk = bch->poly_2t[2];
844	struct gf_poly *z  = bch->poly_2t[3];
845	struct gf_poly *gcd;
846
847	dbg("factoring %s...\n", gf_poly_str(f));
848
849	*g = f;
850	*h = NULL;
851
852	/* tk = Tr(a^k.X) mod f */
853	compute_trace_bk_mod(bch, k, f, z, tk);
854
855	if (tk->deg > 0) {
856		/* compute g = gcd(f, tk) (destructive operation) */
857		gf_poly_copy(f2, f);
858		gcd = gf_poly_gcd(bch, f2, tk);
859		if (gcd->deg < f->deg) {
860			/* compute h=f/gcd(f,tk); this will modify f and q */
861			gf_poly_div(bch, f, gcd, q);
862			/* store g and h in-place (clobbering f) */
863			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
864			gf_poly_copy(*g, gcd);
865			gf_poly_copy(*h, q);
866		}
867	}
868}
869
870/*
871 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
872 * file for details
873 */
874static int find_poly_roots(struct bch_control *bch, unsigned int k,
875			   struct gf_poly *poly, unsigned int *roots)
876{
877	int cnt;
878	struct gf_poly *f1, *f2;
879
880	switch (poly->deg) {
881		/* handle low degree polynomials with ad hoc techniques */
882	case 1:
883		cnt = find_poly_deg1_roots(bch, poly, roots);
884		break;
885	case 2:
886		cnt = find_poly_deg2_roots(bch, poly, roots);
887		break;
888	case 3:
889		cnt = find_poly_deg3_roots(bch, poly, roots);
890		break;
891	case 4:
892		cnt = find_poly_deg4_roots(bch, poly, roots);
893		break;
894	default:
895		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
896		cnt = 0;
897		if (poly->deg && (k <= GF_M(bch))) {
898			factor_polynomial(bch, k, poly, &f1, &f2);
899			if (f1)
900				cnt += find_poly_roots(bch, k+1, f1, roots);
901			if (f2)
902				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
903		}
904		break;
905	}
906	return cnt;
907}
908
909#if defined(USE_CHIEN_SEARCH)
910/*
911 * exhaustive root search (Chien) implementation - not used, included only for
912 * reference/comparison tests
913 */
914static int chien_search(struct bch_control *bch, unsigned int len,
915			struct gf_poly *p, unsigned int *roots)
916{
917	int m;
918	unsigned int i, j, syn, syn0, count = 0;
919	const unsigned int k = 8*len+bch->ecc_bits;
920
921	/* use a log-based representation of polynomial */
922	gf_poly_logrep(bch, p, bch->cache);
923	bch->cache[p->deg] = 0;
924	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
925
926	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
927		/* compute elp(a^i) */
928		for (j = 1, syn = syn0; j <= p->deg; j++) {
929			m = bch->cache[j];
930			if (m >= 0)
931				syn ^= a_pow(bch, m+j*i);
932		}
933		if (syn == 0) {
934			roots[count++] = GF_N(bch)-i;
935			if (count == p->deg)
936				break;
937		}
938	}
939	return (count == p->deg) ? count : 0;
940}
941#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
942#endif /* USE_CHIEN_SEARCH */
943
944/**
945 * decode_bch - decode received codeword and find bit error locations
946 * @bch:      BCH control structure
947 * @data:     received data, ignored if @calc_ecc is provided
948 * @len:      data length in bytes, must always be provided
949 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
950 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
951 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
952 * @errloc:   output array of error locations
953 *
954 * Returns:
955 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
956 *  invalid parameters were provided
957 *
958 * Depending on the available hw BCH support and the need to compute @calc_ecc
959 * separately (using encode_bch()), this function should be called with one of
960 * the following parameter configurations -
961 *
962 * by providing @data and @recv_ecc only:
963 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
964 *
965 * by providing @recv_ecc and @calc_ecc:
966 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
967 *
968 * by providing ecc = recv_ecc XOR calc_ecc:
969 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
970 *
971 * by providing syndrome results @syn:
972 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
973 *
974 * Once decode_bch() has successfully returned with a positive value, error
975 * locations returned in array @errloc should be interpreted as follows -
976 *
977 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
978 * data correction)
979 *
980 * if (errloc[n] < 8*len), then n-th error is located in data and can be
981 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
982 *
983 * Note that this function does not perform any data correction by itself, it
984 * merely indicates error locations.
985 */
986int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
987	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
988	       const unsigned int *syn, unsigned int *errloc)
989{
990	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
991	unsigned int nbits;
992	int i, err, nroots;
993	uint32_t sum;
994
995	/* sanity check: make sure data length can be handled */
996	if (8*len > (bch->n-bch->ecc_bits))
997		return -EINVAL;
998
999	/* if caller does not provide syndromes, compute them */
1000	if (!syn) {
1001		if (!calc_ecc) {
1002			/* compute received data ecc into an internal buffer */
1003			if (!data || !recv_ecc)
1004				return -EINVAL;
1005			encode_bch(bch, data, len, NULL);
1006		} else {
1007			/* load provided calculated ecc */
1008			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1009		}
1010		/* load received ecc or assume it was XORed in calc_ecc */
1011		if (recv_ecc) {
1012			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1013			/* XOR received and calculated ecc */
1014			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1015				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1016				sum |= bch->ecc_buf[i];
1017			}
1018			if (!sum)
1019				/* no error found */
1020				return 0;
1021		}
1022		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1023		syn = bch->syn;
1024	}
1025
1026	err = compute_error_locator_polynomial(bch, syn);
1027	if (err > 0) {
1028		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1029		if (err != nroots)
1030			err = -1;
1031	}
1032	if (err > 0) {
1033		/* post-process raw error locations for easier correction */
1034		nbits = (len*8)+bch->ecc_bits;
1035		for (i = 0; i < err; i++) {
1036			if (errloc[i] >= nbits) {
1037				err = -1;
1038				break;
1039			}
1040			errloc[i] = nbits-1-errloc[i];
1041			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1042		}
1043	}
1044	return (err >= 0) ? err : -EBADMSG;
1045}
1046EXPORT_SYMBOL_GPL(decode_bch);
1047
1048/*
1049 * generate Galois field lookup tables
1050 */
1051static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1052{
1053	unsigned int i, x = 1;
1054	const unsigned int k = 1 << deg(poly);
1055
1056	/* primitive polynomial must be of degree m */
1057	if (k != (1u << GF_M(bch)))
1058		return -1;
1059
1060	for (i = 0; i < GF_N(bch); i++) {
1061		bch->a_pow_tab[i] = x;
1062		bch->a_log_tab[x] = i;
1063		if (i && (x == 1))
1064			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1065			return -1;
1066		x <<= 1;
1067		if (x & k)
1068			x ^= poly;
1069	}
1070	bch->a_pow_tab[GF_N(bch)] = 1;
1071	bch->a_log_tab[0] = 0;
1072
1073	return 0;
1074}
1075
1076/*
1077 * compute generator polynomial remainder tables for fast encoding
1078 */
1079static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1080{
1081	int i, j, b, d;
1082	uint32_t data, hi, lo, *tab;
1083	const int l = BCH_ECC_WORDS(bch);
1084	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1085	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1086
1087	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1088
1089	for (i = 0; i < 256; i++) {
1090		/* p(X)=i is a small polynomial of weight <= 8 */
1091		for (b = 0; b < 4; b++) {
1092			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1093			tab = bch->mod8_tab + (b*256+i)*l;
1094			data = i << (8*b);
1095			while (data) {
1096				d = deg(data);
1097				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1098				data ^= g[0] >> (31-d);
1099				for (j = 0; j < ecclen; j++) {
1100					hi = (d < 31) ? g[j] << (d+1) : 0;
1101					lo = (j+1 < plen) ?
1102						g[j+1] >> (31-d) : 0;
1103					tab[j] ^= hi|lo;
1104				}
1105			}
1106		}
1107	}
1108}
1109
1110/*
1111 * build a base for factoring degree 2 polynomials
1112 */
1113static int build_deg2_base(struct bch_control *bch)
1114{
1115	const int m = GF_M(bch);
1116	int i, j, r;
1117	unsigned int sum, x, y, remaining, ak = 0, xi[m];
1118
1119	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1120	for (i = 0; i < m; i++) {
1121		for (j = 0, sum = 0; j < m; j++)
1122			sum ^= a_pow(bch, i*(1 << j));
1123
1124		if (sum) {
1125			ak = bch->a_pow_tab[i];
1126			break;
1127		}
1128	}
1129	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1130	remaining = m;
1131	memset(xi, 0, sizeof(xi));
1132
1133	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1134		y = gf_sqr(bch, x)^x;
1135		for (i = 0; i < 2; i++) {
1136			r = a_log(bch, y);
1137			if (y && (r < m) && !xi[r]) {
1138				bch->xi_tab[r] = x;
1139				xi[r] = 1;
1140				remaining--;
1141				dbg("x%d = %x\n", r, x);
1142				break;
1143			}
1144			y ^= ak;
1145		}
1146	}
1147	/* should not happen but check anyway */
1148	return remaining ? -1 : 0;
1149}
1150
1151static void *bch_alloc(size_t size, int *err)
1152{
1153	void *ptr;
1154
1155	ptr = kmalloc(size, GFP_KERNEL);
1156	if (ptr == NULL)
1157		*err = 1;
1158	return ptr;
1159}
1160
1161/*
1162 * compute generator polynomial for given (m,t) parameters.
1163 */
1164static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1165{
1166	const unsigned int m = GF_M(bch);
1167	const unsigned int t = GF_T(bch);
1168	int n, err = 0;
1169	unsigned int i, j, nbits, r, word, *roots;
1170	struct gf_poly *g;
1171	uint32_t *genpoly;
1172
1173	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1174	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1175	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1176
1177	if (err) {
1178		kfree(genpoly);
1179		genpoly = NULL;
1180		goto finish;
1181	}
1182
1183	/* enumerate all roots of g(X) */
1184	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1185	for (i = 0; i < t; i++) {
1186		for (j = 0, r = 2*i+1; j < m; j++) {
1187			roots[r] = 1;
1188			r = mod_s(bch, 2*r);
1189		}
1190	}
1191	/* build generator polynomial g(X) */
1192	g->deg = 0;
1193	g->c[0] = 1;
1194	for (i = 0; i < GF_N(bch); i++) {
1195		if (roots[i]) {
1196			/* multiply g(X) by (X+root) */
1197			r = bch->a_pow_tab[i];
1198			g->c[g->deg+1] = 1;
1199			for (j = g->deg; j > 0; j--)
1200				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1201
1202			g->c[0] = gf_mul(bch, g->c[0], r);
1203			g->deg++;
1204		}
1205	}
1206	/* store left-justified binary representation of g(X) */
1207	n = g->deg+1;
1208	i = 0;
1209
1210	while (n > 0) {
1211		nbits = (n > 32) ? 32 : n;
1212		for (j = 0, word = 0; j < nbits; j++) {
1213			if (g->c[n-1-j])
1214				word |= 1u << (31-j);
1215		}
1216		genpoly[i++] = word;
1217		n -= nbits;
1218	}
1219	bch->ecc_bits = g->deg;
1220
1221finish:
1222	kfree(g);
1223	kfree(roots);
1224
1225	return genpoly;
1226}
1227
1228/**
1229 * init_bch - initialize a BCH encoder/decoder
1230 * @m:          Galois field order, should be in the range 5-15
1231 * @t:          maximum error correction capability, in bits
1232 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1233 *
1234 * Returns:
1235 *  a newly allocated BCH control structure if successful, NULL otherwise
1236 *
1237 * This initialization can take some time, as lookup tables are built for fast
1238 * encoding/decoding; make sure not to call this function from a time critical
1239 * path. Usually, init_bch() should be called on module/driver init and
1240 * free_bch() should be called to release memory on exit.
1241 *
1242 * You may provide your own primitive polynomial of degree @m in argument
1243 * @prim_poly, or let init_bch() use its default polynomial.
1244 *
1245 * Once init_bch() has successfully returned a pointer to a newly allocated
1246 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1247 * the structure.
1248 */
1249struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1250{
1251	int err = 0;
1252	unsigned int i, words;
1253	uint32_t *genpoly;
1254	struct bch_control *bch = NULL;
1255
1256	const int min_m = 5;
1257	const int max_m = 15;
1258
1259	/* default primitive polynomials */
1260	static const unsigned int prim_poly_tab[] = {
1261		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1262		0x402b, 0x8003,
1263	};
1264
1265#if defined(CONFIG_BCH_CONST_PARAMS)
1266	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1267		printk(KERN_ERR "bch encoder/decoder was configured to support "
1268		       "parameters m=%d, t=%d only!\n",
1269		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1270		goto fail;
1271	}
1272#endif
1273	if ((m < min_m) || (m > max_m))
1274		/*
1275		 * values of m greater than 15 are not currently supported;
1276		 * supporting m > 15 would require changing table base type
1277		 * (uint16_t) and a small patch in matrix transposition
1278		 */
1279		goto fail;
1280
1281	/* sanity checks */
1282	if ((t < 1) || (m*t >= ((1 << m)-1)))
1283		/* invalid t value */
1284		goto fail;
1285
1286	/* select a primitive polynomial for generating GF(2^m) */
1287	if (prim_poly == 0)
1288		prim_poly = prim_poly_tab[m-min_m];
1289
1290	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1291	if (bch == NULL)
1292		goto fail;
1293
1294	bch->m = m;
1295	bch->t = t;
1296	bch->n = (1 << m)-1;
1297	words  = DIV_ROUND_UP(m*t, 32);
1298	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1299	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1300	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1301	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1302	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1303	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1304	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1305	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1306	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1307	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1308
1309	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1310		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1311
1312	if (err)
1313		goto fail;
1314
1315	err = build_gf_tables(bch, prim_poly);
1316	if (err)
1317		goto fail;
1318
1319	/* use generator polynomial for computing encoding tables */
1320	genpoly = compute_generator_polynomial(bch);
1321	if (genpoly == NULL)
1322		goto fail;
1323
1324	build_mod8_tables(bch, genpoly);
1325	kfree(genpoly);
1326
1327	err = build_deg2_base(bch);
1328	if (err)
1329		goto fail;
1330
1331	return bch;
1332
1333fail:
1334	free_bch(bch);
1335	return NULL;
1336}
1337EXPORT_SYMBOL_GPL(init_bch);
1338
1339/**
1340 *  free_bch - free the BCH control structure
1341 *  @bch:    BCH control structure to release
1342 */
1343void free_bch(struct bch_control *bch)
1344{
1345	unsigned int i;
1346
1347	if (bch) {
1348		kfree(bch->a_pow_tab);
1349		kfree(bch->a_log_tab);
1350		kfree(bch->mod8_tab);
1351		kfree(bch->ecc_buf);
1352		kfree(bch->ecc_buf2);
1353		kfree(bch->xi_tab);
1354		kfree(bch->syn);
1355		kfree(bch->cache);
1356		kfree(bch->elp);
1357
1358		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1359			kfree(bch->poly_2t[i]);
1360
1361		kfree(bch);
1362	}
1363}
1364EXPORT_SYMBOL_GPL(free_bch);
1365
1366MODULE_LICENSE("GPL");
1367MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1368MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1369