1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 *                 ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING.  If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 *    lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 *    La Monte H.P. Yarroll <piggy@acm.org>
34 *    Karl Knutson          <karl@athena.chicago.il.us>
35 *    Jon Grimm             <jgrimm@us.ibm.com>
36 *    Xingang Guo           <xingang.guo@intel.com>
37 *    Hui Huang             <hui.huang@nokia.com>
38 *    Sridhar Samudrala	    <sri@us.ibm.com>
39 *    Daisy Chang	    <daisyc@us.ibm.com>
40 *    Ryan Layer	    <rmlayer@us.ibm.com>
41 *    Kevin Gao             <kevin.gao@intel.com>
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/types.h>
47#include <linux/fcntl.h>
48#include <linux/poll.h>
49#include <linux/init.h>
50
51#include <linux/slab.h>
52#include <linux/in.h>
53#include <net/ipv6.h>
54#include <net/sctp/sctp.h>
55#include <net/sctp/sm.h>
56
57/* Forward declarations for internal functions. */
58static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59static void sctp_assoc_bh_rcv(struct work_struct *work);
60static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63/* 1st Level Abstractions. */
64
65/* Initialize a new association from provided memory. */
66static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67					  const struct sctp_endpoint *ep,
68					  const struct sock *sk,
69					  sctp_scope_t scope,
70					  gfp_t gfp)
71{
72	struct net *net = sock_net(sk);
73	struct sctp_sock *sp;
74	int i;
75	sctp_paramhdr_t *p;
76	int err;
77
78	/* Retrieve the SCTP per socket area.  */
79	sp = sctp_sk((struct sock *)sk);
80
81	/* Discarding const is appropriate here.  */
82	asoc->ep = (struct sctp_endpoint *)ep;
83	asoc->base.sk = (struct sock *)sk;
84
85	sctp_endpoint_hold(asoc->ep);
86	sock_hold(asoc->base.sk);
87
88	/* Initialize the common base substructure.  */
89	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91	/* Initialize the object handling fields.  */
92	atomic_set(&asoc->base.refcnt, 1);
93
94	/* Initialize the bind addr area.  */
95	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97	asoc->state = SCTP_STATE_CLOSED;
98	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99	asoc->user_frag = sp->user_frag;
100
101	/* Set the association max_retrans and RTO values from the
102	 * socket values.
103	 */
104	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105	asoc->pf_retrans  = net->sctp.pf_retrans;
106
107	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111	/* Initialize the association's heartbeat interval based on the
112	 * sock configured value.
113	 */
114	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116	/* Initialize path max retrans value. */
117	asoc->pathmaxrxt = sp->pathmaxrxt;
118
119	/* Initialize default path MTU. */
120	asoc->pathmtu = sp->pathmtu;
121
122	/* Set association default SACK delay */
123	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124	asoc->sackfreq = sp->sackfreq;
125
126	/* Set the association default flags controlling
127	 * Heartbeat, SACK delay, and Path MTU Discovery.
128	 */
129	asoc->param_flags = sp->param_flags;
130
131	/* Initialize the maximum number of new data packets that can be sent
132	 * in a burst.
133	 */
134	asoc->max_burst = sp->max_burst;
135
136	/* initialize association timers */
137	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141	/* sctpimpguide Section 2.12.2
142	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143	 * recommended value of 5 times 'RTO.Max'.
144	 */
145	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146		= 5 * asoc->rto_max;
147
148	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151	/* Initializes the timers */
152	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153		setup_timer(&asoc->timers[i], sctp_timer_events[i],
154				(unsigned long)asoc);
155
156	/* Pull default initialization values from the sock options.
157	 * Note: This assumes that the values have already been
158	 * validated in the sock.
159	 */
160	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
162	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
163
164	asoc->max_init_timeo =
165		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167	/* Set the local window size for receive.
168	 * This is also the rcvbuf space per association.
169	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170	 * 1500 bytes in one SCTP packet.
171	 */
172	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174	else
175		asoc->rwnd = sk->sk_rcvbuf/2;
176
177	asoc->a_rwnd = asoc->rwnd;
178
179	/* Use my own max window until I learn something better.  */
180	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182	/* Initialize the receive memory counter */
183	atomic_set(&asoc->rmem_alloc, 0);
184
185	init_waitqueue_head(&asoc->wait);
186
187	asoc->c.my_vtag = sctp_generate_tag(ep);
188	asoc->c.my_port = ep->base.bind_addr.port;
189
190	asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192	asoc->next_tsn = asoc->c.initial_tsn;
193
194	asoc->ctsn_ack_point = asoc->next_tsn - 1;
195	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196	asoc->highest_sacked = asoc->ctsn_ack_point;
197	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199	/* ADDIP Section 4.1 Asconf Chunk Procedures
200	 *
201	 * When an endpoint has an ASCONF signaled change to be sent to the
202	 * remote endpoint it should do the following:
203	 * ...
204	 * A2) a serial number should be assigned to the chunk. The serial
205	 * number SHOULD be a monotonically increasing number. The serial
206	 * numbers SHOULD be initialized at the start of the
207	 * association to the same value as the initial TSN.
208	 */
209	asoc->addip_serial = asoc->c.initial_tsn;
210
211	INIT_LIST_HEAD(&asoc->addip_chunk_list);
212	INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214	/* Make an empty list of remote transport addresses.  */
215	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217	/* RFC 2960 5.1 Normal Establishment of an Association
218	 *
219	 * After the reception of the first data chunk in an
220	 * association the endpoint must immediately respond with a
221	 * sack to acknowledge the data chunk.  Subsequent
222	 * acknowledgements should be done as described in Section
223	 * 6.2.
224	 *
225	 * [We implement this by telling a new association that it
226	 * already received one packet.]
227	 */
228	asoc->peer.sack_needed = 1;
229	asoc->peer.sack_generation = 1;
230
231	/* Assume that the peer will tell us if he recognizes ASCONF
232	 * as part of INIT exchange.
233	 * The sctp_addip_noauth option is there for backward compatibility
234	 * and will revert old behavior.
235	 */
236	if (net->sctp.addip_noauth)
237		asoc->peer.asconf_capable = 1;
238
239	/* Create an input queue.  */
240	sctp_inq_init(&asoc->base.inqueue);
241	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243	/* Create an output queue.  */
244	sctp_outq_init(asoc, &asoc->outqueue);
245
246	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247		goto fail_init;
248
249	/* Assume that peer would support both address types unless we are
250	 * told otherwise.
251	 */
252	asoc->peer.ipv4_address = 1;
253	if (asoc->base.sk->sk_family == PF_INET6)
254		asoc->peer.ipv6_address = 1;
255	INIT_LIST_HEAD(&asoc->asocs);
256
257	asoc->default_stream = sp->default_stream;
258	asoc->default_ppid = sp->default_ppid;
259	asoc->default_flags = sp->default_flags;
260	asoc->default_context = sp->default_context;
261	asoc->default_timetolive = sp->default_timetolive;
262	asoc->default_rcv_context = sp->default_rcv_context;
263
264	/* AUTH related initializations */
265	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267	if (err)
268		goto fail_init;
269
270	asoc->active_key_id = ep->active_key_id;
271
272	/* Save the hmacs and chunks list into this association */
273	if (ep->auth_hmacs_list)
274		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275			ntohs(ep->auth_hmacs_list->param_hdr.length));
276	if (ep->auth_chunk_list)
277		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278			ntohs(ep->auth_chunk_list->param_hdr.length));
279
280	/* Get the AUTH random number for this association */
281	p = (sctp_paramhdr_t *)asoc->c.auth_random;
282	p->type = SCTP_PARAM_RANDOM;
283	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286	return asoc;
287
288fail_init:
289	sock_put(asoc->base.sk);
290	sctp_endpoint_put(asoc->ep);
291	return NULL;
292}
293
294/* Allocate and initialize a new association */
295struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296					 const struct sock *sk,
297					 sctp_scope_t scope,
298					 gfp_t gfp)
299{
300	struct sctp_association *asoc;
301
302	asoc = kzalloc(sizeof(*asoc), gfp);
303	if (!asoc)
304		goto fail;
305
306	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307		goto fail_init;
308
309	SCTP_DBG_OBJCNT_INC(assoc);
310
311	pr_debug("Created asoc %p\n", asoc);
312
313	return asoc;
314
315fail_init:
316	kfree(asoc);
317fail:
318	return NULL;
319}
320
321/* Free this association if possible.  There may still be users, so
322 * the actual deallocation may be delayed.
323 */
324void sctp_association_free(struct sctp_association *asoc)
325{
326	struct sock *sk = asoc->base.sk;
327	struct sctp_transport *transport;
328	struct list_head *pos, *temp;
329	int i;
330
331	/* Only real associations count against the endpoint, so
332	 * don't bother for if this is a temporary association.
333	 */
334	if (!list_empty(&asoc->asocs)) {
335		list_del(&asoc->asocs);
336
337		/* Decrement the backlog value for a TCP-style listening
338		 * socket.
339		 */
340		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341			sk->sk_ack_backlog--;
342	}
343
344	/* Mark as dead, so other users can know this structure is
345	 * going away.
346	 */
347	asoc->base.dead = true;
348
349	/* Dispose of any data lying around in the outqueue. */
350	sctp_outq_free(&asoc->outqueue);
351
352	/* Dispose of any pending messages for the upper layer. */
353	sctp_ulpq_free(&asoc->ulpq);
354
355	/* Dispose of any pending chunks on the inqueue. */
356	sctp_inq_free(&asoc->base.inqueue);
357
358	sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360	/* Free ssnmap storage. */
361	sctp_ssnmap_free(asoc->ssnmap);
362
363	/* Clean up the bound address list. */
364	sctp_bind_addr_free(&asoc->base.bind_addr);
365
366	/* Do we need to go through all of our timers and
367	 * delete them?   To be safe we will try to delete all, but we
368	 * should be able to go through and make a guess based
369	 * on our state.
370	 */
371	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372		if (del_timer(&asoc->timers[i]))
373			sctp_association_put(asoc);
374	}
375
376	/* Free peer's cached cookie. */
377	kfree(asoc->peer.cookie);
378	kfree(asoc->peer.peer_random);
379	kfree(asoc->peer.peer_chunks);
380	kfree(asoc->peer.peer_hmacs);
381
382	/* Release the transport structures. */
383	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384		transport = list_entry(pos, struct sctp_transport, transports);
385		list_del_rcu(pos);
386		sctp_transport_free(transport);
387	}
388
389	asoc->peer.transport_count = 0;
390
391	sctp_asconf_queue_teardown(asoc);
392
393	/* Free pending address space being deleted */
394	kfree(asoc->asconf_addr_del_pending);
395
396	/* AUTH - Free the endpoint shared keys */
397	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
398
399	/* AUTH - Free the association shared key */
400	sctp_auth_key_put(asoc->asoc_shared_key);
401
402	sctp_association_put(asoc);
403}
404
405/* Cleanup and free up an association. */
406static void sctp_association_destroy(struct sctp_association *asoc)
407{
408	if (unlikely(!asoc->base.dead)) {
409		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
410		return;
411	}
412
413	sctp_endpoint_put(asoc->ep);
414	sock_put(asoc->base.sk);
415
416	if (asoc->assoc_id != 0) {
417		spin_lock_bh(&sctp_assocs_id_lock);
418		idr_remove(&sctp_assocs_id, asoc->assoc_id);
419		spin_unlock_bh(&sctp_assocs_id_lock);
420	}
421
422	WARN_ON(atomic_read(&asoc->rmem_alloc));
423
424	kfree(asoc);
425	SCTP_DBG_OBJCNT_DEC(assoc);
426}
427
428/* Change the primary destination address for the peer. */
429void sctp_assoc_set_primary(struct sctp_association *asoc,
430			    struct sctp_transport *transport)
431{
432	int changeover = 0;
433
434	/* it's a changeover only if we already have a primary path
435	 * that we are changing
436	 */
437	if (asoc->peer.primary_path != NULL &&
438	    asoc->peer.primary_path != transport)
439		changeover = 1 ;
440
441	asoc->peer.primary_path = transport;
442
443	/* Set a default msg_name for events. */
444	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
445	       sizeof(union sctp_addr));
446
447	/* If the primary path is changing, assume that the
448	 * user wants to use this new path.
449	 */
450	if ((transport->state == SCTP_ACTIVE) ||
451	    (transport->state == SCTP_UNKNOWN))
452		asoc->peer.active_path = transport;
453
454	/*
455	 * SFR-CACC algorithm:
456	 * Upon the receipt of a request to change the primary
457	 * destination address, on the data structure for the new
458	 * primary destination, the sender MUST do the following:
459	 *
460	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
461	 * to this destination address earlier. The sender MUST set
462	 * CYCLING_CHANGEOVER to indicate that this switch is a
463	 * double switch to the same destination address.
464	 *
465	 * Really, only bother is we have data queued or outstanding on
466	 * the association.
467	 */
468	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
469		return;
470
471	if (transport->cacc.changeover_active)
472		transport->cacc.cycling_changeover = changeover;
473
474	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
475	 * a changeover has occurred.
476	 */
477	transport->cacc.changeover_active = changeover;
478
479	/* 3) The sender MUST store the next TSN to be sent in
480	 * next_tsn_at_change.
481	 */
482	transport->cacc.next_tsn_at_change = asoc->next_tsn;
483}
484
485/* Remove a transport from an association.  */
486void sctp_assoc_rm_peer(struct sctp_association *asoc,
487			struct sctp_transport *peer)
488{
489	struct list_head	*pos;
490	struct sctp_transport	*transport;
491
492	pr_debug("%s: association:%p addr:%pISpc\n",
493		 __func__, asoc, &peer->ipaddr.sa);
494
495	/* If we are to remove the current retran_path, update it
496	 * to the next peer before removing this peer from the list.
497	 */
498	if (asoc->peer.retran_path == peer)
499		sctp_assoc_update_retran_path(asoc);
500
501	/* Remove this peer from the list. */
502	list_del_rcu(&peer->transports);
503
504	/* Get the first transport of asoc. */
505	pos = asoc->peer.transport_addr_list.next;
506	transport = list_entry(pos, struct sctp_transport, transports);
507
508	/* Update any entries that match the peer to be deleted. */
509	if (asoc->peer.primary_path == peer)
510		sctp_assoc_set_primary(asoc, transport);
511	if (asoc->peer.active_path == peer)
512		asoc->peer.active_path = transport;
513	if (asoc->peer.retran_path == peer)
514		asoc->peer.retran_path = transport;
515	if (asoc->peer.last_data_from == peer)
516		asoc->peer.last_data_from = transport;
517
518	/* If we remove the transport an INIT was last sent to, set it to
519	 * NULL. Combined with the update of the retran path above, this
520	 * will cause the next INIT to be sent to the next available
521	 * transport, maintaining the cycle.
522	 */
523	if (asoc->init_last_sent_to == peer)
524		asoc->init_last_sent_to = NULL;
525
526	/* If we remove the transport an SHUTDOWN was last sent to, set it
527	 * to NULL. Combined with the update of the retran path above, this
528	 * will cause the next SHUTDOWN to be sent to the next available
529	 * transport, maintaining the cycle.
530	 */
531	if (asoc->shutdown_last_sent_to == peer)
532		asoc->shutdown_last_sent_to = NULL;
533
534	/* If we remove the transport an ASCONF was last sent to, set it to
535	 * NULL.
536	 */
537	if (asoc->addip_last_asconf &&
538	    asoc->addip_last_asconf->transport == peer)
539		asoc->addip_last_asconf->transport = NULL;
540
541	/* If we have something on the transmitted list, we have to
542	 * save it off.  The best place is the active path.
543	 */
544	if (!list_empty(&peer->transmitted)) {
545		struct sctp_transport *active = asoc->peer.active_path;
546		struct sctp_chunk *ch;
547
548		/* Reset the transport of each chunk on this list */
549		list_for_each_entry(ch, &peer->transmitted,
550					transmitted_list) {
551			ch->transport = NULL;
552			ch->rtt_in_progress = 0;
553		}
554
555		list_splice_tail_init(&peer->transmitted,
556					&active->transmitted);
557
558		/* Start a T3 timer here in case it wasn't running so
559		 * that these migrated packets have a chance to get
560		 * retransmitted.
561		 */
562		if (!timer_pending(&active->T3_rtx_timer))
563			if (!mod_timer(&active->T3_rtx_timer,
564					jiffies + active->rto))
565				sctp_transport_hold(active);
566	}
567
568	asoc->peer.transport_count--;
569
570	sctp_transport_free(peer);
571}
572
573/* Add a transport address to an association.  */
574struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
575					   const union sctp_addr *addr,
576					   const gfp_t gfp,
577					   const int peer_state)
578{
579	struct net *net = sock_net(asoc->base.sk);
580	struct sctp_transport *peer;
581	struct sctp_sock *sp;
582	unsigned short port;
583
584	sp = sctp_sk(asoc->base.sk);
585
586	/* AF_INET and AF_INET6 share common port field. */
587	port = ntohs(addr->v4.sin_port);
588
589	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
590		 asoc, &addr->sa, peer_state);
591
592	/* Set the port if it has not been set yet.  */
593	if (0 == asoc->peer.port)
594		asoc->peer.port = port;
595
596	/* Check to see if this is a duplicate. */
597	peer = sctp_assoc_lookup_paddr(asoc, addr);
598	if (peer) {
599		/* An UNKNOWN state is only set on transports added by
600		 * user in sctp_connectx() call.  Such transports should be
601		 * considered CONFIRMED per RFC 4960, Section 5.4.
602		 */
603		if (peer->state == SCTP_UNKNOWN) {
604			peer->state = SCTP_ACTIVE;
605		}
606		return peer;
607	}
608
609	peer = sctp_transport_new(net, addr, gfp);
610	if (!peer)
611		return NULL;
612
613	sctp_transport_set_owner(peer, asoc);
614
615	/* Initialize the peer's heartbeat interval based on the
616	 * association configured value.
617	 */
618	peer->hbinterval = asoc->hbinterval;
619
620	/* Set the path max_retrans.  */
621	peer->pathmaxrxt = asoc->pathmaxrxt;
622
623	/* And the partial failure retrans threshold */
624	peer->pf_retrans = asoc->pf_retrans;
625
626	/* Initialize the peer's SACK delay timeout based on the
627	 * association configured value.
628	 */
629	peer->sackdelay = asoc->sackdelay;
630	peer->sackfreq = asoc->sackfreq;
631
632	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
633	 * based on association setting.
634	 */
635	peer->param_flags = asoc->param_flags;
636
637	sctp_transport_route(peer, NULL, sp);
638
639	/* Initialize the pmtu of the transport. */
640	if (peer->param_flags & SPP_PMTUD_DISABLE) {
641		if (asoc->pathmtu)
642			peer->pathmtu = asoc->pathmtu;
643		else
644			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
645	}
646
647	/* If this is the first transport addr on this association,
648	 * initialize the association PMTU to the peer's PMTU.
649	 * If not and the current association PMTU is higher than the new
650	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
651	 */
652	if (asoc->pathmtu)
653		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
654	else
655		asoc->pathmtu = peer->pathmtu;
656
657	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
658		 asoc->pathmtu);
659
660	peer->pmtu_pending = 0;
661
662	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
663
664	/* The asoc->peer.port might not be meaningful yet, but
665	 * initialize the packet structure anyway.
666	 */
667	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
668			 asoc->peer.port);
669
670	/* 7.2.1 Slow-Start
671	 *
672	 * o The initial cwnd before DATA transmission or after a sufficiently
673	 *   long idle period MUST be set to
674	 *      min(4*MTU, max(2*MTU, 4380 bytes))
675	 *
676	 * o The initial value of ssthresh MAY be arbitrarily high
677	 *   (for example, implementations MAY use the size of the
678	 *   receiver advertised window).
679	 */
680	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
681
682	/* At this point, we may not have the receiver's advertised window,
683	 * so initialize ssthresh to the default value and it will be set
684	 * later when we process the INIT.
685	 */
686	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
687
688	peer->partial_bytes_acked = 0;
689	peer->flight_size = 0;
690	peer->burst_limited = 0;
691
692	/* Set the transport's RTO.initial value */
693	peer->rto = asoc->rto_initial;
694	sctp_max_rto(asoc, peer);
695
696	/* Set the peer's active state. */
697	peer->state = peer_state;
698
699	/* Attach the remote transport to our asoc.  */
700	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
701	asoc->peer.transport_count++;
702
703	/* If we do not yet have a primary path, set one.  */
704	if (!asoc->peer.primary_path) {
705		sctp_assoc_set_primary(asoc, peer);
706		asoc->peer.retran_path = peer;
707	}
708
709	if (asoc->peer.active_path == asoc->peer.retran_path &&
710	    peer->state != SCTP_UNCONFIRMED) {
711		asoc->peer.retran_path = peer;
712	}
713
714	return peer;
715}
716
717/* Delete a transport address from an association.  */
718void sctp_assoc_del_peer(struct sctp_association *asoc,
719			 const union sctp_addr *addr)
720{
721	struct list_head	*pos;
722	struct list_head	*temp;
723	struct sctp_transport	*transport;
724
725	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
726		transport = list_entry(pos, struct sctp_transport, transports);
727		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
728			/* Do book keeping for removing the peer and free it. */
729			sctp_assoc_rm_peer(asoc, transport);
730			break;
731		}
732	}
733}
734
735/* Lookup a transport by address. */
736struct sctp_transport *sctp_assoc_lookup_paddr(
737					const struct sctp_association *asoc,
738					const union sctp_addr *address)
739{
740	struct sctp_transport *t;
741
742	/* Cycle through all transports searching for a peer address. */
743
744	list_for_each_entry(t, &asoc->peer.transport_addr_list,
745			transports) {
746		if (sctp_cmp_addr_exact(address, &t->ipaddr))
747			return t;
748	}
749
750	return NULL;
751}
752
753/* Remove all transports except a give one */
754void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
755				     struct sctp_transport *primary)
756{
757	struct sctp_transport	*temp;
758	struct sctp_transport	*t;
759
760	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
761				 transports) {
762		/* if the current transport is not the primary one, delete it */
763		if (t != primary)
764			sctp_assoc_rm_peer(asoc, t);
765	}
766}
767
768/* Engage in transport control operations.
769 * Mark the transport up or down and send a notification to the user.
770 * Select and update the new active and retran paths.
771 */
772void sctp_assoc_control_transport(struct sctp_association *asoc,
773				  struct sctp_transport *transport,
774				  sctp_transport_cmd_t command,
775				  sctp_sn_error_t error)
776{
777	struct sctp_ulpevent *event;
778	struct sockaddr_storage addr;
779	int spc_state = 0;
780	bool ulp_notify = true;
781
782	/* Record the transition on the transport.  */
783	switch (command) {
784	case SCTP_TRANSPORT_UP:
785		/* If we are moving from UNCONFIRMED state due
786		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
787		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
788		 */
789		if (SCTP_UNCONFIRMED == transport->state &&
790		    SCTP_HEARTBEAT_SUCCESS == error)
791			spc_state = SCTP_ADDR_CONFIRMED;
792		else
793			spc_state = SCTP_ADDR_AVAILABLE;
794		/* Don't inform ULP about transition from PF to
795		 * active state and set cwnd to 1 MTU, see SCTP
796		 * Quick failover draft section 5.1, point 5
797		 */
798		if (transport->state == SCTP_PF) {
799			ulp_notify = false;
800			transport->cwnd = asoc->pathmtu;
801		}
802		transport->state = SCTP_ACTIVE;
803		break;
804
805	case SCTP_TRANSPORT_DOWN:
806		/* If the transport was never confirmed, do not transition it
807		 * to inactive state.  Also, release the cached route since
808		 * there may be a better route next time.
809		 */
810		if (transport->state != SCTP_UNCONFIRMED)
811			transport->state = SCTP_INACTIVE;
812		else {
813			dst_release(transport->dst);
814			transport->dst = NULL;
815			ulp_notify = false;
816		}
817
818		spc_state = SCTP_ADDR_UNREACHABLE;
819		break;
820
821	case SCTP_TRANSPORT_PF:
822		transport->state = SCTP_PF;
823		ulp_notify = false;
824		break;
825
826	default:
827		return;
828	}
829
830	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
831	 * to the user.
832	 */
833	if (ulp_notify) {
834		memset(&addr, 0, sizeof(struct sockaddr_storage));
835		memcpy(&addr, &transport->ipaddr,
836		       transport->af_specific->sockaddr_len);
837
838		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
839					0, spc_state, error, GFP_ATOMIC);
840		if (event)
841			sctp_ulpq_tail_event(&asoc->ulpq, event);
842	}
843
844	/* Select new active and retran paths. */
845	sctp_select_active_and_retran_path(asoc);
846}
847
848/* Hold a reference to an association. */
849void sctp_association_hold(struct sctp_association *asoc)
850{
851	atomic_inc(&asoc->base.refcnt);
852}
853
854/* Release a reference to an association and cleanup
855 * if there are no more references.
856 */
857void sctp_association_put(struct sctp_association *asoc)
858{
859	if (atomic_dec_and_test(&asoc->base.refcnt))
860		sctp_association_destroy(asoc);
861}
862
863/* Allocate the next TSN, Transmission Sequence Number, for the given
864 * association.
865 */
866__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
867{
868	/* From Section 1.6 Serial Number Arithmetic:
869	 * Transmission Sequence Numbers wrap around when they reach
870	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
871	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
872	 */
873	__u32 retval = asoc->next_tsn;
874	asoc->next_tsn++;
875	asoc->unack_data++;
876
877	return retval;
878}
879
880/* Compare two addresses to see if they match.  Wildcard addresses
881 * only match themselves.
882 */
883int sctp_cmp_addr_exact(const union sctp_addr *ss1,
884			const union sctp_addr *ss2)
885{
886	struct sctp_af *af;
887
888	af = sctp_get_af_specific(ss1->sa.sa_family);
889	if (unlikely(!af))
890		return 0;
891
892	return af->cmp_addr(ss1, ss2);
893}
894
895/* Return an ecne chunk to get prepended to a packet.
896 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
897 * No we don't, but we could/should.
898 */
899struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
900{
901	if (!asoc->need_ecne)
902		return NULL;
903
904	/* Send ECNE if needed.
905	 * Not being able to allocate a chunk here is not deadly.
906	 */
907	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
908}
909
910/*
911 * Find which transport this TSN was sent on.
912 */
913struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
914					     __u32 tsn)
915{
916	struct sctp_transport *active;
917	struct sctp_transport *match;
918	struct sctp_transport *transport;
919	struct sctp_chunk *chunk;
920	__be32 key = htonl(tsn);
921
922	match = NULL;
923
924	/*
925	 * FIXME: In general, find a more efficient data structure for
926	 * searching.
927	 */
928
929	/*
930	 * The general strategy is to search each transport's transmitted
931	 * list.   Return which transport this TSN lives on.
932	 *
933	 * Let's be hopeful and check the active_path first.
934	 * Another optimization would be to know if there is only one
935	 * outbound path and not have to look for the TSN at all.
936	 *
937	 */
938
939	active = asoc->peer.active_path;
940
941	list_for_each_entry(chunk, &active->transmitted,
942			transmitted_list) {
943
944		if (key == chunk->subh.data_hdr->tsn) {
945			match = active;
946			goto out;
947		}
948	}
949
950	/* If not found, go search all the other transports. */
951	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
952			transports) {
953
954		if (transport == active)
955			continue;
956		list_for_each_entry(chunk, &transport->transmitted,
957				transmitted_list) {
958			if (key == chunk->subh.data_hdr->tsn) {
959				match = transport;
960				goto out;
961			}
962		}
963	}
964out:
965	return match;
966}
967
968/* Is this the association we are looking for? */
969struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
970					   struct net *net,
971					   const union sctp_addr *laddr,
972					   const union sctp_addr *paddr)
973{
974	struct sctp_transport *transport;
975
976	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
977	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
978	    net_eq(sock_net(asoc->base.sk), net)) {
979		transport = sctp_assoc_lookup_paddr(asoc, paddr);
980		if (!transport)
981			goto out;
982
983		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
984					 sctp_sk(asoc->base.sk)))
985			goto out;
986	}
987	transport = NULL;
988
989out:
990	return transport;
991}
992
993/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
994static void sctp_assoc_bh_rcv(struct work_struct *work)
995{
996	struct sctp_association *asoc =
997		container_of(work, struct sctp_association,
998			     base.inqueue.immediate);
999	struct net *net = sock_net(asoc->base.sk);
1000	struct sctp_endpoint *ep;
1001	struct sctp_chunk *chunk;
1002	struct sctp_inq *inqueue;
1003	int state;
1004	sctp_subtype_t subtype;
1005	int error = 0;
1006
1007	/* The association should be held so we should be safe. */
1008	ep = asoc->ep;
1009
1010	inqueue = &asoc->base.inqueue;
1011	sctp_association_hold(asoc);
1012	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1013		state = asoc->state;
1014		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1015
1016		/* SCTP-AUTH, Section 6.3:
1017		 *    The receiver has a list of chunk types which it expects
1018		 *    to be received only after an AUTH-chunk.  This list has
1019		 *    been sent to the peer during the association setup.  It
1020		 *    MUST silently discard these chunks if they are not placed
1021		 *    after an AUTH chunk in the packet.
1022		 */
1023		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1024			continue;
1025
1026		/* Remember where the last DATA chunk came from so we
1027		 * know where to send the SACK.
1028		 */
1029		if (sctp_chunk_is_data(chunk))
1030			asoc->peer.last_data_from = chunk->transport;
1031		else {
1032			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1033			asoc->stats.ictrlchunks++;
1034			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1035				asoc->stats.isacks++;
1036		}
1037
1038		if (chunk->transport)
1039			chunk->transport->last_time_heard = ktime_get();
1040
1041		/* Run through the state machine. */
1042		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1043				   state, ep, asoc, chunk, GFP_ATOMIC);
1044
1045		/* Check to see if the association is freed in response to
1046		 * the incoming chunk.  If so, get out of the while loop.
1047		 */
1048		if (asoc->base.dead)
1049			break;
1050
1051		/* If there is an error on chunk, discard this packet. */
1052		if (error && chunk)
1053			chunk->pdiscard = 1;
1054	}
1055	sctp_association_put(asoc);
1056}
1057
1058/* This routine moves an association from its old sk to a new sk.  */
1059void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1060{
1061	struct sctp_sock *newsp = sctp_sk(newsk);
1062	struct sock *oldsk = assoc->base.sk;
1063
1064	/* Delete the association from the old endpoint's list of
1065	 * associations.
1066	 */
1067	list_del_init(&assoc->asocs);
1068
1069	/* Decrement the backlog value for a TCP-style socket. */
1070	if (sctp_style(oldsk, TCP))
1071		oldsk->sk_ack_backlog--;
1072
1073	/* Release references to the old endpoint and the sock.  */
1074	sctp_endpoint_put(assoc->ep);
1075	sock_put(assoc->base.sk);
1076
1077	/* Get a reference to the new endpoint.  */
1078	assoc->ep = newsp->ep;
1079	sctp_endpoint_hold(assoc->ep);
1080
1081	/* Get a reference to the new sock.  */
1082	assoc->base.sk = newsk;
1083	sock_hold(assoc->base.sk);
1084
1085	/* Add the association to the new endpoint's list of associations.  */
1086	sctp_endpoint_add_asoc(newsp->ep, assoc);
1087}
1088
1089/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1090void sctp_assoc_update(struct sctp_association *asoc,
1091		       struct sctp_association *new)
1092{
1093	struct sctp_transport *trans;
1094	struct list_head *pos, *temp;
1095
1096	/* Copy in new parameters of peer. */
1097	asoc->c = new->c;
1098	asoc->peer.rwnd = new->peer.rwnd;
1099	asoc->peer.sack_needed = new->peer.sack_needed;
1100	asoc->peer.auth_capable = new->peer.auth_capable;
1101	asoc->peer.i = new->peer.i;
1102	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1103			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1104
1105	/* Remove any peer addresses not present in the new association. */
1106	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1107		trans = list_entry(pos, struct sctp_transport, transports);
1108		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1109			sctp_assoc_rm_peer(asoc, trans);
1110			continue;
1111		}
1112
1113		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1114			sctp_transport_reset(trans);
1115	}
1116
1117	/* If the case is A (association restart), use
1118	 * initial_tsn as next_tsn. If the case is B, use
1119	 * current next_tsn in case data sent to peer
1120	 * has been discarded and needs retransmission.
1121	 */
1122	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1123		asoc->next_tsn = new->next_tsn;
1124		asoc->ctsn_ack_point = new->ctsn_ack_point;
1125		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1126
1127		/* Reinitialize SSN for both local streams
1128		 * and peer's streams.
1129		 */
1130		sctp_ssnmap_clear(asoc->ssnmap);
1131
1132		/* Flush the ULP reassembly and ordered queue.
1133		 * Any data there will now be stale and will
1134		 * cause problems.
1135		 */
1136		sctp_ulpq_flush(&asoc->ulpq);
1137
1138		/* reset the overall association error count so
1139		 * that the restarted association doesn't get torn
1140		 * down on the next retransmission timer.
1141		 */
1142		asoc->overall_error_count = 0;
1143
1144	} else {
1145		/* Add any peer addresses from the new association. */
1146		list_for_each_entry(trans, &new->peer.transport_addr_list,
1147				transports) {
1148			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1149				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1150						    GFP_ATOMIC, trans->state);
1151		}
1152
1153		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1154		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1155		if (!asoc->ssnmap) {
1156			/* Move the ssnmap. */
1157			asoc->ssnmap = new->ssnmap;
1158			new->ssnmap = NULL;
1159		}
1160
1161		if (!asoc->assoc_id) {
1162			/* get a new association id since we don't have one
1163			 * yet.
1164			 */
1165			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1166		}
1167	}
1168
1169	/* SCTP-AUTH: Save the peer parameters from the new associations
1170	 * and also move the association shared keys over
1171	 */
1172	kfree(asoc->peer.peer_random);
1173	asoc->peer.peer_random = new->peer.peer_random;
1174	new->peer.peer_random = NULL;
1175
1176	kfree(asoc->peer.peer_chunks);
1177	asoc->peer.peer_chunks = new->peer.peer_chunks;
1178	new->peer.peer_chunks = NULL;
1179
1180	kfree(asoc->peer.peer_hmacs);
1181	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1182	new->peer.peer_hmacs = NULL;
1183
1184	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1185}
1186
1187/* Update the retran path for sending a retransmitted packet.
1188 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1189 *
1190 *   When there is outbound data to send and the primary path
1191 *   becomes inactive (e.g., due to failures), or where the
1192 *   SCTP user explicitly requests to send data to an
1193 *   inactive destination transport address, before reporting
1194 *   an error to its ULP, the SCTP endpoint should try to send
1195 *   the data to an alternate active destination transport
1196 *   address if one exists.
1197 *
1198 *   When retransmitting data that timed out, if the endpoint
1199 *   is multihomed, it should consider each source-destination
1200 *   address pair in its retransmission selection policy.
1201 *   When retransmitting timed-out data, the endpoint should
1202 *   attempt to pick the most divergent source-destination
1203 *   pair from the original source-destination pair to which
1204 *   the packet was transmitted.
1205 *
1206 *   Note: Rules for picking the most divergent source-destination
1207 *   pair are an implementation decision and are not specified
1208 *   within this document.
1209 *
1210 * Our basic strategy is to round-robin transports in priorities
1211 * according to sctp_state_prio_map[] e.g., if no such
1212 * transport with state SCTP_ACTIVE exists, round-robin through
1213 * SCTP_UNKNOWN, etc. You get the picture.
1214 */
1215static const u8 sctp_trans_state_to_prio_map[] = {
1216	[SCTP_ACTIVE]	= 3,	/* best case */
1217	[SCTP_UNKNOWN]	= 2,
1218	[SCTP_PF]	= 1,
1219	[SCTP_INACTIVE] = 0,	/* worst case */
1220};
1221
1222static u8 sctp_trans_score(const struct sctp_transport *trans)
1223{
1224	return sctp_trans_state_to_prio_map[trans->state];
1225}
1226
1227static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1228						   struct sctp_transport *trans2)
1229{
1230	if (trans1->error_count > trans2->error_count) {
1231		return trans2;
1232	} else if (trans1->error_count == trans2->error_count &&
1233		   ktime_after(trans2->last_time_heard,
1234			       trans1->last_time_heard)) {
1235		return trans2;
1236	} else {
1237		return trans1;
1238	}
1239}
1240
1241static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1242						    struct sctp_transport *best)
1243{
1244	u8 score_curr, score_best;
1245
1246	if (best == NULL || curr == best)
1247		return curr;
1248
1249	score_curr = sctp_trans_score(curr);
1250	score_best = sctp_trans_score(best);
1251
1252	/* First, try a score-based selection if both transport states
1253	 * differ. If we're in a tie, lets try to make a more clever
1254	 * decision here based on error counts and last time heard.
1255	 */
1256	if (score_curr > score_best)
1257		return curr;
1258	else if (score_curr == score_best)
1259		return sctp_trans_elect_tie(curr, best);
1260	else
1261		return best;
1262}
1263
1264void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1265{
1266	struct sctp_transport *trans = asoc->peer.retran_path;
1267	struct sctp_transport *trans_next = NULL;
1268
1269	/* We're done as we only have the one and only path. */
1270	if (asoc->peer.transport_count == 1)
1271		return;
1272	/* If active_path and retran_path are the same and active,
1273	 * then this is the only active path. Use it.
1274	 */
1275	if (asoc->peer.active_path == asoc->peer.retran_path &&
1276	    asoc->peer.active_path->state == SCTP_ACTIVE)
1277		return;
1278
1279	/* Iterate from retran_path's successor back to retran_path. */
1280	for (trans = list_next_entry(trans, transports); 1;
1281	     trans = list_next_entry(trans, transports)) {
1282		/* Manually skip the head element. */
1283		if (&trans->transports == &asoc->peer.transport_addr_list)
1284			continue;
1285		if (trans->state == SCTP_UNCONFIRMED)
1286			continue;
1287		trans_next = sctp_trans_elect_best(trans, trans_next);
1288		/* Active is good enough for immediate return. */
1289		if (trans_next->state == SCTP_ACTIVE)
1290			break;
1291		/* We've reached the end, time to update path. */
1292		if (trans == asoc->peer.retran_path)
1293			break;
1294	}
1295
1296	asoc->peer.retran_path = trans_next;
1297
1298	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1299		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1300}
1301
1302static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1303{
1304	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1305	struct sctp_transport *trans_pf = NULL;
1306
1307	/* Look for the two most recently used active transports. */
1308	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1309			    transports) {
1310		/* Skip uninteresting transports. */
1311		if (trans->state == SCTP_INACTIVE ||
1312		    trans->state == SCTP_UNCONFIRMED)
1313			continue;
1314		/* Keep track of the best PF transport from our
1315		 * list in case we don't find an active one.
1316		 */
1317		if (trans->state == SCTP_PF) {
1318			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1319			continue;
1320		}
1321		/* For active transports, pick the most recent ones. */
1322		if (trans_pri == NULL ||
1323		    ktime_after(trans->last_time_heard,
1324				trans_pri->last_time_heard)) {
1325			trans_sec = trans_pri;
1326			trans_pri = trans;
1327		} else if (trans_sec == NULL ||
1328			   ktime_after(trans->last_time_heard,
1329				       trans_sec->last_time_heard)) {
1330			trans_sec = trans;
1331		}
1332	}
1333
1334	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1335	 *
1336	 * By default, an endpoint should always transmit to the primary
1337	 * path, unless the SCTP user explicitly specifies the
1338	 * destination transport address (and possibly source transport
1339	 * address) to use. [If the primary is active but not most recent,
1340	 * bump the most recently used transport.]
1341	 */
1342	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1343	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1344	     asoc->peer.primary_path != trans_pri) {
1345		trans_sec = trans_pri;
1346		trans_pri = asoc->peer.primary_path;
1347	}
1348
1349	/* We did not find anything useful for a possible retransmission
1350	 * path; either primary path that we found is the the same as
1351	 * the current one, or we didn't generally find an active one.
1352	 */
1353	if (trans_sec == NULL)
1354		trans_sec = trans_pri;
1355
1356	/* If we failed to find a usable transport, just camp on the
1357	 * active or pick a PF iff it's the better choice.
1358	 */
1359	if (trans_pri == NULL) {
1360		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1361		trans_sec = trans_pri;
1362	}
1363
1364	/* Set the active and retran transports. */
1365	asoc->peer.active_path = trans_pri;
1366	asoc->peer.retran_path = trans_sec;
1367}
1368
1369struct sctp_transport *
1370sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1371				  struct sctp_transport *last_sent_to)
1372{
1373	/* If this is the first time packet is sent, use the active path,
1374	 * else use the retran path. If the last packet was sent over the
1375	 * retran path, update the retran path and use it.
1376	 */
1377	if (last_sent_to == NULL) {
1378		return asoc->peer.active_path;
1379	} else {
1380		if (last_sent_to == asoc->peer.retran_path)
1381			sctp_assoc_update_retran_path(asoc);
1382
1383		return asoc->peer.retran_path;
1384	}
1385}
1386
1387/* Update the association's pmtu and frag_point by going through all the
1388 * transports. This routine is called when a transport's PMTU has changed.
1389 */
1390void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1391{
1392	struct sctp_transport *t;
1393	__u32 pmtu = 0;
1394
1395	if (!asoc)
1396		return;
1397
1398	/* Get the lowest pmtu of all the transports. */
1399	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1400				transports) {
1401		if (t->pmtu_pending && t->dst) {
1402			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1403			t->pmtu_pending = 0;
1404		}
1405		if (!pmtu || (t->pathmtu < pmtu))
1406			pmtu = t->pathmtu;
1407	}
1408
1409	if (pmtu) {
1410		asoc->pathmtu = pmtu;
1411		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1412	}
1413
1414	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1415		 asoc->pathmtu, asoc->frag_point);
1416}
1417
1418/* Should we send a SACK to update our peer? */
1419static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1420{
1421	struct net *net = sock_net(asoc->base.sk);
1422	switch (asoc->state) {
1423	case SCTP_STATE_ESTABLISHED:
1424	case SCTP_STATE_SHUTDOWN_PENDING:
1425	case SCTP_STATE_SHUTDOWN_RECEIVED:
1426	case SCTP_STATE_SHUTDOWN_SENT:
1427		if ((asoc->rwnd > asoc->a_rwnd) &&
1428		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1429			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1430			   asoc->pathmtu)))
1431			return true;
1432		break;
1433	default:
1434		break;
1435	}
1436	return false;
1437}
1438
1439/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1440void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1441{
1442	struct sctp_chunk *sack;
1443	struct timer_list *timer;
1444
1445	if (asoc->rwnd_over) {
1446		if (asoc->rwnd_over >= len) {
1447			asoc->rwnd_over -= len;
1448		} else {
1449			asoc->rwnd += (len - asoc->rwnd_over);
1450			asoc->rwnd_over = 0;
1451		}
1452	} else {
1453		asoc->rwnd += len;
1454	}
1455
1456	/* If we had window pressure, start recovering it
1457	 * once our rwnd had reached the accumulated pressure
1458	 * threshold.  The idea is to recover slowly, but up
1459	 * to the initial advertised window.
1460	 */
1461	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1462		int change = min(asoc->pathmtu, asoc->rwnd_press);
1463		asoc->rwnd += change;
1464		asoc->rwnd_press -= change;
1465	}
1466
1467	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1468		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1469		 asoc->a_rwnd);
1470
1471	/* Send a window update SACK if the rwnd has increased by at least the
1472	 * minimum of the association's PMTU and half of the receive buffer.
1473	 * The algorithm used is similar to the one described in
1474	 * Section 4.2.3.3 of RFC 1122.
1475	 */
1476	if (sctp_peer_needs_update(asoc)) {
1477		asoc->a_rwnd = asoc->rwnd;
1478
1479		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1480			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1481			 asoc->a_rwnd);
1482
1483		sack = sctp_make_sack(asoc);
1484		if (!sack)
1485			return;
1486
1487		asoc->peer.sack_needed = 0;
1488
1489		sctp_outq_tail(&asoc->outqueue, sack);
1490
1491		/* Stop the SACK timer.  */
1492		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1493		if (del_timer(timer))
1494			sctp_association_put(asoc);
1495	}
1496}
1497
1498/* Decrease asoc's rwnd by len. */
1499void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1500{
1501	int rx_count;
1502	int over = 0;
1503
1504	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1505		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1506			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1507			 asoc->rwnd, asoc->rwnd_over);
1508
1509	if (asoc->ep->rcvbuf_policy)
1510		rx_count = atomic_read(&asoc->rmem_alloc);
1511	else
1512		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1513
1514	/* If we've reached or overflowed our receive buffer, announce
1515	 * a 0 rwnd if rwnd would still be positive.  Store the
1516	 * the potential pressure overflow so that the window can be restored
1517	 * back to original value.
1518	 */
1519	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1520		over = 1;
1521
1522	if (asoc->rwnd >= len) {
1523		asoc->rwnd -= len;
1524		if (over) {
1525			asoc->rwnd_press += asoc->rwnd;
1526			asoc->rwnd = 0;
1527		}
1528	} else {
1529		asoc->rwnd_over = len - asoc->rwnd;
1530		asoc->rwnd = 0;
1531	}
1532
1533	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1534		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1535		 asoc->rwnd_press);
1536}
1537
1538/* Build the bind address list for the association based on info from the
1539 * local endpoint and the remote peer.
1540 */
1541int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1542				     sctp_scope_t scope, gfp_t gfp)
1543{
1544	int flags;
1545
1546	/* Use scoping rules to determine the subset of addresses from
1547	 * the endpoint.
1548	 */
1549	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1550	if (asoc->peer.ipv4_address)
1551		flags |= SCTP_ADDR4_PEERSUPP;
1552	if (asoc->peer.ipv6_address)
1553		flags |= SCTP_ADDR6_PEERSUPP;
1554
1555	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1556				   &asoc->base.bind_addr,
1557				   &asoc->ep->base.bind_addr,
1558				   scope, gfp, flags);
1559}
1560
1561/* Build the association's bind address list from the cookie.  */
1562int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1563					 struct sctp_cookie *cookie,
1564					 gfp_t gfp)
1565{
1566	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1567	int var_size3 = cookie->raw_addr_list_len;
1568	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1569
1570	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1571				      asoc->ep->base.bind_addr.port, gfp);
1572}
1573
1574/* Lookup laddr in the bind address list of an association. */
1575int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1576			    const union sctp_addr *laddr)
1577{
1578	int found = 0;
1579
1580	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1581	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1582				 sctp_sk(asoc->base.sk)))
1583		found = 1;
1584
1585	return found;
1586}
1587
1588/* Set an association id for a given association */
1589int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1590{
1591	bool preload = !!(gfp & __GFP_WAIT);
1592	int ret;
1593
1594	/* If the id is already assigned, keep it. */
1595	if (asoc->assoc_id)
1596		return 0;
1597
1598	if (preload)
1599		idr_preload(gfp);
1600	spin_lock_bh(&sctp_assocs_id_lock);
1601	/* 0 is not a valid assoc_id, must be >= 1 */
1602	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1603	spin_unlock_bh(&sctp_assocs_id_lock);
1604	if (preload)
1605		idr_preload_end();
1606	if (ret < 0)
1607		return ret;
1608
1609	asoc->assoc_id = (sctp_assoc_t)ret;
1610	return 0;
1611}
1612
1613/* Free the ASCONF queue */
1614static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1615{
1616	struct sctp_chunk *asconf;
1617	struct sctp_chunk *tmp;
1618
1619	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1620		list_del_init(&asconf->list);
1621		sctp_chunk_free(asconf);
1622	}
1623}
1624
1625/* Free asconf_ack cache */
1626static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1627{
1628	struct sctp_chunk *ack;
1629	struct sctp_chunk *tmp;
1630
1631	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1632				transmitted_list) {
1633		list_del_init(&ack->transmitted_list);
1634		sctp_chunk_free(ack);
1635	}
1636}
1637
1638/* Clean up the ASCONF_ACK queue */
1639void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1640{
1641	struct sctp_chunk *ack;
1642	struct sctp_chunk *tmp;
1643
1644	/* We can remove all the entries from the queue up to
1645	 * the "Peer-Sequence-Number".
1646	 */
1647	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1648				transmitted_list) {
1649		if (ack->subh.addip_hdr->serial ==
1650				htonl(asoc->peer.addip_serial))
1651			break;
1652
1653		list_del_init(&ack->transmitted_list);
1654		sctp_chunk_free(ack);
1655	}
1656}
1657
1658/* Find the ASCONF_ACK whose serial number matches ASCONF */
1659struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1660					const struct sctp_association *asoc,
1661					__be32 serial)
1662{
1663	struct sctp_chunk *ack;
1664
1665	/* Walk through the list of cached ASCONF-ACKs and find the
1666	 * ack chunk whose serial number matches that of the request.
1667	 */
1668	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1669		if (sctp_chunk_pending(ack))
1670			continue;
1671		if (ack->subh.addip_hdr->serial == serial) {
1672			sctp_chunk_hold(ack);
1673			return ack;
1674		}
1675	}
1676
1677	return NULL;
1678}
1679
1680void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1681{
1682	/* Free any cached ASCONF_ACK chunk. */
1683	sctp_assoc_free_asconf_acks(asoc);
1684
1685	/* Free the ASCONF queue. */
1686	sctp_assoc_free_asconf_queue(asoc);
1687
1688	/* Free any cached ASCONF chunk. */
1689	if (asoc->addip_last_asconf)
1690		sctp_chunk_free(asoc->addip_last_asconf);
1691}
1692