1/*
2 * Copyright (C) 2010 IBM Corporation
3 *
4 * Author:
5 * David Safford <safford@us.ibm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, version 2 of the License.
10 *
11 * See Documentation/security/keys-trusted-encrypted.txt
12 */
13
14#include <linux/uaccess.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/parser.h>
19#include <linux/string.h>
20#include <linux/err.h>
21#include <keys/user-type.h>
22#include <keys/trusted-type.h>
23#include <linux/key-type.h>
24#include <linux/rcupdate.h>
25#include <linux/crypto.h>
26#include <crypto/hash.h>
27#include <crypto/sha.h>
28#include <linux/capability.h>
29#include <linux/tpm.h>
30#include <linux/tpm_command.h>
31
32#include "trusted.h"
33
34static const char hmac_alg[] = "hmac(sha1)";
35static const char hash_alg[] = "sha1";
36
37struct sdesc {
38	struct shash_desc shash;
39	char ctx[];
40};
41
42static struct crypto_shash *hashalg;
43static struct crypto_shash *hmacalg;
44
45static struct sdesc *init_sdesc(struct crypto_shash *alg)
46{
47	struct sdesc *sdesc;
48	int size;
49
50	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51	sdesc = kmalloc(size, GFP_KERNEL);
52	if (!sdesc)
53		return ERR_PTR(-ENOMEM);
54	sdesc->shash.tfm = alg;
55	sdesc->shash.flags = 0x0;
56	return sdesc;
57}
58
59static int TSS_sha1(const unsigned char *data, unsigned int datalen,
60		    unsigned char *digest)
61{
62	struct sdesc *sdesc;
63	int ret;
64
65	sdesc = init_sdesc(hashalg);
66	if (IS_ERR(sdesc)) {
67		pr_info("trusted_key: can't alloc %s\n", hash_alg);
68		return PTR_ERR(sdesc);
69	}
70
71	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
72	kfree(sdesc);
73	return ret;
74}
75
76static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
77		       unsigned int keylen, ...)
78{
79	struct sdesc *sdesc;
80	va_list argp;
81	unsigned int dlen;
82	unsigned char *data;
83	int ret;
84
85	sdesc = init_sdesc(hmacalg);
86	if (IS_ERR(sdesc)) {
87		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
88		return PTR_ERR(sdesc);
89	}
90
91	ret = crypto_shash_setkey(hmacalg, key, keylen);
92	if (ret < 0)
93		goto out;
94	ret = crypto_shash_init(&sdesc->shash);
95	if (ret < 0)
96		goto out;
97
98	va_start(argp, keylen);
99	for (;;) {
100		dlen = va_arg(argp, unsigned int);
101		if (dlen == 0)
102			break;
103		data = va_arg(argp, unsigned char *);
104		if (data == NULL) {
105			ret = -EINVAL;
106			break;
107		}
108		ret = crypto_shash_update(&sdesc->shash, data, dlen);
109		if (ret < 0)
110			break;
111	}
112	va_end(argp);
113	if (!ret)
114		ret = crypto_shash_final(&sdesc->shash, digest);
115out:
116	kfree(sdesc);
117	return ret;
118}
119
120/*
121 * calculate authorization info fields to send to TPM
122 */
123static int TSS_authhmac(unsigned char *digest, const unsigned char *key,
124			unsigned int keylen, unsigned char *h1,
125			unsigned char *h2, unsigned char h3, ...)
126{
127	unsigned char paramdigest[SHA1_DIGEST_SIZE];
128	struct sdesc *sdesc;
129	unsigned int dlen;
130	unsigned char *data;
131	unsigned char c;
132	int ret;
133	va_list argp;
134
135	sdesc = init_sdesc(hashalg);
136	if (IS_ERR(sdesc)) {
137		pr_info("trusted_key: can't alloc %s\n", hash_alg);
138		return PTR_ERR(sdesc);
139	}
140
141	c = h3;
142	ret = crypto_shash_init(&sdesc->shash);
143	if (ret < 0)
144		goto out;
145	va_start(argp, h3);
146	for (;;) {
147		dlen = va_arg(argp, unsigned int);
148		if (dlen == 0)
149			break;
150		data = va_arg(argp, unsigned char *);
151		if (!data) {
152			ret = -EINVAL;
153			break;
154		}
155		ret = crypto_shash_update(&sdesc->shash, data, dlen);
156		if (ret < 0)
157			break;
158	}
159	va_end(argp);
160	if (!ret)
161		ret = crypto_shash_final(&sdesc->shash, paramdigest);
162	if (!ret)
163		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
164				  paramdigest, TPM_NONCE_SIZE, h1,
165				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
166out:
167	kfree(sdesc);
168	return ret;
169}
170
171/*
172 * verify the AUTH1_COMMAND (Seal) result from TPM
173 */
174static int TSS_checkhmac1(unsigned char *buffer,
175			  const uint32_t command,
176			  const unsigned char *ononce,
177			  const unsigned char *key,
178			  unsigned int keylen, ...)
179{
180	uint32_t bufsize;
181	uint16_t tag;
182	uint32_t ordinal;
183	uint32_t result;
184	unsigned char *enonce;
185	unsigned char *continueflag;
186	unsigned char *authdata;
187	unsigned char testhmac[SHA1_DIGEST_SIZE];
188	unsigned char paramdigest[SHA1_DIGEST_SIZE];
189	struct sdesc *sdesc;
190	unsigned int dlen;
191	unsigned int dpos;
192	va_list argp;
193	int ret;
194
195	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
196	tag = LOAD16(buffer, 0);
197	ordinal = command;
198	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
199	if (tag == TPM_TAG_RSP_COMMAND)
200		return 0;
201	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
202		return -EINVAL;
203	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
204	continueflag = authdata - 1;
205	enonce = continueflag - TPM_NONCE_SIZE;
206
207	sdesc = init_sdesc(hashalg);
208	if (IS_ERR(sdesc)) {
209		pr_info("trusted_key: can't alloc %s\n", hash_alg);
210		return PTR_ERR(sdesc);
211	}
212	ret = crypto_shash_init(&sdesc->shash);
213	if (ret < 0)
214		goto out;
215	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
216				  sizeof result);
217	if (ret < 0)
218		goto out;
219	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
220				  sizeof ordinal);
221	if (ret < 0)
222		goto out;
223	va_start(argp, keylen);
224	for (;;) {
225		dlen = va_arg(argp, unsigned int);
226		if (dlen == 0)
227			break;
228		dpos = va_arg(argp, unsigned int);
229		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
230		if (ret < 0)
231			break;
232	}
233	va_end(argp);
234	if (!ret)
235		ret = crypto_shash_final(&sdesc->shash, paramdigest);
236	if (ret < 0)
237		goto out;
238
239	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
240			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
241			  1, continueflag, 0, 0);
242	if (ret < 0)
243		goto out;
244
245	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
246		ret = -EINVAL;
247out:
248	kfree(sdesc);
249	return ret;
250}
251
252/*
253 * verify the AUTH2_COMMAND (unseal) result from TPM
254 */
255static int TSS_checkhmac2(unsigned char *buffer,
256			  const uint32_t command,
257			  const unsigned char *ononce,
258			  const unsigned char *key1,
259			  unsigned int keylen1,
260			  const unsigned char *key2,
261			  unsigned int keylen2, ...)
262{
263	uint32_t bufsize;
264	uint16_t tag;
265	uint32_t ordinal;
266	uint32_t result;
267	unsigned char *enonce1;
268	unsigned char *continueflag1;
269	unsigned char *authdata1;
270	unsigned char *enonce2;
271	unsigned char *continueflag2;
272	unsigned char *authdata2;
273	unsigned char testhmac1[SHA1_DIGEST_SIZE];
274	unsigned char testhmac2[SHA1_DIGEST_SIZE];
275	unsigned char paramdigest[SHA1_DIGEST_SIZE];
276	struct sdesc *sdesc;
277	unsigned int dlen;
278	unsigned int dpos;
279	va_list argp;
280	int ret;
281
282	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
283	tag = LOAD16(buffer, 0);
284	ordinal = command;
285	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
286
287	if (tag == TPM_TAG_RSP_COMMAND)
288		return 0;
289	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
290		return -EINVAL;
291	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
292			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
293	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
294	continueflag1 = authdata1 - 1;
295	continueflag2 = authdata2 - 1;
296	enonce1 = continueflag1 - TPM_NONCE_SIZE;
297	enonce2 = continueflag2 - TPM_NONCE_SIZE;
298
299	sdesc = init_sdesc(hashalg);
300	if (IS_ERR(sdesc)) {
301		pr_info("trusted_key: can't alloc %s\n", hash_alg);
302		return PTR_ERR(sdesc);
303	}
304	ret = crypto_shash_init(&sdesc->shash);
305	if (ret < 0)
306		goto out;
307	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
308				  sizeof result);
309	if (ret < 0)
310		goto out;
311	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
312				  sizeof ordinal);
313	if (ret < 0)
314		goto out;
315
316	va_start(argp, keylen2);
317	for (;;) {
318		dlen = va_arg(argp, unsigned int);
319		if (dlen == 0)
320			break;
321		dpos = va_arg(argp, unsigned int);
322		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
323		if (ret < 0)
324			break;
325	}
326	va_end(argp);
327	if (!ret)
328		ret = crypto_shash_final(&sdesc->shash, paramdigest);
329	if (ret < 0)
330		goto out;
331
332	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
333			  paramdigest, TPM_NONCE_SIZE, enonce1,
334			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
335	if (ret < 0)
336		goto out;
337	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
338		ret = -EINVAL;
339		goto out;
340	}
341	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
342			  paramdigest, TPM_NONCE_SIZE, enonce2,
343			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
344	if (ret < 0)
345		goto out;
346	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
347		ret = -EINVAL;
348out:
349	kfree(sdesc);
350	return ret;
351}
352
353/*
354 * For key specific tpm requests, we will generate and send our
355 * own TPM command packets using the drivers send function.
356 */
357static int trusted_tpm_send(const u32 chip_num, unsigned char *cmd,
358			    size_t buflen)
359{
360	int rc;
361
362	dump_tpm_buf(cmd);
363	rc = tpm_send(chip_num, cmd, buflen);
364	dump_tpm_buf(cmd);
365	if (rc > 0)
366		/* Can't return positive return codes values to keyctl */
367		rc = -EPERM;
368	return rc;
369}
370
371/*
372 * Lock a trusted key, by extending a selected PCR.
373 *
374 * Prevents a trusted key that is sealed to PCRs from being accessed.
375 * This uses the tpm driver's extend function.
376 */
377static int pcrlock(const int pcrnum)
378{
379	unsigned char hash[SHA1_DIGEST_SIZE];
380	int ret;
381
382	if (!capable(CAP_SYS_ADMIN))
383		return -EPERM;
384	ret = tpm_get_random(TPM_ANY_NUM, hash, SHA1_DIGEST_SIZE);
385	if (ret != SHA1_DIGEST_SIZE)
386		return ret;
387	return tpm_pcr_extend(TPM_ANY_NUM, pcrnum, hash) ? -EINVAL : 0;
388}
389
390/*
391 * Create an object specific authorisation protocol (OSAP) session
392 */
393static int osap(struct tpm_buf *tb, struct osapsess *s,
394		const unsigned char *key, uint16_t type, uint32_t handle)
395{
396	unsigned char enonce[TPM_NONCE_SIZE];
397	unsigned char ononce[TPM_NONCE_SIZE];
398	int ret;
399
400	ret = tpm_get_random(TPM_ANY_NUM, ononce, TPM_NONCE_SIZE);
401	if (ret != TPM_NONCE_SIZE)
402		return ret;
403
404	INIT_BUF(tb);
405	store16(tb, TPM_TAG_RQU_COMMAND);
406	store32(tb, TPM_OSAP_SIZE);
407	store32(tb, TPM_ORD_OSAP);
408	store16(tb, type);
409	store32(tb, handle);
410	storebytes(tb, ononce, TPM_NONCE_SIZE);
411
412	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
413	if (ret < 0)
414		return ret;
415
416	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
417	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
418	       TPM_NONCE_SIZE);
419	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
420				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
421	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
422			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
423}
424
425/*
426 * Create an object independent authorisation protocol (oiap) session
427 */
428static int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
429{
430	int ret;
431
432	INIT_BUF(tb);
433	store16(tb, TPM_TAG_RQU_COMMAND);
434	store32(tb, TPM_OIAP_SIZE);
435	store32(tb, TPM_ORD_OIAP);
436	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
437	if (ret < 0)
438		return ret;
439
440	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
441	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
442	       TPM_NONCE_SIZE);
443	return 0;
444}
445
446struct tpm_digests {
447	unsigned char encauth[SHA1_DIGEST_SIZE];
448	unsigned char pubauth[SHA1_DIGEST_SIZE];
449	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
450	unsigned char xorhash[SHA1_DIGEST_SIZE];
451	unsigned char nonceodd[TPM_NONCE_SIZE];
452};
453
454/*
455 * Have the TPM seal(encrypt) the trusted key, possibly based on
456 * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
457 */
458static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
459		    uint32_t keyhandle, const unsigned char *keyauth,
460		    const unsigned char *data, uint32_t datalen,
461		    unsigned char *blob, uint32_t *bloblen,
462		    const unsigned char *blobauth,
463		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
464{
465	struct osapsess sess;
466	struct tpm_digests *td;
467	unsigned char cont;
468	uint32_t ordinal;
469	uint32_t pcrsize;
470	uint32_t datsize;
471	int sealinfosize;
472	int encdatasize;
473	int storedsize;
474	int ret;
475	int i;
476
477	/* alloc some work space for all the hashes */
478	td = kmalloc(sizeof *td, GFP_KERNEL);
479	if (!td)
480		return -ENOMEM;
481
482	/* get session for sealing key */
483	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
484	if (ret < 0)
485		goto out;
486	dump_sess(&sess);
487
488	/* calculate encrypted authorization value */
489	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
490	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
491	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
492	if (ret < 0)
493		goto out;
494
495	ret = tpm_get_random(TPM_ANY_NUM, td->nonceodd, TPM_NONCE_SIZE);
496	if (ret != TPM_NONCE_SIZE)
497		goto out;
498	ordinal = htonl(TPM_ORD_SEAL);
499	datsize = htonl(datalen);
500	pcrsize = htonl(pcrinfosize);
501	cont = 0;
502
503	/* encrypt data authorization key */
504	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
505		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
506
507	/* calculate authorization HMAC value */
508	if (pcrinfosize == 0) {
509		/* no pcr info specified */
510		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
511				   sess.enonce, td->nonceodd, cont,
512				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
513				   td->encauth, sizeof(uint32_t), &pcrsize,
514				   sizeof(uint32_t), &datsize, datalen, data, 0,
515				   0);
516	} else {
517		/* pcr info specified */
518		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
519				   sess.enonce, td->nonceodd, cont,
520				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
521				   td->encauth, sizeof(uint32_t), &pcrsize,
522				   pcrinfosize, pcrinfo, sizeof(uint32_t),
523				   &datsize, datalen, data, 0, 0);
524	}
525	if (ret < 0)
526		goto out;
527
528	/* build and send the TPM request packet */
529	INIT_BUF(tb);
530	store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
531	store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
532	store32(tb, TPM_ORD_SEAL);
533	store32(tb, keyhandle);
534	storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
535	store32(tb, pcrinfosize);
536	storebytes(tb, pcrinfo, pcrinfosize);
537	store32(tb, datalen);
538	storebytes(tb, data, datalen);
539	store32(tb, sess.handle);
540	storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
541	store8(tb, cont);
542	storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
543
544	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
545	if (ret < 0)
546		goto out;
547
548	/* calculate the size of the returned Blob */
549	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
550	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
551			     sizeof(uint32_t) + sealinfosize);
552	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
553	    sizeof(uint32_t) + encdatasize;
554
555	/* check the HMAC in the response */
556	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
557			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
558			     0);
559
560	/* copy the returned blob to caller */
561	if (!ret) {
562		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
563		*bloblen = storedsize;
564	}
565out:
566	kfree(td);
567	return ret;
568}
569
570/*
571 * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
572 */
573static int tpm_unseal(struct tpm_buf *tb,
574		      uint32_t keyhandle, const unsigned char *keyauth,
575		      const unsigned char *blob, int bloblen,
576		      const unsigned char *blobauth,
577		      unsigned char *data, unsigned int *datalen)
578{
579	unsigned char nonceodd[TPM_NONCE_SIZE];
580	unsigned char enonce1[TPM_NONCE_SIZE];
581	unsigned char enonce2[TPM_NONCE_SIZE];
582	unsigned char authdata1[SHA1_DIGEST_SIZE];
583	unsigned char authdata2[SHA1_DIGEST_SIZE];
584	uint32_t authhandle1 = 0;
585	uint32_t authhandle2 = 0;
586	unsigned char cont = 0;
587	uint32_t ordinal;
588	uint32_t keyhndl;
589	int ret;
590
591	/* sessions for unsealing key and data */
592	ret = oiap(tb, &authhandle1, enonce1);
593	if (ret < 0) {
594		pr_info("trusted_key: oiap failed (%d)\n", ret);
595		return ret;
596	}
597	ret = oiap(tb, &authhandle2, enonce2);
598	if (ret < 0) {
599		pr_info("trusted_key: oiap failed (%d)\n", ret);
600		return ret;
601	}
602
603	ordinal = htonl(TPM_ORD_UNSEAL);
604	keyhndl = htonl(SRKHANDLE);
605	ret = tpm_get_random(TPM_ANY_NUM, nonceodd, TPM_NONCE_SIZE);
606	if (ret != TPM_NONCE_SIZE) {
607		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
608		return ret;
609	}
610	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
611			   enonce1, nonceodd, cont, sizeof(uint32_t),
612			   &ordinal, bloblen, blob, 0, 0);
613	if (ret < 0)
614		return ret;
615	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
616			   enonce2, nonceodd, cont, sizeof(uint32_t),
617			   &ordinal, bloblen, blob, 0, 0);
618	if (ret < 0)
619		return ret;
620
621	/* build and send TPM request packet */
622	INIT_BUF(tb);
623	store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
624	store32(tb, TPM_UNSEAL_SIZE + bloblen);
625	store32(tb, TPM_ORD_UNSEAL);
626	store32(tb, keyhandle);
627	storebytes(tb, blob, bloblen);
628	store32(tb, authhandle1);
629	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
630	store8(tb, cont);
631	storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
632	store32(tb, authhandle2);
633	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
634	store8(tb, cont);
635	storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
636
637	ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
638	if (ret < 0) {
639		pr_info("trusted_key: authhmac failed (%d)\n", ret);
640		return ret;
641	}
642
643	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
644	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
645			     keyauth, SHA1_DIGEST_SIZE,
646			     blobauth, SHA1_DIGEST_SIZE,
647			     sizeof(uint32_t), TPM_DATA_OFFSET,
648			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
649			     0);
650	if (ret < 0) {
651		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
652		return ret;
653	}
654	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
655	return 0;
656}
657
658/*
659 * Have the TPM seal(encrypt) the symmetric key
660 */
661static int key_seal(struct trusted_key_payload *p,
662		    struct trusted_key_options *o)
663{
664	struct tpm_buf *tb;
665	int ret;
666
667	tb = kzalloc(sizeof *tb, GFP_KERNEL);
668	if (!tb)
669		return -ENOMEM;
670
671	/* include migratable flag at end of sealed key */
672	p->key[p->key_len] = p->migratable;
673
674	ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
675		       p->key, p->key_len + 1, p->blob, &p->blob_len,
676		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
677	if (ret < 0)
678		pr_info("trusted_key: srkseal failed (%d)\n", ret);
679
680	kfree(tb);
681	return ret;
682}
683
684/*
685 * Have the TPM unseal(decrypt) the symmetric key
686 */
687static int key_unseal(struct trusted_key_payload *p,
688		      struct trusted_key_options *o)
689{
690	struct tpm_buf *tb;
691	int ret;
692
693	tb = kzalloc(sizeof *tb, GFP_KERNEL);
694	if (!tb)
695		return -ENOMEM;
696
697	ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
698			 o->blobauth, p->key, &p->key_len);
699	if (ret < 0)
700		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
701	else
702		/* pull migratable flag out of sealed key */
703		p->migratable = p->key[--p->key_len];
704
705	kfree(tb);
706	return ret;
707}
708
709enum {
710	Opt_err = -1,
711	Opt_new, Opt_load, Opt_update,
712	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
713	Opt_pcrinfo, Opt_pcrlock, Opt_migratable
714};
715
716static const match_table_t key_tokens = {
717	{Opt_new, "new"},
718	{Opt_load, "load"},
719	{Opt_update, "update"},
720	{Opt_keyhandle, "keyhandle=%s"},
721	{Opt_keyauth, "keyauth=%s"},
722	{Opt_blobauth, "blobauth=%s"},
723	{Opt_pcrinfo, "pcrinfo=%s"},
724	{Opt_pcrlock, "pcrlock=%s"},
725	{Opt_migratable, "migratable=%s"},
726	{Opt_err, NULL}
727};
728
729/* can have zero or more token= options */
730static int getoptions(char *c, struct trusted_key_payload *pay,
731		      struct trusted_key_options *opt)
732{
733	substring_t args[MAX_OPT_ARGS];
734	char *p = c;
735	int token;
736	int res;
737	unsigned long handle;
738	unsigned long lock;
739
740	while ((p = strsep(&c, " \t"))) {
741		if (*p == '\0' || *p == ' ' || *p == '\t')
742			continue;
743		token = match_token(p, key_tokens, args);
744
745		switch (token) {
746		case Opt_pcrinfo:
747			opt->pcrinfo_len = strlen(args[0].from) / 2;
748			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
749				return -EINVAL;
750			res = hex2bin(opt->pcrinfo, args[0].from,
751				      opt->pcrinfo_len);
752			if (res < 0)
753				return -EINVAL;
754			break;
755		case Opt_keyhandle:
756			res = kstrtoul(args[0].from, 16, &handle);
757			if (res < 0)
758				return -EINVAL;
759			opt->keytype = SEAL_keytype;
760			opt->keyhandle = handle;
761			break;
762		case Opt_keyauth:
763			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
764				return -EINVAL;
765			res = hex2bin(opt->keyauth, args[0].from,
766				      SHA1_DIGEST_SIZE);
767			if (res < 0)
768				return -EINVAL;
769			break;
770		case Opt_blobauth:
771			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
772				return -EINVAL;
773			res = hex2bin(opt->blobauth, args[0].from,
774				      SHA1_DIGEST_SIZE);
775			if (res < 0)
776				return -EINVAL;
777			break;
778		case Opt_migratable:
779			if (*args[0].from == '0')
780				pay->migratable = 0;
781			else
782				return -EINVAL;
783			break;
784		case Opt_pcrlock:
785			res = kstrtoul(args[0].from, 10, &lock);
786			if (res < 0)
787				return -EINVAL;
788			opt->pcrlock = lock;
789			break;
790		default:
791			return -EINVAL;
792		}
793	}
794	return 0;
795}
796
797/*
798 * datablob_parse - parse the keyctl data and fill in the
799 * 		    payload and options structures
800 *
801 * On success returns 0, otherwise -EINVAL.
802 */
803static int datablob_parse(char *datablob, struct trusted_key_payload *p,
804			  struct trusted_key_options *o)
805{
806	substring_t args[MAX_OPT_ARGS];
807	long keylen;
808	int ret = -EINVAL;
809	int key_cmd;
810	char *c;
811
812	/* main command */
813	c = strsep(&datablob, " \t");
814	if (!c)
815		return -EINVAL;
816	key_cmd = match_token(c, key_tokens, args);
817	switch (key_cmd) {
818	case Opt_new:
819		/* first argument is key size */
820		c = strsep(&datablob, " \t");
821		if (!c)
822			return -EINVAL;
823		ret = kstrtol(c, 10, &keylen);
824		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
825			return -EINVAL;
826		p->key_len = keylen;
827		ret = getoptions(datablob, p, o);
828		if (ret < 0)
829			return ret;
830		ret = Opt_new;
831		break;
832	case Opt_load:
833		/* first argument is sealed blob */
834		c = strsep(&datablob, " \t");
835		if (!c)
836			return -EINVAL;
837		p->blob_len = strlen(c) / 2;
838		if (p->blob_len > MAX_BLOB_SIZE)
839			return -EINVAL;
840		ret = hex2bin(p->blob, c, p->blob_len);
841		if (ret < 0)
842			return -EINVAL;
843		ret = getoptions(datablob, p, o);
844		if (ret < 0)
845			return ret;
846		ret = Opt_load;
847		break;
848	case Opt_update:
849		/* all arguments are options */
850		ret = getoptions(datablob, p, o);
851		if (ret < 0)
852			return ret;
853		ret = Opt_update;
854		break;
855	case Opt_err:
856		return -EINVAL;
857		break;
858	}
859	return ret;
860}
861
862static struct trusted_key_options *trusted_options_alloc(void)
863{
864	struct trusted_key_options *options;
865
866	options = kzalloc(sizeof *options, GFP_KERNEL);
867	if (options) {
868		/* set any non-zero defaults */
869		options->keytype = SRK_keytype;
870		options->keyhandle = SRKHANDLE;
871	}
872	return options;
873}
874
875static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
876{
877	struct trusted_key_payload *p = NULL;
878	int ret;
879
880	ret = key_payload_reserve(key, sizeof *p);
881	if (ret < 0)
882		return p;
883	p = kzalloc(sizeof *p, GFP_KERNEL);
884	if (p)
885		p->migratable = 1; /* migratable by default */
886	return p;
887}
888
889/*
890 * trusted_instantiate - create a new trusted key
891 *
892 * Unseal an existing trusted blob or, for a new key, get a
893 * random key, then seal and create a trusted key-type key,
894 * adding it to the specified keyring.
895 *
896 * On success, return 0. Otherwise return errno.
897 */
898static int trusted_instantiate(struct key *key,
899			       struct key_preparsed_payload *prep)
900{
901	struct trusted_key_payload *payload = NULL;
902	struct trusted_key_options *options = NULL;
903	size_t datalen = prep->datalen;
904	char *datablob;
905	int ret = 0;
906	int key_cmd;
907	size_t key_len;
908
909	if (datalen <= 0 || datalen > 32767 || !prep->data)
910		return -EINVAL;
911
912	datablob = kmalloc(datalen + 1, GFP_KERNEL);
913	if (!datablob)
914		return -ENOMEM;
915	memcpy(datablob, prep->data, datalen);
916	datablob[datalen] = '\0';
917
918	options = trusted_options_alloc();
919	if (!options) {
920		ret = -ENOMEM;
921		goto out;
922	}
923	payload = trusted_payload_alloc(key);
924	if (!payload) {
925		ret = -ENOMEM;
926		goto out;
927	}
928
929	key_cmd = datablob_parse(datablob, payload, options);
930	if (key_cmd < 0) {
931		ret = key_cmd;
932		goto out;
933	}
934
935	dump_payload(payload);
936	dump_options(options);
937
938	switch (key_cmd) {
939	case Opt_load:
940		ret = key_unseal(payload, options);
941		dump_payload(payload);
942		dump_options(options);
943		if (ret < 0)
944			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
945		break;
946	case Opt_new:
947		key_len = payload->key_len;
948		ret = tpm_get_random(TPM_ANY_NUM, payload->key, key_len);
949		if (ret != key_len) {
950			pr_info("trusted_key: key_create failed (%d)\n", ret);
951			goto out;
952		}
953		ret = key_seal(payload, options);
954		if (ret < 0)
955			pr_info("trusted_key: key_seal failed (%d)\n", ret);
956		break;
957	default:
958		ret = -EINVAL;
959		goto out;
960	}
961	if (!ret && options->pcrlock)
962		ret = pcrlock(options->pcrlock);
963out:
964	kfree(datablob);
965	kfree(options);
966	if (!ret)
967		rcu_assign_keypointer(key, payload);
968	else
969		kfree(payload);
970	return ret;
971}
972
973static void trusted_rcu_free(struct rcu_head *rcu)
974{
975	struct trusted_key_payload *p;
976
977	p = container_of(rcu, struct trusted_key_payload, rcu);
978	memset(p->key, 0, p->key_len);
979	kfree(p);
980}
981
982/*
983 * trusted_update - reseal an existing key with new PCR values
984 */
985static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
986{
987	struct trusted_key_payload *p;
988	struct trusted_key_payload *new_p;
989	struct trusted_key_options *new_o;
990	size_t datalen = prep->datalen;
991	char *datablob;
992	int ret = 0;
993
994	if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
995		return -ENOKEY;
996	p = key->payload.data;
997	if (!p->migratable)
998		return -EPERM;
999	if (datalen <= 0 || datalen > 32767 || !prep->data)
1000		return -EINVAL;
1001
1002	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1003	if (!datablob)
1004		return -ENOMEM;
1005	new_o = trusted_options_alloc();
1006	if (!new_o) {
1007		ret = -ENOMEM;
1008		goto out;
1009	}
1010	new_p = trusted_payload_alloc(key);
1011	if (!new_p) {
1012		ret = -ENOMEM;
1013		goto out;
1014	}
1015
1016	memcpy(datablob, prep->data, datalen);
1017	datablob[datalen] = '\0';
1018	ret = datablob_parse(datablob, new_p, new_o);
1019	if (ret != Opt_update) {
1020		ret = -EINVAL;
1021		kfree(new_p);
1022		goto out;
1023	}
1024	/* copy old key values, and reseal with new pcrs */
1025	new_p->migratable = p->migratable;
1026	new_p->key_len = p->key_len;
1027	memcpy(new_p->key, p->key, p->key_len);
1028	dump_payload(p);
1029	dump_payload(new_p);
1030
1031	ret = key_seal(new_p, new_o);
1032	if (ret < 0) {
1033		pr_info("trusted_key: key_seal failed (%d)\n", ret);
1034		kfree(new_p);
1035		goto out;
1036	}
1037	if (new_o->pcrlock) {
1038		ret = pcrlock(new_o->pcrlock);
1039		if (ret < 0) {
1040			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1041			kfree(new_p);
1042			goto out;
1043		}
1044	}
1045	rcu_assign_keypointer(key, new_p);
1046	call_rcu(&p->rcu, trusted_rcu_free);
1047out:
1048	kfree(datablob);
1049	kfree(new_o);
1050	return ret;
1051}
1052
1053/*
1054 * trusted_read - copy the sealed blob data to userspace in hex.
1055 * On success, return to userspace the trusted key datablob size.
1056 */
1057static long trusted_read(const struct key *key, char __user *buffer,
1058			 size_t buflen)
1059{
1060	struct trusted_key_payload *p;
1061	char *ascii_buf;
1062	char *bufp;
1063	int i;
1064
1065	p = rcu_dereference_key(key);
1066	if (!p)
1067		return -EINVAL;
1068	if (!buffer || buflen <= 0)
1069		return 2 * p->blob_len;
1070	ascii_buf = kmalloc(2 * p->blob_len, GFP_KERNEL);
1071	if (!ascii_buf)
1072		return -ENOMEM;
1073
1074	bufp = ascii_buf;
1075	for (i = 0; i < p->blob_len; i++)
1076		bufp = hex_byte_pack(bufp, p->blob[i]);
1077	if ((copy_to_user(buffer, ascii_buf, 2 * p->blob_len)) != 0) {
1078		kfree(ascii_buf);
1079		return -EFAULT;
1080	}
1081	kfree(ascii_buf);
1082	return 2 * p->blob_len;
1083}
1084
1085/*
1086 * trusted_destroy - before freeing the key, clear the decrypted data
1087 */
1088static void trusted_destroy(struct key *key)
1089{
1090	struct trusted_key_payload *p = key->payload.data;
1091
1092	if (!p)
1093		return;
1094	memset(p->key, 0, p->key_len);
1095	kfree(key->payload.data);
1096}
1097
1098struct key_type key_type_trusted = {
1099	.name = "trusted",
1100	.instantiate = trusted_instantiate,
1101	.update = trusted_update,
1102	.destroy = trusted_destroy,
1103	.describe = user_describe,
1104	.read = trusted_read,
1105};
1106
1107EXPORT_SYMBOL_GPL(key_type_trusted);
1108
1109static void trusted_shash_release(void)
1110{
1111	if (hashalg)
1112		crypto_free_shash(hashalg);
1113	if (hmacalg)
1114		crypto_free_shash(hmacalg);
1115}
1116
1117static int __init trusted_shash_alloc(void)
1118{
1119	int ret;
1120
1121	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1122	if (IS_ERR(hmacalg)) {
1123		pr_info("trusted_key: could not allocate crypto %s\n",
1124			hmac_alg);
1125		return PTR_ERR(hmacalg);
1126	}
1127
1128	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1129	if (IS_ERR(hashalg)) {
1130		pr_info("trusted_key: could not allocate crypto %s\n",
1131			hash_alg);
1132		ret = PTR_ERR(hashalg);
1133		goto hashalg_fail;
1134	}
1135
1136	return 0;
1137
1138hashalg_fail:
1139	crypto_free_shash(hmacalg);
1140	return ret;
1141}
1142
1143static int __init init_trusted(void)
1144{
1145	int ret;
1146
1147	ret = trusted_shash_alloc();
1148	if (ret < 0)
1149		return ret;
1150	ret = register_key_type(&key_type_trusted);
1151	if (ret < 0)
1152		trusted_shash_release();
1153	return ret;
1154}
1155
1156static void __exit cleanup_trusted(void)
1157{
1158	trusted_shash_release();
1159	unregister_key_type(&key_type_trusted);
1160}
1161
1162late_initcall(init_trusted);
1163module_exit(cleanup_trusted);
1164
1165MODULE_LICENSE("GPL");
1166