1/*
2 *	IP multicast routing support for mrouted 3.6/3.8
3 *
4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 *	  Linux Consultancy and Custom Driver Development
6 *
7 *	This program is free software; you can redistribute it and/or
8 *	modify it under the terms of the GNU General Public License
9 *	as published by the Free Software Foundation; either version
10 *	2 of the License, or (at your option) any later version.
11 *
12 *	Fixes:
13 *	Michael Chastain	:	Incorrect size of copying.
14 *	Alan Cox		:	Added the cache manager code
15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
16 *	Mike McLagan		:	Routing by source
17 *	Malcolm Beattie		:	Buffer handling fixes.
18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19 *	SVR Anand		:	Fixed several multicast bugs and problems.
20 *	Alexey Kuznetsov	:	Status, optimisations and more.
21 *	Brad Parker		:	Better behaviour on mrouted upcall
22 *					overflow.
23 *      Carlos Picoto           :       PIMv1 Support
24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25 *					Relax this requirement to work with older peers.
26 *
27 */
28
29#include <asm/uaccess.h>
30#include <linux/types.h>
31#include <linux/capability.h>
32#include <linux/errno.h>
33#include <linux/timer.h>
34#include <linux/mm.h>
35#include <linux/kernel.h>
36#include <linux/fcntl.h>
37#include <linux/stat.h>
38#include <linux/socket.h>
39#include <linux/in.h>
40#include <linux/inet.h>
41#include <linux/netdevice.h>
42#include <linux/inetdevice.h>
43#include <linux/igmp.h>
44#include <linux/proc_fs.h>
45#include <linux/seq_file.h>
46#include <linux/mroute.h>
47#include <linux/init.h>
48#include <linux/if_ether.h>
49#include <linux/slab.h>
50#include <net/net_namespace.h>
51#include <net/ip.h>
52#include <net/protocol.h>
53#include <linux/skbuff.h>
54#include <net/route.h>
55#include <net/sock.h>
56#include <net/icmp.h>
57#include <net/udp.h>
58#include <net/raw.h>
59#include <linux/notifier.h>
60#include <linux/if_arp.h>
61#include <linux/netfilter_ipv4.h>
62#include <linux/compat.h>
63#include <linux/export.h>
64#include <net/ip_tunnels.h>
65#include <net/checksum.h>
66#include <net/netlink.h>
67#include <net/fib_rules.h>
68#include <linux/netconf.h>
69
70#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71#define CONFIG_IP_PIMSM	1
72#endif
73
74struct mr_table {
75	struct list_head	list;
76	possible_net_t		net;
77	u32			id;
78	struct sock __rcu	*mroute_sk;
79	struct timer_list	ipmr_expire_timer;
80	struct list_head	mfc_unres_queue;
81	struct list_head	mfc_cache_array[MFC_LINES];
82	struct vif_device	vif_table[MAXVIFS];
83	int			maxvif;
84	atomic_t		cache_resolve_queue_len;
85	bool			mroute_do_assert;
86	bool			mroute_do_pim;
87#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88	int			mroute_reg_vif_num;
89#endif
90};
91
92struct ipmr_rule {
93	struct fib_rule		common;
94};
95
96struct ipmr_result {
97	struct mr_table		*mrt;
98};
99
100/* Big lock, protecting vif table, mrt cache and mroute socket state.
101 * Note that the changes are semaphored via rtnl_lock.
102 */
103
104static DEFINE_RWLOCK(mrt_lock);
105
106/*
107 *	Multicast router control variables
108 */
109
110#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111
112/* Special spinlock for queue of unresolved entries */
113static DEFINE_SPINLOCK(mfc_unres_lock);
114
115/* We return to original Alan's scheme. Hash table of resolved
116 * entries is changed only in process context and protected
117 * with weak lock mrt_lock. Queue of unresolved entries is protected
118 * with strong spinlock mfc_unres_lock.
119 *
120 * In this case data path is free of exclusive locks at all.
121 */
122
123static struct kmem_cache *mrt_cachep __read_mostly;
124
125static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126static void ipmr_free_table(struct mr_table *mrt);
127
128static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129			  struct sk_buff *skb, struct mfc_cache *cache,
130			  int local);
131static int ipmr_cache_report(struct mr_table *mrt,
132			     struct sk_buff *pkt, vifi_t vifi, int assert);
133static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134			      struct mfc_cache *c, struct rtmsg *rtm);
135static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136				 int cmd);
137static void mroute_clean_tables(struct mr_table *mrt, bool all);
138static void ipmr_expire_process(unsigned long arg);
139
140#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141#define ipmr_for_each_table(mrt, net) \
142	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143
144static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145{
146	struct mr_table *mrt;
147
148	ipmr_for_each_table(mrt, net) {
149		if (mrt->id == id)
150			return mrt;
151	}
152	return NULL;
153}
154
155static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156			   struct mr_table **mrt)
157{
158	int err;
159	struct ipmr_result res;
160	struct fib_lookup_arg arg = {
161		.result = &res,
162		.flags = FIB_LOOKUP_NOREF,
163	};
164
165	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166			       flowi4_to_flowi(flp4), 0, &arg);
167	if (err < 0)
168		return err;
169	*mrt = res.mrt;
170	return 0;
171}
172
173static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174			    int flags, struct fib_lookup_arg *arg)
175{
176	struct ipmr_result *res = arg->result;
177	struct mr_table *mrt;
178
179	switch (rule->action) {
180	case FR_ACT_TO_TBL:
181		break;
182	case FR_ACT_UNREACHABLE:
183		return -ENETUNREACH;
184	case FR_ACT_PROHIBIT:
185		return -EACCES;
186	case FR_ACT_BLACKHOLE:
187	default:
188		return -EINVAL;
189	}
190
191	mrt = ipmr_get_table(rule->fr_net, rule->table);
192	if (!mrt)
193		return -EAGAIN;
194	res->mrt = mrt;
195	return 0;
196}
197
198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199{
200	return 1;
201}
202
203static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204	FRA_GENERIC_POLICY,
205};
206
207static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208			       struct fib_rule_hdr *frh, struct nlattr **tb)
209{
210	return 0;
211}
212
213static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214			     struct nlattr **tb)
215{
216	return 1;
217}
218
219static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220			  struct fib_rule_hdr *frh)
221{
222	frh->dst_len = 0;
223	frh->src_len = 0;
224	frh->tos     = 0;
225	return 0;
226}
227
228static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229	.family		= RTNL_FAMILY_IPMR,
230	.rule_size	= sizeof(struct ipmr_rule),
231	.addr_size	= sizeof(u32),
232	.action		= ipmr_rule_action,
233	.match		= ipmr_rule_match,
234	.configure	= ipmr_rule_configure,
235	.compare	= ipmr_rule_compare,
236	.default_pref	= fib_default_rule_pref,
237	.fill		= ipmr_rule_fill,
238	.nlgroup	= RTNLGRP_IPV4_RULE,
239	.policy		= ipmr_rule_policy,
240	.owner		= THIS_MODULE,
241};
242
243static int __net_init ipmr_rules_init(struct net *net)
244{
245	struct fib_rules_ops *ops;
246	struct mr_table *mrt;
247	int err;
248
249	ops = fib_rules_register(&ipmr_rules_ops_template, net);
250	if (IS_ERR(ops))
251		return PTR_ERR(ops);
252
253	INIT_LIST_HEAD(&net->ipv4.mr_tables);
254
255	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
256	if (!mrt) {
257		err = -ENOMEM;
258		goto err1;
259	}
260
261	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
262	if (err < 0)
263		goto err2;
264
265	net->ipv4.mr_rules_ops = ops;
266	return 0;
267
268err2:
269	ipmr_free_table(mrt);
270err1:
271	fib_rules_unregister(ops);
272	return err;
273}
274
275static void __net_exit ipmr_rules_exit(struct net *net)
276{
277	struct mr_table *mrt, *next;
278
279	rtnl_lock();
280	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
281		list_del(&mrt->list);
282		ipmr_free_table(mrt);
283	}
284	fib_rules_unregister(net->ipv4.mr_rules_ops);
285	rtnl_unlock();
286}
287#else
288#define ipmr_for_each_table(mrt, net) \
289	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
290
291static struct mr_table *ipmr_get_table(struct net *net, u32 id)
292{
293	return net->ipv4.mrt;
294}
295
296static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
297			   struct mr_table **mrt)
298{
299	*mrt = net->ipv4.mrt;
300	return 0;
301}
302
303static int __net_init ipmr_rules_init(struct net *net)
304{
305	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
306	return net->ipv4.mrt ? 0 : -ENOMEM;
307}
308
309static void __net_exit ipmr_rules_exit(struct net *net)
310{
311	rtnl_lock();
312	ipmr_free_table(net->ipv4.mrt);
313	net->ipv4.mrt = NULL;
314	rtnl_unlock();
315}
316#endif
317
318static struct mr_table *ipmr_new_table(struct net *net, u32 id)
319{
320	struct mr_table *mrt;
321	unsigned int i;
322
323	mrt = ipmr_get_table(net, id);
324	if (mrt)
325		return mrt;
326
327	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
328	if (!mrt)
329		return NULL;
330	write_pnet(&mrt->net, net);
331	mrt->id = id;
332
333	/* Forwarding cache */
334	for (i = 0; i < MFC_LINES; i++)
335		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
336
337	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
338
339	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
340		    (unsigned long)mrt);
341
342#ifdef CONFIG_IP_PIMSM
343	mrt->mroute_reg_vif_num = -1;
344#endif
345#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
346	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
347#endif
348	return mrt;
349}
350
351static void ipmr_free_table(struct mr_table *mrt)
352{
353	del_timer_sync(&mrt->ipmr_expire_timer);
354	mroute_clean_tables(mrt, true);
355	kfree(mrt);
356}
357
358/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
359
360static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
361{
362	struct net *net = dev_net(dev);
363
364	dev_close(dev);
365
366	dev = __dev_get_by_name(net, "tunl0");
367	if (dev) {
368		const struct net_device_ops *ops = dev->netdev_ops;
369		struct ifreq ifr;
370		struct ip_tunnel_parm p;
371
372		memset(&p, 0, sizeof(p));
373		p.iph.daddr = v->vifc_rmt_addr.s_addr;
374		p.iph.saddr = v->vifc_lcl_addr.s_addr;
375		p.iph.version = 4;
376		p.iph.ihl = 5;
377		p.iph.protocol = IPPROTO_IPIP;
378		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
379		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
380
381		if (ops->ndo_do_ioctl) {
382			mm_segment_t oldfs = get_fs();
383
384			set_fs(KERNEL_DS);
385			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
386			set_fs(oldfs);
387		}
388	}
389}
390
391static
392struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
393{
394	struct net_device  *dev;
395
396	dev = __dev_get_by_name(net, "tunl0");
397
398	if (dev) {
399		const struct net_device_ops *ops = dev->netdev_ops;
400		int err;
401		struct ifreq ifr;
402		struct ip_tunnel_parm p;
403		struct in_device  *in_dev;
404
405		memset(&p, 0, sizeof(p));
406		p.iph.daddr = v->vifc_rmt_addr.s_addr;
407		p.iph.saddr = v->vifc_lcl_addr.s_addr;
408		p.iph.version = 4;
409		p.iph.ihl = 5;
410		p.iph.protocol = IPPROTO_IPIP;
411		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
412		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
413
414		if (ops->ndo_do_ioctl) {
415			mm_segment_t oldfs = get_fs();
416
417			set_fs(KERNEL_DS);
418			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
419			set_fs(oldfs);
420		} else {
421			err = -EOPNOTSUPP;
422		}
423		dev = NULL;
424
425		if (err == 0 &&
426		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
427			dev->flags |= IFF_MULTICAST;
428
429			in_dev = __in_dev_get_rtnl(dev);
430			if (!in_dev)
431				goto failure;
432
433			ipv4_devconf_setall(in_dev);
434			neigh_parms_data_state_setall(in_dev->arp_parms);
435			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
436
437			if (dev_open(dev))
438				goto failure;
439			dev_hold(dev);
440		}
441	}
442	return dev;
443
444failure:
445	/* allow the register to be completed before unregistering. */
446	rtnl_unlock();
447	rtnl_lock();
448
449	unregister_netdevice(dev);
450	return NULL;
451}
452
453#ifdef CONFIG_IP_PIMSM
454
455static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
456{
457	struct net *net = dev_net(dev);
458	struct mr_table *mrt;
459	struct flowi4 fl4 = {
460		.flowi4_oif	= dev->ifindex,
461		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
462		.flowi4_mark	= skb->mark,
463	};
464	int err;
465
466	err = ipmr_fib_lookup(net, &fl4, &mrt);
467	if (err < 0) {
468		kfree_skb(skb);
469		return err;
470	}
471
472	read_lock(&mrt_lock);
473	dev->stats.tx_bytes += skb->len;
474	dev->stats.tx_packets++;
475	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
476	read_unlock(&mrt_lock);
477	kfree_skb(skb);
478	return NETDEV_TX_OK;
479}
480
481static int reg_vif_get_iflink(const struct net_device *dev)
482{
483	return 0;
484}
485
486static const struct net_device_ops reg_vif_netdev_ops = {
487	.ndo_start_xmit	= reg_vif_xmit,
488	.ndo_get_iflink = reg_vif_get_iflink,
489};
490
491static void reg_vif_setup(struct net_device *dev)
492{
493	dev->type		= ARPHRD_PIMREG;
494	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
495	dev->flags		= IFF_NOARP;
496	dev->netdev_ops		= &reg_vif_netdev_ops;
497	dev->destructor		= free_netdev;
498	dev->features		|= NETIF_F_NETNS_LOCAL;
499}
500
501static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
502{
503	struct net_device *dev;
504	struct in_device *in_dev;
505	char name[IFNAMSIZ];
506
507	if (mrt->id == RT_TABLE_DEFAULT)
508		sprintf(name, "pimreg");
509	else
510		sprintf(name, "pimreg%u", mrt->id);
511
512	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
513
514	if (!dev)
515		return NULL;
516
517	dev_net_set(dev, net);
518
519	if (register_netdevice(dev)) {
520		free_netdev(dev);
521		return NULL;
522	}
523
524	rcu_read_lock();
525	in_dev = __in_dev_get_rcu(dev);
526	if (!in_dev) {
527		rcu_read_unlock();
528		goto failure;
529	}
530
531	ipv4_devconf_setall(in_dev);
532	neigh_parms_data_state_setall(in_dev->arp_parms);
533	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
534	rcu_read_unlock();
535
536	if (dev_open(dev))
537		goto failure;
538
539	dev_hold(dev);
540
541	return dev;
542
543failure:
544	/* allow the register to be completed before unregistering. */
545	rtnl_unlock();
546	rtnl_lock();
547
548	unregister_netdevice(dev);
549	return NULL;
550}
551#endif
552
553/**
554 *	vif_delete - Delete a VIF entry
555 *	@notify: Set to 1, if the caller is a notifier_call
556 */
557
558static int vif_delete(struct mr_table *mrt, int vifi, int notify,
559		      struct list_head *head)
560{
561	struct vif_device *v;
562	struct net_device *dev;
563	struct in_device *in_dev;
564
565	if (vifi < 0 || vifi >= mrt->maxvif)
566		return -EADDRNOTAVAIL;
567
568	v = &mrt->vif_table[vifi];
569
570	write_lock_bh(&mrt_lock);
571	dev = v->dev;
572	v->dev = NULL;
573
574	if (!dev) {
575		write_unlock_bh(&mrt_lock);
576		return -EADDRNOTAVAIL;
577	}
578
579#ifdef CONFIG_IP_PIMSM
580	if (vifi == mrt->mroute_reg_vif_num)
581		mrt->mroute_reg_vif_num = -1;
582#endif
583
584	if (vifi + 1 == mrt->maxvif) {
585		int tmp;
586
587		for (tmp = vifi - 1; tmp >= 0; tmp--) {
588			if (VIF_EXISTS(mrt, tmp))
589				break;
590		}
591		mrt->maxvif = tmp+1;
592	}
593
594	write_unlock_bh(&mrt_lock);
595
596	dev_set_allmulti(dev, -1);
597
598	in_dev = __in_dev_get_rtnl(dev);
599	if (in_dev) {
600		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
601		inet_netconf_notify_devconf(dev_net(dev),
602					    NETCONFA_MC_FORWARDING,
603					    dev->ifindex, &in_dev->cnf);
604		ip_rt_multicast_event(in_dev);
605	}
606
607	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
608		unregister_netdevice_queue(dev, head);
609
610	dev_put(dev);
611	return 0;
612}
613
614static void ipmr_cache_free_rcu(struct rcu_head *head)
615{
616	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
617
618	kmem_cache_free(mrt_cachep, c);
619}
620
621static inline void ipmr_cache_free(struct mfc_cache *c)
622{
623	call_rcu(&c->rcu, ipmr_cache_free_rcu);
624}
625
626/* Destroy an unresolved cache entry, killing queued skbs
627 * and reporting error to netlink readers.
628 */
629
630static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
631{
632	struct net *net = read_pnet(&mrt->net);
633	struct sk_buff *skb;
634	struct nlmsgerr *e;
635
636	atomic_dec(&mrt->cache_resolve_queue_len);
637
638	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
639		if (ip_hdr(skb)->version == 0) {
640			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
641			nlh->nlmsg_type = NLMSG_ERROR;
642			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
643			skb_trim(skb, nlh->nlmsg_len);
644			e = nlmsg_data(nlh);
645			e->error = -ETIMEDOUT;
646			memset(&e->msg, 0, sizeof(e->msg));
647
648			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
649		} else {
650			kfree_skb(skb);
651		}
652	}
653
654	ipmr_cache_free(c);
655}
656
657
658/* Timer process for the unresolved queue. */
659
660static void ipmr_expire_process(unsigned long arg)
661{
662	struct mr_table *mrt = (struct mr_table *)arg;
663	unsigned long now;
664	unsigned long expires;
665	struct mfc_cache *c, *next;
666
667	if (!spin_trylock(&mfc_unres_lock)) {
668		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
669		return;
670	}
671
672	if (list_empty(&mrt->mfc_unres_queue))
673		goto out;
674
675	now = jiffies;
676	expires = 10*HZ;
677
678	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
679		if (time_after(c->mfc_un.unres.expires, now)) {
680			unsigned long interval = c->mfc_un.unres.expires - now;
681			if (interval < expires)
682				expires = interval;
683			continue;
684		}
685
686		list_del(&c->list);
687		mroute_netlink_event(mrt, c, RTM_DELROUTE);
688		ipmr_destroy_unres(mrt, c);
689	}
690
691	if (!list_empty(&mrt->mfc_unres_queue))
692		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
693
694out:
695	spin_unlock(&mfc_unres_lock);
696}
697
698/* Fill oifs list. It is called under write locked mrt_lock. */
699
700static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
701				   unsigned char *ttls)
702{
703	int vifi;
704
705	cache->mfc_un.res.minvif = MAXVIFS;
706	cache->mfc_un.res.maxvif = 0;
707	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
708
709	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
710		if (VIF_EXISTS(mrt, vifi) &&
711		    ttls[vifi] && ttls[vifi] < 255) {
712			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
713			if (cache->mfc_un.res.minvif > vifi)
714				cache->mfc_un.res.minvif = vifi;
715			if (cache->mfc_un.res.maxvif <= vifi)
716				cache->mfc_un.res.maxvif = vifi + 1;
717		}
718	}
719}
720
721static int vif_add(struct net *net, struct mr_table *mrt,
722		   struct vifctl *vifc, int mrtsock)
723{
724	int vifi = vifc->vifc_vifi;
725	struct vif_device *v = &mrt->vif_table[vifi];
726	struct net_device *dev;
727	struct in_device *in_dev;
728	int err;
729
730	/* Is vif busy ? */
731	if (VIF_EXISTS(mrt, vifi))
732		return -EADDRINUSE;
733
734	switch (vifc->vifc_flags) {
735#ifdef CONFIG_IP_PIMSM
736	case VIFF_REGISTER:
737		/*
738		 * Special Purpose VIF in PIM
739		 * All the packets will be sent to the daemon
740		 */
741		if (mrt->mroute_reg_vif_num >= 0)
742			return -EADDRINUSE;
743		dev = ipmr_reg_vif(net, mrt);
744		if (!dev)
745			return -ENOBUFS;
746		err = dev_set_allmulti(dev, 1);
747		if (err) {
748			unregister_netdevice(dev);
749			dev_put(dev);
750			return err;
751		}
752		break;
753#endif
754	case VIFF_TUNNEL:
755		dev = ipmr_new_tunnel(net, vifc);
756		if (!dev)
757			return -ENOBUFS;
758		err = dev_set_allmulti(dev, 1);
759		if (err) {
760			ipmr_del_tunnel(dev, vifc);
761			dev_put(dev);
762			return err;
763		}
764		break;
765
766	case VIFF_USE_IFINDEX:
767	case 0:
768		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
769			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
770			if (dev && !__in_dev_get_rtnl(dev)) {
771				dev_put(dev);
772				return -EADDRNOTAVAIL;
773			}
774		} else {
775			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
776		}
777		if (!dev)
778			return -EADDRNOTAVAIL;
779		err = dev_set_allmulti(dev, 1);
780		if (err) {
781			dev_put(dev);
782			return err;
783		}
784		break;
785	default:
786		return -EINVAL;
787	}
788
789	in_dev = __in_dev_get_rtnl(dev);
790	if (!in_dev) {
791		dev_put(dev);
792		return -EADDRNOTAVAIL;
793	}
794	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
795	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
796				    &in_dev->cnf);
797	ip_rt_multicast_event(in_dev);
798
799	/* Fill in the VIF structures */
800
801	v->rate_limit = vifc->vifc_rate_limit;
802	v->local = vifc->vifc_lcl_addr.s_addr;
803	v->remote = vifc->vifc_rmt_addr.s_addr;
804	v->flags = vifc->vifc_flags;
805	if (!mrtsock)
806		v->flags |= VIFF_STATIC;
807	v->threshold = vifc->vifc_threshold;
808	v->bytes_in = 0;
809	v->bytes_out = 0;
810	v->pkt_in = 0;
811	v->pkt_out = 0;
812	v->link = dev->ifindex;
813	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
814		v->link = dev_get_iflink(dev);
815
816	/* And finish update writing critical data */
817	write_lock_bh(&mrt_lock);
818	v->dev = dev;
819#ifdef CONFIG_IP_PIMSM
820	if (v->flags & VIFF_REGISTER)
821		mrt->mroute_reg_vif_num = vifi;
822#endif
823	if (vifi+1 > mrt->maxvif)
824		mrt->maxvif = vifi+1;
825	write_unlock_bh(&mrt_lock);
826	return 0;
827}
828
829/* called with rcu_read_lock() */
830static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
831					 __be32 origin,
832					 __be32 mcastgrp)
833{
834	int line = MFC_HASH(mcastgrp, origin);
835	struct mfc_cache *c;
836
837	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
838		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
839			return c;
840	}
841	return NULL;
842}
843
844/* Look for a (*,*,oif) entry */
845static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
846						    int vifi)
847{
848	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
849	struct mfc_cache *c;
850
851	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
852		if (c->mfc_origin == htonl(INADDR_ANY) &&
853		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
854		    c->mfc_un.res.ttls[vifi] < 255)
855			return c;
856
857	return NULL;
858}
859
860/* Look for a (*,G) entry */
861static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
862					     __be32 mcastgrp, int vifi)
863{
864	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
865	struct mfc_cache *c, *proxy;
866
867	if (mcastgrp == htonl(INADDR_ANY))
868		goto skip;
869
870	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
871		if (c->mfc_origin == htonl(INADDR_ANY) &&
872		    c->mfc_mcastgrp == mcastgrp) {
873			if (c->mfc_un.res.ttls[vifi] < 255)
874				return c;
875
876			/* It's ok if the vifi is part of the static tree */
877			proxy = ipmr_cache_find_any_parent(mrt,
878							   c->mfc_parent);
879			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
880				return c;
881		}
882
883skip:
884	return ipmr_cache_find_any_parent(mrt, vifi);
885}
886
887/*
888 *	Allocate a multicast cache entry
889 */
890static struct mfc_cache *ipmr_cache_alloc(void)
891{
892	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
893
894	if (c)
895		c->mfc_un.res.minvif = MAXVIFS;
896	return c;
897}
898
899static struct mfc_cache *ipmr_cache_alloc_unres(void)
900{
901	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
902
903	if (c) {
904		skb_queue_head_init(&c->mfc_un.unres.unresolved);
905		c->mfc_un.unres.expires = jiffies + 10*HZ;
906	}
907	return c;
908}
909
910/*
911 *	A cache entry has gone into a resolved state from queued
912 */
913
914static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
915			       struct mfc_cache *uc, struct mfc_cache *c)
916{
917	struct sk_buff *skb;
918	struct nlmsgerr *e;
919
920	/* Play the pending entries through our router */
921
922	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
923		if (ip_hdr(skb)->version == 0) {
924			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
925
926			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
927				nlh->nlmsg_len = skb_tail_pointer(skb) -
928						 (u8 *)nlh;
929			} else {
930				nlh->nlmsg_type = NLMSG_ERROR;
931				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
932				skb_trim(skb, nlh->nlmsg_len);
933				e = nlmsg_data(nlh);
934				e->error = -EMSGSIZE;
935				memset(&e->msg, 0, sizeof(e->msg));
936			}
937
938			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
939		} else {
940			ip_mr_forward(net, mrt, skb, c, 0);
941		}
942	}
943}
944
945/*
946 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
947 *	expects the following bizarre scheme.
948 *
949 *	Called under mrt_lock.
950 */
951
952static int ipmr_cache_report(struct mr_table *mrt,
953			     struct sk_buff *pkt, vifi_t vifi, int assert)
954{
955	struct sk_buff *skb;
956	const int ihl = ip_hdrlen(pkt);
957	struct igmphdr *igmp;
958	struct igmpmsg *msg;
959	struct sock *mroute_sk;
960	int ret;
961
962#ifdef CONFIG_IP_PIMSM
963	if (assert == IGMPMSG_WHOLEPKT)
964		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
965	else
966#endif
967		skb = alloc_skb(128, GFP_ATOMIC);
968
969	if (!skb)
970		return -ENOBUFS;
971
972#ifdef CONFIG_IP_PIMSM
973	if (assert == IGMPMSG_WHOLEPKT) {
974		/* Ugly, but we have no choice with this interface.
975		 * Duplicate old header, fix ihl, length etc.
976		 * And all this only to mangle msg->im_msgtype and
977		 * to set msg->im_mbz to "mbz" :-)
978		 */
979		skb_push(skb, sizeof(struct iphdr));
980		skb_reset_network_header(skb);
981		skb_reset_transport_header(skb);
982		msg = (struct igmpmsg *)skb_network_header(skb);
983		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
984		msg->im_msgtype = IGMPMSG_WHOLEPKT;
985		msg->im_mbz = 0;
986		msg->im_vif = mrt->mroute_reg_vif_num;
987		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
988		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
989					     sizeof(struct iphdr));
990	} else
991#endif
992	{
993
994	/* Copy the IP header */
995
996	skb_set_network_header(skb, skb->len);
997	skb_put(skb, ihl);
998	skb_copy_to_linear_data(skb, pkt->data, ihl);
999	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
1000	msg = (struct igmpmsg *)skb_network_header(skb);
1001	msg->im_vif = vifi;
1002	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1003
1004	/* Add our header */
1005
1006	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1007	igmp->type	=
1008	msg->im_msgtype = assert;
1009	igmp->code	= 0;
1010	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1011	skb->transport_header = skb->network_header;
1012	}
1013
1014	rcu_read_lock();
1015	mroute_sk = rcu_dereference(mrt->mroute_sk);
1016	if (!mroute_sk) {
1017		rcu_read_unlock();
1018		kfree_skb(skb);
1019		return -EINVAL;
1020	}
1021
1022	/* Deliver to mrouted */
1023
1024	ret = sock_queue_rcv_skb(mroute_sk, skb);
1025	rcu_read_unlock();
1026	if (ret < 0) {
1027		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1028		kfree_skb(skb);
1029	}
1030
1031	return ret;
1032}
1033
1034/*
1035 *	Queue a packet for resolution. It gets locked cache entry!
1036 */
1037
1038static int
1039ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1040{
1041	bool found = false;
1042	int err;
1043	struct mfc_cache *c;
1044	const struct iphdr *iph = ip_hdr(skb);
1045
1046	spin_lock_bh(&mfc_unres_lock);
1047	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1048		if (c->mfc_mcastgrp == iph->daddr &&
1049		    c->mfc_origin == iph->saddr) {
1050			found = true;
1051			break;
1052		}
1053	}
1054
1055	if (!found) {
1056		/* Create a new entry if allowable */
1057
1058		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1059		    (c = ipmr_cache_alloc_unres()) == NULL) {
1060			spin_unlock_bh(&mfc_unres_lock);
1061
1062			kfree_skb(skb);
1063			return -ENOBUFS;
1064		}
1065
1066		/* Fill in the new cache entry */
1067
1068		c->mfc_parent	= -1;
1069		c->mfc_origin	= iph->saddr;
1070		c->mfc_mcastgrp	= iph->daddr;
1071
1072		/* Reflect first query at mrouted. */
1073
1074		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1075		if (err < 0) {
1076			/* If the report failed throw the cache entry
1077			   out - Brad Parker
1078			 */
1079			spin_unlock_bh(&mfc_unres_lock);
1080
1081			ipmr_cache_free(c);
1082			kfree_skb(skb);
1083			return err;
1084		}
1085
1086		atomic_inc(&mrt->cache_resolve_queue_len);
1087		list_add(&c->list, &mrt->mfc_unres_queue);
1088		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1089
1090		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1091			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1092	}
1093
1094	/* See if we can append the packet */
1095
1096	if (c->mfc_un.unres.unresolved.qlen > 3) {
1097		kfree_skb(skb);
1098		err = -ENOBUFS;
1099	} else {
1100		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1101		err = 0;
1102	}
1103
1104	spin_unlock_bh(&mfc_unres_lock);
1105	return err;
1106}
1107
1108/*
1109 *	MFC cache manipulation by user space mroute daemon
1110 */
1111
1112static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1113{
1114	int line;
1115	struct mfc_cache *c, *next;
1116
1117	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1118
1119	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1120		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1121		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1122		    (parent == -1 || parent == c->mfc_parent)) {
1123			list_del_rcu(&c->list);
1124			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1125			ipmr_cache_free(c);
1126			return 0;
1127		}
1128	}
1129	return -ENOENT;
1130}
1131
1132static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1133			struct mfcctl *mfc, int mrtsock, int parent)
1134{
1135	bool found = false;
1136	int line;
1137	struct mfc_cache *uc, *c;
1138
1139	if (mfc->mfcc_parent >= MAXVIFS)
1140		return -ENFILE;
1141
1142	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1143
1144	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1145		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1146		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1147		    (parent == -1 || parent == c->mfc_parent)) {
1148			found = true;
1149			break;
1150		}
1151	}
1152
1153	if (found) {
1154		write_lock_bh(&mrt_lock);
1155		c->mfc_parent = mfc->mfcc_parent;
1156		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1157		if (!mrtsock)
1158			c->mfc_flags |= MFC_STATIC;
1159		write_unlock_bh(&mrt_lock);
1160		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1161		return 0;
1162	}
1163
1164	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1165	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1166		return -EINVAL;
1167
1168	c = ipmr_cache_alloc();
1169	if (!c)
1170		return -ENOMEM;
1171
1172	c->mfc_origin = mfc->mfcc_origin.s_addr;
1173	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1174	c->mfc_parent = mfc->mfcc_parent;
1175	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1176	if (!mrtsock)
1177		c->mfc_flags |= MFC_STATIC;
1178
1179	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1180
1181	/*
1182	 *	Check to see if we resolved a queued list. If so we
1183	 *	need to send on the frames and tidy up.
1184	 */
1185	found = false;
1186	spin_lock_bh(&mfc_unres_lock);
1187	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1188		if (uc->mfc_origin == c->mfc_origin &&
1189		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1190			list_del(&uc->list);
1191			atomic_dec(&mrt->cache_resolve_queue_len);
1192			found = true;
1193			break;
1194		}
1195	}
1196	if (list_empty(&mrt->mfc_unres_queue))
1197		del_timer(&mrt->ipmr_expire_timer);
1198	spin_unlock_bh(&mfc_unres_lock);
1199
1200	if (found) {
1201		ipmr_cache_resolve(net, mrt, uc, c);
1202		ipmr_cache_free(uc);
1203	}
1204	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1205	return 0;
1206}
1207
1208/*
1209 *	Close the multicast socket, and clear the vif tables etc
1210 */
1211
1212static void mroute_clean_tables(struct mr_table *mrt, bool all)
1213{
1214	int i;
1215	LIST_HEAD(list);
1216	struct mfc_cache *c, *next;
1217
1218	/* Shut down all active vif entries */
1219
1220	for (i = 0; i < mrt->maxvif; i++) {
1221		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1222			continue;
1223		vif_delete(mrt, i, 0, &list);
1224	}
1225	unregister_netdevice_many(&list);
1226
1227	/* Wipe the cache */
1228
1229	for (i = 0; i < MFC_LINES; i++) {
1230		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1231			if (!all && (c->mfc_flags & MFC_STATIC))
1232				continue;
1233			list_del_rcu(&c->list);
1234			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235			ipmr_cache_free(c);
1236		}
1237	}
1238
1239	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1240		spin_lock_bh(&mfc_unres_lock);
1241		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1242			list_del(&c->list);
1243			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1244			ipmr_destroy_unres(mrt, c);
1245		}
1246		spin_unlock_bh(&mfc_unres_lock);
1247	}
1248}
1249
1250/* called from ip_ra_control(), before an RCU grace period,
1251 * we dont need to call synchronize_rcu() here
1252 */
1253static void mrtsock_destruct(struct sock *sk)
1254{
1255	struct net *net = sock_net(sk);
1256	struct mr_table *mrt;
1257
1258	rtnl_lock();
1259	ipmr_for_each_table(mrt, net) {
1260		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1261			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1262			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1263						    NETCONFA_IFINDEX_ALL,
1264						    net->ipv4.devconf_all);
1265			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1266			mroute_clean_tables(mrt, false);
1267		}
1268	}
1269	rtnl_unlock();
1270}
1271
1272/*
1273 *	Socket options and virtual interface manipulation. The whole
1274 *	virtual interface system is a complete heap, but unfortunately
1275 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1276 *	MOSPF/PIM router set up we can clean this up.
1277 */
1278
1279int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1280{
1281	int ret, parent = 0;
1282	struct vifctl vif;
1283	struct mfcctl mfc;
1284	struct net *net = sock_net(sk);
1285	struct mr_table *mrt;
1286
1287	if (sk->sk_type != SOCK_RAW ||
1288	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1289		return -EOPNOTSUPP;
1290
1291	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1292	if (!mrt)
1293		return -ENOENT;
1294
1295	if (optname != MRT_INIT) {
1296		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1297		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1298			return -EACCES;
1299	}
1300
1301	switch (optname) {
1302	case MRT_INIT:
1303		if (optlen != sizeof(int))
1304			return -EINVAL;
1305
1306		rtnl_lock();
1307		if (rtnl_dereference(mrt->mroute_sk)) {
1308			rtnl_unlock();
1309			return -EADDRINUSE;
1310		}
1311
1312		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1313		if (ret == 0) {
1314			rcu_assign_pointer(mrt->mroute_sk, sk);
1315			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1316			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1317						    NETCONFA_IFINDEX_ALL,
1318						    net->ipv4.devconf_all);
1319		}
1320		rtnl_unlock();
1321		return ret;
1322	case MRT_DONE:
1323		if (sk != rcu_access_pointer(mrt->mroute_sk))
1324			return -EACCES;
1325		return ip_ra_control(sk, 0, NULL);
1326	case MRT_ADD_VIF:
1327	case MRT_DEL_VIF:
1328		if (optlen != sizeof(vif))
1329			return -EINVAL;
1330		if (copy_from_user(&vif, optval, sizeof(vif)))
1331			return -EFAULT;
1332		if (vif.vifc_vifi >= MAXVIFS)
1333			return -ENFILE;
1334		rtnl_lock();
1335		if (optname == MRT_ADD_VIF) {
1336			ret = vif_add(net, mrt, &vif,
1337				      sk == rtnl_dereference(mrt->mroute_sk));
1338		} else {
1339			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1340		}
1341		rtnl_unlock();
1342		return ret;
1343
1344		/*
1345		 *	Manipulate the forwarding caches. These live
1346		 *	in a sort of kernel/user symbiosis.
1347		 */
1348	case MRT_ADD_MFC:
1349	case MRT_DEL_MFC:
1350		parent = -1;
1351	case MRT_ADD_MFC_PROXY:
1352	case MRT_DEL_MFC_PROXY:
1353		if (optlen != sizeof(mfc))
1354			return -EINVAL;
1355		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1356			return -EFAULT;
1357		if (parent == 0)
1358			parent = mfc.mfcc_parent;
1359		rtnl_lock();
1360		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1361			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1362		else
1363			ret = ipmr_mfc_add(net, mrt, &mfc,
1364					   sk == rtnl_dereference(mrt->mroute_sk),
1365					   parent);
1366		rtnl_unlock();
1367		return ret;
1368		/*
1369		 *	Control PIM assert.
1370		 */
1371	case MRT_ASSERT:
1372	{
1373		int v;
1374		if (optlen != sizeof(v))
1375			return -EINVAL;
1376		if (get_user(v, (int __user *)optval))
1377			return -EFAULT;
1378		mrt->mroute_do_assert = v;
1379		return 0;
1380	}
1381#ifdef CONFIG_IP_PIMSM
1382	case MRT_PIM:
1383	{
1384		int v;
1385
1386		if (optlen != sizeof(v))
1387			return -EINVAL;
1388		if (get_user(v, (int __user *)optval))
1389			return -EFAULT;
1390		v = !!v;
1391
1392		rtnl_lock();
1393		ret = 0;
1394		if (v != mrt->mroute_do_pim) {
1395			mrt->mroute_do_pim = v;
1396			mrt->mroute_do_assert = v;
1397		}
1398		rtnl_unlock();
1399		return ret;
1400	}
1401#endif
1402#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1403	case MRT_TABLE:
1404	{
1405		u32 v;
1406
1407		if (optlen != sizeof(u32))
1408			return -EINVAL;
1409		if (get_user(v, (u32 __user *)optval))
1410			return -EFAULT;
1411
1412		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1413		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1414			return -EINVAL;
1415
1416		rtnl_lock();
1417		ret = 0;
1418		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1419			ret = -EBUSY;
1420		} else {
1421			if (!ipmr_new_table(net, v))
1422				ret = -ENOMEM;
1423			else
1424				raw_sk(sk)->ipmr_table = v;
1425		}
1426		rtnl_unlock();
1427		return ret;
1428	}
1429#endif
1430	/*
1431	 *	Spurious command, or MRT_VERSION which you cannot
1432	 *	set.
1433	 */
1434	default:
1435		return -ENOPROTOOPT;
1436	}
1437}
1438
1439/*
1440 *	Getsock opt support for the multicast routing system.
1441 */
1442
1443int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1444{
1445	int olr;
1446	int val;
1447	struct net *net = sock_net(sk);
1448	struct mr_table *mrt;
1449
1450	if (sk->sk_type != SOCK_RAW ||
1451	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1452		return -EOPNOTSUPP;
1453
1454	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1455	if (!mrt)
1456		return -ENOENT;
1457
1458	if (optname != MRT_VERSION &&
1459#ifdef CONFIG_IP_PIMSM
1460	   optname != MRT_PIM &&
1461#endif
1462	   optname != MRT_ASSERT)
1463		return -ENOPROTOOPT;
1464
1465	if (get_user(olr, optlen))
1466		return -EFAULT;
1467
1468	olr = min_t(unsigned int, olr, sizeof(int));
1469	if (olr < 0)
1470		return -EINVAL;
1471
1472	if (put_user(olr, optlen))
1473		return -EFAULT;
1474	if (optname == MRT_VERSION)
1475		val = 0x0305;
1476#ifdef CONFIG_IP_PIMSM
1477	else if (optname == MRT_PIM)
1478		val = mrt->mroute_do_pim;
1479#endif
1480	else
1481		val = mrt->mroute_do_assert;
1482	if (copy_to_user(optval, &val, olr))
1483		return -EFAULT;
1484	return 0;
1485}
1486
1487/*
1488 *	The IP multicast ioctl support routines.
1489 */
1490
1491int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1492{
1493	struct sioc_sg_req sr;
1494	struct sioc_vif_req vr;
1495	struct vif_device *vif;
1496	struct mfc_cache *c;
1497	struct net *net = sock_net(sk);
1498	struct mr_table *mrt;
1499
1500	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1501	if (!mrt)
1502		return -ENOENT;
1503
1504	switch (cmd) {
1505	case SIOCGETVIFCNT:
1506		if (copy_from_user(&vr, arg, sizeof(vr)))
1507			return -EFAULT;
1508		if (vr.vifi >= mrt->maxvif)
1509			return -EINVAL;
1510		read_lock(&mrt_lock);
1511		vif = &mrt->vif_table[vr.vifi];
1512		if (VIF_EXISTS(mrt, vr.vifi)) {
1513			vr.icount = vif->pkt_in;
1514			vr.ocount = vif->pkt_out;
1515			vr.ibytes = vif->bytes_in;
1516			vr.obytes = vif->bytes_out;
1517			read_unlock(&mrt_lock);
1518
1519			if (copy_to_user(arg, &vr, sizeof(vr)))
1520				return -EFAULT;
1521			return 0;
1522		}
1523		read_unlock(&mrt_lock);
1524		return -EADDRNOTAVAIL;
1525	case SIOCGETSGCNT:
1526		if (copy_from_user(&sr, arg, sizeof(sr)))
1527			return -EFAULT;
1528
1529		rcu_read_lock();
1530		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1531		if (c) {
1532			sr.pktcnt = c->mfc_un.res.pkt;
1533			sr.bytecnt = c->mfc_un.res.bytes;
1534			sr.wrong_if = c->mfc_un.res.wrong_if;
1535			rcu_read_unlock();
1536
1537			if (copy_to_user(arg, &sr, sizeof(sr)))
1538				return -EFAULT;
1539			return 0;
1540		}
1541		rcu_read_unlock();
1542		return -EADDRNOTAVAIL;
1543	default:
1544		return -ENOIOCTLCMD;
1545	}
1546}
1547
1548#ifdef CONFIG_COMPAT
1549struct compat_sioc_sg_req {
1550	struct in_addr src;
1551	struct in_addr grp;
1552	compat_ulong_t pktcnt;
1553	compat_ulong_t bytecnt;
1554	compat_ulong_t wrong_if;
1555};
1556
1557struct compat_sioc_vif_req {
1558	vifi_t	vifi;		/* Which iface */
1559	compat_ulong_t icount;
1560	compat_ulong_t ocount;
1561	compat_ulong_t ibytes;
1562	compat_ulong_t obytes;
1563};
1564
1565int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1566{
1567	struct compat_sioc_sg_req sr;
1568	struct compat_sioc_vif_req vr;
1569	struct vif_device *vif;
1570	struct mfc_cache *c;
1571	struct net *net = sock_net(sk);
1572	struct mr_table *mrt;
1573
1574	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1575	if (!mrt)
1576		return -ENOENT;
1577
1578	switch (cmd) {
1579	case SIOCGETVIFCNT:
1580		if (copy_from_user(&vr, arg, sizeof(vr)))
1581			return -EFAULT;
1582		if (vr.vifi >= mrt->maxvif)
1583			return -EINVAL;
1584		read_lock(&mrt_lock);
1585		vif = &mrt->vif_table[vr.vifi];
1586		if (VIF_EXISTS(mrt, vr.vifi)) {
1587			vr.icount = vif->pkt_in;
1588			vr.ocount = vif->pkt_out;
1589			vr.ibytes = vif->bytes_in;
1590			vr.obytes = vif->bytes_out;
1591			read_unlock(&mrt_lock);
1592
1593			if (copy_to_user(arg, &vr, sizeof(vr)))
1594				return -EFAULT;
1595			return 0;
1596		}
1597		read_unlock(&mrt_lock);
1598		return -EADDRNOTAVAIL;
1599	case SIOCGETSGCNT:
1600		if (copy_from_user(&sr, arg, sizeof(sr)))
1601			return -EFAULT;
1602
1603		rcu_read_lock();
1604		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1605		if (c) {
1606			sr.pktcnt = c->mfc_un.res.pkt;
1607			sr.bytecnt = c->mfc_un.res.bytes;
1608			sr.wrong_if = c->mfc_un.res.wrong_if;
1609			rcu_read_unlock();
1610
1611			if (copy_to_user(arg, &sr, sizeof(sr)))
1612				return -EFAULT;
1613			return 0;
1614		}
1615		rcu_read_unlock();
1616		return -EADDRNOTAVAIL;
1617	default:
1618		return -ENOIOCTLCMD;
1619	}
1620}
1621#endif
1622
1623
1624static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1625{
1626	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1627	struct net *net = dev_net(dev);
1628	struct mr_table *mrt;
1629	struct vif_device *v;
1630	int ct;
1631
1632	if (event != NETDEV_UNREGISTER)
1633		return NOTIFY_DONE;
1634
1635	ipmr_for_each_table(mrt, net) {
1636		v = &mrt->vif_table[0];
1637		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1638			if (v->dev == dev)
1639				vif_delete(mrt, ct, 1, NULL);
1640		}
1641	}
1642	return NOTIFY_DONE;
1643}
1644
1645
1646static struct notifier_block ip_mr_notifier = {
1647	.notifier_call = ipmr_device_event,
1648};
1649
1650/*
1651 *	Encapsulate a packet by attaching a valid IPIP header to it.
1652 *	This avoids tunnel drivers and other mess and gives us the speed so
1653 *	important for multicast video.
1654 */
1655
1656static void ip_encap(struct net *net, struct sk_buff *skb,
1657		     __be32 saddr, __be32 daddr)
1658{
1659	struct iphdr *iph;
1660	const struct iphdr *old_iph = ip_hdr(skb);
1661
1662	skb_push(skb, sizeof(struct iphdr));
1663	skb->transport_header = skb->network_header;
1664	skb_reset_network_header(skb);
1665	iph = ip_hdr(skb);
1666
1667	iph->version	=	4;
1668	iph->tos	=	old_iph->tos;
1669	iph->ttl	=	old_iph->ttl;
1670	iph->frag_off	=	0;
1671	iph->daddr	=	daddr;
1672	iph->saddr	=	saddr;
1673	iph->protocol	=	IPPROTO_IPIP;
1674	iph->ihl	=	5;
1675	iph->tot_len	=	htons(skb->len);
1676	ip_select_ident(net, skb, NULL);
1677	ip_send_check(iph);
1678
1679	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1680	nf_reset(skb);
1681}
1682
1683static inline int ipmr_forward_finish(struct sock *sk, struct sk_buff *skb)
1684{
1685	struct ip_options *opt = &(IPCB(skb)->opt);
1686
1687	IP_INC_STATS(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1688	IP_ADD_STATS(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1689
1690	if (unlikely(opt->optlen))
1691		ip_forward_options(skb);
1692
1693	return dst_output_sk(sk, skb);
1694}
1695
1696/*
1697 *	Processing handlers for ipmr_forward
1698 */
1699
1700static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1701			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1702{
1703	const struct iphdr *iph = ip_hdr(skb);
1704	struct vif_device *vif = &mrt->vif_table[vifi];
1705	struct net_device *dev;
1706	struct rtable *rt;
1707	struct flowi4 fl4;
1708	int    encap = 0;
1709
1710	if (!vif->dev)
1711		goto out_free;
1712
1713#ifdef CONFIG_IP_PIMSM
1714	if (vif->flags & VIFF_REGISTER) {
1715		vif->pkt_out++;
1716		vif->bytes_out += skb->len;
1717		vif->dev->stats.tx_bytes += skb->len;
1718		vif->dev->stats.tx_packets++;
1719		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1720		goto out_free;
1721	}
1722#endif
1723
1724	if (vif->flags & VIFF_TUNNEL) {
1725		rt = ip_route_output_ports(net, &fl4, NULL,
1726					   vif->remote, vif->local,
1727					   0, 0,
1728					   IPPROTO_IPIP,
1729					   RT_TOS(iph->tos), vif->link);
1730		if (IS_ERR(rt))
1731			goto out_free;
1732		encap = sizeof(struct iphdr);
1733	} else {
1734		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1735					   0, 0,
1736					   IPPROTO_IPIP,
1737					   RT_TOS(iph->tos), vif->link);
1738		if (IS_ERR(rt))
1739			goto out_free;
1740	}
1741
1742	dev = rt->dst.dev;
1743
1744	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1745		/* Do not fragment multicasts. Alas, IPv4 does not
1746		 * allow to send ICMP, so that packets will disappear
1747		 * to blackhole.
1748		 */
1749
1750		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1751		ip_rt_put(rt);
1752		goto out_free;
1753	}
1754
1755	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1756
1757	if (skb_cow(skb, encap)) {
1758		ip_rt_put(rt);
1759		goto out_free;
1760	}
1761
1762	vif->pkt_out++;
1763	vif->bytes_out += skb->len;
1764
1765	skb_dst_drop(skb);
1766	skb_dst_set(skb, &rt->dst);
1767	ip_decrease_ttl(ip_hdr(skb));
1768
1769	/* FIXME: forward and output firewalls used to be called here.
1770	 * What do we do with netfilter? -- RR
1771	 */
1772	if (vif->flags & VIFF_TUNNEL) {
1773		ip_encap(net, skb, vif->local, vif->remote);
1774		/* FIXME: extra output firewall step used to be here. --RR */
1775		vif->dev->stats.tx_packets++;
1776		vif->dev->stats.tx_bytes += skb->len;
1777	}
1778
1779	IPCB(skb)->flags |= IPSKB_FORWARDED;
1780
1781	/*
1782	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1783	 * not only before forwarding, but after forwarding on all output
1784	 * interfaces. It is clear, if mrouter runs a multicasting
1785	 * program, it should receive packets not depending to what interface
1786	 * program is joined.
1787	 * If we will not make it, the program will have to join on all
1788	 * interfaces. On the other hand, multihoming host (or router, but
1789	 * not mrouter) cannot join to more than one interface - it will
1790	 * result in receiving multiple packets.
1791	 */
1792	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, NULL, skb,
1793		skb->dev, dev,
1794		ipmr_forward_finish);
1795	return;
1796
1797out_free:
1798	kfree_skb(skb);
1799}
1800
1801static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1802{
1803	int ct;
1804
1805	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1806		if (mrt->vif_table[ct].dev == dev)
1807			break;
1808	}
1809	return ct;
1810}
1811
1812/* "local" means that we should preserve one skb (for local delivery) */
1813
1814static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1815			  struct sk_buff *skb, struct mfc_cache *cache,
1816			  int local)
1817{
1818	int psend = -1;
1819	int vif, ct;
1820	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1821
1822	vif = cache->mfc_parent;
1823	cache->mfc_un.res.pkt++;
1824	cache->mfc_un.res.bytes += skb->len;
1825
1826	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1827		struct mfc_cache *cache_proxy;
1828
1829		/* For an (*,G) entry, we only check that the incomming
1830		 * interface is part of the static tree.
1831		 */
1832		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1833		if (cache_proxy &&
1834		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1835			goto forward;
1836	}
1837
1838	/*
1839	 * Wrong interface: drop packet and (maybe) send PIM assert.
1840	 */
1841	if (mrt->vif_table[vif].dev != skb->dev) {
1842		if (rt_is_output_route(skb_rtable(skb))) {
1843			/* It is our own packet, looped back.
1844			 * Very complicated situation...
1845			 *
1846			 * The best workaround until routing daemons will be
1847			 * fixed is not to redistribute packet, if it was
1848			 * send through wrong interface. It means, that
1849			 * multicast applications WILL NOT work for
1850			 * (S,G), which have default multicast route pointing
1851			 * to wrong oif. In any case, it is not a good
1852			 * idea to use multicasting applications on router.
1853			 */
1854			goto dont_forward;
1855		}
1856
1857		cache->mfc_un.res.wrong_if++;
1858
1859		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1860		    /* pimsm uses asserts, when switching from RPT to SPT,
1861		     * so that we cannot check that packet arrived on an oif.
1862		     * It is bad, but otherwise we would need to move pretty
1863		     * large chunk of pimd to kernel. Ough... --ANK
1864		     */
1865		    (mrt->mroute_do_pim ||
1866		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1867		    time_after(jiffies,
1868			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1869			cache->mfc_un.res.last_assert = jiffies;
1870			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1871		}
1872		goto dont_forward;
1873	}
1874
1875forward:
1876	mrt->vif_table[vif].pkt_in++;
1877	mrt->vif_table[vif].bytes_in += skb->len;
1878
1879	/*
1880	 *	Forward the frame
1881	 */
1882	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1883	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1884		if (true_vifi >= 0 &&
1885		    true_vifi != cache->mfc_parent &&
1886		    ip_hdr(skb)->ttl >
1887				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1888			/* It's an (*,*) entry and the packet is not coming from
1889			 * the upstream: forward the packet to the upstream
1890			 * only.
1891			 */
1892			psend = cache->mfc_parent;
1893			goto last_forward;
1894		}
1895		goto dont_forward;
1896	}
1897	for (ct = cache->mfc_un.res.maxvif - 1;
1898	     ct >= cache->mfc_un.res.minvif; ct--) {
1899		/* For (*,G) entry, don't forward to the incoming interface */
1900		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1901		     ct != true_vifi) &&
1902		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1903			if (psend != -1) {
1904				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1905
1906				if (skb2)
1907					ipmr_queue_xmit(net, mrt, skb2, cache,
1908							psend);
1909			}
1910			psend = ct;
1911		}
1912	}
1913last_forward:
1914	if (psend != -1) {
1915		if (local) {
1916			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1917
1918			if (skb2)
1919				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1920		} else {
1921			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1922			return;
1923		}
1924	}
1925
1926dont_forward:
1927	if (!local)
1928		kfree_skb(skb);
1929}
1930
1931static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1932{
1933	struct rtable *rt = skb_rtable(skb);
1934	struct iphdr *iph = ip_hdr(skb);
1935	struct flowi4 fl4 = {
1936		.daddr = iph->daddr,
1937		.saddr = iph->saddr,
1938		.flowi4_tos = RT_TOS(iph->tos),
1939		.flowi4_oif = (rt_is_output_route(rt) ?
1940			       skb->dev->ifindex : 0),
1941		.flowi4_iif = (rt_is_output_route(rt) ?
1942			       LOOPBACK_IFINDEX :
1943			       skb->dev->ifindex),
1944		.flowi4_mark = skb->mark,
1945	};
1946	struct mr_table *mrt;
1947	int err;
1948
1949	err = ipmr_fib_lookup(net, &fl4, &mrt);
1950	if (err)
1951		return ERR_PTR(err);
1952	return mrt;
1953}
1954
1955/*
1956 *	Multicast packets for forwarding arrive here
1957 *	Called with rcu_read_lock();
1958 */
1959
1960int ip_mr_input(struct sk_buff *skb)
1961{
1962	struct mfc_cache *cache;
1963	struct net *net = dev_net(skb->dev);
1964	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1965	struct mr_table *mrt;
1966
1967	/* Packet is looped back after forward, it should not be
1968	 * forwarded second time, but still can be delivered locally.
1969	 */
1970	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1971		goto dont_forward;
1972
1973	mrt = ipmr_rt_fib_lookup(net, skb);
1974	if (IS_ERR(mrt)) {
1975		kfree_skb(skb);
1976		return PTR_ERR(mrt);
1977	}
1978	if (!local) {
1979		if (IPCB(skb)->opt.router_alert) {
1980			if (ip_call_ra_chain(skb))
1981				return 0;
1982		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1983			/* IGMPv1 (and broken IGMPv2 implementations sort of
1984			 * Cisco IOS <= 11.2(8)) do not put router alert
1985			 * option to IGMP packets destined to routable
1986			 * groups. It is very bad, because it means
1987			 * that we can forward NO IGMP messages.
1988			 */
1989			struct sock *mroute_sk;
1990
1991			mroute_sk = rcu_dereference(mrt->mroute_sk);
1992			if (mroute_sk) {
1993				nf_reset(skb);
1994				raw_rcv(mroute_sk, skb);
1995				return 0;
1996			}
1997		    }
1998	}
1999
2000	/* already under rcu_read_lock() */
2001	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2002	if (!cache) {
2003		int vif = ipmr_find_vif(mrt, skb->dev);
2004
2005		if (vif >= 0)
2006			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2007						    vif);
2008	}
2009
2010	/*
2011	 *	No usable cache entry
2012	 */
2013	if (!cache) {
2014		int vif;
2015
2016		if (local) {
2017			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2018			ip_local_deliver(skb);
2019			if (!skb2)
2020				return -ENOBUFS;
2021			skb = skb2;
2022		}
2023
2024		read_lock(&mrt_lock);
2025		vif = ipmr_find_vif(mrt, skb->dev);
2026		if (vif >= 0) {
2027			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2028			read_unlock(&mrt_lock);
2029
2030			return err2;
2031		}
2032		read_unlock(&mrt_lock);
2033		kfree_skb(skb);
2034		return -ENODEV;
2035	}
2036
2037	read_lock(&mrt_lock);
2038	ip_mr_forward(net, mrt, skb, cache, local);
2039	read_unlock(&mrt_lock);
2040
2041	if (local)
2042		return ip_local_deliver(skb);
2043
2044	return 0;
2045
2046dont_forward:
2047	if (local)
2048		return ip_local_deliver(skb);
2049	kfree_skb(skb);
2050	return 0;
2051}
2052
2053#ifdef CONFIG_IP_PIMSM
2054/* called with rcu_read_lock() */
2055static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2056		     unsigned int pimlen)
2057{
2058	struct net_device *reg_dev = NULL;
2059	struct iphdr *encap;
2060
2061	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2062	/*
2063	 * Check that:
2064	 * a. packet is really sent to a multicast group
2065	 * b. packet is not a NULL-REGISTER
2066	 * c. packet is not truncated
2067	 */
2068	if (!ipv4_is_multicast(encap->daddr) ||
2069	    encap->tot_len == 0 ||
2070	    ntohs(encap->tot_len) + pimlen > skb->len)
2071		return 1;
2072
2073	read_lock(&mrt_lock);
2074	if (mrt->mroute_reg_vif_num >= 0)
2075		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2076	read_unlock(&mrt_lock);
2077
2078	if (!reg_dev)
2079		return 1;
2080
2081	skb->mac_header = skb->network_header;
2082	skb_pull(skb, (u8 *)encap - skb->data);
2083	skb_reset_network_header(skb);
2084	skb->protocol = htons(ETH_P_IP);
2085	skb->ip_summed = CHECKSUM_NONE;
2086
2087	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2088
2089	netif_rx(skb);
2090
2091	return NET_RX_SUCCESS;
2092}
2093#endif
2094
2095#ifdef CONFIG_IP_PIMSM_V1
2096/*
2097 * Handle IGMP messages of PIMv1
2098 */
2099
2100int pim_rcv_v1(struct sk_buff *skb)
2101{
2102	struct igmphdr *pim;
2103	struct net *net = dev_net(skb->dev);
2104	struct mr_table *mrt;
2105
2106	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2107		goto drop;
2108
2109	pim = igmp_hdr(skb);
2110
2111	mrt = ipmr_rt_fib_lookup(net, skb);
2112	if (IS_ERR(mrt))
2113		goto drop;
2114	if (!mrt->mroute_do_pim ||
2115	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2116		goto drop;
2117
2118	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2119drop:
2120		kfree_skb(skb);
2121	}
2122	return 0;
2123}
2124#endif
2125
2126#ifdef CONFIG_IP_PIMSM_V2
2127static int pim_rcv(struct sk_buff *skb)
2128{
2129	struct pimreghdr *pim;
2130	struct net *net = dev_net(skb->dev);
2131	struct mr_table *mrt;
2132
2133	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2134		goto drop;
2135
2136	pim = (struct pimreghdr *)skb_transport_header(skb);
2137	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2138	    (pim->flags & PIM_NULL_REGISTER) ||
2139	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2140	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2141		goto drop;
2142
2143	mrt = ipmr_rt_fib_lookup(net, skb);
2144	if (IS_ERR(mrt))
2145		goto drop;
2146	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2147drop:
2148		kfree_skb(skb);
2149	}
2150	return 0;
2151}
2152#endif
2153
2154static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2155			      struct mfc_cache *c, struct rtmsg *rtm)
2156{
2157	int ct;
2158	struct rtnexthop *nhp;
2159	struct nlattr *mp_attr;
2160	struct rta_mfc_stats mfcs;
2161
2162	/* If cache is unresolved, don't try to parse IIF and OIF */
2163	if (c->mfc_parent >= MAXVIFS)
2164		return -ENOENT;
2165
2166	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2167	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2168		return -EMSGSIZE;
2169
2170	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2171		return -EMSGSIZE;
2172
2173	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2174		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2175			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2176				nla_nest_cancel(skb, mp_attr);
2177				return -EMSGSIZE;
2178			}
2179
2180			nhp->rtnh_flags = 0;
2181			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2182			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2183			nhp->rtnh_len = sizeof(*nhp);
2184		}
2185	}
2186
2187	nla_nest_end(skb, mp_attr);
2188
2189	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2190	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2191	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2192	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2193		return -EMSGSIZE;
2194
2195	rtm->rtm_type = RTN_MULTICAST;
2196	return 1;
2197}
2198
2199int ipmr_get_route(struct net *net, struct sk_buff *skb,
2200		   __be32 saddr, __be32 daddr,
2201		   struct rtmsg *rtm, int nowait)
2202{
2203	struct mfc_cache *cache;
2204	struct mr_table *mrt;
2205	int err;
2206
2207	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2208	if (!mrt)
2209		return -ENOENT;
2210
2211	rcu_read_lock();
2212	cache = ipmr_cache_find(mrt, saddr, daddr);
2213	if (!cache && skb->dev) {
2214		int vif = ipmr_find_vif(mrt, skb->dev);
2215
2216		if (vif >= 0)
2217			cache = ipmr_cache_find_any(mrt, daddr, vif);
2218	}
2219	if (!cache) {
2220		struct sk_buff *skb2;
2221		struct iphdr *iph;
2222		struct net_device *dev;
2223		int vif = -1;
2224
2225		if (nowait) {
2226			rcu_read_unlock();
2227			return -EAGAIN;
2228		}
2229
2230		dev = skb->dev;
2231		read_lock(&mrt_lock);
2232		if (dev)
2233			vif = ipmr_find_vif(mrt, dev);
2234		if (vif < 0) {
2235			read_unlock(&mrt_lock);
2236			rcu_read_unlock();
2237			return -ENODEV;
2238		}
2239		skb2 = skb_clone(skb, GFP_ATOMIC);
2240		if (!skb2) {
2241			read_unlock(&mrt_lock);
2242			rcu_read_unlock();
2243			return -ENOMEM;
2244		}
2245
2246		skb_push(skb2, sizeof(struct iphdr));
2247		skb_reset_network_header(skb2);
2248		iph = ip_hdr(skb2);
2249		iph->ihl = sizeof(struct iphdr) >> 2;
2250		iph->saddr = saddr;
2251		iph->daddr = daddr;
2252		iph->version = 0;
2253		err = ipmr_cache_unresolved(mrt, vif, skb2);
2254		read_unlock(&mrt_lock);
2255		rcu_read_unlock();
2256		return err;
2257	}
2258
2259	read_lock(&mrt_lock);
2260	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2261		cache->mfc_flags |= MFC_NOTIFY;
2262	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2263	read_unlock(&mrt_lock);
2264	rcu_read_unlock();
2265	return err;
2266}
2267
2268static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2269			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2270			    int flags)
2271{
2272	struct nlmsghdr *nlh;
2273	struct rtmsg *rtm;
2274	int err;
2275
2276	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2277	if (!nlh)
2278		return -EMSGSIZE;
2279
2280	rtm = nlmsg_data(nlh);
2281	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2282	rtm->rtm_dst_len  = 32;
2283	rtm->rtm_src_len  = 32;
2284	rtm->rtm_tos      = 0;
2285	rtm->rtm_table    = mrt->id;
2286	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2287		goto nla_put_failure;
2288	rtm->rtm_type     = RTN_MULTICAST;
2289	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2290	if (c->mfc_flags & MFC_STATIC)
2291		rtm->rtm_protocol = RTPROT_STATIC;
2292	else
2293		rtm->rtm_protocol = RTPROT_MROUTED;
2294	rtm->rtm_flags    = 0;
2295
2296	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2297	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2298		goto nla_put_failure;
2299	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2300	/* do not break the dump if cache is unresolved */
2301	if (err < 0 && err != -ENOENT)
2302		goto nla_put_failure;
2303
2304	nlmsg_end(skb, nlh);
2305	return 0;
2306
2307nla_put_failure:
2308	nlmsg_cancel(skb, nlh);
2309	return -EMSGSIZE;
2310}
2311
2312static size_t mroute_msgsize(bool unresolved, int maxvif)
2313{
2314	size_t len =
2315		NLMSG_ALIGN(sizeof(struct rtmsg))
2316		+ nla_total_size(4)	/* RTA_TABLE */
2317		+ nla_total_size(4)	/* RTA_SRC */
2318		+ nla_total_size(4)	/* RTA_DST */
2319		;
2320
2321	if (!unresolved)
2322		len = len
2323		      + nla_total_size(4)	/* RTA_IIF */
2324		      + nla_total_size(0)	/* RTA_MULTIPATH */
2325		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2326						/* RTA_MFC_STATS */
2327		      + nla_total_size(sizeof(struct rta_mfc_stats))
2328		;
2329
2330	return len;
2331}
2332
2333static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2334				 int cmd)
2335{
2336	struct net *net = read_pnet(&mrt->net);
2337	struct sk_buff *skb;
2338	int err = -ENOBUFS;
2339
2340	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2341			GFP_ATOMIC);
2342	if (!skb)
2343		goto errout;
2344
2345	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2346	if (err < 0)
2347		goto errout;
2348
2349	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2350	return;
2351
2352errout:
2353	kfree_skb(skb);
2354	if (err < 0)
2355		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2356}
2357
2358static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2359{
2360	struct net *net = sock_net(skb->sk);
2361	struct mr_table *mrt;
2362	struct mfc_cache *mfc;
2363	unsigned int t = 0, s_t;
2364	unsigned int h = 0, s_h;
2365	unsigned int e = 0, s_e;
2366
2367	s_t = cb->args[0];
2368	s_h = cb->args[1];
2369	s_e = cb->args[2];
2370
2371	rcu_read_lock();
2372	ipmr_for_each_table(mrt, net) {
2373		if (t < s_t)
2374			goto next_table;
2375		if (t > s_t)
2376			s_h = 0;
2377		for (h = s_h; h < MFC_LINES; h++) {
2378			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2379				if (e < s_e)
2380					goto next_entry;
2381				if (ipmr_fill_mroute(mrt, skb,
2382						     NETLINK_CB(cb->skb).portid,
2383						     cb->nlh->nlmsg_seq,
2384						     mfc, RTM_NEWROUTE,
2385						     NLM_F_MULTI) < 0)
2386					goto done;
2387next_entry:
2388				e++;
2389			}
2390			e = s_e = 0;
2391		}
2392		spin_lock_bh(&mfc_unres_lock);
2393		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2394			if (e < s_e)
2395				goto next_entry2;
2396			if (ipmr_fill_mroute(mrt, skb,
2397					     NETLINK_CB(cb->skb).portid,
2398					     cb->nlh->nlmsg_seq,
2399					     mfc, RTM_NEWROUTE,
2400					     NLM_F_MULTI) < 0) {
2401				spin_unlock_bh(&mfc_unres_lock);
2402				goto done;
2403			}
2404next_entry2:
2405			e++;
2406		}
2407		spin_unlock_bh(&mfc_unres_lock);
2408		e = s_e = 0;
2409		s_h = 0;
2410next_table:
2411		t++;
2412	}
2413done:
2414	rcu_read_unlock();
2415
2416	cb->args[2] = e;
2417	cb->args[1] = h;
2418	cb->args[0] = t;
2419
2420	return skb->len;
2421}
2422
2423#ifdef CONFIG_PROC_FS
2424/*
2425 *	The /proc interfaces to multicast routing :
2426 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2427 */
2428struct ipmr_vif_iter {
2429	struct seq_net_private p;
2430	struct mr_table *mrt;
2431	int ct;
2432};
2433
2434static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2435					   struct ipmr_vif_iter *iter,
2436					   loff_t pos)
2437{
2438	struct mr_table *mrt = iter->mrt;
2439
2440	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2441		if (!VIF_EXISTS(mrt, iter->ct))
2442			continue;
2443		if (pos-- == 0)
2444			return &mrt->vif_table[iter->ct];
2445	}
2446	return NULL;
2447}
2448
2449static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2450	__acquires(mrt_lock)
2451{
2452	struct ipmr_vif_iter *iter = seq->private;
2453	struct net *net = seq_file_net(seq);
2454	struct mr_table *mrt;
2455
2456	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2457	if (!mrt)
2458		return ERR_PTR(-ENOENT);
2459
2460	iter->mrt = mrt;
2461
2462	read_lock(&mrt_lock);
2463	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2464		: SEQ_START_TOKEN;
2465}
2466
2467static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2468{
2469	struct ipmr_vif_iter *iter = seq->private;
2470	struct net *net = seq_file_net(seq);
2471	struct mr_table *mrt = iter->mrt;
2472
2473	++*pos;
2474	if (v == SEQ_START_TOKEN)
2475		return ipmr_vif_seq_idx(net, iter, 0);
2476
2477	while (++iter->ct < mrt->maxvif) {
2478		if (!VIF_EXISTS(mrt, iter->ct))
2479			continue;
2480		return &mrt->vif_table[iter->ct];
2481	}
2482	return NULL;
2483}
2484
2485static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2486	__releases(mrt_lock)
2487{
2488	read_unlock(&mrt_lock);
2489}
2490
2491static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2492{
2493	struct ipmr_vif_iter *iter = seq->private;
2494	struct mr_table *mrt = iter->mrt;
2495
2496	if (v == SEQ_START_TOKEN) {
2497		seq_puts(seq,
2498			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2499	} else {
2500		const struct vif_device *vif = v;
2501		const char *name =  vif->dev ? vif->dev->name : "none";
2502
2503		seq_printf(seq,
2504			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2505			   vif - mrt->vif_table,
2506			   name, vif->bytes_in, vif->pkt_in,
2507			   vif->bytes_out, vif->pkt_out,
2508			   vif->flags, vif->local, vif->remote);
2509	}
2510	return 0;
2511}
2512
2513static const struct seq_operations ipmr_vif_seq_ops = {
2514	.start = ipmr_vif_seq_start,
2515	.next  = ipmr_vif_seq_next,
2516	.stop  = ipmr_vif_seq_stop,
2517	.show  = ipmr_vif_seq_show,
2518};
2519
2520static int ipmr_vif_open(struct inode *inode, struct file *file)
2521{
2522	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2523			    sizeof(struct ipmr_vif_iter));
2524}
2525
2526static const struct file_operations ipmr_vif_fops = {
2527	.owner	 = THIS_MODULE,
2528	.open    = ipmr_vif_open,
2529	.read    = seq_read,
2530	.llseek  = seq_lseek,
2531	.release = seq_release_net,
2532};
2533
2534struct ipmr_mfc_iter {
2535	struct seq_net_private p;
2536	struct mr_table *mrt;
2537	struct list_head *cache;
2538	int ct;
2539};
2540
2541
2542static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2543					  struct ipmr_mfc_iter *it, loff_t pos)
2544{
2545	struct mr_table *mrt = it->mrt;
2546	struct mfc_cache *mfc;
2547
2548	rcu_read_lock();
2549	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2550		it->cache = &mrt->mfc_cache_array[it->ct];
2551		list_for_each_entry_rcu(mfc, it->cache, list)
2552			if (pos-- == 0)
2553				return mfc;
2554	}
2555	rcu_read_unlock();
2556
2557	spin_lock_bh(&mfc_unres_lock);
2558	it->cache = &mrt->mfc_unres_queue;
2559	list_for_each_entry(mfc, it->cache, list)
2560		if (pos-- == 0)
2561			return mfc;
2562	spin_unlock_bh(&mfc_unres_lock);
2563
2564	it->cache = NULL;
2565	return NULL;
2566}
2567
2568
2569static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2570{
2571	struct ipmr_mfc_iter *it = seq->private;
2572	struct net *net = seq_file_net(seq);
2573	struct mr_table *mrt;
2574
2575	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2576	if (!mrt)
2577		return ERR_PTR(-ENOENT);
2578
2579	it->mrt = mrt;
2580	it->cache = NULL;
2581	it->ct = 0;
2582	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2583		: SEQ_START_TOKEN;
2584}
2585
2586static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2587{
2588	struct mfc_cache *mfc = v;
2589	struct ipmr_mfc_iter *it = seq->private;
2590	struct net *net = seq_file_net(seq);
2591	struct mr_table *mrt = it->mrt;
2592
2593	++*pos;
2594
2595	if (v == SEQ_START_TOKEN)
2596		return ipmr_mfc_seq_idx(net, seq->private, 0);
2597
2598	if (mfc->list.next != it->cache)
2599		return list_entry(mfc->list.next, struct mfc_cache, list);
2600
2601	if (it->cache == &mrt->mfc_unres_queue)
2602		goto end_of_list;
2603
2604	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2605
2606	while (++it->ct < MFC_LINES) {
2607		it->cache = &mrt->mfc_cache_array[it->ct];
2608		if (list_empty(it->cache))
2609			continue;
2610		return list_first_entry(it->cache, struct mfc_cache, list);
2611	}
2612
2613	/* exhausted cache_array, show unresolved */
2614	rcu_read_unlock();
2615	it->cache = &mrt->mfc_unres_queue;
2616	it->ct = 0;
2617
2618	spin_lock_bh(&mfc_unres_lock);
2619	if (!list_empty(it->cache))
2620		return list_first_entry(it->cache, struct mfc_cache, list);
2621
2622end_of_list:
2623	spin_unlock_bh(&mfc_unres_lock);
2624	it->cache = NULL;
2625
2626	return NULL;
2627}
2628
2629static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2630{
2631	struct ipmr_mfc_iter *it = seq->private;
2632	struct mr_table *mrt = it->mrt;
2633
2634	if (it->cache == &mrt->mfc_unres_queue)
2635		spin_unlock_bh(&mfc_unres_lock);
2636	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2637		rcu_read_unlock();
2638}
2639
2640static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2641{
2642	int n;
2643
2644	if (v == SEQ_START_TOKEN) {
2645		seq_puts(seq,
2646		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2647	} else {
2648		const struct mfc_cache *mfc = v;
2649		const struct ipmr_mfc_iter *it = seq->private;
2650		const struct mr_table *mrt = it->mrt;
2651
2652		seq_printf(seq, "%08X %08X %-3hd",
2653			   (__force u32) mfc->mfc_mcastgrp,
2654			   (__force u32) mfc->mfc_origin,
2655			   mfc->mfc_parent);
2656
2657		if (it->cache != &mrt->mfc_unres_queue) {
2658			seq_printf(seq, " %8lu %8lu %8lu",
2659				   mfc->mfc_un.res.pkt,
2660				   mfc->mfc_un.res.bytes,
2661				   mfc->mfc_un.res.wrong_if);
2662			for (n = mfc->mfc_un.res.minvif;
2663			     n < mfc->mfc_un.res.maxvif; n++) {
2664				if (VIF_EXISTS(mrt, n) &&
2665				    mfc->mfc_un.res.ttls[n] < 255)
2666					seq_printf(seq,
2667					   " %2d:%-3d",
2668					   n, mfc->mfc_un.res.ttls[n]);
2669			}
2670		} else {
2671			/* unresolved mfc_caches don't contain
2672			 * pkt, bytes and wrong_if values
2673			 */
2674			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2675		}
2676		seq_putc(seq, '\n');
2677	}
2678	return 0;
2679}
2680
2681static const struct seq_operations ipmr_mfc_seq_ops = {
2682	.start = ipmr_mfc_seq_start,
2683	.next  = ipmr_mfc_seq_next,
2684	.stop  = ipmr_mfc_seq_stop,
2685	.show  = ipmr_mfc_seq_show,
2686};
2687
2688static int ipmr_mfc_open(struct inode *inode, struct file *file)
2689{
2690	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2691			    sizeof(struct ipmr_mfc_iter));
2692}
2693
2694static const struct file_operations ipmr_mfc_fops = {
2695	.owner	 = THIS_MODULE,
2696	.open    = ipmr_mfc_open,
2697	.read    = seq_read,
2698	.llseek  = seq_lseek,
2699	.release = seq_release_net,
2700};
2701#endif
2702
2703#ifdef CONFIG_IP_PIMSM_V2
2704static const struct net_protocol pim_protocol = {
2705	.handler	=	pim_rcv,
2706	.netns_ok	=	1,
2707};
2708#endif
2709
2710
2711/*
2712 *	Setup for IP multicast routing
2713 */
2714static int __net_init ipmr_net_init(struct net *net)
2715{
2716	int err;
2717
2718	err = ipmr_rules_init(net);
2719	if (err < 0)
2720		goto fail;
2721
2722#ifdef CONFIG_PROC_FS
2723	err = -ENOMEM;
2724	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2725		goto proc_vif_fail;
2726	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2727		goto proc_cache_fail;
2728#endif
2729	return 0;
2730
2731#ifdef CONFIG_PROC_FS
2732proc_cache_fail:
2733	remove_proc_entry("ip_mr_vif", net->proc_net);
2734proc_vif_fail:
2735	ipmr_rules_exit(net);
2736#endif
2737fail:
2738	return err;
2739}
2740
2741static void __net_exit ipmr_net_exit(struct net *net)
2742{
2743#ifdef CONFIG_PROC_FS
2744	remove_proc_entry("ip_mr_cache", net->proc_net);
2745	remove_proc_entry("ip_mr_vif", net->proc_net);
2746#endif
2747	ipmr_rules_exit(net);
2748}
2749
2750static struct pernet_operations ipmr_net_ops = {
2751	.init = ipmr_net_init,
2752	.exit = ipmr_net_exit,
2753};
2754
2755int __init ip_mr_init(void)
2756{
2757	int err;
2758
2759	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2760				       sizeof(struct mfc_cache),
2761				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2762				       NULL);
2763	if (!mrt_cachep)
2764		return -ENOMEM;
2765
2766	err = register_pernet_subsys(&ipmr_net_ops);
2767	if (err)
2768		goto reg_pernet_fail;
2769
2770	err = register_netdevice_notifier(&ip_mr_notifier);
2771	if (err)
2772		goto reg_notif_fail;
2773#ifdef CONFIG_IP_PIMSM_V2
2774	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2775		pr_err("%s: can't add PIM protocol\n", __func__);
2776		err = -EAGAIN;
2777		goto add_proto_fail;
2778	}
2779#endif
2780	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2781		      NULL, ipmr_rtm_dumproute, NULL);
2782	return 0;
2783
2784#ifdef CONFIG_IP_PIMSM_V2
2785add_proto_fail:
2786	unregister_netdevice_notifier(&ip_mr_notifier);
2787#endif
2788reg_notif_fail:
2789	unregister_pernet_subsys(&ipmr_net_ops);
2790reg_pernet_fail:
2791	kmem_cache_destroy(mrt_cachep);
2792	return err;
2793}
2794