1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10#include <linux/swap.h>
11#include <linux/migrate.h>
12#include <linux/compaction.h>
13#include <linux/mm_inline.h>
14#include <linux/backing-dev.h>
15#include <linux/sysctl.h>
16#include <linux/sysfs.h>
17#include <linux/balloon_compaction.h>
18#include <linux/page-isolation.h>
19#include <linux/kasan.h>
20#include "internal.h"
21
22#ifdef CONFIG_COMPACTION
23static inline void count_compact_event(enum vm_event_item item)
24{
25	count_vm_event(item);
26}
27
28static inline void count_compact_events(enum vm_event_item item, long delta)
29{
30	count_vm_events(item, delta);
31}
32#else
33#define count_compact_event(item) do { } while (0)
34#define count_compact_events(item, delta) do { } while (0)
35#endif
36
37#if defined CONFIG_COMPACTION || defined CONFIG_CMA
38#ifdef CONFIG_TRACEPOINTS
39static const char *const compaction_status_string[] = {
40	"deferred",
41	"skipped",
42	"continue",
43	"partial",
44	"complete",
45	"no_suitable_page",
46	"not_suitable_zone",
47};
48#endif
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
53static unsigned long release_freepages(struct list_head *freelist)
54{
55	struct page *page, *next;
56	unsigned long high_pfn = 0;
57
58	list_for_each_entry_safe(page, next, freelist, lru) {
59		unsigned long pfn = page_to_pfn(page);
60		list_del(&page->lru);
61		__free_page(page);
62		if (pfn > high_pfn)
63			high_pfn = pfn;
64	}
65
66	return high_pfn;
67}
68
69static void map_pages(struct list_head *list)
70{
71	struct page *page;
72
73	list_for_each_entry(page, list, lru) {
74		arch_alloc_page(page, 0);
75		kernel_map_pages(page, 1, 1);
76		kasan_alloc_pages(page, 0);
77	}
78}
79
80static inline bool migrate_async_suitable(int migratetype)
81{
82	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83}
84
85/*
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
90 * pageblocks.
91 *
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93 *
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
101 */
102static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103				unsigned long end_pfn, struct zone *zone)
104{
105	struct page *start_page;
106	struct page *end_page;
107
108	/* end_pfn is one past the range we are checking */
109	end_pfn--;
110
111	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112		return NULL;
113
114	start_page = pfn_to_page(start_pfn);
115
116	if (page_zone(start_page) != zone)
117		return NULL;
118
119	end_page = pfn_to_page(end_pfn);
120
121	/* This gives a shorter code than deriving page_zone(end_page) */
122	if (page_zone_id(start_page) != page_zone_id(end_page))
123		return NULL;
124
125	return start_page;
126}
127
128#ifdef CONFIG_COMPACTION
129
130/* Do not skip compaction more than 64 times */
131#define COMPACT_MAX_DEFER_SHIFT 6
132
133/*
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137 */
138void defer_compaction(struct zone *zone, int order)
139{
140	zone->compact_considered = 0;
141	zone->compact_defer_shift++;
142
143	if (order < zone->compact_order_failed)
144		zone->compact_order_failed = order;
145
146	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149	trace_mm_compaction_defer_compaction(zone, order);
150}
151
152/* Returns true if compaction should be skipped this time */
153bool compaction_deferred(struct zone *zone, int order)
154{
155	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157	if (order < zone->compact_order_failed)
158		return false;
159
160	/* Avoid possible overflow */
161	if (++zone->compact_considered > defer_limit)
162		zone->compact_considered = defer_limit;
163
164	if (zone->compact_considered >= defer_limit)
165		return false;
166
167	trace_mm_compaction_deferred(zone, order);
168
169	return true;
170}
171
172/*
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
176 */
177void compaction_defer_reset(struct zone *zone, int order,
178		bool alloc_success)
179{
180	if (alloc_success) {
181		zone->compact_considered = 0;
182		zone->compact_defer_shift = 0;
183	}
184	if (order >= zone->compact_order_failed)
185		zone->compact_order_failed = order + 1;
186
187	trace_mm_compaction_defer_reset(zone, order);
188}
189
190/* Returns true if restarting compaction after many failures */
191bool compaction_restarting(struct zone *zone, int order)
192{
193	if (order < zone->compact_order_failed)
194		return false;
195
196	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197		zone->compact_considered >= 1UL << zone->compact_defer_shift;
198}
199
200/* Returns true if the pageblock should be scanned for pages to isolate. */
201static inline bool isolation_suitable(struct compact_control *cc,
202					struct page *page)
203{
204	if (cc->ignore_skip_hint)
205		return true;
206
207	return !get_pageblock_skip(page);
208}
209
210/*
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
213 * meet.
214 */
215static void __reset_isolation_suitable(struct zone *zone)
216{
217	unsigned long start_pfn = zone->zone_start_pfn;
218	unsigned long end_pfn = zone_end_pfn(zone);
219	unsigned long pfn;
220
221	zone->compact_cached_migrate_pfn[0] = start_pfn;
222	zone->compact_cached_migrate_pfn[1] = start_pfn;
223	zone->compact_cached_free_pfn = end_pfn;
224	zone->compact_blockskip_flush = false;
225
226	/* Walk the zone and mark every pageblock as suitable for isolation */
227	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228		struct page *page;
229
230		cond_resched();
231
232		if (!pfn_valid(pfn))
233			continue;
234
235		page = pfn_to_page(pfn);
236		if (zone != page_zone(page))
237			continue;
238
239		clear_pageblock_skip(page);
240	}
241}
242
243void reset_isolation_suitable(pg_data_t *pgdat)
244{
245	int zoneid;
246
247	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248		struct zone *zone = &pgdat->node_zones[zoneid];
249		if (!populated_zone(zone))
250			continue;
251
252		/* Only flush if a full compaction finished recently */
253		if (zone->compact_blockskip_flush)
254			__reset_isolation_suitable(zone);
255	}
256}
257
258/*
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
261 */
262static void update_pageblock_skip(struct compact_control *cc,
263			struct page *page, unsigned long nr_isolated,
264			bool migrate_scanner)
265{
266	struct zone *zone = cc->zone;
267	unsigned long pfn;
268
269	if (cc->ignore_skip_hint)
270		return;
271
272	if (!page)
273		return;
274
275	if (nr_isolated)
276		return;
277
278	set_pageblock_skip(page);
279
280	pfn = page_to_pfn(page);
281
282	/* Update where async and sync compaction should restart */
283	if (migrate_scanner) {
284		if (pfn > zone->compact_cached_migrate_pfn[0])
285			zone->compact_cached_migrate_pfn[0] = pfn;
286		if (cc->mode != MIGRATE_ASYNC &&
287		    pfn > zone->compact_cached_migrate_pfn[1])
288			zone->compact_cached_migrate_pfn[1] = pfn;
289	} else {
290		if (pfn < zone->compact_cached_free_pfn)
291			zone->compact_cached_free_pfn = pfn;
292	}
293}
294#else
295static inline bool isolation_suitable(struct compact_control *cc,
296					struct page *page)
297{
298	return true;
299}
300
301static void update_pageblock_skip(struct compact_control *cc,
302			struct page *page, unsigned long nr_isolated,
303			bool migrate_scanner)
304{
305}
306#endif /* CONFIG_COMPACTION */
307
308/*
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
312 *
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
315 */
316static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317						struct compact_control *cc)
318{
319	if (cc->mode == MIGRATE_ASYNC) {
320		if (!spin_trylock_irqsave(lock, *flags)) {
321			cc->contended = COMPACT_CONTENDED_LOCK;
322			return false;
323		}
324	} else {
325		spin_lock_irqsave(lock, *flags);
326	}
327
328	return true;
329}
330
331/*
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
340 *
341 * Returns true if compaction should abort due to fatal signal pending, or
342 *		async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
344 *		scheduled)
345 */
346static bool compact_unlock_should_abort(spinlock_t *lock,
347		unsigned long flags, bool *locked, struct compact_control *cc)
348{
349	if (*locked) {
350		spin_unlock_irqrestore(lock, flags);
351		*locked = false;
352	}
353
354	if (fatal_signal_pending(current)) {
355		cc->contended = COMPACT_CONTENDED_SCHED;
356		return true;
357	}
358
359	if (need_resched()) {
360		if (cc->mode == MIGRATE_ASYNC) {
361			cc->contended = COMPACT_CONTENDED_SCHED;
362			return true;
363		}
364		cond_resched();
365	}
366
367	return false;
368}
369
370/*
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
375 *
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
378 */
379static inline bool compact_should_abort(struct compact_control *cc)
380{
381	/* async compaction aborts if contended */
382	if (need_resched()) {
383		if (cc->mode == MIGRATE_ASYNC) {
384			cc->contended = COMPACT_CONTENDED_SCHED;
385			return true;
386		}
387
388		cond_resched();
389	}
390
391	return false;
392}
393
394/*
395 * Isolate free pages onto a private freelist. If @strict is true, will abort
396 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397 * (even though it may still end up isolating some pages).
398 */
399static unsigned long isolate_freepages_block(struct compact_control *cc,
400				unsigned long *start_pfn,
401				unsigned long end_pfn,
402				struct list_head *freelist,
403				bool strict)
404{
405	int nr_scanned = 0, total_isolated = 0;
406	struct page *cursor, *valid_page = NULL;
407	unsigned long flags = 0;
408	bool locked = false;
409	unsigned long blockpfn = *start_pfn;
410
411	cursor = pfn_to_page(blockpfn);
412
413	/* Isolate free pages. */
414	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
415		int isolated, i;
416		struct page *page = cursor;
417
418		/*
419		 * Periodically drop the lock (if held) regardless of its
420		 * contention, to give chance to IRQs. Abort if fatal signal
421		 * pending or async compaction detects need_resched()
422		 */
423		if (!(blockpfn % SWAP_CLUSTER_MAX)
424		    && compact_unlock_should_abort(&cc->zone->lock, flags,
425								&locked, cc))
426			break;
427
428		nr_scanned++;
429		if (!pfn_valid_within(blockpfn))
430			goto isolate_fail;
431
432		if (!valid_page)
433			valid_page = page;
434		if (!PageBuddy(page))
435			goto isolate_fail;
436
437		/*
438		 * If we already hold the lock, we can skip some rechecking.
439		 * Note that if we hold the lock now, checked_pageblock was
440		 * already set in some previous iteration (or strict is true),
441		 * so it is correct to skip the suitable migration target
442		 * recheck as well.
443		 */
444		if (!locked) {
445			/*
446			 * The zone lock must be held to isolate freepages.
447			 * Unfortunately this is a very coarse lock and can be
448			 * heavily contended if there are parallel allocations
449			 * or parallel compactions. For async compaction do not
450			 * spin on the lock and we acquire the lock as late as
451			 * possible.
452			 */
453			locked = compact_trylock_irqsave(&cc->zone->lock,
454								&flags, cc);
455			if (!locked)
456				break;
457
458			/* Recheck this is a buddy page under lock */
459			if (!PageBuddy(page))
460				goto isolate_fail;
461		}
462
463		/* Found a free page, break it into order-0 pages */
464		isolated = split_free_page(page);
465		total_isolated += isolated;
466		for (i = 0; i < isolated; i++) {
467			list_add(&page->lru, freelist);
468			page++;
469		}
470
471		/* If a page was split, advance to the end of it */
472		if (isolated) {
473			cc->nr_freepages += isolated;
474			if (!strict &&
475				cc->nr_migratepages <= cc->nr_freepages) {
476				blockpfn += isolated;
477				break;
478			}
479
480			blockpfn += isolated - 1;
481			cursor += isolated - 1;
482			continue;
483		}
484
485isolate_fail:
486		if (strict)
487			break;
488		else
489			continue;
490
491	}
492
493	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
494					nr_scanned, total_isolated);
495
496	/* Record how far we have got within the block */
497	*start_pfn = blockpfn;
498
499	/*
500	 * If strict isolation is requested by CMA then check that all the
501	 * pages requested were isolated. If there were any failures, 0 is
502	 * returned and CMA will fail.
503	 */
504	if (strict && blockpfn < end_pfn)
505		total_isolated = 0;
506
507	if (locked)
508		spin_unlock_irqrestore(&cc->zone->lock, flags);
509
510	/* Update the pageblock-skip if the whole pageblock was scanned */
511	if (blockpfn == end_pfn)
512		update_pageblock_skip(cc, valid_page, total_isolated, false);
513
514	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
515	if (total_isolated)
516		count_compact_events(COMPACTISOLATED, total_isolated);
517	return total_isolated;
518}
519
520/**
521 * isolate_freepages_range() - isolate free pages.
522 * @start_pfn: The first PFN to start isolating.
523 * @end_pfn:   The one-past-last PFN.
524 *
525 * Non-free pages, invalid PFNs, or zone boundaries within the
526 * [start_pfn, end_pfn) range are considered errors, cause function to
527 * undo its actions and return zero.
528 *
529 * Otherwise, function returns one-past-the-last PFN of isolated page
530 * (which may be greater then end_pfn if end fell in a middle of
531 * a free page).
532 */
533unsigned long
534isolate_freepages_range(struct compact_control *cc,
535			unsigned long start_pfn, unsigned long end_pfn)
536{
537	unsigned long isolated, pfn, block_end_pfn;
538	LIST_HEAD(freelist);
539
540	pfn = start_pfn;
541	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
542
543	for (; pfn < end_pfn; pfn += isolated,
544				block_end_pfn += pageblock_nr_pages) {
545		/* Protect pfn from changing by isolate_freepages_block */
546		unsigned long isolate_start_pfn = pfn;
547
548		block_end_pfn = min(block_end_pfn, end_pfn);
549
550		/*
551		 * pfn could pass the block_end_pfn if isolated freepage
552		 * is more than pageblock order. In this case, we adjust
553		 * scanning range to right one.
554		 */
555		if (pfn >= block_end_pfn) {
556			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
557			block_end_pfn = min(block_end_pfn, end_pfn);
558		}
559
560		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
561			break;
562
563		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
564						block_end_pfn, &freelist, true);
565
566		/*
567		 * In strict mode, isolate_freepages_block() returns 0 if
568		 * there are any holes in the block (ie. invalid PFNs or
569		 * non-free pages).
570		 */
571		if (!isolated)
572			break;
573
574		/*
575		 * If we managed to isolate pages, it is always (1 << n) *
576		 * pageblock_nr_pages for some non-negative n.  (Max order
577		 * page may span two pageblocks).
578		 */
579	}
580
581	/* split_free_page does not map the pages */
582	map_pages(&freelist);
583
584	if (pfn < end_pfn) {
585		/* Loop terminated early, cleanup. */
586		release_freepages(&freelist);
587		return 0;
588	}
589
590	/* We don't use freelists for anything. */
591	return pfn;
592}
593
594/* Update the number of anon and file isolated pages in the zone */
595static void acct_isolated(struct zone *zone, struct compact_control *cc)
596{
597	struct page *page;
598	unsigned int count[2] = { 0, };
599
600	if (list_empty(&cc->migratepages))
601		return;
602
603	list_for_each_entry(page, &cc->migratepages, lru)
604		count[!!page_is_file_cache(page)]++;
605
606	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
607	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
608}
609
610/* Similar to reclaim, but different enough that they don't share logic */
611static bool too_many_isolated(struct zone *zone)
612{
613	unsigned long active, inactive, isolated;
614
615	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
616					zone_page_state(zone, NR_INACTIVE_ANON);
617	active = zone_page_state(zone, NR_ACTIVE_FILE) +
618					zone_page_state(zone, NR_ACTIVE_ANON);
619	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
620					zone_page_state(zone, NR_ISOLATED_ANON);
621
622	return isolated > (inactive + active) / 2;
623}
624
625/**
626 * isolate_migratepages_block() - isolate all migrate-able pages within
627 *				  a single pageblock
628 * @cc:		Compaction control structure.
629 * @low_pfn:	The first PFN to isolate
630 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
631 * @isolate_mode: Isolation mode to be used.
632 *
633 * Isolate all pages that can be migrated from the range specified by
634 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
635 * Returns zero if there is a fatal signal pending, otherwise PFN of the
636 * first page that was not scanned (which may be both less, equal to or more
637 * than end_pfn).
638 *
639 * The pages are isolated on cc->migratepages list (not required to be empty),
640 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
641 * is neither read nor updated.
642 */
643static unsigned long
644isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
645			unsigned long end_pfn, isolate_mode_t isolate_mode)
646{
647	struct zone *zone = cc->zone;
648	unsigned long nr_scanned = 0, nr_isolated = 0;
649	struct list_head *migratelist = &cc->migratepages;
650	struct lruvec *lruvec;
651	unsigned long flags = 0;
652	bool locked = false;
653	struct page *page = NULL, *valid_page = NULL;
654	unsigned long start_pfn = low_pfn;
655
656	/*
657	 * Ensure that there are not too many pages isolated from the LRU
658	 * list by either parallel reclaimers or compaction. If there are,
659	 * delay for some time until fewer pages are isolated
660	 */
661	while (unlikely(too_many_isolated(zone))) {
662		/* async migration should just abort */
663		if (cc->mode == MIGRATE_ASYNC)
664			return 0;
665
666		congestion_wait(BLK_RW_ASYNC, HZ/10);
667
668		if (fatal_signal_pending(current))
669			return 0;
670	}
671
672	if (compact_should_abort(cc))
673		return 0;
674
675	/* Time to isolate some pages for migration */
676	for (; low_pfn < end_pfn; low_pfn++) {
677		/*
678		 * Periodically drop the lock (if held) regardless of its
679		 * contention, to give chance to IRQs. Abort async compaction
680		 * if contended.
681		 */
682		if (!(low_pfn % SWAP_CLUSTER_MAX)
683		    && compact_unlock_should_abort(&zone->lru_lock, flags,
684								&locked, cc))
685			break;
686
687		if (!pfn_valid_within(low_pfn))
688			continue;
689		nr_scanned++;
690
691		page = pfn_to_page(low_pfn);
692
693		if (!valid_page)
694			valid_page = page;
695
696		/*
697		 * Skip if free. We read page order here without zone lock
698		 * which is generally unsafe, but the race window is small and
699		 * the worst thing that can happen is that we skip some
700		 * potential isolation targets.
701		 */
702		if (PageBuddy(page)) {
703			unsigned long freepage_order = page_order_unsafe(page);
704
705			/*
706			 * Without lock, we cannot be sure that what we got is
707			 * a valid page order. Consider only values in the
708			 * valid order range to prevent low_pfn overflow.
709			 */
710			if (freepage_order > 0 && freepage_order < MAX_ORDER)
711				low_pfn += (1UL << freepage_order) - 1;
712			continue;
713		}
714
715		/*
716		 * Check may be lockless but that's ok as we recheck later.
717		 * It's possible to migrate LRU pages and balloon pages
718		 * Skip any other type of page
719		 */
720		if (!PageLRU(page)) {
721			if (unlikely(balloon_page_movable(page))) {
722				if (balloon_page_isolate(page)) {
723					/* Successfully isolated */
724					goto isolate_success;
725				}
726			}
727			continue;
728		}
729
730		/*
731		 * PageLRU is set. lru_lock normally excludes isolation
732		 * splitting and collapsing (collapsing has already happened
733		 * if PageLRU is set) but the lock is not necessarily taken
734		 * here and it is wasteful to take it just to check transhuge.
735		 * Check TransHuge without lock and skip the whole pageblock if
736		 * it's either a transhuge or hugetlbfs page, as calling
737		 * compound_order() without preventing THP from splitting the
738		 * page underneath us may return surprising results.
739		 */
740		if (PageTransHuge(page)) {
741			if (!locked)
742				low_pfn = ALIGN(low_pfn + 1,
743						pageblock_nr_pages) - 1;
744			else
745				low_pfn += (1 << compound_order(page)) - 1;
746
747			continue;
748		}
749
750		/*
751		 * Migration will fail if an anonymous page is pinned in memory,
752		 * so avoid taking lru_lock and isolating it unnecessarily in an
753		 * admittedly racy check.
754		 */
755		if (!page_mapping(page) &&
756		    page_count(page) > page_mapcount(page))
757			continue;
758
759		/* If we already hold the lock, we can skip some rechecking */
760		if (!locked) {
761			locked = compact_trylock_irqsave(&zone->lru_lock,
762								&flags, cc);
763			if (!locked)
764				break;
765
766			/* Recheck PageLRU and PageTransHuge under lock */
767			if (!PageLRU(page))
768				continue;
769			if (PageTransHuge(page)) {
770				low_pfn += (1 << compound_order(page)) - 1;
771				continue;
772			}
773		}
774
775		lruvec = mem_cgroup_page_lruvec(page, zone);
776
777		/* Try isolate the page */
778		if (__isolate_lru_page(page, isolate_mode) != 0)
779			continue;
780
781		VM_BUG_ON_PAGE(PageTransCompound(page), page);
782
783		/* Successfully isolated */
784		del_page_from_lru_list(page, lruvec, page_lru(page));
785
786isolate_success:
787		list_add(&page->lru, migratelist);
788		cc->nr_migratepages++;
789		nr_isolated++;
790
791		/* Avoid isolating too much */
792		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
793			++low_pfn;
794			break;
795		}
796	}
797
798	/*
799	 * The PageBuddy() check could have potentially brought us outside
800	 * the range to be scanned.
801	 */
802	if (unlikely(low_pfn > end_pfn))
803		low_pfn = end_pfn;
804
805	if (locked)
806		spin_unlock_irqrestore(&zone->lru_lock, flags);
807
808	/*
809	 * Update the pageblock-skip information and cached scanner pfn,
810	 * if the whole pageblock was scanned without isolating any page.
811	 */
812	if (low_pfn == end_pfn)
813		update_pageblock_skip(cc, valid_page, nr_isolated, true);
814
815	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
816						nr_scanned, nr_isolated);
817
818	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
819	if (nr_isolated)
820		count_compact_events(COMPACTISOLATED, nr_isolated);
821
822	return low_pfn;
823}
824
825/**
826 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
827 * @cc:        Compaction control structure.
828 * @start_pfn: The first PFN to start isolating.
829 * @end_pfn:   The one-past-last PFN.
830 *
831 * Returns zero if isolation fails fatally due to e.g. pending signal.
832 * Otherwise, function returns one-past-the-last PFN of isolated page
833 * (which may be greater than end_pfn if end fell in a middle of a THP page).
834 */
835unsigned long
836isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
837							unsigned long end_pfn)
838{
839	unsigned long pfn, block_end_pfn;
840
841	/* Scan block by block. First and last block may be incomplete */
842	pfn = start_pfn;
843	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
844
845	for (; pfn < end_pfn; pfn = block_end_pfn,
846				block_end_pfn += pageblock_nr_pages) {
847
848		block_end_pfn = min(block_end_pfn, end_pfn);
849
850		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
851			continue;
852
853		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
854							ISOLATE_UNEVICTABLE);
855
856		if (!pfn)
857			break;
858
859		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
860			break;
861	}
862	acct_isolated(cc->zone, cc);
863
864	return pfn;
865}
866
867#endif /* CONFIG_COMPACTION || CONFIG_CMA */
868#ifdef CONFIG_COMPACTION
869
870/* Returns true if the page is within a block suitable for migration to */
871static bool suitable_migration_target(struct page *page)
872{
873	/* If the page is a large free page, then disallow migration */
874	if (PageBuddy(page)) {
875		/*
876		 * We are checking page_order without zone->lock taken. But
877		 * the only small danger is that we skip a potentially suitable
878		 * pageblock, so it's not worth to check order for valid range.
879		 */
880		if (page_order_unsafe(page) >= pageblock_order)
881			return false;
882	}
883
884	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
885	if (migrate_async_suitable(get_pageblock_migratetype(page)))
886		return true;
887
888	/* Otherwise skip the block */
889	return false;
890}
891
892/*
893 * Based on information in the current compact_control, find blocks
894 * suitable for isolating free pages from and then isolate them.
895 */
896static void isolate_freepages(struct compact_control *cc)
897{
898	struct zone *zone = cc->zone;
899	struct page *page;
900	unsigned long block_start_pfn;	/* start of current pageblock */
901	unsigned long isolate_start_pfn; /* exact pfn we start at */
902	unsigned long block_end_pfn;	/* end of current pageblock */
903	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
904	struct list_head *freelist = &cc->freepages;
905
906	/*
907	 * Initialise the free scanner. The starting point is where we last
908	 * successfully isolated from, zone-cached value, or the end of the
909	 * zone when isolating for the first time. For looping we also need
910	 * this pfn aligned down to the pageblock boundary, because we do
911	 * block_start_pfn -= pageblock_nr_pages in the for loop.
912	 * For ending point, take care when isolating in last pageblock of a
913	 * a zone which ends in the middle of a pageblock.
914	 * The low boundary is the end of the pageblock the migration scanner
915	 * is using.
916	 */
917	isolate_start_pfn = cc->free_pfn;
918	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
919	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
920						zone_end_pfn(zone));
921	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
922
923	/*
924	 * Isolate free pages until enough are available to migrate the
925	 * pages on cc->migratepages. We stop searching if the migrate
926	 * and free page scanners meet or enough free pages are isolated.
927	 */
928	for (; block_start_pfn >= low_pfn &&
929			cc->nr_migratepages > cc->nr_freepages;
930				block_end_pfn = block_start_pfn,
931				block_start_pfn -= pageblock_nr_pages,
932				isolate_start_pfn = block_start_pfn) {
933
934		/*
935		 * This can iterate a massively long zone without finding any
936		 * suitable migration targets, so periodically check if we need
937		 * to schedule, or even abort async compaction.
938		 */
939		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
940						&& compact_should_abort(cc))
941			break;
942
943		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
944									zone);
945		if (!page)
946			continue;
947
948		/* Check the block is suitable for migration */
949		if (!suitable_migration_target(page))
950			continue;
951
952		/* If isolation recently failed, do not retry */
953		if (!isolation_suitable(cc, page))
954			continue;
955
956		/* Found a block suitable for isolating free pages from. */
957		isolate_freepages_block(cc, &isolate_start_pfn,
958					block_end_pfn, freelist, false);
959
960		/*
961		 * Remember where the free scanner should restart next time,
962		 * which is where isolate_freepages_block() left off.
963		 * But if it scanned the whole pageblock, isolate_start_pfn
964		 * now points at block_end_pfn, which is the start of the next
965		 * pageblock.
966		 * In that case we will however want to restart at the start
967		 * of the previous pageblock.
968		 */
969		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
970				isolate_start_pfn :
971				block_start_pfn - pageblock_nr_pages;
972
973		/*
974		 * isolate_freepages_block() might have aborted due to async
975		 * compaction being contended
976		 */
977		if (cc->contended)
978			break;
979	}
980
981	/* split_free_page does not map the pages */
982	map_pages(freelist);
983
984	/*
985	 * If we crossed the migrate scanner, we want to keep it that way
986	 * so that compact_finished() may detect this
987	 */
988	if (block_start_pfn < low_pfn)
989		cc->free_pfn = cc->migrate_pfn;
990}
991
992/*
993 * This is a migrate-callback that "allocates" freepages by taking pages
994 * from the isolated freelists in the block we are migrating to.
995 */
996static struct page *compaction_alloc(struct page *migratepage,
997					unsigned long data,
998					int **result)
999{
1000	struct compact_control *cc = (struct compact_control *)data;
1001	struct page *freepage;
1002
1003	/*
1004	 * Isolate free pages if necessary, and if we are not aborting due to
1005	 * contention.
1006	 */
1007	if (list_empty(&cc->freepages)) {
1008		if (!cc->contended)
1009			isolate_freepages(cc);
1010
1011		if (list_empty(&cc->freepages))
1012			return NULL;
1013	}
1014
1015	freepage = list_entry(cc->freepages.next, struct page, lru);
1016	list_del(&freepage->lru);
1017	cc->nr_freepages--;
1018
1019	return freepage;
1020}
1021
1022/*
1023 * This is a migrate-callback that "frees" freepages back to the isolated
1024 * freelist.  All pages on the freelist are from the same zone, so there is no
1025 * special handling needed for NUMA.
1026 */
1027static void compaction_free(struct page *page, unsigned long data)
1028{
1029	struct compact_control *cc = (struct compact_control *)data;
1030
1031	list_add(&page->lru, &cc->freepages);
1032	cc->nr_freepages++;
1033}
1034
1035/* possible outcome of isolate_migratepages */
1036typedef enum {
1037	ISOLATE_ABORT,		/* Abort compaction now */
1038	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1039	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1040} isolate_migrate_t;
1041
1042/*
1043 * Allow userspace to control policy on scanning the unevictable LRU for
1044 * compactable pages.
1045 */
1046int sysctl_compact_unevictable_allowed __read_mostly = 1;
1047
1048/*
1049 * Isolate all pages that can be migrated from the first suitable block,
1050 * starting at the block pointed to by the migrate scanner pfn within
1051 * compact_control.
1052 */
1053static isolate_migrate_t isolate_migratepages(struct zone *zone,
1054					struct compact_control *cc)
1055{
1056	unsigned long low_pfn, end_pfn;
1057	struct page *page;
1058	const isolate_mode_t isolate_mode =
1059		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1060		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1061
1062	/*
1063	 * Start at where we last stopped, or beginning of the zone as
1064	 * initialized by compact_zone()
1065	 */
1066	low_pfn = cc->migrate_pfn;
1067
1068	/* Only scan within a pageblock boundary */
1069	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1070
1071	/*
1072	 * Iterate over whole pageblocks until we find the first suitable.
1073	 * Do not cross the free scanner.
1074	 */
1075	for (; end_pfn <= cc->free_pfn;
1076			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1077
1078		/*
1079		 * This can potentially iterate a massively long zone with
1080		 * many pageblocks unsuitable, so periodically check if we
1081		 * need to schedule, or even abort async compaction.
1082		 */
1083		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084						&& compact_should_abort(cc))
1085			break;
1086
1087		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1088		if (!page)
1089			continue;
1090
1091		/* If isolation recently failed, do not retry */
1092		if (!isolation_suitable(cc, page))
1093			continue;
1094
1095		/*
1096		 * For async compaction, also only scan in MOVABLE blocks.
1097		 * Async compaction is optimistic to see if the minimum amount
1098		 * of work satisfies the allocation.
1099		 */
1100		if (cc->mode == MIGRATE_ASYNC &&
1101		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1102			continue;
1103
1104		/* Perform the isolation */
1105		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1106								isolate_mode);
1107
1108		if (!low_pfn || cc->contended) {
1109			acct_isolated(zone, cc);
1110			return ISOLATE_ABORT;
1111		}
1112
1113		/*
1114		 * Either we isolated something and proceed with migration. Or
1115		 * we failed and compact_zone should decide if we should
1116		 * continue or not.
1117		 */
1118		break;
1119	}
1120
1121	acct_isolated(zone, cc);
1122	/*
1123	 * Record where migration scanner will be restarted. If we end up in
1124	 * the same pageblock as the free scanner, make the scanners fully
1125	 * meet so that compact_finished() terminates compaction.
1126	 */
1127	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1128
1129	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1130}
1131
1132static int __compact_finished(struct zone *zone, struct compact_control *cc,
1133			    const int migratetype)
1134{
1135	unsigned int order;
1136	unsigned long watermark;
1137
1138	if (cc->contended || fatal_signal_pending(current))
1139		return COMPACT_PARTIAL;
1140
1141	/* Compaction run completes if the migrate and free scanner meet */
1142	if (cc->free_pfn <= cc->migrate_pfn) {
1143		/* Let the next compaction start anew. */
1144		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1145		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1146		zone->compact_cached_free_pfn = zone_end_pfn(zone);
1147
1148		/*
1149		 * Mark that the PG_migrate_skip information should be cleared
1150		 * by kswapd when it goes to sleep. kswapd does not set the
1151		 * flag itself as the decision to be clear should be directly
1152		 * based on an allocation request.
1153		 */
1154		if (!current_is_kswapd())
1155			zone->compact_blockskip_flush = true;
1156
1157		return COMPACT_COMPLETE;
1158	}
1159
1160	/*
1161	 * order == -1 is expected when compacting via
1162	 * /proc/sys/vm/compact_memory
1163	 */
1164	if (cc->order == -1)
1165		return COMPACT_CONTINUE;
1166
1167	/* Compaction run is not finished if the watermark is not met */
1168	watermark = low_wmark_pages(zone);
1169
1170	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1171							cc->alloc_flags))
1172		return COMPACT_CONTINUE;
1173
1174	/* Direct compactor: Is a suitable page free? */
1175	for (order = cc->order; order < MAX_ORDER; order++) {
1176		struct free_area *area = &zone->free_area[order];
1177		bool can_steal;
1178
1179		/* Job done if page is free of the right migratetype */
1180		if (!list_empty(&area->free_list[migratetype]))
1181			return COMPACT_PARTIAL;
1182
1183#ifdef CONFIG_CMA
1184		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1185		if (migratetype == MIGRATE_MOVABLE &&
1186			!list_empty(&area->free_list[MIGRATE_CMA]))
1187			return COMPACT_PARTIAL;
1188#endif
1189		/*
1190		 * Job done if allocation would steal freepages from
1191		 * other migratetype buddy lists.
1192		 */
1193		if (find_suitable_fallback(area, order, migratetype,
1194						true, &can_steal) != -1)
1195			return COMPACT_PARTIAL;
1196	}
1197
1198	return COMPACT_NO_SUITABLE_PAGE;
1199}
1200
1201static int compact_finished(struct zone *zone, struct compact_control *cc,
1202			    const int migratetype)
1203{
1204	int ret;
1205
1206	ret = __compact_finished(zone, cc, migratetype);
1207	trace_mm_compaction_finished(zone, cc->order, ret);
1208	if (ret == COMPACT_NO_SUITABLE_PAGE)
1209		ret = COMPACT_CONTINUE;
1210
1211	return ret;
1212}
1213
1214/*
1215 * compaction_suitable: Is this suitable to run compaction on this zone now?
1216 * Returns
1217 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1218 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1219 *   COMPACT_CONTINUE - If compaction should run now
1220 */
1221static unsigned long __compaction_suitable(struct zone *zone, int order,
1222					int alloc_flags, int classzone_idx)
1223{
1224	int fragindex;
1225	unsigned long watermark;
1226
1227	/*
1228	 * order == -1 is expected when compacting via
1229	 * /proc/sys/vm/compact_memory
1230	 */
1231	if (order == -1)
1232		return COMPACT_CONTINUE;
1233
1234	watermark = low_wmark_pages(zone);
1235	/*
1236	 * If watermarks for high-order allocation are already met, there
1237	 * should be no need for compaction at all.
1238	 */
1239	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1240								alloc_flags))
1241		return COMPACT_PARTIAL;
1242
1243	/*
1244	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1245	 * This is because during migration, copies of pages need to be
1246	 * allocated and for a short time, the footprint is higher
1247	 */
1248	watermark += (2UL << order);
1249	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1250		return COMPACT_SKIPPED;
1251
1252	/*
1253	 * fragmentation index determines if allocation failures are due to
1254	 * low memory or external fragmentation
1255	 *
1256	 * index of -1000 would imply allocations might succeed depending on
1257	 * watermarks, but we already failed the high-order watermark check
1258	 * index towards 0 implies failure is due to lack of memory
1259	 * index towards 1000 implies failure is due to fragmentation
1260	 *
1261	 * Only compact if a failure would be due to fragmentation.
1262	 */
1263	fragindex = fragmentation_index(zone, order);
1264	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1265		return COMPACT_NOT_SUITABLE_ZONE;
1266
1267	return COMPACT_CONTINUE;
1268}
1269
1270unsigned long compaction_suitable(struct zone *zone, int order,
1271					int alloc_flags, int classzone_idx)
1272{
1273	unsigned long ret;
1274
1275	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1276	trace_mm_compaction_suitable(zone, order, ret);
1277	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1278		ret = COMPACT_SKIPPED;
1279
1280	return ret;
1281}
1282
1283static int compact_zone(struct zone *zone, struct compact_control *cc)
1284{
1285	int ret;
1286	unsigned long start_pfn = zone->zone_start_pfn;
1287	unsigned long end_pfn = zone_end_pfn(zone);
1288	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1289	const bool sync = cc->mode != MIGRATE_ASYNC;
1290	unsigned long last_migrated_pfn = 0;
1291
1292	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1293							cc->classzone_idx);
1294	switch (ret) {
1295	case COMPACT_PARTIAL:
1296	case COMPACT_SKIPPED:
1297		/* Compaction is likely to fail */
1298		return ret;
1299	case COMPACT_CONTINUE:
1300		/* Fall through to compaction */
1301		;
1302	}
1303
1304	/*
1305	 * Clear pageblock skip if there were failures recently and compaction
1306	 * is about to be retried after being deferred. kswapd does not do
1307	 * this reset as it'll reset the cached information when going to sleep.
1308	 */
1309	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1310		__reset_isolation_suitable(zone);
1311
1312	/*
1313	 * Setup to move all movable pages to the end of the zone. Used cached
1314	 * information on where the scanners should start but check that it
1315	 * is initialised by ensuring the values are within zone boundaries.
1316	 */
1317	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1318	cc->free_pfn = zone->compact_cached_free_pfn;
1319	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1320		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1321		zone->compact_cached_free_pfn = cc->free_pfn;
1322	}
1323	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1324		cc->migrate_pfn = start_pfn;
1325		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1326		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1327	}
1328
1329	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1330				cc->free_pfn, end_pfn, sync);
1331
1332	migrate_prep_local();
1333
1334	while ((ret = compact_finished(zone, cc, migratetype)) ==
1335						COMPACT_CONTINUE) {
1336		int err;
1337		unsigned long isolate_start_pfn = cc->migrate_pfn;
1338
1339		switch (isolate_migratepages(zone, cc)) {
1340		case ISOLATE_ABORT:
1341			ret = COMPACT_PARTIAL;
1342			putback_movable_pages(&cc->migratepages);
1343			cc->nr_migratepages = 0;
1344			goto out;
1345		case ISOLATE_NONE:
1346			/*
1347			 * We haven't isolated and migrated anything, but
1348			 * there might still be unflushed migrations from
1349			 * previous cc->order aligned block.
1350			 */
1351			goto check_drain;
1352		case ISOLATE_SUCCESS:
1353			;
1354		}
1355
1356		err = migrate_pages(&cc->migratepages, compaction_alloc,
1357				compaction_free, (unsigned long)cc, cc->mode,
1358				MR_COMPACTION);
1359
1360		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1361							&cc->migratepages);
1362
1363		/* All pages were either migrated or will be released */
1364		cc->nr_migratepages = 0;
1365		if (err) {
1366			putback_movable_pages(&cc->migratepages);
1367			/*
1368			 * migrate_pages() may return -ENOMEM when scanners meet
1369			 * and we want compact_finished() to detect it
1370			 */
1371			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1372				ret = COMPACT_PARTIAL;
1373				goto out;
1374			}
1375		}
1376
1377		/*
1378		 * Record where we could have freed pages by migration and not
1379		 * yet flushed them to buddy allocator. We use the pfn that
1380		 * isolate_migratepages() started from in this loop iteration
1381		 * - this is the lowest page that could have been isolated and
1382		 * then freed by migration.
1383		 */
1384		if (!last_migrated_pfn)
1385			last_migrated_pfn = isolate_start_pfn;
1386
1387check_drain:
1388		/*
1389		 * Has the migration scanner moved away from the previous
1390		 * cc->order aligned block where we migrated from? If yes,
1391		 * flush the pages that were freed, so that they can merge and
1392		 * compact_finished() can detect immediately if allocation
1393		 * would succeed.
1394		 */
1395		if (cc->order > 0 && last_migrated_pfn) {
1396			int cpu;
1397			unsigned long current_block_start =
1398				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1399
1400			if (last_migrated_pfn < current_block_start) {
1401				cpu = get_cpu();
1402				lru_add_drain_cpu(cpu);
1403				drain_local_pages(zone);
1404				put_cpu();
1405				/* No more flushing until we migrate again */
1406				last_migrated_pfn = 0;
1407			}
1408		}
1409
1410	}
1411
1412out:
1413	/*
1414	 * Release free pages and update where the free scanner should restart,
1415	 * so we don't leave any returned pages behind in the next attempt.
1416	 */
1417	if (cc->nr_freepages > 0) {
1418		unsigned long free_pfn = release_freepages(&cc->freepages);
1419
1420		cc->nr_freepages = 0;
1421		VM_BUG_ON(free_pfn == 0);
1422		/* The cached pfn is always the first in a pageblock */
1423		free_pfn &= ~(pageblock_nr_pages-1);
1424		/*
1425		 * Only go back, not forward. The cached pfn might have been
1426		 * already reset to zone end in compact_finished()
1427		 */
1428		if (free_pfn > zone->compact_cached_free_pfn)
1429			zone->compact_cached_free_pfn = free_pfn;
1430	}
1431
1432	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1433				cc->free_pfn, end_pfn, sync, ret);
1434
1435	return ret;
1436}
1437
1438static unsigned long compact_zone_order(struct zone *zone, int order,
1439		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1440		int alloc_flags, int classzone_idx)
1441{
1442	unsigned long ret;
1443	struct compact_control cc = {
1444		.nr_freepages = 0,
1445		.nr_migratepages = 0,
1446		.order = order,
1447		.gfp_mask = gfp_mask,
1448		.zone = zone,
1449		.mode = mode,
1450		.alloc_flags = alloc_flags,
1451		.classzone_idx = classzone_idx,
1452	};
1453	INIT_LIST_HEAD(&cc.freepages);
1454	INIT_LIST_HEAD(&cc.migratepages);
1455
1456	ret = compact_zone(zone, &cc);
1457
1458	VM_BUG_ON(!list_empty(&cc.freepages));
1459	VM_BUG_ON(!list_empty(&cc.migratepages));
1460
1461	*contended = cc.contended;
1462	return ret;
1463}
1464
1465int sysctl_extfrag_threshold = 500;
1466
1467/**
1468 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1469 * @gfp_mask: The GFP mask of the current allocation
1470 * @order: The order of the current allocation
1471 * @alloc_flags: The allocation flags of the current allocation
1472 * @ac: The context of current allocation
1473 * @mode: The migration mode for async, sync light, or sync migration
1474 * @contended: Return value that determines if compaction was aborted due to
1475 *	       need_resched() or lock contention
1476 *
1477 * This is the main entry point for direct page compaction.
1478 */
1479unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1480			int alloc_flags, const struct alloc_context *ac,
1481			enum migrate_mode mode, int *contended)
1482{
1483	int may_enter_fs = gfp_mask & __GFP_FS;
1484	int may_perform_io = gfp_mask & __GFP_IO;
1485	struct zoneref *z;
1486	struct zone *zone;
1487	int rc = COMPACT_DEFERRED;
1488	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1489
1490	*contended = COMPACT_CONTENDED_NONE;
1491
1492	/* Check if the GFP flags allow compaction */
1493	if (!order || !may_enter_fs || !may_perform_io)
1494		return COMPACT_SKIPPED;
1495
1496	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1497
1498	/* Compact each zone in the list */
1499	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1500								ac->nodemask) {
1501		int status;
1502		int zone_contended;
1503
1504		if (compaction_deferred(zone, order))
1505			continue;
1506
1507		status = compact_zone_order(zone, order, gfp_mask, mode,
1508				&zone_contended, alloc_flags,
1509				ac->classzone_idx);
1510		rc = max(status, rc);
1511		/*
1512		 * It takes at least one zone that wasn't lock contended
1513		 * to clear all_zones_contended.
1514		 */
1515		all_zones_contended &= zone_contended;
1516
1517		/* If a normal allocation would succeed, stop compacting */
1518		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1519					ac->classzone_idx, alloc_flags)) {
1520			/*
1521			 * We think the allocation will succeed in this zone,
1522			 * but it is not certain, hence the false. The caller
1523			 * will repeat this with true if allocation indeed
1524			 * succeeds in this zone.
1525			 */
1526			compaction_defer_reset(zone, order, false);
1527			/*
1528			 * It is possible that async compaction aborted due to
1529			 * need_resched() and the watermarks were ok thanks to
1530			 * somebody else freeing memory. The allocation can
1531			 * however still fail so we better signal the
1532			 * need_resched() contention anyway (this will not
1533			 * prevent the allocation attempt).
1534			 */
1535			if (zone_contended == COMPACT_CONTENDED_SCHED)
1536				*contended = COMPACT_CONTENDED_SCHED;
1537
1538			goto break_loop;
1539		}
1540
1541		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1542			/*
1543			 * We think that allocation won't succeed in this zone
1544			 * so we defer compaction there. If it ends up
1545			 * succeeding after all, it will be reset.
1546			 */
1547			defer_compaction(zone, order);
1548		}
1549
1550		/*
1551		 * We might have stopped compacting due to need_resched() in
1552		 * async compaction, or due to a fatal signal detected. In that
1553		 * case do not try further zones and signal need_resched()
1554		 * contention.
1555		 */
1556		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1557					|| fatal_signal_pending(current)) {
1558			*contended = COMPACT_CONTENDED_SCHED;
1559			goto break_loop;
1560		}
1561
1562		continue;
1563break_loop:
1564		/*
1565		 * We might not have tried all the zones, so  be conservative
1566		 * and assume they are not all lock contended.
1567		 */
1568		all_zones_contended = 0;
1569		break;
1570	}
1571
1572	/*
1573	 * If at least one zone wasn't deferred or skipped, we report if all
1574	 * zones that were tried were lock contended.
1575	 */
1576	if (rc > COMPACT_SKIPPED && all_zones_contended)
1577		*contended = COMPACT_CONTENDED_LOCK;
1578
1579	return rc;
1580}
1581
1582
1583/* Compact all zones within a node */
1584static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1585{
1586	int zoneid;
1587	struct zone *zone;
1588
1589	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1590
1591		zone = &pgdat->node_zones[zoneid];
1592		if (!populated_zone(zone))
1593			continue;
1594
1595		cc->nr_freepages = 0;
1596		cc->nr_migratepages = 0;
1597		cc->zone = zone;
1598		INIT_LIST_HEAD(&cc->freepages);
1599		INIT_LIST_HEAD(&cc->migratepages);
1600
1601		/*
1602		 * When called via /proc/sys/vm/compact_memory
1603		 * this makes sure we compact the whole zone regardless of
1604		 * cached scanner positions.
1605		 */
1606		if (cc->order == -1)
1607			__reset_isolation_suitable(zone);
1608
1609		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1610			compact_zone(zone, cc);
1611
1612		if (cc->order > 0) {
1613			if (zone_watermark_ok(zone, cc->order,
1614						low_wmark_pages(zone), 0, 0))
1615				compaction_defer_reset(zone, cc->order, false);
1616		}
1617
1618		VM_BUG_ON(!list_empty(&cc->freepages));
1619		VM_BUG_ON(!list_empty(&cc->migratepages));
1620	}
1621}
1622
1623void compact_pgdat(pg_data_t *pgdat, int order)
1624{
1625	struct compact_control cc = {
1626		.order = order,
1627		.mode = MIGRATE_ASYNC,
1628	};
1629
1630	if (!order)
1631		return;
1632
1633	__compact_pgdat(pgdat, &cc);
1634}
1635
1636static void compact_node(int nid)
1637{
1638	struct compact_control cc = {
1639		.order = -1,
1640		.mode = MIGRATE_SYNC,
1641		.ignore_skip_hint = true,
1642	};
1643
1644	__compact_pgdat(NODE_DATA(nid), &cc);
1645}
1646
1647/* Compact all nodes in the system */
1648static void compact_nodes(void)
1649{
1650	int nid;
1651
1652	/* Flush pending updates to the LRU lists */
1653	lru_add_drain_all();
1654
1655	for_each_online_node(nid)
1656		compact_node(nid);
1657}
1658
1659/* The written value is actually unused, all memory is compacted */
1660int sysctl_compact_memory;
1661
1662/* This is the entry point for compacting all nodes via /proc/sys/vm */
1663int sysctl_compaction_handler(struct ctl_table *table, int write,
1664			void __user *buffer, size_t *length, loff_t *ppos)
1665{
1666	if (write)
1667		compact_nodes();
1668
1669	return 0;
1670}
1671
1672int sysctl_extfrag_handler(struct ctl_table *table, int write,
1673			void __user *buffer, size_t *length, loff_t *ppos)
1674{
1675	proc_dointvec_minmax(table, write, buffer, length, ppos);
1676
1677	return 0;
1678}
1679
1680#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1681static ssize_t sysfs_compact_node(struct device *dev,
1682			struct device_attribute *attr,
1683			const char *buf, size_t count)
1684{
1685	int nid = dev->id;
1686
1687	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1688		/* Flush pending updates to the LRU lists */
1689		lru_add_drain_all();
1690
1691		compact_node(nid);
1692	}
1693
1694	return count;
1695}
1696static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1697
1698int compaction_register_node(struct node *node)
1699{
1700	return device_create_file(&node->dev, &dev_attr_compact);
1701}
1702
1703void compaction_unregister_node(struct node *node)
1704{
1705	return device_remove_file(&node->dev, &dev_attr_compact);
1706}
1707#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1708
1709#endif /* CONFIG_COMPACTION */
1710