1/*
2 *	Linux INET6 implementation
3 *	Forwarding Information Database
4 *
5 *	Authors:
6 *	Pedro Roque		<roque@di.fc.ul.pt>
7 *
8 *	This program is free software; you can redistribute it and/or
9 *      modify it under the terms of the GNU General Public License
10 *      as published by the Free Software Foundation; either version
11 *      2 of the License, or (at your option) any later version.
12 *
13 *	Changes:
14 *	Yuji SEKIYA @USAGI:	Support default route on router node;
15 *				remove ip6_null_entry from the top of
16 *				routing table.
17 *	Ville Nuorvala:		Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35
36#include <net/ip6_fib.h>
37#include <net/ip6_route.h>
38
39#define RT6_DEBUG 2
40
41#if RT6_DEBUG >= 3
42#define RT6_TRACE(x...) pr_debug(x)
43#else
44#define RT6_TRACE(x...) do { ; } while (0)
45#endif
46
47static struct kmem_cache *fib6_node_kmem __read_mostly;
48
49struct fib6_cleaner {
50	struct fib6_walker w;
51	struct net *net;
52	int (*func)(struct rt6_info *, void *arg);
53	int sernum;
54	void *arg;
55};
56
57static DEFINE_RWLOCK(fib6_walker_lock);
58
59#ifdef CONFIG_IPV6_SUBTREES
60#define FWS_INIT FWS_S
61#else
62#define FWS_INIT FWS_L
63#endif
64
65static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68static int fib6_walk(struct fib6_walker *w);
69static int fib6_walk_continue(struct fib6_walker *w);
70
71/*
72 *	A routing update causes an increase of the serial number on the
73 *	affected subtree. This allows for cached routes to be asynchronously
74 *	tested when modifications are made to the destination cache as a
75 *	result of redirects, path MTU changes, etc.
76 */
77
78static void fib6_gc_timer_cb(unsigned long arg);
79
80static LIST_HEAD(fib6_walkers);
81#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
82
83static void fib6_walker_link(struct fib6_walker *w)
84{
85	write_lock_bh(&fib6_walker_lock);
86	list_add(&w->lh, &fib6_walkers);
87	write_unlock_bh(&fib6_walker_lock);
88}
89
90static void fib6_walker_unlink(struct fib6_walker *w)
91{
92	write_lock_bh(&fib6_walker_lock);
93	list_del(&w->lh);
94	write_unlock_bh(&fib6_walker_lock);
95}
96
97static int fib6_new_sernum(struct net *net)
98{
99	int new, old;
100
101	do {
102		old = atomic_read(&net->ipv6.fib6_sernum);
103		new = old < INT_MAX ? old + 1 : 1;
104	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105				old, new) != old);
106	return new;
107}
108
109enum {
110	FIB6_NO_SERNUM_CHANGE = 0,
111};
112
113/*
114 *	Auxiliary address test functions for the radix tree.
115 *
116 *	These assume a 32bit processor (although it will work on
117 *	64bit processors)
118 */
119
120/*
121 *	test bit
122 */
123#if defined(__LITTLE_ENDIAN)
124# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
125#else
126# define BITOP_BE32_SWIZZLE	0
127#endif
128
129static __be32 addr_bit_set(const void *token, int fn_bit)
130{
131	const __be32 *addr = token;
132	/*
133	 * Here,
134	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135	 * is optimized version of
136	 *	htonl(1 << ((~fn_bit)&0x1F))
137	 * See include/asm-generic/bitops/le.h.
138	 */
139	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140	       addr[fn_bit >> 5];
141}
142
143static struct fib6_node *node_alloc(void)
144{
145	struct fib6_node *fn;
146
147	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148
149	return fn;
150}
151
152static void node_free(struct fib6_node *fn)
153{
154	kmem_cache_free(fib6_node_kmem, fn);
155}
156
157static void rt6_release(struct rt6_info *rt)
158{
159	if (atomic_dec_and_test(&rt->rt6i_ref))
160		dst_free(&rt->dst);
161}
162
163static void fib6_link_table(struct net *net, struct fib6_table *tb)
164{
165	unsigned int h;
166
167	/*
168	 * Initialize table lock at a single place to give lockdep a key,
169	 * tables aren't visible prior to being linked to the list.
170	 */
171	rwlock_init(&tb->tb6_lock);
172
173	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
174
175	/*
176	 * No protection necessary, this is the only list mutatation
177	 * operation, tables never disappear once they exist.
178	 */
179	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
180}
181
182#ifdef CONFIG_IPV6_MULTIPLE_TABLES
183
184static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
185{
186	struct fib6_table *table;
187
188	table = kzalloc(sizeof(*table), GFP_ATOMIC);
189	if (table) {
190		table->tb6_id = id;
191		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
192		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
193		inet_peer_base_init(&table->tb6_peers);
194	}
195
196	return table;
197}
198
199struct fib6_table *fib6_new_table(struct net *net, u32 id)
200{
201	struct fib6_table *tb;
202
203	if (id == 0)
204		id = RT6_TABLE_MAIN;
205	tb = fib6_get_table(net, id);
206	if (tb)
207		return tb;
208
209	tb = fib6_alloc_table(net, id);
210	if (tb)
211		fib6_link_table(net, tb);
212
213	return tb;
214}
215
216struct fib6_table *fib6_get_table(struct net *net, u32 id)
217{
218	struct fib6_table *tb;
219	struct hlist_head *head;
220	unsigned int h;
221
222	if (id == 0)
223		id = RT6_TABLE_MAIN;
224	h = id & (FIB6_TABLE_HASHSZ - 1);
225	rcu_read_lock();
226	head = &net->ipv6.fib_table_hash[h];
227	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
228		if (tb->tb6_id == id) {
229			rcu_read_unlock();
230			return tb;
231		}
232	}
233	rcu_read_unlock();
234
235	return NULL;
236}
237
238static void __net_init fib6_tables_init(struct net *net)
239{
240	fib6_link_table(net, net->ipv6.fib6_main_tbl);
241	fib6_link_table(net, net->ipv6.fib6_local_tbl);
242}
243#else
244
245struct fib6_table *fib6_new_table(struct net *net, u32 id)
246{
247	return fib6_get_table(net, id);
248}
249
250struct fib6_table *fib6_get_table(struct net *net, u32 id)
251{
252	  return net->ipv6.fib6_main_tbl;
253}
254
255struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
256				   int flags, pol_lookup_t lookup)
257{
258	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
259}
260
261static void __net_init fib6_tables_init(struct net *net)
262{
263	fib6_link_table(net, net->ipv6.fib6_main_tbl);
264}
265
266#endif
267
268static int fib6_dump_node(struct fib6_walker *w)
269{
270	int res;
271	struct rt6_info *rt;
272
273	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
274		res = rt6_dump_route(rt, w->args);
275		if (res < 0) {
276			/* Frame is full, suspend walking */
277			w->leaf = rt;
278			return 1;
279		}
280	}
281	w->leaf = NULL;
282	return 0;
283}
284
285static void fib6_dump_end(struct netlink_callback *cb)
286{
287	struct fib6_walker *w = (void *)cb->args[2];
288
289	if (w) {
290		if (cb->args[4]) {
291			cb->args[4] = 0;
292			fib6_walker_unlink(w);
293		}
294		cb->args[2] = 0;
295		kfree(w);
296	}
297	cb->done = (void *)cb->args[3];
298	cb->args[1] = 3;
299}
300
301static int fib6_dump_done(struct netlink_callback *cb)
302{
303	fib6_dump_end(cb);
304	return cb->done ? cb->done(cb) : 0;
305}
306
307static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
308			   struct netlink_callback *cb)
309{
310	struct fib6_walker *w;
311	int res;
312
313	w = (void *)cb->args[2];
314	w->root = &table->tb6_root;
315
316	if (cb->args[4] == 0) {
317		w->count = 0;
318		w->skip = 0;
319
320		read_lock_bh(&table->tb6_lock);
321		res = fib6_walk(w);
322		read_unlock_bh(&table->tb6_lock);
323		if (res > 0) {
324			cb->args[4] = 1;
325			cb->args[5] = w->root->fn_sernum;
326		}
327	} else {
328		if (cb->args[5] != w->root->fn_sernum) {
329			/* Begin at the root if the tree changed */
330			cb->args[5] = w->root->fn_sernum;
331			w->state = FWS_INIT;
332			w->node = w->root;
333			w->skip = w->count;
334		} else
335			w->skip = 0;
336
337		read_lock_bh(&table->tb6_lock);
338		res = fib6_walk_continue(w);
339		read_unlock_bh(&table->tb6_lock);
340		if (res <= 0) {
341			fib6_walker_unlink(w);
342			cb->args[4] = 0;
343		}
344	}
345
346	return res;
347}
348
349static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
350{
351	struct net *net = sock_net(skb->sk);
352	unsigned int h, s_h;
353	unsigned int e = 0, s_e;
354	struct rt6_rtnl_dump_arg arg;
355	struct fib6_walker *w;
356	struct fib6_table *tb;
357	struct hlist_head *head;
358	int res = 0;
359
360	s_h = cb->args[0];
361	s_e = cb->args[1];
362
363	w = (void *)cb->args[2];
364	if (!w) {
365		/* New dump:
366		 *
367		 * 1. hook callback destructor.
368		 */
369		cb->args[3] = (long)cb->done;
370		cb->done = fib6_dump_done;
371
372		/*
373		 * 2. allocate and initialize walker.
374		 */
375		w = kzalloc(sizeof(*w), GFP_ATOMIC);
376		if (!w)
377			return -ENOMEM;
378		w->func = fib6_dump_node;
379		cb->args[2] = (long)w;
380	}
381
382	arg.skb = skb;
383	arg.cb = cb;
384	arg.net = net;
385	w->args = &arg;
386
387	rcu_read_lock();
388	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
389		e = 0;
390		head = &net->ipv6.fib_table_hash[h];
391		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
392			if (e < s_e)
393				goto next;
394			res = fib6_dump_table(tb, skb, cb);
395			if (res != 0)
396				goto out;
397next:
398			e++;
399		}
400	}
401out:
402	rcu_read_unlock();
403	cb->args[1] = e;
404	cb->args[0] = h;
405
406	res = res < 0 ? res : skb->len;
407	if (res <= 0)
408		fib6_dump_end(cb);
409	return res;
410}
411
412/*
413 *	Routing Table
414 *
415 *	return the appropriate node for a routing tree "add" operation
416 *	by either creating and inserting or by returning an existing
417 *	node.
418 */
419
420static struct fib6_node *fib6_add_1(struct fib6_node *root,
421				     struct in6_addr *addr, int plen,
422				     int offset, int allow_create,
423				     int replace_required, int sernum)
424{
425	struct fib6_node *fn, *in, *ln;
426	struct fib6_node *pn = NULL;
427	struct rt6key *key;
428	int	bit;
429	__be32	dir = 0;
430
431	RT6_TRACE("fib6_add_1\n");
432
433	/* insert node in tree */
434
435	fn = root;
436
437	do {
438		key = (struct rt6key *)((u8 *)fn->leaf + offset);
439
440		/*
441		 *	Prefix match
442		 */
443		if (plen < fn->fn_bit ||
444		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
445			if (!allow_create) {
446				if (replace_required) {
447					pr_warn("Can't replace route, no match found\n");
448					return ERR_PTR(-ENOENT);
449				}
450				pr_warn("NLM_F_CREATE should be set when creating new route\n");
451			}
452			goto insert_above;
453		}
454
455		/*
456		 *	Exact match ?
457		 */
458
459		if (plen == fn->fn_bit) {
460			/* clean up an intermediate node */
461			if (!(fn->fn_flags & RTN_RTINFO)) {
462				rt6_release(fn->leaf);
463				fn->leaf = NULL;
464			}
465
466			fn->fn_sernum = sernum;
467
468			return fn;
469		}
470
471		/*
472		 *	We have more bits to go
473		 */
474
475		/* Try to walk down on tree. */
476		fn->fn_sernum = sernum;
477		dir = addr_bit_set(addr, fn->fn_bit);
478		pn = fn;
479		fn = dir ? fn->right : fn->left;
480	} while (fn);
481
482	if (!allow_create) {
483		/* We should not create new node because
484		 * NLM_F_REPLACE was specified without NLM_F_CREATE
485		 * I assume it is safe to require NLM_F_CREATE when
486		 * REPLACE flag is used! Later we may want to remove the
487		 * check for replace_required, because according
488		 * to netlink specification, NLM_F_CREATE
489		 * MUST be specified if new route is created.
490		 * That would keep IPv6 consistent with IPv4
491		 */
492		if (replace_required) {
493			pr_warn("Can't replace route, no match found\n");
494			return ERR_PTR(-ENOENT);
495		}
496		pr_warn("NLM_F_CREATE should be set when creating new route\n");
497	}
498	/*
499	 *	We walked to the bottom of tree.
500	 *	Create new leaf node without children.
501	 */
502
503	ln = node_alloc();
504
505	if (!ln)
506		return ERR_PTR(-ENOMEM);
507	ln->fn_bit = plen;
508
509	ln->parent = pn;
510	ln->fn_sernum = sernum;
511
512	if (dir)
513		pn->right = ln;
514	else
515		pn->left  = ln;
516
517	return ln;
518
519
520insert_above:
521	/*
522	 * split since we don't have a common prefix anymore or
523	 * we have a less significant route.
524	 * we've to insert an intermediate node on the list
525	 * this new node will point to the one we need to create
526	 * and the current
527	 */
528
529	pn = fn->parent;
530
531	/* find 1st bit in difference between the 2 addrs.
532
533	   See comment in __ipv6_addr_diff: bit may be an invalid value,
534	   but if it is >= plen, the value is ignored in any case.
535	 */
536
537	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
538
539	/*
540	 *		(intermediate)[in]
541	 *	          /	   \
542	 *	(new leaf node)[ln] (old node)[fn]
543	 */
544	if (plen > bit) {
545		in = node_alloc();
546		ln = node_alloc();
547
548		if (!in || !ln) {
549			if (in)
550				node_free(in);
551			if (ln)
552				node_free(ln);
553			return ERR_PTR(-ENOMEM);
554		}
555
556		/*
557		 * new intermediate node.
558		 * RTN_RTINFO will
559		 * be off since that an address that chooses one of
560		 * the branches would not match less specific routes
561		 * in the other branch
562		 */
563
564		in->fn_bit = bit;
565
566		in->parent = pn;
567		in->leaf = fn->leaf;
568		atomic_inc(&in->leaf->rt6i_ref);
569
570		in->fn_sernum = sernum;
571
572		/* update parent pointer */
573		if (dir)
574			pn->right = in;
575		else
576			pn->left  = in;
577
578		ln->fn_bit = plen;
579
580		ln->parent = in;
581		fn->parent = in;
582
583		ln->fn_sernum = sernum;
584
585		if (addr_bit_set(addr, bit)) {
586			in->right = ln;
587			in->left  = fn;
588		} else {
589			in->left  = ln;
590			in->right = fn;
591		}
592	} else { /* plen <= bit */
593
594		/*
595		 *		(new leaf node)[ln]
596		 *	          /	   \
597		 *	     (old node)[fn] NULL
598		 */
599
600		ln = node_alloc();
601
602		if (!ln)
603			return ERR_PTR(-ENOMEM);
604
605		ln->fn_bit = plen;
606
607		ln->parent = pn;
608
609		ln->fn_sernum = sernum;
610
611		if (dir)
612			pn->right = ln;
613		else
614			pn->left  = ln;
615
616		if (addr_bit_set(&key->addr, plen))
617			ln->right = fn;
618		else
619			ln->left  = fn;
620
621		fn->parent = ln;
622	}
623	return ln;
624}
625
626static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
627{
628	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
629	       RTF_GATEWAY;
630}
631
632static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
633{
634	int i;
635
636	for (i = 0; i < RTAX_MAX; i++) {
637		if (test_bit(i, mxc->mx_valid))
638			mp[i] = mxc->mx[i];
639	}
640}
641
642static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
643{
644	if (!mxc->mx)
645		return 0;
646
647	if (dst->flags & DST_HOST) {
648		u32 *mp = dst_metrics_write_ptr(dst);
649
650		if (unlikely(!mp))
651			return -ENOMEM;
652
653		fib6_copy_metrics(mp, mxc);
654	} else {
655		dst_init_metrics(dst, mxc->mx, false);
656
657		/* We've stolen mx now. */
658		mxc->mx = NULL;
659	}
660
661	return 0;
662}
663
664static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
665			  struct net *net)
666{
667	if (atomic_read(&rt->rt6i_ref) != 1) {
668		/* This route is used as dummy address holder in some split
669		 * nodes. It is not leaked, but it still holds other resources,
670		 * which must be released in time. So, scan ascendant nodes
671		 * and replace dummy references to this route with references
672		 * to still alive ones.
673		 */
674		while (fn) {
675			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
676				fn->leaf = fib6_find_prefix(net, fn);
677				atomic_inc(&fn->leaf->rt6i_ref);
678				rt6_release(rt);
679			}
680			fn = fn->parent;
681		}
682		/* No more references are possible at this point. */
683		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
684	}
685}
686
687/*
688 *	Insert routing information in a node.
689 */
690
691static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
692			    struct nl_info *info, struct mx6_config *mxc)
693{
694	struct rt6_info *iter = NULL;
695	struct rt6_info **ins;
696	struct rt6_info **fallback_ins = NULL;
697	int replace = (info->nlh &&
698		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
699	int add = (!info->nlh ||
700		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
701	int found = 0;
702	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
703	int err;
704
705	ins = &fn->leaf;
706
707	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
708		/*
709		 *	Search for duplicates
710		 */
711
712		if (iter->rt6i_metric == rt->rt6i_metric) {
713			/*
714			 *	Same priority level
715			 */
716			if (info->nlh &&
717			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
718				return -EEXIST;
719			if (replace) {
720				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
721					found++;
722					break;
723				}
724				if (rt_can_ecmp)
725					fallback_ins = fallback_ins ?: ins;
726				goto next_iter;
727			}
728
729			if (iter->dst.dev == rt->dst.dev &&
730			    iter->rt6i_idev == rt->rt6i_idev &&
731			    ipv6_addr_equal(&iter->rt6i_gateway,
732					    &rt->rt6i_gateway)) {
733				if (rt->rt6i_nsiblings)
734					rt->rt6i_nsiblings = 0;
735				if (!(iter->rt6i_flags & RTF_EXPIRES))
736					return -EEXIST;
737				if (!(rt->rt6i_flags & RTF_EXPIRES))
738					rt6_clean_expires(iter);
739				else
740					rt6_set_expires(iter, rt->dst.expires);
741				return -EEXIST;
742			}
743			/* If we have the same destination and the same metric,
744			 * but not the same gateway, then the route we try to
745			 * add is sibling to this route, increment our counter
746			 * of siblings, and later we will add our route to the
747			 * list.
748			 * Only static routes (which don't have flag
749			 * RTF_EXPIRES) are used for ECMPv6.
750			 *
751			 * To avoid long list, we only had siblings if the
752			 * route have a gateway.
753			 */
754			if (rt_can_ecmp &&
755			    rt6_qualify_for_ecmp(iter))
756				rt->rt6i_nsiblings++;
757		}
758
759		if (iter->rt6i_metric > rt->rt6i_metric)
760			break;
761
762next_iter:
763		ins = &iter->dst.rt6_next;
764	}
765
766	if (fallback_ins && !found) {
767		/* No ECMP-able route found, replace first non-ECMP one */
768		ins = fallback_ins;
769		iter = *ins;
770		found++;
771	}
772
773	/* Reset round-robin state, if necessary */
774	if (ins == &fn->leaf)
775		fn->rr_ptr = NULL;
776
777	/* Link this route to others same route. */
778	if (rt->rt6i_nsiblings) {
779		unsigned int rt6i_nsiblings;
780		struct rt6_info *sibling, *temp_sibling;
781
782		/* Find the first route that have the same metric */
783		sibling = fn->leaf;
784		while (sibling) {
785			if (sibling->rt6i_metric == rt->rt6i_metric &&
786			    rt6_qualify_for_ecmp(sibling)) {
787				list_add_tail(&rt->rt6i_siblings,
788					      &sibling->rt6i_siblings);
789				break;
790			}
791			sibling = sibling->dst.rt6_next;
792		}
793		/* For each sibling in the list, increment the counter of
794		 * siblings. BUG() if counters does not match, list of siblings
795		 * is broken!
796		 */
797		rt6i_nsiblings = 0;
798		list_for_each_entry_safe(sibling, temp_sibling,
799					 &rt->rt6i_siblings, rt6i_siblings) {
800			sibling->rt6i_nsiblings++;
801			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
802			rt6i_nsiblings++;
803		}
804		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
805	}
806
807	/*
808	 *	insert node
809	 */
810	if (!replace) {
811		if (!add)
812			pr_warn("NLM_F_CREATE should be set when creating new route\n");
813
814add:
815		err = fib6_commit_metrics(&rt->dst, mxc);
816		if (err)
817			return err;
818
819		rt->dst.rt6_next = iter;
820		*ins = rt;
821		rt->rt6i_node = fn;
822		atomic_inc(&rt->rt6i_ref);
823		inet6_rt_notify(RTM_NEWROUTE, rt, info);
824		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
825
826		if (!(fn->fn_flags & RTN_RTINFO)) {
827			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
828			fn->fn_flags |= RTN_RTINFO;
829		}
830
831	} else {
832		int nsiblings;
833
834		if (!found) {
835			if (add)
836				goto add;
837			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
838			return -ENOENT;
839		}
840
841		err = fib6_commit_metrics(&rt->dst, mxc);
842		if (err)
843			return err;
844
845		*ins = rt;
846		rt->rt6i_node = fn;
847		rt->dst.rt6_next = iter->dst.rt6_next;
848		atomic_inc(&rt->rt6i_ref);
849		inet6_rt_notify(RTM_NEWROUTE, rt, info);
850		if (!(fn->fn_flags & RTN_RTINFO)) {
851			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
852			fn->fn_flags |= RTN_RTINFO;
853		}
854		nsiblings = iter->rt6i_nsiblings;
855		fib6_purge_rt(iter, fn, info->nl_net);
856		rt6_release(iter);
857
858		if (nsiblings) {
859			/* Replacing an ECMP route, remove all siblings */
860			ins = &rt->dst.rt6_next;
861			iter = *ins;
862			while (iter) {
863				if (rt6_qualify_for_ecmp(iter)) {
864					*ins = iter->dst.rt6_next;
865					fib6_purge_rt(iter, fn, info->nl_net);
866					rt6_release(iter);
867					nsiblings--;
868				} else {
869					ins = &iter->dst.rt6_next;
870				}
871				iter = *ins;
872			}
873			WARN_ON(nsiblings != 0);
874		}
875	}
876
877	return 0;
878}
879
880static void fib6_start_gc(struct net *net, struct rt6_info *rt)
881{
882	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
883	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
884		mod_timer(&net->ipv6.ip6_fib_timer,
885			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
886}
887
888void fib6_force_start_gc(struct net *net)
889{
890	if (!timer_pending(&net->ipv6.ip6_fib_timer))
891		mod_timer(&net->ipv6.ip6_fib_timer,
892			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
893}
894
895/*
896 *	Add routing information to the routing tree.
897 *	<destination addr>/<source addr>
898 *	with source addr info in sub-trees
899 */
900
901int fib6_add(struct fib6_node *root, struct rt6_info *rt,
902	     struct nl_info *info, struct mx6_config *mxc)
903{
904	struct fib6_node *fn, *pn = NULL;
905	int err = -ENOMEM;
906	int allow_create = 1;
907	int replace_required = 0;
908	int sernum = fib6_new_sernum(info->nl_net);
909
910	if (info->nlh) {
911		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
912			allow_create = 0;
913		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
914			replace_required = 1;
915	}
916	if (!allow_create && !replace_required)
917		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
918
919	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
920			offsetof(struct rt6_info, rt6i_dst), allow_create,
921			replace_required, sernum);
922	if (IS_ERR(fn)) {
923		err = PTR_ERR(fn);
924		fn = NULL;
925		goto out;
926	}
927
928	pn = fn;
929
930#ifdef CONFIG_IPV6_SUBTREES
931	if (rt->rt6i_src.plen) {
932		struct fib6_node *sn;
933
934		if (!fn->subtree) {
935			struct fib6_node *sfn;
936
937			/*
938			 * Create subtree.
939			 *
940			 *		fn[main tree]
941			 *		|
942			 *		sfn[subtree root]
943			 *		   \
944			 *		    sn[new leaf node]
945			 */
946
947			/* Create subtree root node */
948			sfn = node_alloc();
949			if (!sfn)
950				goto st_failure;
951
952			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
953			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
954			sfn->fn_flags = RTN_ROOT;
955			sfn->fn_sernum = sernum;
956
957			/* Now add the first leaf node to new subtree */
958
959			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
960					rt->rt6i_src.plen,
961					offsetof(struct rt6_info, rt6i_src),
962					allow_create, replace_required, sernum);
963
964			if (IS_ERR(sn)) {
965				/* If it is failed, discard just allocated
966				   root, and then (in st_failure) stale node
967				   in main tree.
968				 */
969				node_free(sfn);
970				err = PTR_ERR(sn);
971				goto st_failure;
972			}
973
974			/* Now link new subtree to main tree */
975			sfn->parent = fn;
976			fn->subtree = sfn;
977		} else {
978			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
979					rt->rt6i_src.plen,
980					offsetof(struct rt6_info, rt6i_src),
981					allow_create, replace_required, sernum);
982
983			if (IS_ERR(sn)) {
984				err = PTR_ERR(sn);
985				goto st_failure;
986			}
987		}
988
989		if (!fn->leaf) {
990			fn->leaf = rt;
991			atomic_inc(&rt->rt6i_ref);
992		}
993		fn = sn;
994	}
995#endif
996
997	err = fib6_add_rt2node(fn, rt, info, mxc);
998	if (!err) {
999		fib6_start_gc(info->nl_net, rt);
1000		if (!(rt->rt6i_flags & RTF_CACHE))
1001			fib6_prune_clones(info->nl_net, pn);
1002	}
1003
1004out:
1005	if (err) {
1006#ifdef CONFIG_IPV6_SUBTREES
1007		/*
1008		 * If fib6_add_1 has cleared the old leaf pointer in the
1009		 * super-tree leaf node we have to find a new one for it.
1010		 */
1011		if (pn != fn && pn->leaf == rt) {
1012			pn->leaf = NULL;
1013			atomic_dec(&rt->rt6i_ref);
1014		}
1015		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1016			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1017#if RT6_DEBUG >= 2
1018			if (!pn->leaf) {
1019				WARN_ON(pn->leaf == NULL);
1020				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1021			}
1022#endif
1023			atomic_inc(&pn->leaf->rt6i_ref);
1024		}
1025#endif
1026		dst_free(&rt->dst);
1027	}
1028	return err;
1029
1030#ifdef CONFIG_IPV6_SUBTREES
1031	/* Subtree creation failed, probably main tree node
1032	   is orphan. If it is, shoot it.
1033	 */
1034st_failure:
1035	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1036		fib6_repair_tree(info->nl_net, fn);
1037	dst_free(&rt->dst);
1038	return err;
1039#endif
1040}
1041
1042/*
1043 *	Routing tree lookup
1044 *
1045 */
1046
1047struct lookup_args {
1048	int			offset;		/* key offset on rt6_info	*/
1049	const struct in6_addr	*addr;		/* search key			*/
1050};
1051
1052static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1053				       struct lookup_args *args)
1054{
1055	struct fib6_node *fn;
1056	__be32 dir;
1057
1058	if (unlikely(args->offset == 0))
1059		return NULL;
1060
1061	/*
1062	 *	Descend on a tree
1063	 */
1064
1065	fn = root;
1066
1067	for (;;) {
1068		struct fib6_node *next;
1069
1070		dir = addr_bit_set(args->addr, fn->fn_bit);
1071
1072		next = dir ? fn->right : fn->left;
1073
1074		if (next) {
1075			fn = next;
1076			continue;
1077		}
1078		break;
1079	}
1080
1081	while (fn) {
1082		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1083			struct rt6key *key;
1084
1085			key = (struct rt6key *) ((u8 *) fn->leaf +
1086						 args->offset);
1087
1088			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1089#ifdef CONFIG_IPV6_SUBTREES
1090				if (fn->subtree) {
1091					struct fib6_node *sfn;
1092					sfn = fib6_lookup_1(fn->subtree,
1093							    args + 1);
1094					if (!sfn)
1095						goto backtrack;
1096					fn = sfn;
1097				}
1098#endif
1099				if (fn->fn_flags & RTN_RTINFO)
1100					return fn;
1101			}
1102		}
1103#ifdef CONFIG_IPV6_SUBTREES
1104backtrack:
1105#endif
1106		if (fn->fn_flags & RTN_ROOT)
1107			break;
1108
1109		fn = fn->parent;
1110	}
1111
1112	return NULL;
1113}
1114
1115struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1116			      const struct in6_addr *saddr)
1117{
1118	struct fib6_node *fn;
1119	struct lookup_args args[] = {
1120		{
1121			.offset = offsetof(struct rt6_info, rt6i_dst),
1122			.addr = daddr,
1123		},
1124#ifdef CONFIG_IPV6_SUBTREES
1125		{
1126			.offset = offsetof(struct rt6_info, rt6i_src),
1127			.addr = saddr,
1128		},
1129#endif
1130		{
1131			.offset = 0,	/* sentinel */
1132		}
1133	};
1134
1135	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1136	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1137		fn = root;
1138
1139	return fn;
1140}
1141
1142/*
1143 *	Get node with specified destination prefix (and source prefix,
1144 *	if subtrees are used)
1145 */
1146
1147
1148static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1149				       const struct in6_addr *addr,
1150				       int plen, int offset)
1151{
1152	struct fib6_node *fn;
1153
1154	for (fn = root; fn ; ) {
1155		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1156
1157		/*
1158		 *	Prefix match
1159		 */
1160		if (plen < fn->fn_bit ||
1161		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1162			return NULL;
1163
1164		if (plen == fn->fn_bit)
1165			return fn;
1166
1167		/*
1168		 *	We have more bits to go
1169		 */
1170		if (addr_bit_set(addr, fn->fn_bit))
1171			fn = fn->right;
1172		else
1173			fn = fn->left;
1174	}
1175	return NULL;
1176}
1177
1178struct fib6_node *fib6_locate(struct fib6_node *root,
1179			      const struct in6_addr *daddr, int dst_len,
1180			      const struct in6_addr *saddr, int src_len)
1181{
1182	struct fib6_node *fn;
1183
1184	fn = fib6_locate_1(root, daddr, dst_len,
1185			   offsetof(struct rt6_info, rt6i_dst));
1186
1187#ifdef CONFIG_IPV6_SUBTREES
1188	if (src_len) {
1189		WARN_ON(saddr == NULL);
1190		if (fn && fn->subtree)
1191			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1192					   offsetof(struct rt6_info, rt6i_src));
1193	}
1194#endif
1195
1196	if (fn && fn->fn_flags & RTN_RTINFO)
1197		return fn;
1198
1199	return NULL;
1200}
1201
1202
1203/*
1204 *	Deletion
1205 *
1206 */
1207
1208static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1209{
1210	if (fn->fn_flags & RTN_ROOT)
1211		return net->ipv6.ip6_null_entry;
1212
1213	while (fn) {
1214		if (fn->left)
1215			return fn->left->leaf;
1216		if (fn->right)
1217			return fn->right->leaf;
1218
1219		fn = FIB6_SUBTREE(fn);
1220	}
1221	return NULL;
1222}
1223
1224/*
1225 *	Called to trim the tree of intermediate nodes when possible. "fn"
1226 *	is the node we want to try and remove.
1227 */
1228
1229static struct fib6_node *fib6_repair_tree(struct net *net,
1230					   struct fib6_node *fn)
1231{
1232	int children;
1233	int nstate;
1234	struct fib6_node *child, *pn;
1235	struct fib6_walker *w;
1236	int iter = 0;
1237
1238	for (;;) {
1239		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1240		iter++;
1241
1242		WARN_ON(fn->fn_flags & RTN_RTINFO);
1243		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1244		WARN_ON(fn->leaf);
1245
1246		children = 0;
1247		child = NULL;
1248		if (fn->right)
1249			child = fn->right, children |= 1;
1250		if (fn->left)
1251			child = fn->left, children |= 2;
1252
1253		if (children == 3 || FIB6_SUBTREE(fn)
1254#ifdef CONFIG_IPV6_SUBTREES
1255		    /* Subtree root (i.e. fn) may have one child */
1256		    || (children && fn->fn_flags & RTN_ROOT)
1257#endif
1258		    ) {
1259			fn->leaf = fib6_find_prefix(net, fn);
1260#if RT6_DEBUG >= 2
1261			if (!fn->leaf) {
1262				WARN_ON(!fn->leaf);
1263				fn->leaf = net->ipv6.ip6_null_entry;
1264			}
1265#endif
1266			atomic_inc(&fn->leaf->rt6i_ref);
1267			return fn->parent;
1268		}
1269
1270		pn = fn->parent;
1271#ifdef CONFIG_IPV6_SUBTREES
1272		if (FIB6_SUBTREE(pn) == fn) {
1273			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1274			FIB6_SUBTREE(pn) = NULL;
1275			nstate = FWS_L;
1276		} else {
1277			WARN_ON(fn->fn_flags & RTN_ROOT);
1278#endif
1279			if (pn->right == fn)
1280				pn->right = child;
1281			else if (pn->left == fn)
1282				pn->left = child;
1283#if RT6_DEBUG >= 2
1284			else
1285				WARN_ON(1);
1286#endif
1287			if (child)
1288				child->parent = pn;
1289			nstate = FWS_R;
1290#ifdef CONFIG_IPV6_SUBTREES
1291		}
1292#endif
1293
1294		read_lock(&fib6_walker_lock);
1295		FOR_WALKERS(w) {
1296			if (!child) {
1297				if (w->root == fn) {
1298					w->root = w->node = NULL;
1299					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1300				} else if (w->node == fn) {
1301					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1302					w->node = pn;
1303					w->state = nstate;
1304				}
1305			} else {
1306				if (w->root == fn) {
1307					w->root = child;
1308					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1309				}
1310				if (w->node == fn) {
1311					w->node = child;
1312					if (children&2) {
1313						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1314						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1315					} else {
1316						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1317						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1318					}
1319				}
1320			}
1321		}
1322		read_unlock(&fib6_walker_lock);
1323
1324		node_free(fn);
1325		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1326			return pn;
1327
1328		rt6_release(pn->leaf);
1329		pn->leaf = NULL;
1330		fn = pn;
1331	}
1332}
1333
1334static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1335			   struct nl_info *info)
1336{
1337	struct fib6_walker *w;
1338	struct rt6_info *rt = *rtp;
1339	struct net *net = info->nl_net;
1340
1341	RT6_TRACE("fib6_del_route\n");
1342
1343	/* Unlink it */
1344	*rtp = rt->dst.rt6_next;
1345	rt->rt6i_node = NULL;
1346	net->ipv6.rt6_stats->fib_rt_entries--;
1347	net->ipv6.rt6_stats->fib_discarded_routes++;
1348
1349	/* Reset round-robin state, if necessary */
1350	if (fn->rr_ptr == rt)
1351		fn->rr_ptr = NULL;
1352
1353	/* Remove this entry from other siblings */
1354	if (rt->rt6i_nsiblings) {
1355		struct rt6_info *sibling, *next_sibling;
1356
1357		list_for_each_entry_safe(sibling, next_sibling,
1358					 &rt->rt6i_siblings, rt6i_siblings)
1359			sibling->rt6i_nsiblings--;
1360		rt->rt6i_nsiblings = 0;
1361		list_del_init(&rt->rt6i_siblings);
1362	}
1363
1364	/* Adjust walkers */
1365	read_lock(&fib6_walker_lock);
1366	FOR_WALKERS(w) {
1367		if (w->state == FWS_C && w->leaf == rt) {
1368			RT6_TRACE("walker %p adjusted by delroute\n", w);
1369			w->leaf = rt->dst.rt6_next;
1370			if (!w->leaf)
1371				w->state = FWS_U;
1372		}
1373	}
1374	read_unlock(&fib6_walker_lock);
1375
1376	rt->dst.rt6_next = NULL;
1377
1378	/* If it was last route, expunge its radix tree node */
1379	if (!fn->leaf) {
1380		fn->fn_flags &= ~RTN_RTINFO;
1381		net->ipv6.rt6_stats->fib_route_nodes--;
1382		fn = fib6_repair_tree(net, fn);
1383	}
1384
1385	fib6_purge_rt(rt, fn, net);
1386
1387	inet6_rt_notify(RTM_DELROUTE, rt, info);
1388	rt6_release(rt);
1389}
1390
1391int fib6_del(struct rt6_info *rt, struct nl_info *info)
1392{
1393	struct net *net = info->nl_net;
1394	struct fib6_node *fn = rt->rt6i_node;
1395	struct rt6_info **rtp;
1396
1397#if RT6_DEBUG >= 2
1398	if (rt->dst.obsolete > 0) {
1399		WARN_ON(fn);
1400		return -ENOENT;
1401	}
1402#endif
1403	if (!fn || rt == net->ipv6.ip6_null_entry)
1404		return -ENOENT;
1405
1406	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1407
1408	if (!(rt->rt6i_flags & RTF_CACHE)) {
1409		struct fib6_node *pn = fn;
1410#ifdef CONFIG_IPV6_SUBTREES
1411		/* clones of this route might be in another subtree */
1412		if (rt->rt6i_src.plen) {
1413			while (!(pn->fn_flags & RTN_ROOT))
1414				pn = pn->parent;
1415			pn = pn->parent;
1416		}
1417#endif
1418		fib6_prune_clones(info->nl_net, pn);
1419	}
1420
1421	/*
1422	 *	Walk the leaf entries looking for ourself
1423	 */
1424
1425	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1426		if (*rtp == rt) {
1427			fib6_del_route(fn, rtp, info);
1428			return 0;
1429		}
1430	}
1431	return -ENOENT;
1432}
1433
1434/*
1435 *	Tree traversal function.
1436 *
1437 *	Certainly, it is not interrupt safe.
1438 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1439 *	It means, that we can modify tree during walking
1440 *	and use this function for garbage collection, clone pruning,
1441 *	cleaning tree when a device goes down etc. etc.
1442 *
1443 *	It guarantees that every node will be traversed,
1444 *	and that it will be traversed only once.
1445 *
1446 *	Callback function w->func may return:
1447 *	0 -> continue walking.
1448 *	positive value -> walking is suspended (used by tree dumps,
1449 *	and probably by gc, if it will be split to several slices)
1450 *	negative value -> terminate walking.
1451 *
1452 *	The function itself returns:
1453 *	0   -> walk is complete.
1454 *	>0  -> walk is incomplete (i.e. suspended)
1455 *	<0  -> walk is terminated by an error.
1456 */
1457
1458static int fib6_walk_continue(struct fib6_walker *w)
1459{
1460	struct fib6_node *fn, *pn;
1461
1462	for (;;) {
1463		fn = w->node;
1464		if (!fn)
1465			return 0;
1466
1467		if (w->prune && fn != w->root &&
1468		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1469			w->state = FWS_C;
1470			w->leaf = fn->leaf;
1471		}
1472		switch (w->state) {
1473#ifdef CONFIG_IPV6_SUBTREES
1474		case FWS_S:
1475			if (FIB6_SUBTREE(fn)) {
1476				w->node = FIB6_SUBTREE(fn);
1477				continue;
1478			}
1479			w->state = FWS_L;
1480#endif
1481		case FWS_L:
1482			if (fn->left) {
1483				w->node = fn->left;
1484				w->state = FWS_INIT;
1485				continue;
1486			}
1487			w->state = FWS_R;
1488		case FWS_R:
1489			if (fn->right) {
1490				w->node = fn->right;
1491				w->state = FWS_INIT;
1492				continue;
1493			}
1494			w->state = FWS_C;
1495			w->leaf = fn->leaf;
1496		case FWS_C:
1497			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1498				int err;
1499
1500				if (w->skip) {
1501					w->skip--;
1502					goto skip;
1503				}
1504
1505				err = w->func(w);
1506				if (err)
1507					return err;
1508
1509				w->count++;
1510				continue;
1511			}
1512skip:
1513			w->state = FWS_U;
1514		case FWS_U:
1515			if (fn == w->root)
1516				return 0;
1517			pn = fn->parent;
1518			w->node = pn;
1519#ifdef CONFIG_IPV6_SUBTREES
1520			if (FIB6_SUBTREE(pn) == fn) {
1521				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1522				w->state = FWS_L;
1523				continue;
1524			}
1525#endif
1526			if (pn->left == fn) {
1527				w->state = FWS_R;
1528				continue;
1529			}
1530			if (pn->right == fn) {
1531				w->state = FWS_C;
1532				w->leaf = w->node->leaf;
1533				continue;
1534			}
1535#if RT6_DEBUG >= 2
1536			WARN_ON(1);
1537#endif
1538		}
1539	}
1540}
1541
1542static int fib6_walk(struct fib6_walker *w)
1543{
1544	int res;
1545
1546	w->state = FWS_INIT;
1547	w->node = w->root;
1548
1549	fib6_walker_link(w);
1550	res = fib6_walk_continue(w);
1551	if (res <= 0)
1552		fib6_walker_unlink(w);
1553	return res;
1554}
1555
1556static int fib6_clean_node(struct fib6_walker *w)
1557{
1558	int res;
1559	struct rt6_info *rt;
1560	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1561	struct nl_info info = {
1562		.nl_net = c->net,
1563	};
1564
1565	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1566	    w->node->fn_sernum != c->sernum)
1567		w->node->fn_sernum = c->sernum;
1568
1569	if (!c->func) {
1570		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1571		w->leaf = NULL;
1572		return 0;
1573	}
1574
1575	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1576		res = c->func(rt, c->arg);
1577		if (res < 0) {
1578			w->leaf = rt;
1579			res = fib6_del(rt, &info);
1580			if (res) {
1581#if RT6_DEBUG >= 2
1582				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1583					 __func__, rt, rt->rt6i_node, res);
1584#endif
1585				continue;
1586			}
1587			return 0;
1588		}
1589		WARN_ON(res != 0);
1590	}
1591	w->leaf = rt;
1592	return 0;
1593}
1594
1595/*
1596 *	Convenient frontend to tree walker.
1597 *
1598 *	func is called on each route.
1599 *		It may return -1 -> delete this route.
1600 *		              0  -> continue walking
1601 *
1602 *	prune==1 -> only immediate children of node (certainly,
1603 *	ignoring pure split nodes) will be scanned.
1604 */
1605
1606static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1607			    int (*func)(struct rt6_info *, void *arg),
1608			    bool prune, int sernum, void *arg)
1609{
1610	struct fib6_cleaner c;
1611
1612	c.w.root = root;
1613	c.w.func = fib6_clean_node;
1614	c.w.prune = prune;
1615	c.w.count = 0;
1616	c.w.skip = 0;
1617	c.func = func;
1618	c.sernum = sernum;
1619	c.arg = arg;
1620	c.net = net;
1621
1622	fib6_walk(&c.w);
1623}
1624
1625static void __fib6_clean_all(struct net *net,
1626			     int (*func)(struct rt6_info *, void *),
1627			     int sernum, void *arg)
1628{
1629	struct fib6_table *table;
1630	struct hlist_head *head;
1631	unsigned int h;
1632
1633	rcu_read_lock();
1634	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1635		head = &net->ipv6.fib_table_hash[h];
1636		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1637			write_lock_bh(&table->tb6_lock);
1638			fib6_clean_tree(net, &table->tb6_root,
1639					func, false, sernum, arg);
1640			write_unlock_bh(&table->tb6_lock);
1641		}
1642	}
1643	rcu_read_unlock();
1644}
1645
1646void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1647		    void *arg)
1648{
1649	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1650}
1651
1652static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1653{
1654	if (rt->rt6i_flags & RTF_CACHE) {
1655		RT6_TRACE("pruning clone %p\n", rt);
1656		return -1;
1657	}
1658
1659	return 0;
1660}
1661
1662static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1663{
1664	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1665			FIB6_NO_SERNUM_CHANGE, NULL);
1666}
1667
1668static void fib6_flush_trees(struct net *net)
1669{
1670	int new_sernum = fib6_new_sernum(net);
1671
1672	__fib6_clean_all(net, NULL, new_sernum, NULL);
1673}
1674
1675/*
1676 *	Garbage collection
1677 */
1678
1679static struct fib6_gc_args
1680{
1681	int			timeout;
1682	int			more;
1683} gc_args;
1684
1685static int fib6_age(struct rt6_info *rt, void *arg)
1686{
1687	unsigned long now = jiffies;
1688
1689	/*
1690	 *	check addrconf expiration here.
1691	 *	Routes are expired even if they are in use.
1692	 *
1693	 *	Also age clones. Note, that clones are aged out
1694	 *	only if they are not in use now.
1695	 */
1696
1697	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1698		if (time_after(now, rt->dst.expires)) {
1699			RT6_TRACE("expiring %p\n", rt);
1700			return -1;
1701		}
1702		gc_args.more++;
1703	} else if (rt->rt6i_flags & RTF_CACHE) {
1704		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1705		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1706			RT6_TRACE("aging clone %p\n", rt);
1707			return -1;
1708		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1709			struct neighbour *neigh;
1710			__u8 neigh_flags = 0;
1711
1712			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1713			if (neigh) {
1714				neigh_flags = neigh->flags;
1715				neigh_release(neigh);
1716			}
1717			if (!(neigh_flags & NTF_ROUTER)) {
1718				RT6_TRACE("purging route %p via non-router but gateway\n",
1719					  rt);
1720				return -1;
1721			}
1722		}
1723		gc_args.more++;
1724	}
1725
1726	return 0;
1727}
1728
1729static DEFINE_SPINLOCK(fib6_gc_lock);
1730
1731void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1732{
1733	unsigned long now;
1734
1735	if (force) {
1736		spin_lock_bh(&fib6_gc_lock);
1737	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1738		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1739		return;
1740	}
1741	gc_args.timeout = expires ? (int)expires :
1742			  net->ipv6.sysctl.ip6_rt_gc_interval;
1743
1744	gc_args.more = icmp6_dst_gc();
1745
1746	fib6_clean_all(net, fib6_age, NULL);
1747	now = jiffies;
1748	net->ipv6.ip6_rt_last_gc = now;
1749
1750	if (gc_args.more)
1751		mod_timer(&net->ipv6.ip6_fib_timer,
1752			  round_jiffies(now
1753					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1754	else
1755		del_timer(&net->ipv6.ip6_fib_timer);
1756	spin_unlock_bh(&fib6_gc_lock);
1757}
1758
1759static void fib6_gc_timer_cb(unsigned long arg)
1760{
1761	fib6_run_gc(0, (struct net *)arg, true);
1762}
1763
1764static int __net_init fib6_net_init(struct net *net)
1765{
1766	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1767
1768	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1769
1770	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1771	if (!net->ipv6.rt6_stats)
1772		goto out_timer;
1773
1774	/* Avoid false sharing : Use at least a full cache line */
1775	size = max_t(size_t, size, L1_CACHE_BYTES);
1776
1777	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1778	if (!net->ipv6.fib_table_hash)
1779		goto out_rt6_stats;
1780
1781	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1782					  GFP_KERNEL);
1783	if (!net->ipv6.fib6_main_tbl)
1784		goto out_fib_table_hash;
1785
1786	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1787	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1788	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1789		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1790	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1791
1792#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1793	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1794					   GFP_KERNEL);
1795	if (!net->ipv6.fib6_local_tbl)
1796		goto out_fib6_main_tbl;
1797	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1798	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1799	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1800		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1801	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1802#endif
1803	fib6_tables_init(net);
1804
1805	return 0;
1806
1807#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1808out_fib6_main_tbl:
1809	kfree(net->ipv6.fib6_main_tbl);
1810#endif
1811out_fib_table_hash:
1812	kfree(net->ipv6.fib_table_hash);
1813out_rt6_stats:
1814	kfree(net->ipv6.rt6_stats);
1815out_timer:
1816	return -ENOMEM;
1817}
1818
1819static void fib6_net_exit(struct net *net)
1820{
1821	rt6_ifdown(net, NULL);
1822	del_timer_sync(&net->ipv6.ip6_fib_timer);
1823
1824#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1825	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1826	kfree(net->ipv6.fib6_local_tbl);
1827#endif
1828	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1829	kfree(net->ipv6.fib6_main_tbl);
1830	kfree(net->ipv6.fib_table_hash);
1831	kfree(net->ipv6.rt6_stats);
1832}
1833
1834static struct pernet_operations fib6_net_ops = {
1835	.init = fib6_net_init,
1836	.exit = fib6_net_exit,
1837};
1838
1839int __init fib6_init(void)
1840{
1841	int ret = -ENOMEM;
1842
1843	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1844					   sizeof(struct fib6_node),
1845					   0, SLAB_HWCACHE_ALIGN,
1846					   NULL);
1847	if (!fib6_node_kmem)
1848		goto out;
1849
1850	ret = register_pernet_subsys(&fib6_net_ops);
1851	if (ret)
1852		goto out_kmem_cache_create;
1853
1854	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1855			      NULL);
1856	if (ret)
1857		goto out_unregister_subsys;
1858
1859	__fib6_flush_trees = fib6_flush_trees;
1860out:
1861	return ret;
1862
1863out_unregister_subsys:
1864	unregister_pernet_subsys(&fib6_net_ops);
1865out_kmem_cache_create:
1866	kmem_cache_destroy(fib6_node_kmem);
1867	goto out;
1868}
1869
1870void fib6_gc_cleanup(void)
1871{
1872	unregister_pernet_subsys(&fib6_net_ops);
1873	kmem_cache_destroy(fib6_node_kmem);
1874}
1875
1876#ifdef CONFIG_PROC_FS
1877
1878struct ipv6_route_iter {
1879	struct seq_net_private p;
1880	struct fib6_walker w;
1881	loff_t skip;
1882	struct fib6_table *tbl;
1883	int sernum;
1884};
1885
1886static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1887{
1888	struct rt6_info *rt = v;
1889	struct ipv6_route_iter *iter = seq->private;
1890
1891	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1892
1893#ifdef CONFIG_IPV6_SUBTREES
1894	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1895#else
1896	seq_puts(seq, "00000000000000000000000000000000 00 ");
1897#endif
1898	if (rt->rt6i_flags & RTF_GATEWAY)
1899		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1900	else
1901		seq_puts(seq, "00000000000000000000000000000000");
1902
1903	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1904		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1905		   rt->dst.__use, rt->rt6i_flags,
1906		   rt->dst.dev ? rt->dst.dev->name : "");
1907	iter->w.leaf = NULL;
1908	return 0;
1909}
1910
1911static int ipv6_route_yield(struct fib6_walker *w)
1912{
1913	struct ipv6_route_iter *iter = w->args;
1914
1915	if (!iter->skip)
1916		return 1;
1917
1918	do {
1919		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1920		iter->skip--;
1921		if (!iter->skip && iter->w.leaf)
1922			return 1;
1923	} while (iter->w.leaf);
1924
1925	return 0;
1926}
1927
1928static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1929{
1930	memset(&iter->w, 0, sizeof(iter->w));
1931	iter->w.func = ipv6_route_yield;
1932	iter->w.root = &iter->tbl->tb6_root;
1933	iter->w.state = FWS_INIT;
1934	iter->w.node = iter->w.root;
1935	iter->w.args = iter;
1936	iter->sernum = iter->w.root->fn_sernum;
1937	INIT_LIST_HEAD(&iter->w.lh);
1938	fib6_walker_link(&iter->w);
1939}
1940
1941static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1942						    struct net *net)
1943{
1944	unsigned int h;
1945	struct hlist_node *node;
1946
1947	if (tbl) {
1948		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1949		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1950	} else {
1951		h = 0;
1952		node = NULL;
1953	}
1954
1955	while (!node && h < FIB6_TABLE_HASHSZ) {
1956		node = rcu_dereference_bh(
1957			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1958	}
1959	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1960}
1961
1962static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1963{
1964	if (iter->sernum != iter->w.root->fn_sernum) {
1965		iter->sernum = iter->w.root->fn_sernum;
1966		iter->w.state = FWS_INIT;
1967		iter->w.node = iter->w.root;
1968		WARN_ON(iter->w.skip);
1969		iter->w.skip = iter->w.count;
1970	}
1971}
1972
1973static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1974{
1975	int r;
1976	struct rt6_info *n;
1977	struct net *net = seq_file_net(seq);
1978	struct ipv6_route_iter *iter = seq->private;
1979
1980	if (!v)
1981		goto iter_table;
1982
1983	n = ((struct rt6_info *)v)->dst.rt6_next;
1984	if (n) {
1985		++*pos;
1986		return n;
1987	}
1988
1989iter_table:
1990	ipv6_route_check_sernum(iter);
1991	read_lock(&iter->tbl->tb6_lock);
1992	r = fib6_walk_continue(&iter->w);
1993	read_unlock(&iter->tbl->tb6_lock);
1994	if (r > 0) {
1995		if (v)
1996			++*pos;
1997		return iter->w.leaf;
1998	} else if (r < 0) {
1999		fib6_walker_unlink(&iter->w);
2000		return NULL;
2001	}
2002	fib6_walker_unlink(&iter->w);
2003
2004	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2005	if (!iter->tbl)
2006		return NULL;
2007
2008	ipv6_route_seq_setup_walk(iter);
2009	goto iter_table;
2010}
2011
2012static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2013	__acquires(RCU_BH)
2014{
2015	struct net *net = seq_file_net(seq);
2016	struct ipv6_route_iter *iter = seq->private;
2017
2018	rcu_read_lock_bh();
2019	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2020	iter->skip = *pos;
2021
2022	if (iter->tbl) {
2023		ipv6_route_seq_setup_walk(iter);
2024		return ipv6_route_seq_next(seq, NULL, pos);
2025	} else {
2026		return NULL;
2027	}
2028}
2029
2030static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2031{
2032	struct fib6_walker *w = &iter->w;
2033	return w->node && !(w->state == FWS_U && w->node == w->root);
2034}
2035
2036static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2037	__releases(RCU_BH)
2038{
2039	struct ipv6_route_iter *iter = seq->private;
2040
2041	if (ipv6_route_iter_active(iter))
2042		fib6_walker_unlink(&iter->w);
2043
2044	rcu_read_unlock_bh();
2045}
2046
2047static const struct seq_operations ipv6_route_seq_ops = {
2048	.start	= ipv6_route_seq_start,
2049	.next	= ipv6_route_seq_next,
2050	.stop	= ipv6_route_seq_stop,
2051	.show	= ipv6_route_seq_show
2052};
2053
2054int ipv6_route_open(struct inode *inode, struct file *file)
2055{
2056	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2057			    sizeof(struct ipv6_route_iter));
2058}
2059
2060#endif /* CONFIG_PROC_FS */
2061