1/* 2 * IOMMU mmap management and range allocation functions. 3 * Based almost entirely upon the powerpc iommu allocator. 4 */ 5 6#include <linux/export.h> 7#include <linux/bitmap.h> 8#include <linux/bug.h> 9#include <linux/iommu-helper.h> 10#include <linux/iommu-common.h> 11#include <linux/dma-mapping.h> 12#include <linux/hash.h> 13 14#ifndef DMA_ERROR_CODE 15#define DMA_ERROR_CODE (~(dma_addr_t)0x0) 16#endif 17 18static unsigned long iommu_large_alloc = 15; 19 20static DEFINE_PER_CPU(unsigned int, iommu_hash_common); 21 22static inline bool need_flush(struct iommu_map_table *iommu) 23{ 24 return ((iommu->flags & IOMMU_NEED_FLUSH) != 0); 25} 26 27static inline void set_flush(struct iommu_map_table *iommu) 28{ 29 iommu->flags |= IOMMU_NEED_FLUSH; 30} 31 32static inline void clear_flush(struct iommu_map_table *iommu) 33{ 34 iommu->flags &= ~IOMMU_NEED_FLUSH; 35} 36 37static void setup_iommu_pool_hash(void) 38{ 39 unsigned int i; 40 static bool do_once; 41 42 if (do_once) 43 return; 44 do_once = true; 45 for_each_possible_cpu(i) 46 per_cpu(iommu_hash_common, i) = hash_32(i, IOMMU_POOL_HASHBITS); 47} 48 49/* 50 * Initialize iommu_pool entries for the iommu_map_table. `num_entries' 51 * is the number of table entries. If `large_pool' is set to true, 52 * the top 1/4 of the table will be set aside for pool allocations 53 * of more than iommu_large_alloc pages. 54 */ 55void iommu_tbl_pool_init(struct iommu_map_table *iommu, 56 unsigned long num_entries, 57 u32 table_shift, 58 void (*lazy_flush)(struct iommu_map_table *), 59 bool large_pool, u32 npools, 60 bool skip_span_boundary_check) 61{ 62 unsigned int start, i; 63 struct iommu_pool *p = &(iommu->large_pool); 64 65 setup_iommu_pool_hash(); 66 if (npools == 0) 67 iommu->nr_pools = IOMMU_NR_POOLS; 68 else 69 iommu->nr_pools = npools; 70 BUG_ON(npools > IOMMU_NR_POOLS); 71 72 iommu->table_shift = table_shift; 73 iommu->lazy_flush = lazy_flush; 74 start = 0; 75 if (skip_span_boundary_check) 76 iommu->flags |= IOMMU_NO_SPAN_BOUND; 77 if (large_pool) 78 iommu->flags |= IOMMU_HAS_LARGE_POOL; 79 80 if (!large_pool) 81 iommu->poolsize = num_entries/iommu->nr_pools; 82 else 83 iommu->poolsize = (num_entries * 3 / 4)/iommu->nr_pools; 84 for (i = 0; i < iommu->nr_pools; i++) { 85 spin_lock_init(&(iommu->pools[i].lock)); 86 iommu->pools[i].start = start; 87 iommu->pools[i].hint = start; 88 start += iommu->poolsize; /* start for next pool */ 89 iommu->pools[i].end = start - 1; 90 } 91 if (!large_pool) 92 return; 93 /* initialize large_pool */ 94 spin_lock_init(&(p->lock)); 95 p->start = start; 96 p->hint = p->start; 97 p->end = num_entries; 98} 99EXPORT_SYMBOL(iommu_tbl_pool_init); 100 101unsigned long iommu_tbl_range_alloc(struct device *dev, 102 struct iommu_map_table *iommu, 103 unsigned long npages, 104 unsigned long *handle, 105 unsigned long mask, 106 unsigned int align_order) 107{ 108 unsigned int pool_hash = __this_cpu_read(iommu_hash_common); 109 unsigned long n, end, start, limit, boundary_size; 110 struct iommu_pool *pool; 111 int pass = 0; 112 unsigned int pool_nr; 113 unsigned int npools = iommu->nr_pools; 114 unsigned long flags; 115 bool large_pool = ((iommu->flags & IOMMU_HAS_LARGE_POOL) != 0); 116 bool largealloc = (large_pool && npages > iommu_large_alloc); 117 unsigned long shift; 118 unsigned long align_mask = 0; 119 120 if (align_order > 0) 121 align_mask = 0xffffffffffffffffl >> (64 - align_order); 122 123 /* Sanity check */ 124 if (unlikely(npages == 0)) { 125 WARN_ON_ONCE(1); 126 return DMA_ERROR_CODE; 127 } 128 129 if (largealloc) { 130 pool = &(iommu->large_pool); 131 pool_nr = 0; /* to keep compiler happy */ 132 } else { 133 /* pick out pool_nr */ 134 pool_nr = pool_hash & (npools - 1); 135 pool = &(iommu->pools[pool_nr]); 136 } 137 spin_lock_irqsave(&pool->lock, flags); 138 139 again: 140 if (pass == 0 && handle && *handle && 141 (*handle >= pool->start) && (*handle < pool->end)) 142 start = *handle; 143 else 144 start = pool->hint; 145 146 limit = pool->end; 147 148 /* The case below can happen if we have a small segment appended 149 * to a large, or when the previous alloc was at the very end of 150 * the available space. If so, go back to the beginning. If a 151 * flush is needed, it will get done based on the return value 152 * from iommu_area_alloc() below. 153 */ 154 if (start >= limit) 155 start = pool->start; 156 shift = iommu->table_map_base >> iommu->table_shift; 157 if (limit + shift > mask) { 158 limit = mask - shift + 1; 159 /* If we're constrained on address range, first try 160 * at the masked hint to avoid O(n) search complexity, 161 * but on second pass, start at 0 in pool 0. 162 */ 163 if ((start & mask) >= limit || pass > 0) { 164 spin_unlock(&(pool->lock)); 165 pool = &(iommu->pools[0]); 166 spin_lock(&(pool->lock)); 167 start = pool->start; 168 } else { 169 start &= mask; 170 } 171 } 172 173 if (dev) 174 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, 175 1 << iommu->table_shift); 176 else 177 boundary_size = ALIGN(1ULL << 32, 1 << iommu->table_shift); 178 179 boundary_size = boundary_size >> iommu->table_shift; 180 /* 181 * if the skip_span_boundary_check had been set during init, we set 182 * things up so that iommu_is_span_boundary() merely checks if the 183 * (index + npages) < num_tsb_entries 184 */ 185 if ((iommu->flags & IOMMU_NO_SPAN_BOUND) != 0) { 186 shift = 0; 187 boundary_size = iommu->poolsize * iommu->nr_pools; 188 } 189 n = iommu_area_alloc(iommu->map, limit, start, npages, shift, 190 boundary_size, align_mask); 191 if (n == -1) { 192 if (likely(pass == 0)) { 193 /* First failure, rescan from the beginning. */ 194 pool->hint = pool->start; 195 set_flush(iommu); 196 pass++; 197 goto again; 198 } else if (!largealloc && pass <= iommu->nr_pools) { 199 spin_unlock(&(pool->lock)); 200 pool_nr = (pool_nr + 1) & (iommu->nr_pools - 1); 201 pool = &(iommu->pools[pool_nr]); 202 spin_lock(&(pool->lock)); 203 pool->hint = pool->start; 204 set_flush(iommu); 205 pass++; 206 goto again; 207 } else { 208 /* give up */ 209 n = DMA_ERROR_CODE; 210 goto bail; 211 } 212 } 213 if (iommu->lazy_flush && 214 (n < pool->hint || need_flush(iommu))) { 215 clear_flush(iommu); 216 iommu->lazy_flush(iommu); 217 } 218 219 end = n + npages; 220 pool->hint = end; 221 222 /* Update handle for SG allocations */ 223 if (handle) 224 *handle = end; 225bail: 226 spin_unlock_irqrestore(&(pool->lock), flags); 227 228 return n; 229} 230EXPORT_SYMBOL(iommu_tbl_range_alloc); 231 232static struct iommu_pool *get_pool(struct iommu_map_table *tbl, 233 unsigned long entry) 234{ 235 struct iommu_pool *p; 236 unsigned long largepool_start = tbl->large_pool.start; 237 bool large_pool = ((tbl->flags & IOMMU_HAS_LARGE_POOL) != 0); 238 239 /* The large pool is the last pool at the top of the table */ 240 if (large_pool && entry >= largepool_start) { 241 p = &tbl->large_pool; 242 } else { 243 unsigned int pool_nr = entry / tbl->poolsize; 244 245 BUG_ON(pool_nr >= tbl->nr_pools); 246 p = &tbl->pools[pool_nr]; 247 } 248 return p; 249} 250 251/* Caller supplies the index of the entry into the iommu map table 252 * itself when the mapping from dma_addr to the entry is not the 253 * default addr->entry mapping below. 254 */ 255void iommu_tbl_range_free(struct iommu_map_table *iommu, u64 dma_addr, 256 unsigned long npages, unsigned long entry) 257{ 258 struct iommu_pool *pool; 259 unsigned long flags; 260 unsigned long shift = iommu->table_shift; 261 262 if (entry == DMA_ERROR_CODE) /* use default addr->entry mapping */ 263 entry = (dma_addr - iommu->table_map_base) >> shift; 264 pool = get_pool(iommu, entry); 265 266 spin_lock_irqsave(&(pool->lock), flags); 267 bitmap_clear(iommu->map, entry, npages); 268 spin_unlock_irqrestore(&(pool->lock), flags); 269} 270EXPORT_SYMBOL(iommu_tbl_range_free); 271