1/*
2 * DMA Pool allocator
3 *
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 *   Author: Matthew Wilcox <willy@linux.intel.com>
7 *
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
11 *
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device.  It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
16 *
17 * The current design of this allocator is fairly simple.  The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages.  Each page in the page_list is split into blocks of at
20 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page.  Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
23 */
24
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/dmapool.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/export.h>
31#include <linux/mutex.h>
32#include <linux/poison.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/stat.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/types.h>
39#include <linux/wait.h>
40
41#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42#define DMAPOOL_DEBUG 1
43#endif
44
45struct dma_pool {		/* the pool */
46	struct list_head page_list;
47	spinlock_t lock;
48	size_t size;
49	struct device *dev;
50	size_t allocation;
51	size_t boundary;
52	char name[32];
53	struct list_head pools;
54};
55
56struct dma_page {		/* cacheable header for 'allocation' bytes */
57	struct list_head page_list;
58	void *vaddr;
59	dma_addr_t dma;
60	unsigned int in_use;
61	unsigned int offset;
62};
63
64static DEFINE_MUTEX(pools_lock);
65static DEFINE_MUTEX(pools_reg_lock);
66
67static ssize_t
68show_pools(struct device *dev, struct device_attribute *attr, char *buf)
69{
70	unsigned temp;
71	unsigned size;
72	char *next;
73	struct dma_page *page;
74	struct dma_pool *pool;
75
76	next = buf;
77	size = PAGE_SIZE;
78
79	temp = scnprintf(next, size, "poolinfo - 0.1\n");
80	size -= temp;
81	next += temp;
82
83	mutex_lock(&pools_lock);
84	list_for_each_entry(pool, &dev->dma_pools, pools) {
85		unsigned pages = 0;
86		unsigned blocks = 0;
87
88		spin_lock_irq(&pool->lock);
89		list_for_each_entry(page, &pool->page_list, page_list) {
90			pages++;
91			blocks += page->in_use;
92		}
93		spin_unlock_irq(&pool->lock);
94
95		/* per-pool info, no real statistics yet */
96		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
97				 pool->name, blocks,
98				 pages * (pool->allocation / pool->size),
99				 pool->size, pages);
100		size -= temp;
101		next += temp;
102	}
103	mutex_unlock(&pools_lock);
104
105	return PAGE_SIZE - size;
106}
107
108static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
109
110/**
111 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
112 * @name: name of pool, for diagnostics
113 * @dev: device that will be doing the DMA
114 * @size: size of the blocks in this pool.
115 * @align: alignment requirement for blocks; must be a power of two
116 * @boundary: returned blocks won't cross this power of two boundary
117 * Context: !in_interrupt()
118 *
119 * Returns a dma allocation pool with the requested characteristics, or
120 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
121 * may be used to allocate memory.  Such memory will all have "consistent"
122 * DMA mappings, accessible by the device and its driver without using
123 * cache flushing primitives.  The actual size of blocks allocated may be
124 * larger than requested because of alignment.
125 *
126 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
127 * cross that size boundary.  This is useful for devices which have
128 * addressing restrictions on individual DMA transfers, such as not crossing
129 * boundaries of 4KBytes.
130 */
131struct dma_pool *dma_pool_create(const char *name, struct device *dev,
132				 size_t size, size_t align, size_t boundary)
133{
134	struct dma_pool *retval;
135	size_t allocation;
136	bool empty = false;
137
138	if (align == 0)
139		align = 1;
140	else if (align & (align - 1))
141		return NULL;
142
143	if (size == 0)
144		return NULL;
145	else if (size < 4)
146		size = 4;
147
148	if ((size % align) != 0)
149		size = ALIGN(size, align);
150
151	allocation = max_t(size_t, size, PAGE_SIZE);
152
153	if (!boundary)
154		boundary = allocation;
155	else if ((boundary < size) || (boundary & (boundary - 1)))
156		return NULL;
157
158	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
159	if (!retval)
160		return retval;
161
162	strlcpy(retval->name, name, sizeof(retval->name));
163
164	retval->dev = dev;
165
166	INIT_LIST_HEAD(&retval->page_list);
167	spin_lock_init(&retval->lock);
168	retval->size = size;
169	retval->boundary = boundary;
170	retval->allocation = allocation;
171
172	INIT_LIST_HEAD(&retval->pools);
173
174	/*
175	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
176	 * pools_reg_lock ensures that there is not a race between
177	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
178	 * when the first invocation of dma_pool_create() failed on
179	 * device_create_file() and the second assumes that it has been done (I
180	 * know it is a short window).
181	 */
182	mutex_lock(&pools_reg_lock);
183	mutex_lock(&pools_lock);
184	if (list_empty(&dev->dma_pools))
185		empty = true;
186	list_add(&retval->pools, &dev->dma_pools);
187	mutex_unlock(&pools_lock);
188	if (empty) {
189		int err;
190
191		err = device_create_file(dev, &dev_attr_pools);
192		if (err) {
193			mutex_lock(&pools_lock);
194			list_del(&retval->pools);
195			mutex_unlock(&pools_lock);
196			mutex_unlock(&pools_reg_lock);
197			kfree(retval);
198			return NULL;
199		}
200	}
201	mutex_unlock(&pools_reg_lock);
202	return retval;
203}
204EXPORT_SYMBOL(dma_pool_create);
205
206static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
207{
208	unsigned int offset = 0;
209	unsigned int next_boundary = pool->boundary;
210
211	do {
212		unsigned int next = offset + pool->size;
213		if (unlikely((next + pool->size) >= next_boundary)) {
214			next = next_boundary;
215			next_boundary += pool->boundary;
216		}
217		*(int *)(page->vaddr + offset) = next;
218		offset = next;
219	} while (offset < pool->allocation);
220}
221
222static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
223{
224	struct dma_page *page;
225
226	page = kmalloc(sizeof(*page), mem_flags);
227	if (!page)
228		return NULL;
229	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
230					 &page->dma, mem_flags);
231	if (page->vaddr) {
232#ifdef	DMAPOOL_DEBUG
233		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
234#endif
235		pool_initialise_page(pool, page);
236		page->in_use = 0;
237		page->offset = 0;
238	} else {
239		kfree(page);
240		page = NULL;
241	}
242	return page;
243}
244
245static inline int is_page_busy(struct dma_page *page)
246{
247	return page->in_use != 0;
248}
249
250static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
251{
252	dma_addr_t dma = page->dma;
253
254#ifdef	DMAPOOL_DEBUG
255	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
256#endif
257	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
258	list_del(&page->page_list);
259	kfree(page);
260}
261
262/**
263 * dma_pool_destroy - destroys a pool of dma memory blocks.
264 * @pool: dma pool that will be destroyed
265 * Context: !in_interrupt()
266 *
267 * Caller guarantees that no more memory from the pool is in use,
268 * and that nothing will try to use the pool after this call.
269 */
270void dma_pool_destroy(struct dma_pool *pool)
271{
272	bool empty = false;
273
274	mutex_lock(&pools_reg_lock);
275	mutex_lock(&pools_lock);
276	list_del(&pool->pools);
277	if (pool->dev && list_empty(&pool->dev->dma_pools))
278		empty = true;
279	mutex_unlock(&pools_lock);
280	if (empty)
281		device_remove_file(pool->dev, &dev_attr_pools);
282	mutex_unlock(&pools_reg_lock);
283
284	while (!list_empty(&pool->page_list)) {
285		struct dma_page *page;
286		page = list_entry(pool->page_list.next,
287				  struct dma_page, page_list);
288		if (is_page_busy(page)) {
289			if (pool->dev)
290				dev_err(pool->dev,
291					"dma_pool_destroy %s, %p busy\n",
292					pool->name, page->vaddr);
293			else
294				printk(KERN_ERR
295				       "dma_pool_destroy %s, %p busy\n",
296				       pool->name, page->vaddr);
297			/* leak the still-in-use consistent memory */
298			list_del(&page->page_list);
299			kfree(page);
300		} else
301			pool_free_page(pool, page);
302	}
303
304	kfree(pool);
305}
306EXPORT_SYMBOL(dma_pool_destroy);
307
308/**
309 * dma_pool_alloc - get a block of consistent memory
310 * @pool: dma pool that will produce the block
311 * @mem_flags: GFP_* bitmask
312 * @handle: pointer to dma address of block
313 *
314 * This returns the kernel virtual address of a currently unused block,
315 * and reports its dma address through the handle.
316 * If such a memory block can't be allocated, %NULL is returned.
317 */
318void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
319		     dma_addr_t *handle)
320{
321	unsigned long flags;
322	struct dma_page *page;
323	size_t offset;
324	void *retval;
325
326	might_sleep_if(mem_flags & __GFP_WAIT);
327
328	spin_lock_irqsave(&pool->lock, flags);
329	list_for_each_entry(page, &pool->page_list, page_list) {
330		if (page->offset < pool->allocation)
331			goto ready;
332	}
333
334	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
335	spin_unlock_irqrestore(&pool->lock, flags);
336
337	page = pool_alloc_page(pool, mem_flags);
338	if (!page)
339		return NULL;
340
341	spin_lock_irqsave(&pool->lock, flags);
342
343	list_add(&page->page_list, &pool->page_list);
344 ready:
345	page->in_use++;
346	offset = page->offset;
347	page->offset = *(int *)(page->vaddr + offset);
348	retval = offset + page->vaddr;
349	*handle = offset + page->dma;
350#ifdef	DMAPOOL_DEBUG
351	{
352		int i;
353		u8 *data = retval;
354		/* page->offset is stored in first 4 bytes */
355		for (i = sizeof(page->offset); i < pool->size; i++) {
356			if (data[i] == POOL_POISON_FREED)
357				continue;
358			if (pool->dev)
359				dev_err(pool->dev,
360					"dma_pool_alloc %s, %p (corrupted)\n",
361					pool->name, retval);
362			else
363				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
364					pool->name, retval);
365
366			/*
367			 * Dump the first 4 bytes even if they are not
368			 * POOL_POISON_FREED
369			 */
370			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
371					data, pool->size, 1);
372			break;
373		}
374	}
375	memset(retval, POOL_POISON_ALLOCATED, pool->size);
376#endif
377	spin_unlock_irqrestore(&pool->lock, flags);
378	return retval;
379}
380EXPORT_SYMBOL(dma_pool_alloc);
381
382static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
383{
384	struct dma_page *page;
385
386	list_for_each_entry(page, &pool->page_list, page_list) {
387		if (dma < page->dma)
388			continue;
389		if (dma < (page->dma + pool->allocation))
390			return page;
391	}
392	return NULL;
393}
394
395/**
396 * dma_pool_free - put block back into dma pool
397 * @pool: the dma pool holding the block
398 * @vaddr: virtual address of block
399 * @dma: dma address of block
400 *
401 * Caller promises neither device nor driver will again touch this block
402 * unless it is first re-allocated.
403 */
404void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
405{
406	struct dma_page *page;
407	unsigned long flags;
408	unsigned int offset;
409
410	spin_lock_irqsave(&pool->lock, flags);
411	page = pool_find_page(pool, dma);
412	if (!page) {
413		spin_unlock_irqrestore(&pool->lock, flags);
414		if (pool->dev)
415			dev_err(pool->dev,
416				"dma_pool_free %s, %p/%lx (bad dma)\n",
417				pool->name, vaddr, (unsigned long)dma);
418		else
419			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
420			       pool->name, vaddr, (unsigned long)dma);
421		return;
422	}
423
424	offset = vaddr - page->vaddr;
425#ifdef	DMAPOOL_DEBUG
426	if ((dma - page->dma) != offset) {
427		spin_unlock_irqrestore(&pool->lock, flags);
428		if (pool->dev)
429			dev_err(pool->dev,
430				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
431				pool->name, vaddr, (unsigned long long)dma);
432		else
433			printk(KERN_ERR
434			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
435			       pool->name, vaddr, (unsigned long long)dma);
436		return;
437	}
438	{
439		unsigned int chain = page->offset;
440		while (chain < pool->allocation) {
441			if (chain != offset) {
442				chain = *(int *)(page->vaddr + chain);
443				continue;
444			}
445			spin_unlock_irqrestore(&pool->lock, flags);
446			if (pool->dev)
447				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
448					"already free\n", pool->name,
449					(unsigned long long)dma);
450			else
451				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
452					"already free\n", pool->name,
453					(unsigned long long)dma);
454			return;
455		}
456	}
457	memset(vaddr, POOL_POISON_FREED, pool->size);
458#endif
459
460	page->in_use--;
461	*(int *)vaddr = page->offset;
462	page->offset = offset;
463	/*
464	 * Resist a temptation to do
465	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
466	 * Better have a few empty pages hang around.
467	 */
468	spin_unlock_irqrestore(&pool->lock, flags);
469}
470EXPORT_SYMBOL(dma_pool_free);
471
472/*
473 * Managed DMA pool
474 */
475static void dmam_pool_release(struct device *dev, void *res)
476{
477	struct dma_pool *pool = *(struct dma_pool **)res;
478
479	dma_pool_destroy(pool);
480}
481
482static int dmam_pool_match(struct device *dev, void *res, void *match_data)
483{
484	return *(struct dma_pool **)res == match_data;
485}
486
487/**
488 * dmam_pool_create - Managed dma_pool_create()
489 * @name: name of pool, for diagnostics
490 * @dev: device that will be doing the DMA
491 * @size: size of the blocks in this pool.
492 * @align: alignment requirement for blocks; must be a power of two
493 * @allocation: returned blocks won't cross this boundary (or zero)
494 *
495 * Managed dma_pool_create().  DMA pool created with this function is
496 * automatically destroyed on driver detach.
497 */
498struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
499				  size_t size, size_t align, size_t allocation)
500{
501	struct dma_pool **ptr, *pool;
502
503	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
504	if (!ptr)
505		return NULL;
506
507	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
508	if (pool)
509		devres_add(dev, ptr);
510	else
511		devres_free(ptr);
512
513	return pool;
514}
515EXPORT_SYMBOL(dmam_pool_create);
516
517/**
518 * dmam_pool_destroy - Managed dma_pool_destroy()
519 * @pool: dma pool that will be destroyed
520 *
521 * Managed dma_pool_destroy().
522 */
523void dmam_pool_destroy(struct dma_pool *pool)
524{
525	struct device *dev = pool->dev;
526
527	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
528}
529EXPORT_SYMBOL(dmam_pool_destroy);
530