1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/export.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/capability.h>
17#include <linux/kernel_stat.h>
18#include <linux/gfp.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
27#include <linux/backing-dev.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/cpuset.h>
32#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33#include <linux/hugetlb.h>
34#include <linux/memcontrol.h>
35#include <linux/cleancache.h>
36#include <linux/rmap.h>
37#include "internal.h"
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
42/*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45#include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995  Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
64 *  ->i_mmap_rwsem		(truncate_pagecache)
65 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66 *      ->swap_lock		(exclusive_swap_page, others)
67 *        ->mapping->tree_lock
68 *
69 *  ->i_mutex
70 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
71 *
72 *  ->mmap_sem
73 *    ->i_mmap_rwsem
74 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76 *
77 *  ->mmap_sem
78 *    ->lock_page		(access_process_vm)
79 *
80 *  ->i_mutex			(generic_perform_write)
81 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82 *
83 *  bdi->wb.list_lock
84 *    sb_lock			(fs/fs-writeback.c)
85 *    ->mapping->tree_lock	(__sync_single_inode)
86 *
87 *  ->i_mmap_rwsem
88 *    ->anon_vma.lock		(vma_adjust)
89 *
90 *  ->anon_vma.lock
91 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92 *
93 *  ->page_table_lock or pte_lock
94 *    ->swap_lock		(try_to_unmap_one)
95 *    ->private_lock		(try_to_unmap_one)
96 *    ->tree_lock		(try_to_unmap_one)
97 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99 *    ->private_lock		(page_remove_rmap->set_page_dirty)
100 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
104 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
105 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_rwsem
108 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109 */
110
111static void page_cache_tree_delete(struct address_space *mapping,
112				   struct page *page, void *shadow)
113{
114	struct radix_tree_node *node;
115	unsigned long index;
116	unsigned int offset;
117	unsigned int tag;
118	void **slot;
119
120	VM_BUG_ON(!PageLocked(page));
121
122	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124	if (shadow) {
125		mapping->nrshadows++;
126		/*
127		 * Make sure the nrshadows update is committed before
128		 * the nrpages update so that final truncate racing
129		 * with reclaim does not see both counters 0 at the
130		 * same time and miss a shadow entry.
131		 */
132		smp_wmb();
133	}
134	mapping->nrpages--;
135
136	if (!node) {
137		/* Clear direct pointer tags in root node */
138		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139		radix_tree_replace_slot(slot, shadow);
140		return;
141	}
142
143	/* Clear tree tags for the removed page */
144	index = page->index;
145	offset = index & RADIX_TREE_MAP_MASK;
146	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147		if (test_bit(offset, node->tags[tag]))
148			radix_tree_tag_clear(&mapping->page_tree, index, tag);
149	}
150
151	/* Delete page, swap shadow entry */
152	radix_tree_replace_slot(slot, shadow);
153	workingset_node_pages_dec(node);
154	if (shadow)
155		workingset_node_shadows_inc(node);
156	else
157		if (__radix_tree_delete_node(&mapping->page_tree, node))
158			return;
159
160	/*
161	 * Track node that only contains shadow entries.
162	 *
163	 * Avoid acquiring the list_lru lock if already tracked.  The
164	 * list_empty() test is safe as node->private_list is
165	 * protected by mapping->tree_lock.
166	 */
167	if (!workingset_node_pages(node) &&
168	    list_empty(&node->private_list)) {
169		node->private_data = mapping;
170		list_lru_add(&workingset_shadow_nodes, &node->private_list);
171	}
172}
173
174/*
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe.  The caller must hold the mapping's tree_lock.
178 */
179void __delete_from_page_cache(struct page *page, void *shadow)
180{
181	struct address_space *mapping = page->mapping;
182
183	trace_mm_filemap_delete_from_page_cache(page);
184	/*
185	 * if we're uptodate, flush out into the cleancache, otherwise
186	 * invalidate any existing cleancache entries.  We can't leave
187	 * stale data around in the cleancache once our page is gone
188	 */
189	if (PageUptodate(page) && PageMappedToDisk(page))
190		cleancache_put_page(page);
191	else
192		cleancache_invalidate_page(mapping, page);
193
194	page_cache_tree_delete(mapping, page, shadow);
195
196	page->mapping = NULL;
197	/* Leave page->index set: truncation lookup relies upon it */
198
199	__dec_zone_page_state(page, NR_FILE_PAGES);
200	if (PageSwapBacked(page))
201		__dec_zone_page_state(page, NR_SHMEM);
202	BUG_ON(page_mapped(page));
203
204	/*
205	 * At this point page must be either written or cleaned by truncate.
206	 * Dirty page here signals a bug and loss of unwritten data.
207	 *
208	 * This fixes dirty accounting after removing the page entirely but
209	 * leaves PageDirty set: it has no effect for truncated page and
210	 * anyway will be cleared before returning page into buddy allocator.
211	 */
212	if (WARN_ON_ONCE(PageDirty(page)))
213		account_page_cleaned(page, mapping);
214}
215
216/**
217 * delete_from_page_cache - delete page from page cache
218 * @page: the page which the kernel is trying to remove from page cache
219 *
220 * This must be called only on pages that have been verified to be in the page
221 * cache and locked.  It will never put the page into the free list, the caller
222 * has a reference on the page.
223 */
224void delete_from_page_cache(struct page *page)
225{
226	struct address_space *mapping = page->mapping;
227	void (*freepage)(struct page *);
228
229	BUG_ON(!PageLocked(page));
230
231	freepage = mapping->a_ops->freepage;
232	spin_lock_irq(&mapping->tree_lock);
233	__delete_from_page_cache(page, NULL);
234	spin_unlock_irq(&mapping->tree_lock);
235
236	if (freepage)
237		freepage(page);
238	page_cache_release(page);
239}
240EXPORT_SYMBOL(delete_from_page_cache);
241
242static int filemap_check_errors(struct address_space *mapping)
243{
244	int ret = 0;
245	/* Check for outstanding write errors */
246	if (test_bit(AS_ENOSPC, &mapping->flags) &&
247	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
248		ret = -ENOSPC;
249	if (test_bit(AS_EIO, &mapping->flags) &&
250	    test_and_clear_bit(AS_EIO, &mapping->flags))
251		ret = -EIO;
252	return ret;
253}
254
255/**
256 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
257 * @mapping:	address space structure to write
258 * @start:	offset in bytes where the range starts
259 * @end:	offset in bytes where the range ends (inclusive)
260 * @sync_mode:	enable synchronous operation
261 *
262 * Start writeback against all of a mapping's dirty pages that lie
263 * within the byte offsets <start, end> inclusive.
264 *
265 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
266 * opposed to a regular memory cleansing writeback.  The difference between
267 * these two operations is that if a dirty page/buffer is encountered, it must
268 * be waited upon, and not just skipped over.
269 */
270int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
271				loff_t end, int sync_mode)
272{
273	int ret;
274	struct writeback_control wbc = {
275		.sync_mode = sync_mode,
276		.nr_to_write = LONG_MAX,
277		.range_start = start,
278		.range_end = end,
279	};
280
281	if (!mapping_cap_writeback_dirty(mapping))
282		return 0;
283
284	ret = do_writepages(mapping, &wbc);
285	return ret;
286}
287
288static inline int __filemap_fdatawrite(struct address_space *mapping,
289	int sync_mode)
290{
291	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
292}
293
294int filemap_fdatawrite(struct address_space *mapping)
295{
296	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
297}
298EXPORT_SYMBOL(filemap_fdatawrite);
299
300int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301				loff_t end)
302{
303	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
304}
305EXPORT_SYMBOL(filemap_fdatawrite_range);
306
307/**
308 * filemap_flush - mostly a non-blocking flush
309 * @mapping:	target address_space
310 *
311 * This is a mostly non-blocking flush.  Not suitable for data-integrity
312 * purposes - I/O may not be started against all dirty pages.
313 */
314int filemap_flush(struct address_space *mapping)
315{
316	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
317}
318EXPORT_SYMBOL(filemap_flush);
319
320/**
321 * filemap_fdatawait_range - wait for writeback to complete
322 * @mapping:		address space structure to wait for
323 * @start_byte:		offset in bytes where the range starts
324 * @end_byte:		offset in bytes where the range ends (inclusive)
325 *
326 * Walk the list of under-writeback pages of the given address space
327 * in the given range and wait for all of them.
328 */
329int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
330			    loff_t end_byte)
331{
332	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
333	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
334	struct pagevec pvec;
335	int nr_pages;
336	int ret2, ret = 0;
337
338	if (end_byte < start_byte)
339		goto out;
340
341	pagevec_init(&pvec, 0);
342	while ((index <= end) &&
343			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
344			PAGECACHE_TAG_WRITEBACK,
345			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
346		unsigned i;
347
348		for (i = 0; i < nr_pages; i++) {
349			struct page *page = pvec.pages[i];
350
351			/* until radix tree lookup accepts end_index */
352			if (page->index > end)
353				continue;
354
355			wait_on_page_writeback(page);
356			if (TestClearPageError(page))
357				ret = -EIO;
358		}
359		pagevec_release(&pvec);
360		cond_resched();
361	}
362out:
363	ret2 = filemap_check_errors(mapping);
364	if (!ret)
365		ret = ret2;
366
367	return ret;
368}
369EXPORT_SYMBOL(filemap_fdatawait_range);
370
371/**
372 * filemap_fdatawait - wait for all under-writeback pages to complete
373 * @mapping: address space structure to wait for
374 *
375 * Walk the list of under-writeback pages of the given address space
376 * and wait for all of them.
377 */
378int filemap_fdatawait(struct address_space *mapping)
379{
380	loff_t i_size = i_size_read(mapping->host);
381
382	if (i_size == 0)
383		return 0;
384
385	return filemap_fdatawait_range(mapping, 0, i_size - 1);
386}
387EXPORT_SYMBOL(filemap_fdatawait);
388
389int filemap_write_and_wait(struct address_space *mapping)
390{
391	int err = 0;
392
393	if (mapping->nrpages) {
394		err = filemap_fdatawrite(mapping);
395		/*
396		 * Even if the above returned error, the pages may be
397		 * written partially (e.g. -ENOSPC), so we wait for it.
398		 * But the -EIO is special case, it may indicate the worst
399		 * thing (e.g. bug) happened, so we avoid waiting for it.
400		 */
401		if (err != -EIO) {
402			int err2 = filemap_fdatawait(mapping);
403			if (!err)
404				err = err2;
405		}
406	} else {
407		err = filemap_check_errors(mapping);
408	}
409	return err;
410}
411EXPORT_SYMBOL(filemap_write_and_wait);
412
413/**
414 * filemap_write_and_wait_range - write out & wait on a file range
415 * @mapping:	the address_space for the pages
416 * @lstart:	offset in bytes where the range starts
417 * @lend:	offset in bytes where the range ends (inclusive)
418 *
419 * Write out and wait upon file offsets lstart->lend, inclusive.
420 *
421 * Note that `lend' is inclusive (describes the last byte to be written) so
422 * that this function can be used to write to the very end-of-file (end = -1).
423 */
424int filemap_write_and_wait_range(struct address_space *mapping,
425				 loff_t lstart, loff_t lend)
426{
427	int err = 0;
428
429	if (mapping->nrpages) {
430		err = __filemap_fdatawrite_range(mapping, lstart, lend,
431						 WB_SYNC_ALL);
432		/* See comment of filemap_write_and_wait() */
433		if (err != -EIO) {
434			int err2 = filemap_fdatawait_range(mapping,
435						lstart, lend);
436			if (!err)
437				err = err2;
438		}
439	} else {
440		err = filemap_check_errors(mapping);
441	}
442	return err;
443}
444EXPORT_SYMBOL(filemap_write_and_wait_range);
445
446/**
447 * replace_page_cache_page - replace a pagecache page with a new one
448 * @old:	page to be replaced
449 * @new:	page to replace with
450 * @gfp_mask:	allocation mode
451 *
452 * This function replaces a page in the pagecache with a new one.  On
453 * success it acquires the pagecache reference for the new page and
454 * drops it for the old page.  Both the old and new pages must be
455 * locked.  This function does not add the new page to the LRU, the
456 * caller must do that.
457 *
458 * The remove + add is atomic.  The only way this function can fail is
459 * memory allocation failure.
460 */
461int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
462{
463	int error;
464
465	VM_BUG_ON_PAGE(!PageLocked(old), old);
466	VM_BUG_ON_PAGE(!PageLocked(new), new);
467	VM_BUG_ON_PAGE(new->mapping, new);
468
469	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
470	if (!error) {
471		struct address_space *mapping = old->mapping;
472		void (*freepage)(struct page *);
473
474		pgoff_t offset = old->index;
475		freepage = mapping->a_ops->freepage;
476
477		page_cache_get(new);
478		new->mapping = mapping;
479		new->index = offset;
480
481		spin_lock_irq(&mapping->tree_lock);
482		__delete_from_page_cache(old, NULL);
483		error = radix_tree_insert(&mapping->page_tree, offset, new);
484		BUG_ON(error);
485		mapping->nrpages++;
486		__inc_zone_page_state(new, NR_FILE_PAGES);
487		if (PageSwapBacked(new))
488			__inc_zone_page_state(new, NR_SHMEM);
489		spin_unlock_irq(&mapping->tree_lock);
490		mem_cgroup_migrate(old, new, true);
491		radix_tree_preload_end();
492		if (freepage)
493			freepage(old);
494		page_cache_release(old);
495	}
496
497	return error;
498}
499EXPORT_SYMBOL_GPL(replace_page_cache_page);
500
501static int page_cache_tree_insert(struct address_space *mapping,
502				  struct page *page, void **shadowp)
503{
504	struct radix_tree_node *node;
505	void **slot;
506	int error;
507
508	error = __radix_tree_create(&mapping->page_tree, page->index,
509				    &node, &slot);
510	if (error)
511		return error;
512	if (*slot) {
513		void *p;
514
515		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
516		if (!radix_tree_exceptional_entry(p))
517			return -EEXIST;
518		if (shadowp)
519			*shadowp = p;
520		mapping->nrshadows--;
521		if (node)
522			workingset_node_shadows_dec(node);
523	}
524	radix_tree_replace_slot(slot, page);
525	mapping->nrpages++;
526	if (node) {
527		workingset_node_pages_inc(node);
528		/*
529		 * Don't track node that contains actual pages.
530		 *
531		 * Avoid acquiring the list_lru lock if already
532		 * untracked.  The list_empty() test is safe as
533		 * node->private_list is protected by
534		 * mapping->tree_lock.
535		 */
536		if (!list_empty(&node->private_list))
537			list_lru_del(&workingset_shadow_nodes,
538				     &node->private_list);
539	}
540	return 0;
541}
542
543static int __add_to_page_cache_locked(struct page *page,
544				      struct address_space *mapping,
545				      pgoff_t offset, gfp_t gfp_mask,
546				      void **shadowp)
547{
548	int huge = PageHuge(page);
549	struct mem_cgroup *memcg;
550	int error;
551
552	VM_BUG_ON_PAGE(!PageLocked(page), page);
553	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
554
555	if (!huge) {
556		error = mem_cgroup_try_charge(page, current->mm,
557					      gfp_mask, &memcg);
558		if (error)
559			return error;
560	}
561
562	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
563	if (error) {
564		if (!huge)
565			mem_cgroup_cancel_charge(page, memcg);
566		return error;
567	}
568
569	page_cache_get(page);
570	page->mapping = mapping;
571	page->index = offset;
572
573	spin_lock_irq(&mapping->tree_lock);
574	error = page_cache_tree_insert(mapping, page, shadowp);
575	radix_tree_preload_end();
576	if (unlikely(error))
577		goto err_insert;
578	__inc_zone_page_state(page, NR_FILE_PAGES);
579	spin_unlock_irq(&mapping->tree_lock);
580	if (!huge)
581		mem_cgroup_commit_charge(page, memcg, false);
582	trace_mm_filemap_add_to_page_cache(page);
583	return 0;
584err_insert:
585	page->mapping = NULL;
586	/* Leave page->index set: truncation relies upon it */
587	spin_unlock_irq(&mapping->tree_lock);
588	if (!huge)
589		mem_cgroup_cancel_charge(page, memcg);
590	page_cache_release(page);
591	return error;
592}
593
594/**
595 * add_to_page_cache_locked - add a locked page to the pagecache
596 * @page:	page to add
597 * @mapping:	the page's address_space
598 * @offset:	page index
599 * @gfp_mask:	page allocation mode
600 *
601 * This function is used to add a page to the pagecache. It must be locked.
602 * This function does not add the page to the LRU.  The caller must do that.
603 */
604int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
605		pgoff_t offset, gfp_t gfp_mask)
606{
607	return __add_to_page_cache_locked(page, mapping, offset,
608					  gfp_mask, NULL);
609}
610EXPORT_SYMBOL(add_to_page_cache_locked);
611
612int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
613				pgoff_t offset, gfp_t gfp_mask)
614{
615	void *shadow = NULL;
616	int ret;
617
618	__set_page_locked(page);
619	ret = __add_to_page_cache_locked(page, mapping, offset,
620					 gfp_mask, &shadow);
621	if (unlikely(ret))
622		__clear_page_locked(page);
623	else {
624		/*
625		 * The page might have been evicted from cache only
626		 * recently, in which case it should be activated like
627		 * any other repeatedly accessed page.
628		 */
629		if (shadow && workingset_refault(shadow)) {
630			SetPageActive(page);
631			workingset_activation(page);
632		} else
633			ClearPageActive(page);
634		lru_cache_add(page);
635	}
636	return ret;
637}
638EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
639
640#ifdef CONFIG_NUMA
641struct page *__page_cache_alloc(gfp_t gfp)
642{
643	int n;
644	struct page *page;
645
646	if (cpuset_do_page_mem_spread()) {
647		unsigned int cpuset_mems_cookie;
648		do {
649			cpuset_mems_cookie = read_mems_allowed_begin();
650			n = cpuset_mem_spread_node();
651			page = alloc_pages_exact_node(n, gfp, 0);
652		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
653
654		return page;
655	}
656	return alloc_pages(gfp, 0);
657}
658EXPORT_SYMBOL(__page_cache_alloc);
659#endif
660
661/*
662 * In order to wait for pages to become available there must be
663 * waitqueues associated with pages. By using a hash table of
664 * waitqueues where the bucket discipline is to maintain all
665 * waiters on the same queue and wake all when any of the pages
666 * become available, and for the woken contexts to check to be
667 * sure the appropriate page became available, this saves space
668 * at a cost of "thundering herd" phenomena during rare hash
669 * collisions.
670 */
671wait_queue_head_t *page_waitqueue(struct page *page)
672{
673	const struct zone *zone = page_zone(page);
674
675	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
676}
677EXPORT_SYMBOL(page_waitqueue);
678
679void wait_on_page_bit(struct page *page, int bit_nr)
680{
681	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
682
683	if (test_bit(bit_nr, &page->flags))
684		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
685							TASK_UNINTERRUPTIBLE);
686}
687EXPORT_SYMBOL(wait_on_page_bit);
688
689int wait_on_page_bit_killable(struct page *page, int bit_nr)
690{
691	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
692
693	if (!test_bit(bit_nr, &page->flags))
694		return 0;
695
696	return __wait_on_bit(page_waitqueue(page), &wait,
697			     bit_wait_io, TASK_KILLABLE);
698}
699
700int wait_on_page_bit_killable_timeout(struct page *page,
701				       int bit_nr, unsigned long timeout)
702{
703	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
704
705	wait.key.timeout = jiffies + timeout;
706	if (!test_bit(bit_nr, &page->flags))
707		return 0;
708	return __wait_on_bit(page_waitqueue(page), &wait,
709			     bit_wait_io_timeout, TASK_KILLABLE);
710}
711EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
712
713/**
714 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
715 * @page: Page defining the wait queue of interest
716 * @waiter: Waiter to add to the queue
717 *
718 * Add an arbitrary @waiter to the wait queue for the nominated @page.
719 */
720void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
721{
722	wait_queue_head_t *q = page_waitqueue(page);
723	unsigned long flags;
724
725	spin_lock_irqsave(&q->lock, flags);
726	__add_wait_queue(q, waiter);
727	spin_unlock_irqrestore(&q->lock, flags);
728}
729EXPORT_SYMBOL_GPL(add_page_wait_queue);
730
731/**
732 * unlock_page - unlock a locked page
733 * @page: the page
734 *
735 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
736 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
737 * mechanism between PageLocked pages and PageWriteback pages is shared.
738 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
739 *
740 * The mb is necessary to enforce ordering between the clear_bit and the read
741 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
742 */
743void unlock_page(struct page *page)
744{
745	VM_BUG_ON_PAGE(!PageLocked(page), page);
746	clear_bit_unlock(PG_locked, &page->flags);
747	smp_mb__after_atomic();
748	wake_up_page(page, PG_locked);
749}
750EXPORT_SYMBOL(unlock_page);
751
752/**
753 * end_page_writeback - end writeback against a page
754 * @page: the page
755 */
756void end_page_writeback(struct page *page)
757{
758	/*
759	 * TestClearPageReclaim could be used here but it is an atomic
760	 * operation and overkill in this particular case. Failing to
761	 * shuffle a page marked for immediate reclaim is too mild to
762	 * justify taking an atomic operation penalty at the end of
763	 * ever page writeback.
764	 */
765	if (PageReclaim(page)) {
766		ClearPageReclaim(page);
767		rotate_reclaimable_page(page);
768	}
769
770	if (!test_clear_page_writeback(page))
771		BUG();
772
773	smp_mb__after_atomic();
774	wake_up_page(page, PG_writeback);
775}
776EXPORT_SYMBOL(end_page_writeback);
777
778/*
779 * After completing I/O on a page, call this routine to update the page
780 * flags appropriately
781 */
782void page_endio(struct page *page, int rw, int err)
783{
784	if (rw == READ) {
785		if (!err) {
786			SetPageUptodate(page);
787		} else {
788			ClearPageUptodate(page);
789			SetPageError(page);
790		}
791		unlock_page(page);
792	} else { /* rw == WRITE */
793		if (err) {
794			SetPageError(page);
795			if (page->mapping)
796				mapping_set_error(page->mapping, err);
797		}
798		end_page_writeback(page);
799	}
800}
801EXPORT_SYMBOL_GPL(page_endio);
802
803/**
804 * __lock_page - get a lock on the page, assuming we need to sleep to get it
805 * @page: the page to lock
806 */
807void __lock_page(struct page *page)
808{
809	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
810
811	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
812							TASK_UNINTERRUPTIBLE);
813}
814EXPORT_SYMBOL(__lock_page);
815
816int __lock_page_killable(struct page *page)
817{
818	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
819
820	return __wait_on_bit_lock(page_waitqueue(page), &wait,
821					bit_wait_io, TASK_KILLABLE);
822}
823EXPORT_SYMBOL_GPL(__lock_page_killable);
824
825/*
826 * Return values:
827 * 1 - page is locked; mmap_sem is still held.
828 * 0 - page is not locked.
829 *     mmap_sem has been released (up_read()), unless flags had both
830 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
831 *     which case mmap_sem is still held.
832 *
833 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
834 * with the page locked and the mmap_sem unperturbed.
835 */
836int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
837			 unsigned int flags)
838{
839	if (flags & FAULT_FLAG_ALLOW_RETRY) {
840		/*
841		 * CAUTION! In this case, mmap_sem is not released
842		 * even though return 0.
843		 */
844		if (flags & FAULT_FLAG_RETRY_NOWAIT)
845			return 0;
846
847		up_read(&mm->mmap_sem);
848		if (flags & FAULT_FLAG_KILLABLE)
849			wait_on_page_locked_killable(page);
850		else
851			wait_on_page_locked(page);
852		return 0;
853	} else {
854		if (flags & FAULT_FLAG_KILLABLE) {
855			int ret;
856
857			ret = __lock_page_killable(page);
858			if (ret) {
859				up_read(&mm->mmap_sem);
860				return 0;
861			}
862		} else
863			__lock_page(page);
864		return 1;
865	}
866}
867
868/**
869 * page_cache_next_hole - find the next hole (not-present entry)
870 * @mapping: mapping
871 * @index: index
872 * @max_scan: maximum range to search
873 *
874 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
875 * lowest indexed hole.
876 *
877 * Returns: the index of the hole if found, otherwise returns an index
878 * outside of the set specified (in which case 'return - index >=
879 * max_scan' will be true). In rare cases of index wrap-around, 0 will
880 * be returned.
881 *
882 * page_cache_next_hole may be called under rcu_read_lock. However,
883 * like radix_tree_gang_lookup, this will not atomically search a
884 * snapshot of the tree at a single point in time. For example, if a
885 * hole is created at index 5, then subsequently a hole is created at
886 * index 10, page_cache_next_hole covering both indexes may return 10
887 * if called under rcu_read_lock.
888 */
889pgoff_t page_cache_next_hole(struct address_space *mapping,
890			     pgoff_t index, unsigned long max_scan)
891{
892	unsigned long i;
893
894	for (i = 0; i < max_scan; i++) {
895		struct page *page;
896
897		page = radix_tree_lookup(&mapping->page_tree, index);
898		if (!page || radix_tree_exceptional_entry(page))
899			break;
900		index++;
901		if (index == 0)
902			break;
903	}
904
905	return index;
906}
907EXPORT_SYMBOL(page_cache_next_hole);
908
909/**
910 * page_cache_prev_hole - find the prev hole (not-present entry)
911 * @mapping: mapping
912 * @index: index
913 * @max_scan: maximum range to search
914 *
915 * Search backwards in the range [max(index-max_scan+1, 0), index] for
916 * the first hole.
917 *
918 * Returns: the index of the hole if found, otherwise returns an index
919 * outside of the set specified (in which case 'index - return >=
920 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
921 * will be returned.
922 *
923 * page_cache_prev_hole may be called under rcu_read_lock. However,
924 * like radix_tree_gang_lookup, this will not atomically search a
925 * snapshot of the tree at a single point in time. For example, if a
926 * hole is created at index 10, then subsequently a hole is created at
927 * index 5, page_cache_prev_hole covering both indexes may return 5 if
928 * called under rcu_read_lock.
929 */
930pgoff_t page_cache_prev_hole(struct address_space *mapping,
931			     pgoff_t index, unsigned long max_scan)
932{
933	unsigned long i;
934
935	for (i = 0; i < max_scan; i++) {
936		struct page *page;
937
938		page = radix_tree_lookup(&mapping->page_tree, index);
939		if (!page || radix_tree_exceptional_entry(page))
940			break;
941		index--;
942		if (index == ULONG_MAX)
943			break;
944	}
945
946	return index;
947}
948EXPORT_SYMBOL(page_cache_prev_hole);
949
950/**
951 * find_get_entry - find and get a page cache entry
952 * @mapping: the address_space to search
953 * @offset: the page cache index
954 *
955 * Looks up the page cache slot at @mapping & @offset.  If there is a
956 * page cache page, it is returned with an increased refcount.
957 *
958 * If the slot holds a shadow entry of a previously evicted page, or a
959 * swap entry from shmem/tmpfs, it is returned.
960 *
961 * Otherwise, %NULL is returned.
962 */
963struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
964{
965	void **pagep;
966	struct page *page;
967
968	rcu_read_lock();
969repeat:
970	page = NULL;
971	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
972	if (pagep) {
973		page = radix_tree_deref_slot(pagep);
974		if (unlikely(!page))
975			goto out;
976		if (radix_tree_exception(page)) {
977			if (radix_tree_deref_retry(page))
978				goto repeat;
979			/*
980			 * A shadow entry of a recently evicted page,
981			 * or a swap entry from shmem/tmpfs.  Return
982			 * it without attempting to raise page count.
983			 */
984			goto out;
985		}
986		if (!page_cache_get_speculative(page))
987			goto repeat;
988
989		/*
990		 * Has the page moved?
991		 * This is part of the lockless pagecache protocol. See
992		 * include/linux/pagemap.h for details.
993		 */
994		if (unlikely(page != *pagep)) {
995			page_cache_release(page);
996			goto repeat;
997		}
998	}
999out:
1000	rcu_read_unlock();
1001
1002	return page;
1003}
1004EXPORT_SYMBOL(find_get_entry);
1005
1006/**
1007 * find_lock_entry - locate, pin and lock a page cache entry
1008 * @mapping: the address_space to search
1009 * @offset: the page cache index
1010 *
1011 * Looks up the page cache slot at @mapping & @offset.  If there is a
1012 * page cache page, it is returned locked and with an increased
1013 * refcount.
1014 *
1015 * If the slot holds a shadow entry of a previously evicted page, or a
1016 * swap entry from shmem/tmpfs, it is returned.
1017 *
1018 * Otherwise, %NULL is returned.
1019 *
1020 * find_lock_entry() may sleep.
1021 */
1022struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1023{
1024	struct page *page;
1025
1026repeat:
1027	page = find_get_entry(mapping, offset);
1028	if (page && !radix_tree_exception(page)) {
1029		lock_page(page);
1030		/* Has the page been truncated? */
1031		if (unlikely(page->mapping != mapping)) {
1032			unlock_page(page);
1033			page_cache_release(page);
1034			goto repeat;
1035		}
1036		VM_BUG_ON_PAGE(page->index != offset, page);
1037	}
1038	return page;
1039}
1040EXPORT_SYMBOL(find_lock_entry);
1041
1042/**
1043 * pagecache_get_page - find and get a page reference
1044 * @mapping: the address_space to search
1045 * @offset: the page index
1046 * @fgp_flags: PCG flags
1047 * @gfp_mask: gfp mask to use for the page cache data page allocation
1048 *
1049 * Looks up the page cache slot at @mapping & @offset.
1050 *
1051 * PCG flags modify how the page is returned.
1052 *
1053 * FGP_ACCESSED: the page will be marked accessed
1054 * FGP_LOCK: Page is return locked
1055 * FGP_CREAT: If page is not present then a new page is allocated using
1056 *		@gfp_mask and added to the page cache and the VM's LRU
1057 *		list. The page is returned locked and with an increased
1058 *		refcount. Otherwise, %NULL is returned.
1059 *
1060 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1061 * if the GFP flags specified for FGP_CREAT are atomic.
1062 *
1063 * If there is a page cache page, it is returned with an increased refcount.
1064 */
1065struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1066	int fgp_flags, gfp_t gfp_mask)
1067{
1068	struct page *page;
1069
1070repeat:
1071	page = find_get_entry(mapping, offset);
1072	if (radix_tree_exceptional_entry(page))
1073		page = NULL;
1074	if (!page)
1075		goto no_page;
1076
1077	if (fgp_flags & FGP_LOCK) {
1078		if (fgp_flags & FGP_NOWAIT) {
1079			if (!trylock_page(page)) {
1080				page_cache_release(page);
1081				return NULL;
1082			}
1083		} else {
1084			lock_page(page);
1085		}
1086
1087		/* Has the page been truncated? */
1088		if (unlikely(page->mapping != mapping)) {
1089			unlock_page(page);
1090			page_cache_release(page);
1091			goto repeat;
1092		}
1093		VM_BUG_ON_PAGE(page->index != offset, page);
1094	}
1095
1096	if (page && (fgp_flags & FGP_ACCESSED))
1097		mark_page_accessed(page);
1098
1099no_page:
1100	if (!page && (fgp_flags & FGP_CREAT)) {
1101		int err;
1102		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1103			gfp_mask |= __GFP_WRITE;
1104		if (fgp_flags & FGP_NOFS)
1105			gfp_mask &= ~__GFP_FS;
1106
1107		page = __page_cache_alloc(gfp_mask);
1108		if (!page)
1109			return NULL;
1110
1111		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1112			fgp_flags |= FGP_LOCK;
1113
1114		/* Init accessed so avoid atomic mark_page_accessed later */
1115		if (fgp_flags & FGP_ACCESSED)
1116			__SetPageReferenced(page);
1117
1118		err = add_to_page_cache_lru(page, mapping, offset,
1119				gfp_mask & GFP_RECLAIM_MASK);
1120		if (unlikely(err)) {
1121			page_cache_release(page);
1122			page = NULL;
1123			if (err == -EEXIST)
1124				goto repeat;
1125		}
1126	}
1127
1128	return page;
1129}
1130EXPORT_SYMBOL(pagecache_get_page);
1131
1132/**
1133 * find_get_entries - gang pagecache lookup
1134 * @mapping:	The address_space to search
1135 * @start:	The starting page cache index
1136 * @nr_entries:	The maximum number of entries
1137 * @entries:	Where the resulting entries are placed
1138 * @indices:	The cache indices corresponding to the entries in @entries
1139 *
1140 * find_get_entries() will search for and return a group of up to
1141 * @nr_entries entries in the mapping.  The entries are placed at
1142 * @entries.  find_get_entries() takes a reference against any actual
1143 * pages it returns.
1144 *
1145 * The search returns a group of mapping-contiguous page cache entries
1146 * with ascending indexes.  There may be holes in the indices due to
1147 * not-present pages.
1148 *
1149 * Any shadow entries of evicted pages, or swap entries from
1150 * shmem/tmpfs, are included in the returned array.
1151 *
1152 * find_get_entries() returns the number of pages and shadow entries
1153 * which were found.
1154 */
1155unsigned find_get_entries(struct address_space *mapping,
1156			  pgoff_t start, unsigned int nr_entries,
1157			  struct page **entries, pgoff_t *indices)
1158{
1159	void **slot;
1160	unsigned int ret = 0;
1161	struct radix_tree_iter iter;
1162
1163	if (!nr_entries)
1164		return 0;
1165
1166	rcu_read_lock();
1167restart:
1168	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1169		struct page *page;
1170repeat:
1171		page = radix_tree_deref_slot(slot);
1172		if (unlikely(!page))
1173			continue;
1174		if (radix_tree_exception(page)) {
1175			if (radix_tree_deref_retry(page))
1176				goto restart;
1177			/*
1178			 * A shadow entry of a recently evicted page,
1179			 * or a swap entry from shmem/tmpfs.  Return
1180			 * it without attempting to raise page count.
1181			 */
1182			goto export;
1183		}
1184		if (!page_cache_get_speculative(page))
1185			goto repeat;
1186
1187		/* Has the page moved? */
1188		if (unlikely(page != *slot)) {
1189			page_cache_release(page);
1190			goto repeat;
1191		}
1192export:
1193		indices[ret] = iter.index;
1194		entries[ret] = page;
1195		if (++ret == nr_entries)
1196			break;
1197	}
1198	rcu_read_unlock();
1199	return ret;
1200}
1201
1202/**
1203 * find_get_pages - gang pagecache lookup
1204 * @mapping:	The address_space to search
1205 * @start:	The starting page index
1206 * @nr_pages:	The maximum number of pages
1207 * @pages:	Where the resulting pages are placed
1208 *
1209 * find_get_pages() will search for and return a group of up to
1210 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1211 * find_get_pages() takes a reference against the returned pages.
1212 *
1213 * The search returns a group of mapping-contiguous pages with ascending
1214 * indexes.  There may be holes in the indices due to not-present pages.
1215 *
1216 * find_get_pages() returns the number of pages which were found.
1217 */
1218unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1219			    unsigned int nr_pages, struct page **pages)
1220{
1221	struct radix_tree_iter iter;
1222	void **slot;
1223	unsigned ret = 0;
1224
1225	if (unlikely(!nr_pages))
1226		return 0;
1227
1228	rcu_read_lock();
1229restart:
1230	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1231		struct page *page;
1232repeat:
1233		page = radix_tree_deref_slot(slot);
1234		if (unlikely(!page))
1235			continue;
1236
1237		if (radix_tree_exception(page)) {
1238			if (radix_tree_deref_retry(page)) {
1239				/*
1240				 * Transient condition which can only trigger
1241				 * when entry at index 0 moves out of or back
1242				 * to root: none yet gotten, safe to restart.
1243				 */
1244				WARN_ON(iter.index);
1245				goto restart;
1246			}
1247			/*
1248			 * A shadow entry of a recently evicted page,
1249			 * or a swap entry from shmem/tmpfs.  Skip
1250			 * over it.
1251			 */
1252			continue;
1253		}
1254
1255		if (!page_cache_get_speculative(page))
1256			goto repeat;
1257
1258		/* Has the page moved? */
1259		if (unlikely(page != *slot)) {
1260			page_cache_release(page);
1261			goto repeat;
1262		}
1263
1264		pages[ret] = page;
1265		if (++ret == nr_pages)
1266			break;
1267	}
1268
1269	rcu_read_unlock();
1270	return ret;
1271}
1272
1273/**
1274 * find_get_pages_contig - gang contiguous pagecache lookup
1275 * @mapping:	The address_space to search
1276 * @index:	The starting page index
1277 * @nr_pages:	The maximum number of pages
1278 * @pages:	Where the resulting pages are placed
1279 *
1280 * find_get_pages_contig() works exactly like find_get_pages(), except
1281 * that the returned number of pages are guaranteed to be contiguous.
1282 *
1283 * find_get_pages_contig() returns the number of pages which were found.
1284 */
1285unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1286			       unsigned int nr_pages, struct page **pages)
1287{
1288	struct radix_tree_iter iter;
1289	void **slot;
1290	unsigned int ret = 0;
1291
1292	if (unlikely(!nr_pages))
1293		return 0;
1294
1295	rcu_read_lock();
1296restart:
1297	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1298		struct page *page;
1299repeat:
1300		page = radix_tree_deref_slot(slot);
1301		/* The hole, there no reason to continue */
1302		if (unlikely(!page))
1303			break;
1304
1305		if (radix_tree_exception(page)) {
1306			if (radix_tree_deref_retry(page)) {
1307				/*
1308				 * Transient condition which can only trigger
1309				 * when entry at index 0 moves out of or back
1310				 * to root: none yet gotten, safe to restart.
1311				 */
1312				goto restart;
1313			}
1314			/*
1315			 * A shadow entry of a recently evicted page,
1316			 * or a swap entry from shmem/tmpfs.  Stop
1317			 * looking for contiguous pages.
1318			 */
1319			break;
1320		}
1321
1322		if (!page_cache_get_speculative(page))
1323			goto repeat;
1324
1325		/* Has the page moved? */
1326		if (unlikely(page != *slot)) {
1327			page_cache_release(page);
1328			goto repeat;
1329		}
1330
1331		/*
1332		 * must check mapping and index after taking the ref.
1333		 * otherwise we can get both false positives and false
1334		 * negatives, which is just confusing to the caller.
1335		 */
1336		if (page->mapping == NULL || page->index != iter.index) {
1337			page_cache_release(page);
1338			break;
1339		}
1340
1341		pages[ret] = page;
1342		if (++ret == nr_pages)
1343			break;
1344	}
1345	rcu_read_unlock();
1346	return ret;
1347}
1348EXPORT_SYMBOL(find_get_pages_contig);
1349
1350/**
1351 * find_get_pages_tag - find and return pages that match @tag
1352 * @mapping:	the address_space to search
1353 * @index:	the starting page index
1354 * @tag:	the tag index
1355 * @nr_pages:	the maximum number of pages
1356 * @pages:	where the resulting pages are placed
1357 *
1358 * Like find_get_pages, except we only return pages which are tagged with
1359 * @tag.   We update @index to index the next page for the traversal.
1360 */
1361unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1362			int tag, unsigned int nr_pages, struct page **pages)
1363{
1364	struct radix_tree_iter iter;
1365	void **slot;
1366	unsigned ret = 0;
1367
1368	if (unlikely(!nr_pages))
1369		return 0;
1370
1371	rcu_read_lock();
1372restart:
1373	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1374				   &iter, *index, tag) {
1375		struct page *page;
1376repeat:
1377		page = radix_tree_deref_slot(slot);
1378		if (unlikely(!page))
1379			continue;
1380
1381		if (radix_tree_exception(page)) {
1382			if (radix_tree_deref_retry(page)) {
1383				/*
1384				 * Transient condition which can only trigger
1385				 * when entry at index 0 moves out of or back
1386				 * to root: none yet gotten, safe to restart.
1387				 */
1388				goto restart;
1389			}
1390			/*
1391			 * A shadow entry of a recently evicted page.
1392			 *
1393			 * Those entries should never be tagged, but
1394			 * this tree walk is lockless and the tags are
1395			 * looked up in bulk, one radix tree node at a
1396			 * time, so there is a sizable window for page
1397			 * reclaim to evict a page we saw tagged.
1398			 *
1399			 * Skip over it.
1400			 */
1401			continue;
1402		}
1403
1404		if (!page_cache_get_speculative(page))
1405			goto repeat;
1406
1407		/* Has the page moved? */
1408		if (unlikely(page != *slot)) {
1409			page_cache_release(page);
1410			goto repeat;
1411		}
1412
1413		pages[ret] = page;
1414		if (++ret == nr_pages)
1415			break;
1416	}
1417
1418	rcu_read_unlock();
1419
1420	if (ret)
1421		*index = pages[ret - 1]->index + 1;
1422
1423	return ret;
1424}
1425EXPORT_SYMBOL(find_get_pages_tag);
1426
1427/*
1428 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1429 * a _large_ part of the i/o request. Imagine the worst scenario:
1430 *
1431 *      ---R__________________________________________B__________
1432 *         ^ reading here                             ^ bad block(assume 4k)
1433 *
1434 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1435 * => failing the whole request => read(R) => read(R+1) =>
1436 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1437 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1438 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1439 *
1440 * It is going insane. Fix it by quickly scaling down the readahead size.
1441 */
1442static void shrink_readahead_size_eio(struct file *filp,
1443					struct file_ra_state *ra)
1444{
1445	ra->ra_pages /= 4;
1446}
1447
1448/**
1449 * do_generic_file_read - generic file read routine
1450 * @filp:	the file to read
1451 * @ppos:	current file position
1452 * @iter:	data destination
1453 * @written:	already copied
1454 *
1455 * This is a generic file read routine, and uses the
1456 * mapping->a_ops->readpage() function for the actual low-level stuff.
1457 *
1458 * This is really ugly. But the goto's actually try to clarify some
1459 * of the logic when it comes to error handling etc.
1460 */
1461static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1462		struct iov_iter *iter, ssize_t written)
1463{
1464	struct address_space *mapping = filp->f_mapping;
1465	struct inode *inode = mapping->host;
1466	struct file_ra_state *ra = &filp->f_ra;
1467	pgoff_t index;
1468	pgoff_t last_index;
1469	pgoff_t prev_index;
1470	unsigned long offset;      /* offset into pagecache page */
1471	unsigned int prev_offset;
1472	int error = 0;
1473
1474	index = *ppos >> PAGE_CACHE_SHIFT;
1475	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1476	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1477	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1478	offset = *ppos & ~PAGE_CACHE_MASK;
1479
1480	for (;;) {
1481		struct page *page;
1482		pgoff_t end_index;
1483		loff_t isize;
1484		unsigned long nr, ret;
1485
1486		cond_resched();
1487find_page:
1488		page = find_get_page(mapping, index);
1489		if (!page) {
1490			page_cache_sync_readahead(mapping,
1491					ra, filp,
1492					index, last_index - index);
1493			page = find_get_page(mapping, index);
1494			if (unlikely(page == NULL))
1495				goto no_cached_page;
1496		}
1497		if (PageReadahead(page)) {
1498			page_cache_async_readahead(mapping,
1499					ra, filp, page,
1500					index, last_index - index);
1501		}
1502		if (!PageUptodate(page)) {
1503			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1504					!mapping->a_ops->is_partially_uptodate)
1505				goto page_not_up_to_date;
1506			if (!trylock_page(page))
1507				goto page_not_up_to_date;
1508			/* Did it get truncated before we got the lock? */
1509			if (!page->mapping)
1510				goto page_not_up_to_date_locked;
1511			if (!mapping->a_ops->is_partially_uptodate(page,
1512							offset, iter->count))
1513				goto page_not_up_to_date_locked;
1514			unlock_page(page);
1515		}
1516page_ok:
1517		/*
1518		 * i_size must be checked after we know the page is Uptodate.
1519		 *
1520		 * Checking i_size after the check allows us to calculate
1521		 * the correct value for "nr", which means the zero-filled
1522		 * part of the page is not copied back to userspace (unless
1523		 * another truncate extends the file - this is desired though).
1524		 */
1525
1526		isize = i_size_read(inode);
1527		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1528		if (unlikely(!isize || index > end_index)) {
1529			page_cache_release(page);
1530			goto out;
1531		}
1532
1533		/* nr is the maximum number of bytes to copy from this page */
1534		nr = PAGE_CACHE_SIZE;
1535		if (index == end_index) {
1536			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1537			if (nr <= offset) {
1538				page_cache_release(page);
1539				goto out;
1540			}
1541		}
1542		nr = nr - offset;
1543
1544		/* If users can be writing to this page using arbitrary
1545		 * virtual addresses, take care about potential aliasing
1546		 * before reading the page on the kernel side.
1547		 */
1548		if (mapping_writably_mapped(mapping))
1549			flush_dcache_page(page);
1550
1551		/*
1552		 * When a sequential read accesses a page several times,
1553		 * only mark it as accessed the first time.
1554		 */
1555		if (prev_index != index || offset != prev_offset)
1556			mark_page_accessed(page);
1557		prev_index = index;
1558
1559		/*
1560		 * Ok, we have the page, and it's up-to-date, so
1561		 * now we can copy it to user space...
1562		 */
1563
1564		ret = copy_page_to_iter(page, offset, nr, iter);
1565		offset += ret;
1566		index += offset >> PAGE_CACHE_SHIFT;
1567		offset &= ~PAGE_CACHE_MASK;
1568		prev_offset = offset;
1569
1570		page_cache_release(page);
1571		written += ret;
1572		if (!iov_iter_count(iter))
1573			goto out;
1574		if (ret < nr) {
1575			error = -EFAULT;
1576			goto out;
1577		}
1578		continue;
1579
1580page_not_up_to_date:
1581		/* Get exclusive access to the page ... */
1582		error = lock_page_killable(page);
1583		if (unlikely(error))
1584			goto readpage_error;
1585
1586page_not_up_to_date_locked:
1587		/* Did it get truncated before we got the lock? */
1588		if (!page->mapping) {
1589			unlock_page(page);
1590			page_cache_release(page);
1591			continue;
1592		}
1593
1594		/* Did somebody else fill it already? */
1595		if (PageUptodate(page)) {
1596			unlock_page(page);
1597			goto page_ok;
1598		}
1599
1600readpage:
1601		/*
1602		 * A previous I/O error may have been due to temporary
1603		 * failures, eg. multipath errors.
1604		 * PG_error will be set again if readpage fails.
1605		 */
1606		ClearPageError(page);
1607		/* Start the actual read. The read will unlock the page. */
1608		error = mapping->a_ops->readpage(filp, page);
1609
1610		if (unlikely(error)) {
1611			if (error == AOP_TRUNCATED_PAGE) {
1612				page_cache_release(page);
1613				error = 0;
1614				goto find_page;
1615			}
1616			goto readpage_error;
1617		}
1618
1619		if (!PageUptodate(page)) {
1620			error = lock_page_killable(page);
1621			if (unlikely(error))
1622				goto readpage_error;
1623			if (!PageUptodate(page)) {
1624				if (page->mapping == NULL) {
1625					/*
1626					 * invalidate_mapping_pages got it
1627					 */
1628					unlock_page(page);
1629					page_cache_release(page);
1630					goto find_page;
1631				}
1632				unlock_page(page);
1633				shrink_readahead_size_eio(filp, ra);
1634				error = -EIO;
1635				goto readpage_error;
1636			}
1637			unlock_page(page);
1638		}
1639
1640		goto page_ok;
1641
1642readpage_error:
1643		/* UHHUH! A synchronous read error occurred. Report it */
1644		page_cache_release(page);
1645		goto out;
1646
1647no_cached_page:
1648		/*
1649		 * Ok, it wasn't cached, so we need to create a new
1650		 * page..
1651		 */
1652		page = page_cache_alloc_cold(mapping);
1653		if (!page) {
1654			error = -ENOMEM;
1655			goto out;
1656		}
1657		error = add_to_page_cache_lru(page, mapping,
1658						index, GFP_KERNEL);
1659		if (error) {
1660			page_cache_release(page);
1661			if (error == -EEXIST) {
1662				error = 0;
1663				goto find_page;
1664			}
1665			goto out;
1666		}
1667		goto readpage;
1668	}
1669
1670out:
1671	ra->prev_pos = prev_index;
1672	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1673	ra->prev_pos |= prev_offset;
1674
1675	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1676	file_accessed(filp);
1677	return written ? written : error;
1678}
1679
1680/**
1681 * generic_file_read_iter - generic filesystem read routine
1682 * @iocb:	kernel I/O control block
1683 * @iter:	destination for the data read
1684 *
1685 * This is the "read_iter()" routine for all filesystems
1686 * that can use the page cache directly.
1687 */
1688ssize_t
1689generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1690{
1691	struct file *file = iocb->ki_filp;
1692	ssize_t retval = 0;
1693	loff_t *ppos = &iocb->ki_pos;
1694	loff_t pos = *ppos;
1695
1696	if (iocb->ki_flags & IOCB_DIRECT) {
1697		struct address_space *mapping = file->f_mapping;
1698		struct inode *inode = mapping->host;
1699		size_t count = iov_iter_count(iter);
1700		loff_t size;
1701
1702		if (!count)
1703			goto out; /* skip atime */
1704		size = i_size_read(inode);
1705		retval = filemap_write_and_wait_range(mapping, pos,
1706					pos + count - 1);
1707		if (!retval) {
1708			struct iov_iter data = *iter;
1709			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1710		}
1711
1712		if (retval > 0) {
1713			*ppos = pos + retval;
1714			iov_iter_advance(iter, retval);
1715		}
1716
1717		/*
1718		 * Btrfs can have a short DIO read if we encounter
1719		 * compressed extents, so if there was an error, or if
1720		 * we've already read everything we wanted to, or if
1721		 * there was a short read because we hit EOF, go ahead
1722		 * and return.  Otherwise fallthrough to buffered io for
1723		 * the rest of the read.  Buffered reads will not work for
1724		 * DAX files, so don't bother trying.
1725		 */
1726		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1727		    IS_DAX(inode)) {
1728			file_accessed(file);
1729			goto out;
1730		}
1731	}
1732
1733	retval = do_generic_file_read(file, ppos, iter, retval);
1734out:
1735	return retval;
1736}
1737EXPORT_SYMBOL(generic_file_read_iter);
1738
1739#ifdef CONFIG_MMU
1740/**
1741 * page_cache_read - adds requested page to the page cache if not already there
1742 * @file:	file to read
1743 * @offset:	page index
1744 *
1745 * This adds the requested page to the page cache if it isn't already there,
1746 * and schedules an I/O to read in its contents from disk.
1747 */
1748static int page_cache_read(struct file *file, pgoff_t offset)
1749{
1750	struct address_space *mapping = file->f_mapping;
1751	struct page *page;
1752	int ret;
1753
1754	do {
1755		page = page_cache_alloc_cold(mapping);
1756		if (!page)
1757			return -ENOMEM;
1758
1759		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1760		if (ret == 0)
1761			ret = mapping->a_ops->readpage(file, page);
1762		else if (ret == -EEXIST)
1763			ret = 0; /* losing race to add is OK */
1764
1765		page_cache_release(page);
1766
1767	} while (ret == AOP_TRUNCATED_PAGE);
1768
1769	return ret;
1770}
1771
1772#define MMAP_LOTSAMISS  (100)
1773
1774/*
1775 * Synchronous readahead happens when we don't even find
1776 * a page in the page cache at all.
1777 */
1778static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1779				   struct file_ra_state *ra,
1780				   struct file *file,
1781				   pgoff_t offset)
1782{
1783	unsigned long ra_pages;
1784	struct address_space *mapping = file->f_mapping;
1785
1786	/* If we don't want any read-ahead, don't bother */
1787	if (vma->vm_flags & VM_RAND_READ)
1788		return;
1789	if (!ra->ra_pages)
1790		return;
1791
1792	if (vma->vm_flags & VM_SEQ_READ) {
1793		page_cache_sync_readahead(mapping, ra, file, offset,
1794					  ra->ra_pages);
1795		return;
1796	}
1797
1798	/* Avoid banging the cache line if not needed */
1799	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1800		ra->mmap_miss++;
1801
1802	/*
1803	 * Do we miss much more than hit in this file? If so,
1804	 * stop bothering with read-ahead. It will only hurt.
1805	 */
1806	if (ra->mmap_miss > MMAP_LOTSAMISS)
1807		return;
1808
1809	/*
1810	 * mmap read-around
1811	 */
1812	ra_pages = max_sane_readahead(ra->ra_pages);
1813	ra->start = max_t(long, 0, offset - ra_pages / 2);
1814	ra->size = ra_pages;
1815	ra->async_size = ra_pages / 4;
1816	ra_submit(ra, mapping, file);
1817}
1818
1819/*
1820 * Asynchronous readahead happens when we find the page and PG_readahead,
1821 * so we want to possibly extend the readahead further..
1822 */
1823static void do_async_mmap_readahead(struct vm_area_struct *vma,
1824				    struct file_ra_state *ra,
1825				    struct file *file,
1826				    struct page *page,
1827				    pgoff_t offset)
1828{
1829	struct address_space *mapping = file->f_mapping;
1830
1831	/* If we don't want any read-ahead, don't bother */
1832	if (vma->vm_flags & VM_RAND_READ)
1833		return;
1834	if (ra->mmap_miss > 0)
1835		ra->mmap_miss--;
1836	if (PageReadahead(page))
1837		page_cache_async_readahead(mapping, ra, file,
1838					   page, offset, ra->ra_pages);
1839}
1840
1841/**
1842 * filemap_fault - read in file data for page fault handling
1843 * @vma:	vma in which the fault was taken
1844 * @vmf:	struct vm_fault containing details of the fault
1845 *
1846 * filemap_fault() is invoked via the vma operations vector for a
1847 * mapped memory region to read in file data during a page fault.
1848 *
1849 * The goto's are kind of ugly, but this streamlines the normal case of having
1850 * it in the page cache, and handles the special cases reasonably without
1851 * having a lot of duplicated code.
1852 *
1853 * vma->vm_mm->mmap_sem must be held on entry.
1854 *
1855 * If our return value has VM_FAULT_RETRY set, it's because
1856 * lock_page_or_retry() returned 0.
1857 * The mmap_sem has usually been released in this case.
1858 * See __lock_page_or_retry() for the exception.
1859 *
1860 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1861 * has not been released.
1862 *
1863 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1864 */
1865int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1866{
1867	int error;
1868	struct file *file = vma->vm_file;
1869	struct address_space *mapping = file->f_mapping;
1870	struct file_ra_state *ra = &file->f_ra;
1871	struct inode *inode = mapping->host;
1872	pgoff_t offset = vmf->pgoff;
1873	struct page *page;
1874	loff_t size;
1875	int ret = 0;
1876
1877	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1878	if (offset >= size >> PAGE_CACHE_SHIFT)
1879		return VM_FAULT_SIGBUS;
1880
1881	/*
1882	 * Do we have something in the page cache already?
1883	 */
1884	page = find_get_page(mapping, offset);
1885	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1886		/*
1887		 * We found the page, so try async readahead before
1888		 * waiting for the lock.
1889		 */
1890		do_async_mmap_readahead(vma, ra, file, page, offset);
1891	} else if (!page) {
1892		/* No page in the page cache at all */
1893		do_sync_mmap_readahead(vma, ra, file, offset);
1894		count_vm_event(PGMAJFAULT);
1895		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1896		ret = VM_FAULT_MAJOR;
1897retry_find:
1898		page = find_get_page(mapping, offset);
1899		if (!page)
1900			goto no_cached_page;
1901	}
1902
1903	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1904		page_cache_release(page);
1905		return ret | VM_FAULT_RETRY;
1906	}
1907
1908	/* Did it get truncated? */
1909	if (unlikely(page->mapping != mapping)) {
1910		unlock_page(page);
1911		put_page(page);
1912		goto retry_find;
1913	}
1914	VM_BUG_ON_PAGE(page->index != offset, page);
1915
1916	/*
1917	 * We have a locked page in the page cache, now we need to check
1918	 * that it's up-to-date. If not, it is going to be due to an error.
1919	 */
1920	if (unlikely(!PageUptodate(page)))
1921		goto page_not_uptodate;
1922
1923	/*
1924	 * Found the page and have a reference on it.
1925	 * We must recheck i_size under page lock.
1926	 */
1927	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1928	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1929		unlock_page(page);
1930		page_cache_release(page);
1931		return VM_FAULT_SIGBUS;
1932	}
1933
1934	vmf->page = page;
1935	return ret | VM_FAULT_LOCKED;
1936
1937no_cached_page:
1938	/*
1939	 * We're only likely to ever get here if MADV_RANDOM is in
1940	 * effect.
1941	 */
1942	error = page_cache_read(file, offset);
1943
1944	/*
1945	 * The page we want has now been added to the page cache.
1946	 * In the unlikely event that someone removed it in the
1947	 * meantime, we'll just come back here and read it again.
1948	 */
1949	if (error >= 0)
1950		goto retry_find;
1951
1952	/*
1953	 * An error return from page_cache_read can result if the
1954	 * system is low on memory, or a problem occurs while trying
1955	 * to schedule I/O.
1956	 */
1957	if (error == -ENOMEM)
1958		return VM_FAULT_OOM;
1959	return VM_FAULT_SIGBUS;
1960
1961page_not_uptodate:
1962	/*
1963	 * Umm, take care of errors if the page isn't up-to-date.
1964	 * Try to re-read it _once_. We do this synchronously,
1965	 * because there really aren't any performance issues here
1966	 * and we need to check for errors.
1967	 */
1968	ClearPageError(page);
1969	error = mapping->a_ops->readpage(file, page);
1970	if (!error) {
1971		wait_on_page_locked(page);
1972		if (!PageUptodate(page))
1973			error = -EIO;
1974	}
1975	page_cache_release(page);
1976
1977	if (!error || error == AOP_TRUNCATED_PAGE)
1978		goto retry_find;
1979
1980	/* Things didn't work out. Return zero to tell the mm layer so. */
1981	shrink_readahead_size_eio(file, ra);
1982	return VM_FAULT_SIGBUS;
1983}
1984EXPORT_SYMBOL(filemap_fault);
1985
1986void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1987{
1988	struct radix_tree_iter iter;
1989	void **slot;
1990	struct file *file = vma->vm_file;
1991	struct address_space *mapping = file->f_mapping;
1992	loff_t size;
1993	struct page *page;
1994	unsigned long address = (unsigned long) vmf->virtual_address;
1995	unsigned long addr;
1996	pte_t *pte;
1997
1998	rcu_read_lock();
1999	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2000		if (iter.index > vmf->max_pgoff)
2001			break;
2002repeat:
2003		page = radix_tree_deref_slot(slot);
2004		if (unlikely(!page))
2005			goto next;
2006		if (radix_tree_exception(page)) {
2007			if (radix_tree_deref_retry(page))
2008				break;
2009			else
2010				goto next;
2011		}
2012
2013		if (!page_cache_get_speculative(page))
2014			goto repeat;
2015
2016		/* Has the page moved? */
2017		if (unlikely(page != *slot)) {
2018			page_cache_release(page);
2019			goto repeat;
2020		}
2021
2022		if (!PageUptodate(page) ||
2023				PageReadahead(page) ||
2024				PageHWPoison(page))
2025			goto skip;
2026		if (!trylock_page(page))
2027			goto skip;
2028
2029		if (page->mapping != mapping || !PageUptodate(page))
2030			goto unlock;
2031
2032		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2033		if (page->index >= size >> PAGE_CACHE_SHIFT)
2034			goto unlock;
2035
2036		pte = vmf->pte + page->index - vmf->pgoff;
2037		if (!pte_none(*pte))
2038			goto unlock;
2039
2040		if (file->f_ra.mmap_miss > 0)
2041			file->f_ra.mmap_miss--;
2042		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2043		do_set_pte(vma, addr, page, pte, false, false);
2044		unlock_page(page);
2045		goto next;
2046unlock:
2047		unlock_page(page);
2048skip:
2049		page_cache_release(page);
2050next:
2051		if (iter.index == vmf->max_pgoff)
2052			break;
2053	}
2054	rcu_read_unlock();
2055}
2056EXPORT_SYMBOL(filemap_map_pages);
2057
2058int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2059{
2060	struct page *page = vmf->page;
2061	struct inode *inode = file_inode(vma->vm_file);
2062	int ret = VM_FAULT_LOCKED;
2063
2064	sb_start_pagefault(inode->i_sb);
2065	file_update_time(vma->vm_file);
2066	lock_page(page);
2067	if (page->mapping != inode->i_mapping) {
2068		unlock_page(page);
2069		ret = VM_FAULT_NOPAGE;
2070		goto out;
2071	}
2072	/*
2073	 * We mark the page dirty already here so that when freeze is in
2074	 * progress, we are guaranteed that writeback during freezing will
2075	 * see the dirty page and writeprotect it again.
2076	 */
2077	set_page_dirty(page);
2078	wait_for_stable_page(page);
2079out:
2080	sb_end_pagefault(inode->i_sb);
2081	return ret;
2082}
2083EXPORT_SYMBOL(filemap_page_mkwrite);
2084
2085const struct vm_operations_struct generic_file_vm_ops = {
2086	.fault		= filemap_fault,
2087	.map_pages	= filemap_map_pages,
2088	.page_mkwrite	= filemap_page_mkwrite,
2089};
2090
2091/* This is used for a general mmap of a disk file */
2092
2093int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2094{
2095	struct address_space *mapping = file->f_mapping;
2096
2097	if (!mapping->a_ops->readpage)
2098		return -ENOEXEC;
2099	file_accessed(file);
2100	vma->vm_ops = &generic_file_vm_ops;
2101	return 0;
2102}
2103
2104/*
2105 * This is for filesystems which do not implement ->writepage.
2106 */
2107int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2108{
2109	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2110		return -EINVAL;
2111	return generic_file_mmap(file, vma);
2112}
2113#else
2114int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2115{
2116	return -ENOSYS;
2117}
2118int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2119{
2120	return -ENOSYS;
2121}
2122#endif /* CONFIG_MMU */
2123
2124EXPORT_SYMBOL(generic_file_mmap);
2125EXPORT_SYMBOL(generic_file_readonly_mmap);
2126
2127static struct page *wait_on_page_read(struct page *page)
2128{
2129	if (!IS_ERR(page)) {
2130		wait_on_page_locked(page);
2131		if (!PageUptodate(page)) {
2132			page_cache_release(page);
2133			page = ERR_PTR(-EIO);
2134		}
2135	}
2136	return page;
2137}
2138
2139static struct page *__read_cache_page(struct address_space *mapping,
2140				pgoff_t index,
2141				int (*filler)(void *, struct page *),
2142				void *data,
2143				gfp_t gfp)
2144{
2145	struct page *page;
2146	int err;
2147repeat:
2148	page = find_get_page(mapping, index);
2149	if (!page) {
2150		page = __page_cache_alloc(gfp | __GFP_COLD);
2151		if (!page)
2152			return ERR_PTR(-ENOMEM);
2153		err = add_to_page_cache_lru(page, mapping, index, gfp);
2154		if (unlikely(err)) {
2155			page_cache_release(page);
2156			if (err == -EEXIST)
2157				goto repeat;
2158			/* Presumably ENOMEM for radix tree node */
2159			return ERR_PTR(err);
2160		}
2161		err = filler(data, page);
2162		if (err < 0) {
2163			page_cache_release(page);
2164			page = ERR_PTR(err);
2165		} else {
2166			page = wait_on_page_read(page);
2167		}
2168	}
2169	return page;
2170}
2171
2172static struct page *do_read_cache_page(struct address_space *mapping,
2173				pgoff_t index,
2174				int (*filler)(void *, struct page *),
2175				void *data,
2176				gfp_t gfp)
2177
2178{
2179	struct page *page;
2180	int err;
2181
2182retry:
2183	page = __read_cache_page(mapping, index, filler, data, gfp);
2184	if (IS_ERR(page))
2185		return page;
2186	if (PageUptodate(page))
2187		goto out;
2188
2189	lock_page(page);
2190	if (!page->mapping) {
2191		unlock_page(page);
2192		page_cache_release(page);
2193		goto retry;
2194	}
2195	if (PageUptodate(page)) {
2196		unlock_page(page);
2197		goto out;
2198	}
2199	err = filler(data, page);
2200	if (err < 0) {
2201		page_cache_release(page);
2202		return ERR_PTR(err);
2203	} else {
2204		page = wait_on_page_read(page);
2205		if (IS_ERR(page))
2206			return page;
2207	}
2208out:
2209	mark_page_accessed(page);
2210	return page;
2211}
2212
2213/**
2214 * read_cache_page - read into page cache, fill it if needed
2215 * @mapping:	the page's address_space
2216 * @index:	the page index
2217 * @filler:	function to perform the read
2218 * @data:	first arg to filler(data, page) function, often left as NULL
2219 *
2220 * Read into the page cache. If a page already exists, and PageUptodate() is
2221 * not set, try to fill the page and wait for it to become unlocked.
2222 *
2223 * If the page does not get brought uptodate, return -EIO.
2224 */
2225struct page *read_cache_page(struct address_space *mapping,
2226				pgoff_t index,
2227				int (*filler)(void *, struct page *),
2228				void *data)
2229{
2230	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2231}
2232EXPORT_SYMBOL(read_cache_page);
2233
2234/**
2235 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2236 * @mapping:	the page's address_space
2237 * @index:	the page index
2238 * @gfp:	the page allocator flags to use if allocating
2239 *
2240 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2241 * any new page allocations done using the specified allocation flags.
2242 *
2243 * If the page does not get brought uptodate, return -EIO.
2244 */
2245struct page *read_cache_page_gfp(struct address_space *mapping,
2246				pgoff_t index,
2247				gfp_t gfp)
2248{
2249	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2250
2251	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2252}
2253EXPORT_SYMBOL(read_cache_page_gfp);
2254
2255/*
2256 * Performs necessary checks before doing a write
2257 *
2258 * Can adjust writing position or amount of bytes to write.
2259 * Returns appropriate error code that caller should return or
2260 * zero in case that write should be allowed.
2261 */
2262inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2263{
2264	struct file *file = iocb->ki_filp;
2265	struct inode *inode = file->f_mapping->host;
2266	unsigned long limit = rlimit(RLIMIT_FSIZE);
2267	loff_t pos;
2268
2269	if (!iov_iter_count(from))
2270		return 0;
2271
2272	/* FIXME: this is for backwards compatibility with 2.4 */
2273	if (iocb->ki_flags & IOCB_APPEND)
2274		iocb->ki_pos = i_size_read(inode);
2275
2276	pos = iocb->ki_pos;
2277
2278	if (limit != RLIM_INFINITY) {
2279		if (iocb->ki_pos >= limit) {
2280			send_sig(SIGXFSZ, current, 0);
2281			return -EFBIG;
2282		}
2283		iov_iter_truncate(from, limit - (unsigned long)pos);
2284	}
2285
2286	/*
2287	 * LFS rule
2288	 */
2289	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2290				!(file->f_flags & O_LARGEFILE))) {
2291		if (pos >= MAX_NON_LFS)
2292			return -EFBIG;
2293		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2294	}
2295
2296	/*
2297	 * Are we about to exceed the fs block limit ?
2298	 *
2299	 * If we have written data it becomes a short write.  If we have
2300	 * exceeded without writing data we send a signal and return EFBIG.
2301	 * Linus frestrict idea will clean these up nicely..
2302	 */
2303	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2304		return -EFBIG;
2305
2306	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2307	return iov_iter_count(from);
2308}
2309EXPORT_SYMBOL(generic_write_checks);
2310
2311int pagecache_write_begin(struct file *file, struct address_space *mapping,
2312				loff_t pos, unsigned len, unsigned flags,
2313				struct page **pagep, void **fsdata)
2314{
2315	const struct address_space_operations *aops = mapping->a_ops;
2316
2317	return aops->write_begin(file, mapping, pos, len, flags,
2318							pagep, fsdata);
2319}
2320EXPORT_SYMBOL(pagecache_write_begin);
2321
2322int pagecache_write_end(struct file *file, struct address_space *mapping,
2323				loff_t pos, unsigned len, unsigned copied,
2324				struct page *page, void *fsdata)
2325{
2326	const struct address_space_operations *aops = mapping->a_ops;
2327
2328	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2329}
2330EXPORT_SYMBOL(pagecache_write_end);
2331
2332ssize_t
2333generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2334{
2335	struct file	*file = iocb->ki_filp;
2336	struct address_space *mapping = file->f_mapping;
2337	struct inode	*inode = mapping->host;
2338	ssize_t		written;
2339	size_t		write_len;
2340	pgoff_t		end;
2341	struct iov_iter data;
2342
2343	write_len = iov_iter_count(from);
2344	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2345
2346	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2347	if (written)
2348		goto out;
2349
2350	/*
2351	 * After a write we want buffered reads to be sure to go to disk to get
2352	 * the new data.  We invalidate clean cached page from the region we're
2353	 * about to write.  We do this *before* the write so that we can return
2354	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2355	 */
2356	if (mapping->nrpages) {
2357		written = invalidate_inode_pages2_range(mapping,
2358					pos >> PAGE_CACHE_SHIFT, end);
2359		/*
2360		 * If a page can not be invalidated, return 0 to fall back
2361		 * to buffered write.
2362		 */
2363		if (written) {
2364			if (written == -EBUSY)
2365				return 0;
2366			goto out;
2367		}
2368	}
2369
2370	data = *from;
2371	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2372
2373	/*
2374	 * Finally, try again to invalidate clean pages which might have been
2375	 * cached by non-direct readahead, or faulted in by get_user_pages()
2376	 * if the source of the write was an mmap'ed region of the file
2377	 * we're writing.  Either one is a pretty crazy thing to do,
2378	 * so we don't support it 100%.  If this invalidation
2379	 * fails, tough, the write still worked...
2380	 */
2381	if (mapping->nrpages) {
2382		invalidate_inode_pages2_range(mapping,
2383					      pos >> PAGE_CACHE_SHIFT, end);
2384	}
2385
2386	if (written > 0) {
2387		pos += written;
2388		iov_iter_advance(from, written);
2389		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2390			i_size_write(inode, pos);
2391			mark_inode_dirty(inode);
2392		}
2393		iocb->ki_pos = pos;
2394	}
2395out:
2396	return written;
2397}
2398EXPORT_SYMBOL(generic_file_direct_write);
2399
2400/*
2401 * Find or create a page at the given pagecache position. Return the locked
2402 * page. This function is specifically for buffered writes.
2403 */
2404struct page *grab_cache_page_write_begin(struct address_space *mapping,
2405					pgoff_t index, unsigned flags)
2406{
2407	struct page *page;
2408	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2409
2410	if (flags & AOP_FLAG_NOFS)
2411		fgp_flags |= FGP_NOFS;
2412
2413	page = pagecache_get_page(mapping, index, fgp_flags,
2414			mapping_gfp_mask(mapping));
2415	if (page)
2416		wait_for_stable_page(page);
2417
2418	return page;
2419}
2420EXPORT_SYMBOL(grab_cache_page_write_begin);
2421
2422ssize_t generic_perform_write(struct file *file,
2423				struct iov_iter *i, loff_t pos)
2424{
2425	struct address_space *mapping = file->f_mapping;
2426	const struct address_space_operations *a_ops = mapping->a_ops;
2427	long status = 0;
2428	ssize_t written = 0;
2429	unsigned int flags = 0;
2430
2431	/*
2432	 * Copies from kernel address space cannot fail (NFSD is a big user).
2433	 */
2434	if (!iter_is_iovec(i))
2435		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2436
2437	do {
2438		struct page *page;
2439		unsigned long offset;	/* Offset into pagecache page */
2440		unsigned long bytes;	/* Bytes to write to page */
2441		size_t copied;		/* Bytes copied from user */
2442		void *fsdata;
2443
2444		offset = (pos & (PAGE_CACHE_SIZE - 1));
2445		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2446						iov_iter_count(i));
2447
2448again:
2449		/*
2450		 * Bring in the user page that we will copy from _first_.
2451		 * Otherwise there's a nasty deadlock on copying from the
2452		 * same page as we're writing to, without it being marked
2453		 * up-to-date.
2454		 *
2455		 * Not only is this an optimisation, but it is also required
2456		 * to check that the address is actually valid, when atomic
2457		 * usercopies are used, below.
2458		 */
2459		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2460			status = -EFAULT;
2461			break;
2462		}
2463
2464		if (fatal_signal_pending(current)) {
2465			status = -EINTR;
2466			break;
2467		}
2468
2469		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2470						&page, &fsdata);
2471		if (unlikely(status < 0))
2472			break;
2473
2474		if (mapping_writably_mapped(mapping))
2475			flush_dcache_page(page);
2476
2477		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2478		flush_dcache_page(page);
2479
2480		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2481						page, fsdata);
2482		if (unlikely(status < 0))
2483			break;
2484		copied = status;
2485
2486		cond_resched();
2487
2488		iov_iter_advance(i, copied);
2489		if (unlikely(copied == 0)) {
2490			/*
2491			 * If we were unable to copy any data at all, we must
2492			 * fall back to a single segment length write.
2493			 *
2494			 * If we didn't fallback here, we could livelock
2495			 * because not all segments in the iov can be copied at
2496			 * once without a pagefault.
2497			 */
2498			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2499						iov_iter_single_seg_count(i));
2500			goto again;
2501		}
2502		pos += copied;
2503		written += copied;
2504
2505		balance_dirty_pages_ratelimited(mapping);
2506	} while (iov_iter_count(i));
2507
2508	return written ? written : status;
2509}
2510EXPORT_SYMBOL(generic_perform_write);
2511
2512/**
2513 * __generic_file_write_iter - write data to a file
2514 * @iocb:	IO state structure (file, offset, etc.)
2515 * @from:	iov_iter with data to write
2516 *
2517 * This function does all the work needed for actually writing data to a
2518 * file. It does all basic checks, removes SUID from the file, updates
2519 * modification times and calls proper subroutines depending on whether we
2520 * do direct IO or a standard buffered write.
2521 *
2522 * It expects i_mutex to be grabbed unless we work on a block device or similar
2523 * object which does not need locking at all.
2524 *
2525 * This function does *not* take care of syncing data in case of O_SYNC write.
2526 * A caller has to handle it. This is mainly due to the fact that we want to
2527 * avoid syncing under i_mutex.
2528 */
2529ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2530{
2531	struct file *file = iocb->ki_filp;
2532	struct address_space * mapping = file->f_mapping;
2533	struct inode 	*inode = mapping->host;
2534	ssize_t		written = 0;
2535	ssize_t		err;
2536	ssize_t		status;
2537
2538	/* We can write back this queue in page reclaim */
2539	current->backing_dev_info = inode_to_bdi(inode);
2540	err = file_remove_suid(file);
2541	if (err)
2542		goto out;
2543
2544	err = file_update_time(file);
2545	if (err)
2546		goto out;
2547
2548	if (iocb->ki_flags & IOCB_DIRECT) {
2549		loff_t pos, endbyte;
2550
2551		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2552		/*
2553		 * If the write stopped short of completing, fall back to
2554		 * buffered writes.  Some filesystems do this for writes to
2555		 * holes, for example.  For DAX files, a buffered write will
2556		 * not succeed (even if it did, DAX does not handle dirty
2557		 * page-cache pages correctly).
2558		 */
2559		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2560			goto out;
2561
2562		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2563		/*
2564		 * If generic_perform_write() returned a synchronous error
2565		 * then we want to return the number of bytes which were
2566		 * direct-written, or the error code if that was zero.  Note
2567		 * that this differs from normal direct-io semantics, which
2568		 * will return -EFOO even if some bytes were written.
2569		 */
2570		if (unlikely(status < 0)) {
2571			err = status;
2572			goto out;
2573		}
2574		/*
2575		 * We need to ensure that the page cache pages are written to
2576		 * disk and invalidated to preserve the expected O_DIRECT
2577		 * semantics.
2578		 */
2579		endbyte = pos + status - 1;
2580		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2581		if (err == 0) {
2582			iocb->ki_pos = endbyte + 1;
2583			written += status;
2584			invalidate_mapping_pages(mapping,
2585						 pos >> PAGE_CACHE_SHIFT,
2586						 endbyte >> PAGE_CACHE_SHIFT);
2587		} else {
2588			/*
2589			 * We don't know how much we wrote, so just return
2590			 * the number of bytes which were direct-written
2591			 */
2592		}
2593	} else {
2594		written = generic_perform_write(file, from, iocb->ki_pos);
2595		if (likely(written > 0))
2596			iocb->ki_pos += written;
2597	}
2598out:
2599	current->backing_dev_info = NULL;
2600	return written ? written : err;
2601}
2602EXPORT_SYMBOL(__generic_file_write_iter);
2603
2604/**
2605 * generic_file_write_iter - write data to a file
2606 * @iocb:	IO state structure
2607 * @from:	iov_iter with data to write
2608 *
2609 * This is a wrapper around __generic_file_write_iter() to be used by most
2610 * filesystems. It takes care of syncing the file in case of O_SYNC file
2611 * and acquires i_mutex as needed.
2612 */
2613ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2614{
2615	struct file *file = iocb->ki_filp;
2616	struct inode *inode = file->f_mapping->host;
2617	ssize_t ret;
2618
2619	mutex_lock(&inode->i_mutex);
2620	ret = generic_write_checks(iocb, from);
2621	if (ret > 0)
2622		ret = __generic_file_write_iter(iocb, from);
2623	mutex_unlock(&inode->i_mutex);
2624
2625	if (ret > 0) {
2626		ssize_t err;
2627
2628		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2629		if (err < 0)
2630			ret = err;
2631	}
2632	return ret;
2633}
2634EXPORT_SYMBOL(generic_file_write_iter);
2635
2636/**
2637 * try_to_release_page() - release old fs-specific metadata on a page
2638 *
2639 * @page: the page which the kernel is trying to free
2640 * @gfp_mask: memory allocation flags (and I/O mode)
2641 *
2642 * The address_space is to try to release any data against the page
2643 * (presumably at page->private).  If the release was successful, return `1'.
2644 * Otherwise return zero.
2645 *
2646 * This may also be called if PG_fscache is set on a page, indicating that the
2647 * page is known to the local caching routines.
2648 *
2649 * The @gfp_mask argument specifies whether I/O may be performed to release
2650 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2651 *
2652 */
2653int try_to_release_page(struct page *page, gfp_t gfp_mask)
2654{
2655	struct address_space * const mapping = page->mapping;
2656
2657	BUG_ON(!PageLocked(page));
2658	if (PageWriteback(page))
2659		return 0;
2660
2661	if (mapping && mapping->a_ops->releasepage)
2662		return mapping->a_ops->releasepage(page, gfp_mask);
2663	return try_to_free_buffers(page);
2664}
2665
2666EXPORT_SYMBOL(try_to_release_page);
2667