1/*
2 * Basic general purpose allocator for managing special purpose
3 * memory, for example, memory that is not managed by the regular
4 * kmalloc/kfree interface.  Uses for this includes on-device special
5 * memory, uncached memory etc.
6 *
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks.  This
9 * is implemented by using atomic operations and retries on any
10 * conflicts.  The disadvantage is that there may be livelocks in
11 * extreme cases.  For better scalability, one allocator can be used
12 * for each CPU.
13 *
14 * The lockless operation only works if there is enough memory
15 * available.  If new memory is added to the pool a lock has to be
16 * still taken.  So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
18 *
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler.  So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24 *
25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26 *
27 * This source code is licensed under the GNU General Public License,
28 * Version 2.  See the file COPYING for more details.
29 */
30
31#include <linux/slab.h>
32#include <linux/export.h>
33#include <linux/bitmap.h>
34#include <linux/rculist.h>
35#include <linux/interrupt.h>
36#include <linux/genalloc.h>
37#include <linux/of_device.h>
38
39static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
40{
41	return chunk->end_addr - chunk->start_addr + 1;
42}
43
44static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
45{
46	unsigned long val, nval;
47
48	nval = *addr;
49	do {
50		val = nval;
51		if (val & mask_to_set)
52			return -EBUSY;
53		cpu_relax();
54	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
55
56	return 0;
57}
58
59static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
60{
61	unsigned long val, nval;
62
63	nval = *addr;
64	do {
65		val = nval;
66		if ((val & mask_to_clear) != mask_to_clear)
67			return -EBUSY;
68		cpu_relax();
69	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
70
71	return 0;
72}
73
74/*
75 * bitmap_set_ll - set the specified number of bits at the specified position
76 * @map: pointer to a bitmap
77 * @start: a bit position in @map
78 * @nr: number of bits to set
79 *
80 * Set @nr bits start from @start in @map lock-lessly. Several users
81 * can set/clear the same bitmap simultaneously without lock. If two
82 * users set the same bit, one user will return remain bits, otherwise
83 * return 0.
84 */
85static int bitmap_set_ll(unsigned long *map, int start, int nr)
86{
87	unsigned long *p = map + BIT_WORD(start);
88	const int size = start + nr;
89	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
91
92	while (nr - bits_to_set >= 0) {
93		if (set_bits_ll(p, mask_to_set))
94			return nr;
95		nr -= bits_to_set;
96		bits_to_set = BITS_PER_LONG;
97		mask_to_set = ~0UL;
98		p++;
99	}
100	if (nr) {
101		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102		if (set_bits_ll(p, mask_to_set))
103			return nr;
104	}
105
106	return 0;
107}
108
109/*
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
114 *
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
119 */
120static int bitmap_clear_ll(unsigned long *map, int start, int nr)
121{
122	unsigned long *p = map + BIT_WORD(start);
123	const int size = start + nr;
124	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126
127	while (nr - bits_to_clear >= 0) {
128		if (clear_bits_ll(p, mask_to_clear))
129			return nr;
130		nr -= bits_to_clear;
131		bits_to_clear = BITS_PER_LONG;
132		mask_to_clear = ~0UL;
133		p++;
134	}
135	if (nr) {
136		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137		if (clear_bits_ll(p, mask_to_clear))
138			return nr;
139	}
140
141	return 0;
142}
143
144/**
145 * gen_pool_create - create a new special memory pool
146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147 * @nid: node id of the node the pool structure should be allocated on, or -1
148 *
149 * Create a new special memory pool that can be used to manage special purpose
150 * memory not managed by the regular kmalloc/kfree interface.
151 */
152struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153{
154	struct gen_pool *pool;
155
156	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157	if (pool != NULL) {
158		spin_lock_init(&pool->lock);
159		INIT_LIST_HEAD(&pool->chunks);
160		pool->min_alloc_order = min_alloc_order;
161		pool->algo = gen_pool_first_fit;
162		pool->data = NULL;
163	}
164	return pool;
165}
166EXPORT_SYMBOL(gen_pool_create);
167
168/**
169 * gen_pool_add_virt - add a new chunk of special memory to the pool
170 * @pool: pool to add new memory chunk to
171 * @virt: virtual starting address of memory chunk to add to pool
172 * @phys: physical starting address of memory chunk to add to pool
173 * @size: size in bytes of the memory chunk to add to pool
174 * @nid: node id of the node the chunk structure and bitmap should be
175 *       allocated on, or -1
176 *
177 * Add a new chunk of special memory to the specified pool.
178 *
179 * Returns 0 on success or a -ve errno on failure.
180 */
181int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
182		 size_t size, int nid)
183{
184	struct gen_pool_chunk *chunk;
185	int nbits = size >> pool->min_alloc_order;
186	int nbytes = sizeof(struct gen_pool_chunk) +
187				BITS_TO_LONGS(nbits) * sizeof(long);
188
189	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
190	if (unlikely(chunk == NULL))
191		return -ENOMEM;
192
193	chunk->phys_addr = phys;
194	chunk->start_addr = virt;
195	chunk->end_addr = virt + size - 1;
196	atomic_set(&chunk->avail, size);
197
198	spin_lock(&pool->lock);
199	list_add_rcu(&chunk->next_chunk, &pool->chunks);
200	spin_unlock(&pool->lock);
201
202	return 0;
203}
204EXPORT_SYMBOL(gen_pool_add_virt);
205
206/**
207 * gen_pool_virt_to_phys - return the physical address of memory
208 * @pool: pool to allocate from
209 * @addr: starting address of memory
210 *
211 * Returns the physical address on success, or -1 on error.
212 */
213phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
214{
215	struct gen_pool_chunk *chunk;
216	phys_addr_t paddr = -1;
217
218	rcu_read_lock();
219	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
220		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
221			paddr = chunk->phys_addr + (addr - chunk->start_addr);
222			break;
223		}
224	}
225	rcu_read_unlock();
226
227	return paddr;
228}
229EXPORT_SYMBOL(gen_pool_virt_to_phys);
230
231/**
232 * gen_pool_destroy - destroy a special memory pool
233 * @pool: pool to destroy
234 *
235 * Destroy the specified special memory pool. Verifies that there are no
236 * outstanding allocations.
237 */
238void gen_pool_destroy(struct gen_pool *pool)
239{
240	struct list_head *_chunk, *_next_chunk;
241	struct gen_pool_chunk *chunk;
242	int order = pool->min_alloc_order;
243	int bit, end_bit;
244
245	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
246		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
247		list_del(&chunk->next_chunk);
248
249		end_bit = chunk_size(chunk) >> order;
250		bit = find_next_bit(chunk->bits, end_bit, 0);
251		BUG_ON(bit < end_bit);
252
253		kfree(chunk);
254	}
255	kfree(pool);
256	return;
257}
258EXPORT_SYMBOL(gen_pool_destroy);
259
260/**
261 * gen_pool_alloc - allocate special memory from the pool
262 * @pool: pool to allocate from
263 * @size: number of bytes to allocate from the pool
264 *
265 * Allocate the requested number of bytes from the specified pool.
266 * Uses the pool allocation function (with first-fit algorithm by default).
267 * Can not be used in NMI handler on architectures without
268 * NMI-safe cmpxchg implementation.
269 */
270unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
271{
272	struct gen_pool_chunk *chunk;
273	unsigned long addr = 0;
274	int order = pool->min_alloc_order;
275	int nbits, start_bit = 0, end_bit, remain;
276
277#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
278	BUG_ON(in_nmi());
279#endif
280
281	if (size == 0)
282		return 0;
283
284	nbits = (size + (1UL << order) - 1) >> order;
285	rcu_read_lock();
286	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
287		if (size > atomic_read(&chunk->avail))
288			continue;
289
290		end_bit = chunk_size(chunk) >> order;
291retry:
292		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
293				pool->data);
294		if (start_bit >= end_bit)
295			continue;
296		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
297		if (remain) {
298			remain = bitmap_clear_ll(chunk->bits, start_bit,
299						 nbits - remain);
300			BUG_ON(remain);
301			goto retry;
302		}
303
304		addr = chunk->start_addr + ((unsigned long)start_bit << order);
305		size = nbits << order;
306		atomic_sub(size, &chunk->avail);
307		break;
308	}
309	rcu_read_unlock();
310	return addr;
311}
312EXPORT_SYMBOL(gen_pool_alloc);
313
314/**
315 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
316 * @pool: pool to allocate from
317 * @size: number of bytes to allocate from the pool
318 * @dma: dma-view physical address return value.  Use NULL if unneeded.
319 *
320 * Allocate the requested number of bytes from the specified pool.
321 * Uses the pool allocation function (with first-fit algorithm by default).
322 * Can not be used in NMI handler on architectures without
323 * NMI-safe cmpxchg implementation.
324 */
325void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
326{
327	unsigned long vaddr;
328
329	if (!pool)
330		return NULL;
331
332	vaddr = gen_pool_alloc(pool, size);
333	if (!vaddr)
334		return NULL;
335
336	if (dma)
337		*dma = gen_pool_virt_to_phys(pool, vaddr);
338
339	return (void *)vaddr;
340}
341EXPORT_SYMBOL(gen_pool_dma_alloc);
342
343/**
344 * gen_pool_free - free allocated special memory back to the pool
345 * @pool: pool to free to
346 * @addr: starting address of memory to free back to pool
347 * @size: size in bytes of memory to free
348 *
349 * Free previously allocated special memory back to the specified
350 * pool.  Can not be used in NMI handler on architectures without
351 * NMI-safe cmpxchg implementation.
352 */
353void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
354{
355	struct gen_pool_chunk *chunk;
356	int order = pool->min_alloc_order;
357	int start_bit, nbits, remain;
358
359#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
360	BUG_ON(in_nmi());
361#endif
362
363	nbits = (size + (1UL << order) - 1) >> order;
364	rcu_read_lock();
365	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
366		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
367			BUG_ON(addr + size - 1 > chunk->end_addr);
368			start_bit = (addr - chunk->start_addr) >> order;
369			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
370			BUG_ON(remain);
371			size = nbits << order;
372			atomic_add(size, &chunk->avail);
373			rcu_read_unlock();
374			return;
375		}
376	}
377	rcu_read_unlock();
378	BUG();
379}
380EXPORT_SYMBOL(gen_pool_free);
381
382/**
383 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
384 * @pool:	the generic memory pool
385 * @func:	func to call
386 * @data:	additional data used by @func
387 *
388 * Call @func for every chunk of generic memory pool.  The @func is
389 * called with rcu_read_lock held.
390 */
391void gen_pool_for_each_chunk(struct gen_pool *pool,
392	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
393	void *data)
394{
395	struct gen_pool_chunk *chunk;
396
397	rcu_read_lock();
398	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
399		func(pool, chunk, data);
400	rcu_read_unlock();
401}
402EXPORT_SYMBOL(gen_pool_for_each_chunk);
403
404/**
405 * addr_in_gen_pool - checks if an address falls within the range of a pool
406 * @pool:	the generic memory pool
407 * @start:	start address
408 * @size:	size of the region
409 *
410 * Check if the range of addresses falls within the specified pool. Returns
411 * true if the entire range is contained in the pool and false otherwise.
412 */
413bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
414			size_t size)
415{
416	bool found = false;
417	unsigned long end = start + size - 1;
418	struct gen_pool_chunk *chunk;
419
420	rcu_read_lock();
421	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
422		if (start >= chunk->start_addr && start <= chunk->end_addr) {
423			if (end <= chunk->end_addr) {
424				found = true;
425				break;
426			}
427		}
428	}
429	rcu_read_unlock();
430	return found;
431}
432
433/**
434 * gen_pool_avail - get available free space of the pool
435 * @pool: pool to get available free space
436 *
437 * Return available free space of the specified pool.
438 */
439size_t gen_pool_avail(struct gen_pool *pool)
440{
441	struct gen_pool_chunk *chunk;
442	size_t avail = 0;
443
444	rcu_read_lock();
445	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
446		avail += atomic_read(&chunk->avail);
447	rcu_read_unlock();
448	return avail;
449}
450EXPORT_SYMBOL_GPL(gen_pool_avail);
451
452/**
453 * gen_pool_size - get size in bytes of memory managed by the pool
454 * @pool: pool to get size
455 *
456 * Return size in bytes of memory managed by the pool.
457 */
458size_t gen_pool_size(struct gen_pool *pool)
459{
460	struct gen_pool_chunk *chunk;
461	size_t size = 0;
462
463	rcu_read_lock();
464	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
465		size += chunk_size(chunk);
466	rcu_read_unlock();
467	return size;
468}
469EXPORT_SYMBOL_GPL(gen_pool_size);
470
471/**
472 * gen_pool_set_algo - set the allocation algorithm
473 * @pool: pool to change allocation algorithm
474 * @algo: custom algorithm function
475 * @data: additional data used by @algo
476 *
477 * Call @algo for each memory allocation in the pool.
478 * If @algo is NULL use gen_pool_first_fit as default
479 * memory allocation function.
480 */
481void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
482{
483	rcu_read_lock();
484
485	pool->algo = algo;
486	if (!pool->algo)
487		pool->algo = gen_pool_first_fit;
488
489	pool->data = data;
490
491	rcu_read_unlock();
492}
493EXPORT_SYMBOL(gen_pool_set_algo);
494
495/**
496 * gen_pool_first_fit - find the first available region
497 * of memory matching the size requirement (no alignment constraint)
498 * @map: The address to base the search on
499 * @size: The bitmap size in bits
500 * @start: The bitnumber to start searching at
501 * @nr: The number of zeroed bits we're looking for
502 * @data: additional data - unused
503 */
504unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
505		unsigned long start, unsigned int nr, void *data)
506{
507	return bitmap_find_next_zero_area(map, size, start, nr, 0);
508}
509EXPORT_SYMBOL(gen_pool_first_fit);
510
511/**
512 * gen_pool_first_fit_order_align - find the first available region
513 * of memory matching the size requirement. The region will be aligned
514 * to the order of the size specified.
515 * @map: The address to base the search on
516 * @size: The bitmap size in bits
517 * @start: The bitnumber to start searching at
518 * @nr: The number of zeroed bits we're looking for
519 * @data: additional data - unused
520 */
521unsigned long gen_pool_first_fit_order_align(unsigned long *map,
522		unsigned long size, unsigned long start,
523		unsigned int nr, void *data)
524{
525	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
526
527	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
528}
529EXPORT_SYMBOL(gen_pool_first_fit_order_align);
530
531/**
532 * gen_pool_best_fit - find the best fitting region of memory
533 * macthing the size requirement (no alignment constraint)
534 * @map: The address to base the search on
535 * @size: The bitmap size in bits
536 * @start: The bitnumber to start searching at
537 * @nr: The number of zeroed bits we're looking for
538 * @data: additional data - unused
539 *
540 * Iterate over the bitmap to find the smallest free region
541 * which we can allocate the memory.
542 */
543unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
544		unsigned long start, unsigned int nr, void *data)
545{
546	unsigned long start_bit = size;
547	unsigned long len = size + 1;
548	unsigned long index;
549
550	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
551
552	while (index < size) {
553		int next_bit = find_next_bit(map, size, index + nr);
554		if ((next_bit - index) < len) {
555			len = next_bit - index;
556			start_bit = index;
557			if (len == nr)
558				return start_bit;
559		}
560		index = bitmap_find_next_zero_area(map, size,
561						   next_bit + 1, nr, 0);
562	}
563
564	return start_bit;
565}
566EXPORT_SYMBOL(gen_pool_best_fit);
567
568static void devm_gen_pool_release(struct device *dev, void *res)
569{
570	gen_pool_destroy(*(struct gen_pool **)res);
571}
572
573/**
574 * devm_gen_pool_create - managed gen_pool_create
575 * @dev: device that provides the gen_pool
576 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
577 * @nid: node id of the node the pool structure should be allocated on, or -1
578 *
579 * Create a new special memory pool that can be used to manage special purpose
580 * memory not managed by the regular kmalloc/kfree interface. The pool will be
581 * automatically destroyed by the device management code.
582 */
583struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
584		int nid)
585{
586	struct gen_pool **ptr, *pool;
587
588	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
589	if (!ptr)
590		return NULL;
591
592	pool = gen_pool_create(min_alloc_order, nid);
593	if (pool) {
594		*ptr = pool;
595		devres_add(dev, ptr);
596	} else {
597		devres_free(ptr);
598	}
599
600	return pool;
601}
602EXPORT_SYMBOL(devm_gen_pool_create);
603
604/**
605 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
606 * @dev: device to retrieve the gen_pool from
607 *
608 * Returns the gen_pool for the device if one is present, or NULL.
609 */
610struct gen_pool *dev_get_gen_pool(struct device *dev)
611{
612	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
613					NULL);
614
615	if (!p)
616		return NULL;
617	return *p;
618}
619EXPORT_SYMBOL_GPL(dev_get_gen_pool);
620
621#ifdef CONFIG_OF
622/**
623 * of_get_named_gen_pool - find a pool by phandle property
624 * @np: device node
625 * @propname: property name containing phandle(s)
626 * @index: index into the phandle array
627 *
628 * Returns the pool that contains the chunk starting at the physical
629 * address of the device tree node pointed at by the phandle property,
630 * or NULL if not found.
631 */
632struct gen_pool *of_get_named_gen_pool(struct device_node *np,
633	const char *propname, int index)
634{
635	struct platform_device *pdev;
636	struct device_node *np_pool;
637
638	np_pool = of_parse_phandle(np, propname, index);
639	if (!np_pool)
640		return NULL;
641	pdev = of_find_device_by_node(np_pool);
642	of_node_put(np_pool);
643	if (!pdev)
644		return NULL;
645	return dev_get_gen_pool(&pdev->dev);
646}
647EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
648#endif /* CONFIG_OF */
649