1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/backing-dev.h>
12#include <linux/gfp.h>
13#include <linux/mm.h>
14#include <linux/swap.h>
15#include <linux/export.h>
16#include <linux/pagemap.h>
17#include <linux/highmem.h>
18#include <linux/pagevec.h>
19#include <linux/task_io_accounting_ops.h>
20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
21				   do_invalidatepage */
22#include <linux/cleancache.h>
23#include <linux/rmap.h>
24#include "internal.h"
25
26static void clear_exceptional_entry(struct address_space *mapping,
27				    pgoff_t index, void *entry)
28{
29	struct radix_tree_node *node;
30	void **slot;
31
32	/* Handled by shmem itself */
33	if (shmem_mapping(mapping))
34		return;
35
36	spin_lock_irq(&mapping->tree_lock);
37	/*
38	 * Regular page slots are stabilized by the page lock even
39	 * without the tree itself locked.  These unlocked entries
40	 * need verification under the tree lock.
41	 */
42	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
43		goto unlock;
44	if (*slot != entry)
45		goto unlock;
46	radix_tree_replace_slot(slot, NULL);
47	mapping->nrshadows--;
48	if (!node)
49		goto unlock;
50	workingset_node_shadows_dec(node);
51	/*
52	 * Don't track node without shadow entries.
53	 *
54	 * Avoid acquiring the list_lru lock if already untracked.
55	 * The list_empty() test is safe as node->private_list is
56	 * protected by mapping->tree_lock.
57	 */
58	if (!workingset_node_shadows(node) &&
59	    !list_empty(&node->private_list))
60		list_lru_del(&workingset_shadow_nodes, &node->private_list);
61	__radix_tree_delete_node(&mapping->page_tree, node);
62unlock:
63	spin_unlock_irq(&mapping->tree_lock);
64}
65
66/**
67 * do_invalidatepage - invalidate part or all of a page
68 * @page: the page which is affected
69 * @offset: start of the range to invalidate
70 * @length: length of the range to invalidate
71 *
72 * do_invalidatepage() is called when all or part of the page has become
73 * invalidated by a truncate operation.
74 *
75 * do_invalidatepage() does not have to release all buffers, but it must
76 * ensure that no dirty buffer is left outside @offset and that no I/O
77 * is underway against any of the blocks which are outside the truncation
78 * point.  Because the caller is about to free (and possibly reuse) those
79 * blocks on-disk.
80 */
81void do_invalidatepage(struct page *page, unsigned int offset,
82		       unsigned int length)
83{
84	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
85
86	invalidatepage = page->mapping->a_ops->invalidatepage;
87#ifdef CONFIG_BLOCK
88	if (!invalidatepage)
89		invalidatepage = block_invalidatepage;
90#endif
91	if (invalidatepage)
92		(*invalidatepage)(page, offset, length);
93}
94
95/*
96 * If truncate cannot remove the fs-private metadata from the page, the page
97 * becomes orphaned.  It will be left on the LRU and may even be mapped into
98 * user pagetables if we're racing with filemap_fault().
99 *
100 * We need to bale out if page->mapping is no longer equal to the original
101 * mapping.  This happens a) when the VM reclaimed the page while we waited on
102 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
103 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
104 */
105static int
106truncate_complete_page(struct address_space *mapping, struct page *page)
107{
108	if (page->mapping != mapping)
109		return -EIO;
110
111	if (page_has_private(page))
112		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
113
114	/*
115	 * Some filesystems seem to re-dirty the page even after
116	 * the VM has canceled the dirty bit (eg ext3 journaling).
117	 * Hence dirty accounting check is placed after invalidation.
118	 */
119	if (TestClearPageDirty(page))
120		account_page_cleaned(page, mapping);
121
122	ClearPageMappedToDisk(page);
123	delete_from_page_cache(page);
124	return 0;
125}
126
127/*
128 * This is for invalidate_mapping_pages().  That function can be called at
129 * any time, and is not supposed to throw away dirty pages.  But pages can
130 * be marked dirty at any time too, so use remove_mapping which safely
131 * discards clean, unused pages.
132 *
133 * Returns non-zero if the page was successfully invalidated.
134 */
135static int
136invalidate_complete_page(struct address_space *mapping, struct page *page)
137{
138	int ret;
139
140	if (page->mapping != mapping)
141		return 0;
142
143	if (page_has_private(page) && !try_to_release_page(page, 0))
144		return 0;
145
146	ret = remove_mapping(mapping, page);
147
148	return ret;
149}
150
151int truncate_inode_page(struct address_space *mapping, struct page *page)
152{
153	if (page_mapped(page)) {
154		unmap_mapping_range(mapping,
155				   (loff_t)page->index << PAGE_CACHE_SHIFT,
156				   PAGE_CACHE_SIZE, 0);
157	}
158	return truncate_complete_page(mapping, page);
159}
160
161/*
162 * Used to get rid of pages on hardware memory corruption.
163 */
164int generic_error_remove_page(struct address_space *mapping, struct page *page)
165{
166	if (!mapping)
167		return -EINVAL;
168	/*
169	 * Only punch for normal data pages for now.
170	 * Handling other types like directories would need more auditing.
171	 */
172	if (!S_ISREG(mapping->host->i_mode))
173		return -EIO;
174	return truncate_inode_page(mapping, page);
175}
176EXPORT_SYMBOL(generic_error_remove_page);
177
178/*
179 * Safely invalidate one page from its pagecache mapping.
180 * It only drops clean, unused pages. The page must be locked.
181 *
182 * Returns 1 if the page is successfully invalidated, otherwise 0.
183 */
184int invalidate_inode_page(struct page *page)
185{
186	struct address_space *mapping = page_mapping(page);
187	if (!mapping)
188		return 0;
189	if (PageDirty(page) || PageWriteback(page))
190		return 0;
191	if (page_mapped(page))
192		return 0;
193	return invalidate_complete_page(mapping, page);
194}
195
196/**
197 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
198 * @mapping: mapping to truncate
199 * @lstart: offset from which to truncate
200 * @lend: offset to which to truncate (inclusive)
201 *
202 * Truncate the page cache, removing the pages that are between
203 * specified offsets (and zeroing out partial pages
204 * if lstart or lend + 1 is not page aligned).
205 *
206 * Truncate takes two passes - the first pass is nonblocking.  It will not
207 * block on page locks and it will not block on writeback.  The second pass
208 * will wait.  This is to prevent as much IO as possible in the affected region.
209 * The first pass will remove most pages, so the search cost of the second pass
210 * is low.
211 *
212 * We pass down the cache-hot hint to the page freeing code.  Even if the
213 * mapping is large, it is probably the case that the final pages are the most
214 * recently touched, and freeing happens in ascending file offset order.
215 *
216 * Note that since ->invalidatepage() accepts range to invalidate
217 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
218 * page aligned properly.
219 */
220void truncate_inode_pages_range(struct address_space *mapping,
221				loff_t lstart, loff_t lend)
222{
223	pgoff_t		start;		/* inclusive */
224	pgoff_t		end;		/* exclusive */
225	unsigned int	partial_start;	/* inclusive */
226	unsigned int	partial_end;	/* exclusive */
227	struct pagevec	pvec;
228	pgoff_t		indices[PAGEVEC_SIZE];
229	pgoff_t		index;
230	int		i;
231
232	cleancache_invalidate_inode(mapping);
233	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
234		return;
235
236	/* Offsets within partial pages */
237	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
238	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
239
240	/*
241	 * 'start' and 'end' always covers the range of pages to be fully
242	 * truncated. Partial pages are covered with 'partial_start' at the
243	 * start of the range and 'partial_end' at the end of the range.
244	 * Note that 'end' is exclusive while 'lend' is inclusive.
245	 */
246	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
247	if (lend == -1)
248		/*
249		 * lend == -1 indicates end-of-file so we have to set 'end'
250		 * to the highest possible pgoff_t and since the type is
251		 * unsigned we're using -1.
252		 */
253		end = -1;
254	else
255		end = (lend + 1) >> PAGE_CACHE_SHIFT;
256
257	pagevec_init(&pvec, 0);
258	index = start;
259	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
260			min(end - index, (pgoff_t)PAGEVEC_SIZE),
261			indices)) {
262		for (i = 0; i < pagevec_count(&pvec); i++) {
263			struct page *page = pvec.pages[i];
264
265			/* We rely upon deletion not changing page->index */
266			index = indices[i];
267			if (index >= end)
268				break;
269
270			if (radix_tree_exceptional_entry(page)) {
271				clear_exceptional_entry(mapping, index, page);
272				continue;
273			}
274
275			if (!trylock_page(page))
276				continue;
277			WARN_ON(page->index != index);
278			if (PageWriteback(page)) {
279				unlock_page(page);
280				continue;
281			}
282			truncate_inode_page(mapping, page);
283			unlock_page(page);
284		}
285		pagevec_remove_exceptionals(&pvec);
286		pagevec_release(&pvec);
287		cond_resched();
288		index++;
289	}
290
291	if (partial_start) {
292		struct page *page = find_lock_page(mapping, start - 1);
293		if (page) {
294			unsigned int top = PAGE_CACHE_SIZE;
295			if (start > end) {
296				/* Truncation within a single page */
297				top = partial_end;
298				partial_end = 0;
299			}
300			wait_on_page_writeback(page);
301			zero_user_segment(page, partial_start, top);
302			cleancache_invalidate_page(mapping, page);
303			if (page_has_private(page))
304				do_invalidatepage(page, partial_start,
305						  top - partial_start);
306			unlock_page(page);
307			page_cache_release(page);
308		}
309	}
310	if (partial_end) {
311		struct page *page = find_lock_page(mapping, end);
312		if (page) {
313			wait_on_page_writeback(page);
314			zero_user_segment(page, 0, partial_end);
315			cleancache_invalidate_page(mapping, page);
316			if (page_has_private(page))
317				do_invalidatepage(page, 0,
318						  partial_end);
319			unlock_page(page);
320			page_cache_release(page);
321		}
322	}
323	/*
324	 * If the truncation happened within a single page no pages
325	 * will be released, just zeroed, so we can bail out now.
326	 */
327	if (start >= end)
328		return;
329
330	index = start;
331	for ( ; ; ) {
332		cond_resched();
333		if (!pagevec_lookup_entries(&pvec, mapping, index,
334			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
335			/* If all gone from start onwards, we're done */
336			if (index == start)
337				break;
338			/* Otherwise restart to make sure all gone */
339			index = start;
340			continue;
341		}
342		if (index == start && indices[0] >= end) {
343			/* All gone out of hole to be punched, we're done */
344			pagevec_remove_exceptionals(&pvec);
345			pagevec_release(&pvec);
346			break;
347		}
348		for (i = 0; i < pagevec_count(&pvec); i++) {
349			struct page *page = pvec.pages[i];
350
351			/* We rely upon deletion not changing page->index */
352			index = indices[i];
353			if (index >= end) {
354				/* Restart punch to make sure all gone */
355				index = start - 1;
356				break;
357			}
358
359			if (radix_tree_exceptional_entry(page)) {
360				clear_exceptional_entry(mapping, index, page);
361				continue;
362			}
363
364			lock_page(page);
365			WARN_ON(page->index != index);
366			wait_on_page_writeback(page);
367			truncate_inode_page(mapping, page);
368			unlock_page(page);
369		}
370		pagevec_remove_exceptionals(&pvec);
371		pagevec_release(&pvec);
372		index++;
373	}
374	cleancache_invalidate_inode(mapping);
375}
376EXPORT_SYMBOL(truncate_inode_pages_range);
377
378/**
379 * truncate_inode_pages - truncate *all* the pages from an offset
380 * @mapping: mapping to truncate
381 * @lstart: offset from which to truncate
382 *
383 * Called under (and serialised by) inode->i_mutex.
384 *
385 * Note: When this function returns, there can be a page in the process of
386 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
387 * mapping->nrpages can be non-zero when this function returns even after
388 * truncation of the whole mapping.
389 */
390void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
391{
392	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
393}
394EXPORT_SYMBOL(truncate_inode_pages);
395
396/**
397 * truncate_inode_pages_final - truncate *all* pages before inode dies
398 * @mapping: mapping to truncate
399 *
400 * Called under (and serialized by) inode->i_mutex.
401 *
402 * Filesystems have to use this in the .evict_inode path to inform the
403 * VM that this is the final truncate and the inode is going away.
404 */
405void truncate_inode_pages_final(struct address_space *mapping)
406{
407	unsigned long nrshadows;
408	unsigned long nrpages;
409
410	/*
411	 * Page reclaim can not participate in regular inode lifetime
412	 * management (can't call iput()) and thus can race with the
413	 * inode teardown.  Tell it when the address space is exiting,
414	 * so that it does not install eviction information after the
415	 * final truncate has begun.
416	 */
417	mapping_set_exiting(mapping);
418
419	/*
420	 * When reclaim installs eviction entries, it increases
421	 * nrshadows first, then decreases nrpages.  Make sure we see
422	 * this in the right order or we might miss an entry.
423	 */
424	nrpages = mapping->nrpages;
425	smp_rmb();
426	nrshadows = mapping->nrshadows;
427
428	if (nrpages || nrshadows) {
429		/*
430		 * As truncation uses a lockless tree lookup, cycle
431		 * the tree lock to make sure any ongoing tree
432		 * modification that does not see AS_EXITING is
433		 * completed before starting the final truncate.
434		 */
435		spin_lock_irq(&mapping->tree_lock);
436		spin_unlock_irq(&mapping->tree_lock);
437
438		truncate_inode_pages(mapping, 0);
439	}
440}
441EXPORT_SYMBOL(truncate_inode_pages_final);
442
443/**
444 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
445 * @mapping: the address_space which holds the pages to invalidate
446 * @start: the offset 'from' which to invalidate
447 * @end: the offset 'to' which to invalidate (inclusive)
448 *
449 * This function only removes the unlocked pages, if you want to
450 * remove all the pages of one inode, you must call truncate_inode_pages.
451 *
452 * invalidate_mapping_pages() will not block on IO activity. It will not
453 * invalidate pages which are dirty, locked, under writeback or mapped into
454 * pagetables.
455 */
456unsigned long invalidate_mapping_pages(struct address_space *mapping,
457		pgoff_t start, pgoff_t end)
458{
459	pgoff_t indices[PAGEVEC_SIZE];
460	struct pagevec pvec;
461	pgoff_t index = start;
462	unsigned long ret;
463	unsigned long count = 0;
464	int i;
465
466	pagevec_init(&pvec, 0);
467	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
468			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
469			indices)) {
470		for (i = 0; i < pagevec_count(&pvec); i++) {
471			struct page *page = pvec.pages[i];
472
473			/* We rely upon deletion not changing page->index */
474			index = indices[i];
475			if (index > end)
476				break;
477
478			if (radix_tree_exceptional_entry(page)) {
479				clear_exceptional_entry(mapping, index, page);
480				continue;
481			}
482
483			if (!trylock_page(page))
484				continue;
485			WARN_ON(page->index != index);
486			ret = invalidate_inode_page(page);
487			unlock_page(page);
488			/*
489			 * Invalidation is a hint that the page is no longer
490			 * of interest and try to speed up its reclaim.
491			 */
492			if (!ret)
493				deactivate_file_page(page);
494			count += ret;
495		}
496		pagevec_remove_exceptionals(&pvec);
497		pagevec_release(&pvec);
498		cond_resched();
499		index++;
500	}
501	return count;
502}
503EXPORT_SYMBOL(invalidate_mapping_pages);
504
505/*
506 * This is like invalidate_complete_page(), except it ignores the page's
507 * refcount.  We do this because invalidate_inode_pages2() needs stronger
508 * invalidation guarantees, and cannot afford to leave pages behind because
509 * shrink_page_list() has a temp ref on them, or because they're transiently
510 * sitting in the lru_cache_add() pagevecs.
511 */
512static int
513invalidate_complete_page2(struct address_space *mapping, struct page *page)
514{
515	if (page->mapping != mapping)
516		return 0;
517
518	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
519		return 0;
520
521	spin_lock_irq(&mapping->tree_lock);
522	if (PageDirty(page))
523		goto failed;
524
525	BUG_ON(page_has_private(page));
526	__delete_from_page_cache(page, NULL);
527	spin_unlock_irq(&mapping->tree_lock);
528
529	if (mapping->a_ops->freepage)
530		mapping->a_ops->freepage(page);
531
532	page_cache_release(page);	/* pagecache ref */
533	return 1;
534failed:
535	spin_unlock_irq(&mapping->tree_lock);
536	return 0;
537}
538
539static int do_launder_page(struct address_space *mapping, struct page *page)
540{
541	if (!PageDirty(page))
542		return 0;
543	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
544		return 0;
545	return mapping->a_ops->launder_page(page);
546}
547
548/**
549 * invalidate_inode_pages2_range - remove range of pages from an address_space
550 * @mapping: the address_space
551 * @start: the page offset 'from' which to invalidate
552 * @end: the page offset 'to' which to invalidate (inclusive)
553 *
554 * Any pages which are found to be mapped into pagetables are unmapped prior to
555 * invalidation.
556 *
557 * Returns -EBUSY if any pages could not be invalidated.
558 */
559int invalidate_inode_pages2_range(struct address_space *mapping,
560				  pgoff_t start, pgoff_t end)
561{
562	pgoff_t indices[PAGEVEC_SIZE];
563	struct pagevec pvec;
564	pgoff_t index;
565	int i;
566	int ret = 0;
567	int ret2 = 0;
568	int did_range_unmap = 0;
569
570	cleancache_invalidate_inode(mapping);
571	pagevec_init(&pvec, 0);
572	index = start;
573	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
574			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
575			indices)) {
576		for (i = 0; i < pagevec_count(&pvec); i++) {
577			struct page *page = pvec.pages[i];
578
579			/* We rely upon deletion not changing page->index */
580			index = indices[i];
581			if (index > end)
582				break;
583
584			if (radix_tree_exceptional_entry(page)) {
585				clear_exceptional_entry(mapping, index, page);
586				continue;
587			}
588
589			lock_page(page);
590			WARN_ON(page->index != index);
591			if (page->mapping != mapping) {
592				unlock_page(page);
593				continue;
594			}
595			wait_on_page_writeback(page);
596			if (page_mapped(page)) {
597				if (!did_range_unmap) {
598					/*
599					 * Zap the rest of the file in one hit.
600					 */
601					unmap_mapping_range(mapping,
602					   (loff_t)index << PAGE_CACHE_SHIFT,
603					   (loff_t)(1 + end - index)
604							 << PAGE_CACHE_SHIFT,
605					    0);
606					did_range_unmap = 1;
607				} else {
608					/*
609					 * Just zap this page
610					 */
611					unmap_mapping_range(mapping,
612					   (loff_t)index << PAGE_CACHE_SHIFT,
613					   PAGE_CACHE_SIZE, 0);
614				}
615			}
616			BUG_ON(page_mapped(page));
617			ret2 = do_launder_page(mapping, page);
618			if (ret2 == 0) {
619				if (!invalidate_complete_page2(mapping, page))
620					ret2 = -EBUSY;
621			}
622			if (ret2 < 0)
623				ret = ret2;
624			unlock_page(page);
625		}
626		pagevec_remove_exceptionals(&pvec);
627		pagevec_release(&pvec);
628		cond_resched();
629		index++;
630	}
631	cleancache_invalidate_inode(mapping);
632	return ret;
633}
634EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
635
636/**
637 * invalidate_inode_pages2 - remove all pages from an address_space
638 * @mapping: the address_space
639 *
640 * Any pages which are found to be mapped into pagetables are unmapped prior to
641 * invalidation.
642 *
643 * Returns -EBUSY if any pages could not be invalidated.
644 */
645int invalidate_inode_pages2(struct address_space *mapping)
646{
647	return invalidate_inode_pages2_range(mapping, 0, -1);
648}
649EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
650
651/**
652 * truncate_pagecache - unmap and remove pagecache that has been truncated
653 * @inode: inode
654 * @newsize: new file size
655 *
656 * inode's new i_size must already be written before truncate_pagecache
657 * is called.
658 *
659 * This function should typically be called before the filesystem
660 * releases resources associated with the freed range (eg. deallocates
661 * blocks). This way, pagecache will always stay logically coherent
662 * with on-disk format, and the filesystem would not have to deal with
663 * situations such as writepage being called for a page that has already
664 * had its underlying blocks deallocated.
665 */
666void truncate_pagecache(struct inode *inode, loff_t newsize)
667{
668	struct address_space *mapping = inode->i_mapping;
669	loff_t holebegin = round_up(newsize, PAGE_SIZE);
670
671	/*
672	 * unmap_mapping_range is called twice, first simply for
673	 * efficiency so that truncate_inode_pages does fewer
674	 * single-page unmaps.  However after this first call, and
675	 * before truncate_inode_pages finishes, it is possible for
676	 * private pages to be COWed, which remain after
677	 * truncate_inode_pages finishes, hence the second
678	 * unmap_mapping_range call must be made for correctness.
679	 */
680	unmap_mapping_range(mapping, holebegin, 0, 1);
681	truncate_inode_pages(mapping, newsize);
682	unmap_mapping_range(mapping, holebegin, 0, 1);
683}
684EXPORT_SYMBOL(truncate_pagecache);
685
686/**
687 * truncate_setsize - update inode and pagecache for a new file size
688 * @inode: inode
689 * @newsize: new file size
690 *
691 * truncate_setsize updates i_size and performs pagecache truncation (if
692 * necessary) to @newsize. It will be typically be called from the filesystem's
693 * setattr function when ATTR_SIZE is passed in.
694 *
695 * Must be called with a lock serializing truncates and writes (generally
696 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
697 * specific block truncation has been performed.
698 */
699void truncate_setsize(struct inode *inode, loff_t newsize)
700{
701	loff_t oldsize = inode->i_size;
702
703	i_size_write(inode, newsize);
704	if (newsize > oldsize)
705		pagecache_isize_extended(inode, oldsize, newsize);
706	truncate_pagecache(inode, newsize);
707}
708EXPORT_SYMBOL(truncate_setsize);
709
710/**
711 * pagecache_isize_extended - update pagecache after extension of i_size
712 * @inode:	inode for which i_size was extended
713 * @from:	original inode size
714 * @to:		new inode size
715 *
716 * Handle extension of inode size either caused by extending truncate or by
717 * write starting after current i_size. We mark the page straddling current
718 * i_size RO so that page_mkwrite() is called on the nearest write access to
719 * the page.  This way filesystem can be sure that page_mkwrite() is called on
720 * the page before user writes to the page via mmap after the i_size has been
721 * changed.
722 *
723 * The function must be called after i_size is updated so that page fault
724 * coming after we unlock the page will already see the new i_size.
725 * The function must be called while we still hold i_mutex - this not only
726 * makes sure i_size is stable but also that userspace cannot observe new
727 * i_size value before we are prepared to store mmap writes at new inode size.
728 */
729void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
730{
731	int bsize = 1 << inode->i_blkbits;
732	loff_t rounded_from;
733	struct page *page;
734	pgoff_t index;
735
736	WARN_ON(to > inode->i_size);
737
738	if (from >= to || bsize == PAGE_CACHE_SIZE)
739		return;
740	/* Page straddling @from will not have any hole block created? */
741	rounded_from = round_up(from, bsize);
742	if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
743		return;
744
745	index = from >> PAGE_CACHE_SHIFT;
746	page = find_lock_page(inode->i_mapping, index);
747	/* Page not cached? Nothing to do */
748	if (!page)
749		return;
750	/*
751	 * See clear_page_dirty_for_io() for details why set_page_dirty()
752	 * is needed.
753	 */
754	if (page_mkclean(page))
755		set_page_dirty(page);
756	unlock_page(page);
757	page_cache_release(page);
758}
759EXPORT_SYMBOL(pagecache_isize_extended);
760
761/**
762 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
763 * @inode: inode
764 * @lstart: offset of beginning of hole
765 * @lend: offset of last byte of hole
766 *
767 * This function should typically be called before the filesystem
768 * releases resources associated with the freed range (eg. deallocates
769 * blocks). This way, pagecache will always stay logically coherent
770 * with on-disk format, and the filesystem would not have to deal with
771 * situations such as writepage being called for a page that has already
772 * had its underlying blocks deallocated.
773 */
774void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
775{
776	struct address_space *mapping = inode->i_mapping;
777	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
778	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
779	/*
780	 * This rounding is currently just for example: unmap_mapping_range
781	 * expands its hole outwards, whereas we want it to contract the hole
782	 * inwards.  However, existing callers of truncate_pagecache_range are
783	 * doing their own page rounding first.  Note that unmap_mapping_range
784	 * allows holelen 0 for all, and we allow lend -1 for end of file.
785	 */
786
787	/*
788	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
789	 * once (before truncating pagecache), and without "even_cows" flag:
790	 * hole-punching should not remove private COWed pages from the hole.
791	 */
792	if ((u64)unmap_end > (u64)unmap_start)
793		unmap_mapping_range(mapping, unmap_start,
794				    1 + unmap_end - unmap_start, 0);
795	truncate_inode_pages_range(mapping, lstart, lend);
796}
797EXPORT_SYMBOL(truncate_pagecache_range);
798