1/*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10#include <byteswap.h>
11#include <linux/bitops.h>
12#include <api/fs/debugfs.h>
13#include <traceevent/event-parse.h>
14#include <linux/hw_breakpoint.h>
15#include <linux/perf_event.h>
16#include <sys/resource.h>
17#include "asm/bug.h"
18#include "callchain.h"
19#include "cgroup.h"
20#include "evsel.h"
21#include "evlist.h"
22#include "util.h"
23#include "cpumap.h"
24#include "thread_map.h"
25#include "target.h"
26#include "perf_regs.h"
27#include "debug.h"
28#include "trace-event.h"
29
30static struct {
31	bool sample_id_all;
32	bool exclude_guest;
33	bool mmap2;
34	bool cloexec;
35	bool clockid;
36	bool clockid_wrong;
37} perf_missing_features;
38
39static clockid_t clockid;
40
41static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
42{
43	return 0;
44}
45
46static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
47{
48}
49
50static struct {
51	size_t	size;
52	int	(*init)(struct perf_evsel *evsel);
53	void	(*fini)(struct perf_evsel *evsel);
54} perf_evsel__object = {
55	.size = sizeof(struct perf_evsel),
56	.init = perf_evsel__no_extra_init,
57	.fini = perf_evsel__no_extra_fini,
58};
59
60int perf_evsel__object_config(size_t object_size,
61			      int (*init)(struct perf_evsel *evsel),
62			      void (*fini)(struct perf_evsel *evsel))
63{
64
65	if (object_size == 0)
66		goto set_methods;
67
68	if (perf_evsel__object.size > object_size)
69		return -EINVAL;
70
71	perf_evsel__object.size = object_size;
72
73set_methods:
74	if (init != NULL)
75		perf_evsel__object.init = init;
76
77	if (fini != NULL)
78		perf_evsel__object.fini = fini;
79
80	return 0;
81}
82
83#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
84
85int __perf_evsel__sample_size(u64 sample_type)
86{
87	u64 mask = sample_type & PERF_SAMPLE_MASK;
88	int size = 0;
89	int i;
90
91	for (i = 0; i < 64; i++) {
92		if (mask & (1ULL << i))
93			size++;
94	}
95
96	size *= sizeof(u64);
97
98	return size;
99}
100
101/**
102 * __perf_evsel__calc_id_pos - calculate id_pos.
103 * @sample_type: sample type
104 *
105 * This function returns the position of the event id (PERF_SAMPLE_ID or
106 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
107 * sample_event.
108 */
109static int __perf_evsel__calc_id_pos(u64 sample_type)
110{
111	int idx = 0;
112
113	if (sample_type & PERF_SAMPLE_IDENTIFIER)
114		return 0;
115
116	if (!(sample_type & PERF_SAMPLE_ID))
117		return -1;
118
119	if (sample_type & PERF_SAMPLE_IP)
120		idx += 1;
121
122	if (sample_type & PERF_SAMPLE_TID)
123		idx += 1;
124
125	if (sample_type & PERF_SAMPLE_TIME)
126		idx += 1;
127
128	if (sample_type & PERF_SAMPLE_ADDR)
129		idx += 1;
130
131	return idx;
132}
133
134/**
135 * __perf_evsel__calc_is_pos - calculate is_pos.
136 * @sample_type: sample type
137 *
138 * This function returns the position (counting backwards) of the event id
139 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
140 * sample_id_all is used there is an id sample appended to non-sample events.
141 */
142static int __perf_evsel__calc_is_pos(u64 sample_type)
143{
144	int idx = 1;
145
146	if (sample_type & PERF_SAMPLE_IDENTIFIER)
147		return 1;
148
149	if (!(sample_type & PERF_SAMPLE_ID))
150		return -1;
151
152	if (sample_type & PERF_SAMPLE_CPU)
153		idx += 1;
154
155	if (sample_type & PERF_SAMPLE_STREAM_ID)
156		idx += 1;
157
158	return idx;
159}
160
161void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
162{
163	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
164	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
165}
166
167void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
168				  enum perf_event_sample_format bit)
169{
170	if (!(evsel->attr.sample_type & bit)) {
171		evsel->attr.sample_type |= bit;
172		evsel->sample_size += sizeof(u64);
173		perf_evsel__calc_id_pos(evsel);
174	}
175}
176
177void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
178				    enum perf_event_sample_format bit)
179{
180	if (evsel->attr.sample_type & bit) {
181		evsel->attr.sample_type &= ~bit;
182		evsel->sample_size -= sizeof(u64);
183		perf_evsel__calc_id_pos(evsel);
184	}
185}
186
187void perf_evsel__set_sample_id(struct perf_evsel *evsel,
188			       bool can_sample_identifier)
189{
190	if (can_sample_identifier) {
191		perf_evsel__reset_sample_bit(evsel, ID);
192		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
193	} else {
194		perf_evsel__set_sample_bit(evsel, ID);
195	}
196	evsel->attr.read_format |= PERF_FORMAT_ID;
197}
198
199void perf_evsel__init(struct perf_evsel *evsel,
200		      struct perf_event_attr *attr, int idx)
201{
202	evsel->idx	   = idx;
203	evsel->tracking	   = !idx;
204	evsel->attr	   = *attr;
205	evsel->leader	   = evsel;
206	evsel->unit	   = "";
207	evsel->scale	   = 1.0;
208	INIT_LIST_HEAD(&evsel->node);
209	perf_evsel__object.init(evsel);
210	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
211	perf_evsel__calc_id_pos(evsel);
212}
213
214struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
215{
216	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
217
218	if (evsel != NULL)
219		perf_evsel__init(evsel, attr, idx);
220
221	return evsel;
222}
223
224struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
225{
226	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
227
228	if (evsel != NULL) {
229		struct perf_event_attr attr = {
230			.type	       = PERF_TYPE_TRACEPOINT,
231			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
232					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
233		};
234
235		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
236			goto out_free;
237
238		evsel->tp_format = trace_event__tp_format(sys, name);
239		if (evsel->tp_format == NULL)
240			goto out_free;
241
242		event_attr_init(&attr);
243		attr.config = evsel->tp_format->id;
244		attr.sample_period = 1;
245		perf_evsel__init(evsel, &attr, idx);
246	}
247
248	return evsel;
249
250out_free:
251	zfree(&evsel->name);
252	free(evsel);
253	return NULL;
254}
255
256const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
257	"cycles",
258	"instructions",
259	"cache-references",
260	"cache-misses",
261	"branches",
262	"branch-misses",
263	"bus-cycles",
264	"stalled-cycles-frontend",
265	"stalled-cycles-backend",
266	"ref-cycles",
267};
268
269static const char *__perf_evsel__hw_name(u64 config)
270{
271	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
272		return perf_evsel__hw_names[config];
273
274	return "unknown-hardware";
275}
276
277static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
278{
279	int colon = 0, r = 0;
280	struct perf_event_attr *attr = &evsel->attr;
281	bool exclude_guest_default = false;
282
283#define MOD_PRINT(context, mod)	do {					\
284		if (!attr->exclude_##context) {				\
285			if (!colon) colon = ++r;			\
286			r += scnprintf(bf + r, size - r, "%c", mod);	\
287		} } while(0)
288
289	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
290		MOD_PRINT(kernel, 'k');
291		MOD_PRINT(user, 'u');
292		MOD_PRINT(hv, 'h');
293		exclude_guest_default = true;
294	}
295
296	if (attr->precise_ip) {
297		if (!colon)
298			colon = ++r;
299		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
300		exclude_guest_default = true;
301	}
302
303	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
304		MOD_PRINT(host, 'H');
305		MOD_PRINT(guest, 'G');
306	}
307#undef MOD_PRINT
308	if (colon)
309		bf[colon - 1] = ':';
310	return r;
311}
312
313static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
314{
315	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
316	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
317}
318
319const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
320	"cpu-clock",
321	"task-clock",
322	"page-faults",
323	"context-switches",
324	"cpu-migrations",
325	"minor-faults",
326	"major-faults",
327	"alignment-faults",
328	"emulation-faults",
329	"dummy",
330};
331
332static const char *__perf_evsel__sw_name(u64 config)
333{
334	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
335		return perf_evsel__sw_names[config];
336	return "unknown-software";
337}
338
339static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
340{
341	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
342	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
343}
344
345static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
346{
347	int r;
348
349	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
350
351	if (type & HW_BREAKPOINT_R)
352		r += scnprintf(bf + r, size - r, "r");
353
354	if (type & HW_BREAKPOINT_W)
355		r += scnprintf(bf + r, size - r, "w");
356
357	if (type & HW_BREAKPOINT_X)
358		r += scnprintf(bf + r, size - r, "x");
359
360	return r;
361}
362
363static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
364{
365	struct perf_event_attr *attr = &evsel->attr;
366	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
367	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
368}
369
370const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
371				[PERF_EVSEL__MAX_ALIASES] = {
372 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
373 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
374 { "LLC",	"L2",							},
375 { "dTLB",	"d-tlb",	"Data-TLB",				},
376 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
377 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
378 { "node",								},
379};
380
381const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
382				   [PERF_EVSEL__MAX_ALIASES] = {
383 { "load",	"loads",	"read",					},
384 { "store",	"stores",	"write",				},
385 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
386};
387
388const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
389				       [PERF_EVSEL__MAX_ALIASES] = {
390 { "refs",	"Reference",	"ops",		"access",		},
391 { "misses",	"miss",							},
392};
393
394#define C(x)		PERF_COUNT_HW_CACHE_##x
395#define CACHE_READ	(1 << C(OP_READ))
396#define CACHE_WRITE	(1 << C(OP_WRITE))
397#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
398#define COP(x)		(1 << x)
399
400/*
401 * cache operartion stat
402 * L1I : Read and prefetch only
403 * ITLB and BPU : Read-only
404 */
405static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
406 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
408 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410 [C(ITLB)]	= (CACHE_READ),
411 [C(BPU)]	= (CACHE_READ),
412 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
413};
414
415bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
416{
417	if (perf_evsel__hw_cache_stat[type] & COP(op))
418		return true;	/* valid */
419	else
420		return false;	/* invalid */
421}
422
423int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
424					    char *bf, size_t size)
425{
426	if (result) {
427		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
428				 perf_evsel__hw_cache_op[op][0],
429				 perf_evsel__hw_cache_result[result][0]);
430	}
431
432	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
433			 perf_evsel__hw_cache_op[op][1]);
434}
435
436static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
437{
438	u8 op, result, type = (config >>  0) & 0xff;
439	const char *err = "unknown-ext-hardware-cache-type";
440
441	if (type > PERF_COUNT_HW_CACHE_MAX)
442		goto out_err;
443
444	op = (config >>  8) & 0xff;
445	err = "unknown-ext-hardware-cache-op";
446	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
447		goto out_err;
448
449	result = (config >> 16) & 0xff;
450	err = "unknown-ext-hardware-cache-result";
451	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
452		goto out_err;
453
454	err = "invalid-cache";
455	if (!perf_evsel__is_cache_op_valid(type, op))
456		goto out_err;
457
458	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
459out_err:
460	return scnprintf(bf, size, "%s", err);
461}
462
463static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
464{
465	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
466	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
467}
468
469static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
470{
471	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
472	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
473}
474
475const char *perf_evsel__name(struct perf_evsel *evsel)
476{
477	char bf[128];
478
479	if (evsel->name)
480		return evsel->name;
481
482	switch (evsel->attr.type) {
483	case PERF_TYPE_RAW:
484		perf_evsel__raw_name(evsel, bf, sizeof(bf));
485		break;
486
487	case PERF_TYPE_HARDWARE:
488		perf_evsel__hw_name(evsel, bf, sizeof(bf));
489		break;
490
491	case PERF_TYPE_HW_CACHE:
492		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
493		break;
494
495	case PERF_TYPE_SOFTWARE:
496		perf_evsel__sw_name(evsel, bf, sizeof(bf));
497		break;
498
499	case PERF_TYPE_TRACEPOINT:
500		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
501		break;
502
503	case PERF_TYPE_BREAKPOINT:
504		perf_evsel__bp_name(evsel, bf, sizeof(bf));
505		break;
506
507	default:
508		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
509			  evsel->attr.type);
510		break;
511	}
512
513	evsel->name = strdup(bf);
514
515	return evsel->name ?: "unknown";
516}
517
518const char *perf_evsel__group_name(struct perf_evsel *evsel)
519{
520	return evsel->group_name ?: "anon group";
521}
522
523int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
524{
525	int ret;
526	struct perf_evsel *pos;
527	const char *group_name = perf_evsel__group_name(evsel);
528
529	ret = scnprintf(buf, size, "%s", group_name);
530
531	ret += scnprintf(buf + ret, size - ret, " { %s",
532			 perf_evsel__name(evsel));
533
534	for_each_group_member(pos, evsel)
535		ret += scnprintf(buf + ret, size - ret, ", %s",
536				 perf_evsel__name(pos));
537
538	ret += scnprintf(buf + ret, size - ret, " }");
539
540	return ret;
541}
542
543static void
544perf_evsel__config_callgraph(struct perf_evsel *evsel,
545			     struct record_opts *opts)
546{
547	bool function = perf_evsel__is_function_event(evsel);
548	struct perf_event_attr *attr = &evsel->attr;
549
550	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
551
552	if (callchain_param.record_mode == CALLCHAIN_LBR) {
553		if (!opts->branch_stack) {
554			if (attr->exclude_user) {
555				pr_warning("LBR callstack option is only available "
556					   "to get user callchain information. "
557					   "Falling back to framepointers.\n");
558			} else {
559				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
560				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
561							PERF_SAMPLE_BRANCH_CALL_STACK;
562			}
563		} else
564			 pr_warning("Cannot use LBR callstack with branch stack. "
565				    "Falling back to framepointers.\n");
566	}
567
568	if (callchain_param.record_mode == CALLCHAIN_DWARF) {
569		if (!function) {
570			perf_evsel__set_sample_bit(evsel, REGS_USER);
571			perf_evsel__set_sample_bit(evsel, STACK_USER);
572			attr->sample_regs_user = PERF_REGS_MASK;
573			attr->sample_stack_user = callchain_param.dump_size;
574			attr->exclude_callchain_user = 1;
575		} else {
576			pr_info("Cannot use DWARF unwind for function trace event,"
577				" falling back to framepointers.\n");
578		}
579	}
580
581	if (function) {
582		pr_info("Disabling user space callchains for function trace event.\n");
583		attr->exclude_callchain_user = 1;
584	}
585}
586
587/*
588 * The enable_on_exec/disabled value strategy:
589 *
590 *  1) For any type of traced program:
591 *    - all independent events and group leaders are disabled
592 *    - all group members are enabled
593 *
594 *     Group members are ruled by group leaders. They need to
595 *     be enabled, because the group scheduling relies on that.
596 *
597 *  2) For traced programs executed by perf:
598 *     - all independent events and group leaders have
599 *       enable_on_exec set
600 *     - we don't specifically enable or disable any event during
601 *       the record command
602 *
603 *     Independent events and group leaders are initially disabled
604 *     and get enabled by exec. Group members are ruled by group
605 *     leaders as stated in 1).
606 *
607 *  3) For traced programs attached by perf (pid/tid):
608 *     - we specifically enable or disable all events during
609 *       the record command
610 *
611 *     When attaching events to already running traced we
612 *     enable/disable events specifically, as there's no
613 *     initial traced exec call.
614 */
615void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
616{
617	struct perf_evsel *leader = evsel->leader;
618	struct perf_event_attr *attr = &evsel->attr;
619	int track = evsel->tracking;
620	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
621
622	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
623	attr->inherit	    = !opts->no_inherit;
624
625	perf_evsel__set_sample_bit(evsel, IP);
626	perf_evsel__set_sample_bit(evsel, TID);
627
628	if (evsel->sample_read) {
629		perf_evsel__set_sample_bit(evsel, READ);
630
631		/*
632		 * We need ID even in case of single event, because
633		 * PERF_SAMPLE_READ process ID specific data.
634		 */
635		perf_evsel__set_sample_id(evsel, false);
636
637		/*
638		 * Apply group format only if we belong to group
639		 * with more than one members.
640		 */
641		if (leader->nr_members > 1) {
642			attr->read_format |= PERF_FORMAT_GROUP;
643			attr->inherit = 0;
644		}
645	}
646
647	/*
648	 * We default some events to have a default interval. But keep
649	 * it a weak assumption overridable by the user.
650	 */
651	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
652				     opts->user_interval != ULLONG_MAX)) {
653		if (opts->freq) {
654			perf_evsel__set_sample_bit(evsel, PERIOD);
655			attr->freq		= 1;
656			attr->sample_freq	= opts->freq;
657		} else {
658			attr->sample_period = opts->default_interval;
659		}
660	}
661
662	/*
663	 * Disable sampling for all group members other
664	 * than leader in case leader 'leads' the sampling.
665	 */
666	if ((leader != evsel) && leader->sample_read) {
667		attr->sample_freq   = 0;
668		attr->sample_period = 0;
669	}
670
671	if (opts->no_samples)
672		attr->sample_freq = 0;
673
674	if (opts->inherit_stat)
675		attr->inherit_stat = 1;
676
677	if (opts->sample_address) {
678		perf_evsel__set_sample_bit(evsel, ADDR);
679		attr->mmap_data = track;
680	}
681
682	/*
683	 * We don't allow user space callchains for  function trace
684	 * event, due to issues with page faults while tracing page
685	 * fault handler and its overall trickiness nature.
686	 */
687	if (perf_evsel__is_function_event(evsel))
688		evsel->attr.exclude_callchain_user = 1;
689
690	if (callchain_param.enabled && !evsel->no_aux_samples)
691		perf_evsel__config_callgraph(evsel, opts);
692
693	if (opts->sample_intr_regs) {
694		attr->sample_regs_intr = PERF_REGS_MASK;
695		perf_evsel__set_sample_bit(evsel, REGS_INTR);
696	}
697
698	if (target__has_cpu(&opts->target))
699		perf_evsel__set_sample_bit(evsel, CPU);
700
701	if (opts->period)
702		perf_evsel__set_sample_bit(evsel, PERIOD);
703
704	/*
705	 * When the user explicitely disabled time don't force it here.
706	 */
707	if (opts->sample_time &&
708	    (!perf_missing_features.sample_id_all &&
709	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
710		perf_evsel__set_sample_bit(evsel, TIME);
711
712	if (opts->raw_samples && !evsel->no_aux_samples) {
713		perf_evsel__set_sample_bit(evsel, TIME);
714		perf_evsel__set_sample_bit(evsel, RAW);
715		perf_evsel__set_sample_bit(evsel, CPU);
716	}
717
718	if (opts->sample_address)
719		perf_evsel__set_sample_bit(evsel, DATA_SRC);
720
721	if (opts->no_buffering) {
722		attr->watermark = 0;
723		attr->wakeup_events = 1;
724	}
725	if (opts->branch_stack && !evsel->no_aux_samples) {
726		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
727		attr->branch_sample_type = opts->branch_stack;
728	}
729
730	if (opts->sample_weight)
731		perf_evsel__set_sample_bit(evsel, WEIGHT);
732
733	attr->task  = track;
734	attr->mmap  = track;
735	attr->mmap2 = track && !perf_missing_features.mmap2;
736	attr->comm  = track;
737
738	if (opts->sample_transaction)
739		perf_evsel__set_sample_bit(evsel, TRANSACTION);
740
741	if (opts->running_time) {
742		evsel->attr.read_format |=
743			PERF_FORMAT_TOTAL_TIME_ENABLED |
744			PERF_FORMAT_TOTAL_TIME_RUNNING;
745	}
746
747	/*
748	 * XXX see the function comment above
749	 *
750	 * Disabling only independent events or group leaders,
751	 * keeping group members enabled.
752	 */
753	if (perf_evsel__is_group_leader(evsel))
754		attr->disabled = 1;
755
756	/*
757	 * Setting enable_on_exec for independent events and
758	 * group leaders for traced executed by perf.
759	 */
760	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
761		!opts->initial_delay)
762		attr->enable_on_exec = 1;
763
764	if (evsel->immediate) {
765		attr->disabled = 0;
766		attr->enable_on_exec = 0;
767	}
768
769	clockid = opts->clockid;
770	if (opts->use_clockid) {
771		attr->use_clockid = 1;
772		attr->clockid = opts->clockid;
773	}
774}
775
776static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
777{
778	int cpu, thread;
779
780	if (evsel->system_wide)
781		nthreads = 1;
782
783	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
784
785	if (evsel->fd) {
786		for (cpu = 0; cpu < ncpus; cpu++) {
787			for (thread = 0; thread < nthreads; thread++) {
788				FD(evsel, cpu, thread) = -1;
789			}
790		}
791	}
792
793	return evsel->fd != NULL ? 0 : -ENOMEM;
794}
795
796static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
797			  int ioc,  void *arg)
798{
799	int cpu, thread;
800
801	if (evsel->system_wide)
802		nthreads = 1;
803
804	for (cpu = 0; cpu < ncpus; cpu++) {
805		for (thread = 0; thread < nthreads; thread++) {
806			int fd = FD(evsel, cpu, thread),
807			    err = ioctl(fd, ioc, arg);
808
809			if (err)
810				return err;
811		}
812	}
813
814	return 0;
815}
816
817int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
818			   const char *filter)
819{
820	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
821				     PERF_EVENT_IOC_SET_FILTER,
822				     (void *)filter);
823}
824
825int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
826{
827	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
828				     PERF_EVENT_IOC_ENABLE,
829				     0);
830}
831
832int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
833{
834	if (ncpus == 0 || nthreads == 0)
835		return 0;
836
837	if (evsel->system_wide)
838		nthreads = 1;
839
840	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
841	if (evsel->sample_id == NULL)
842		return -ENOMEM;
843
844	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
845	if (evsel->id == NULL) {
846		xyarray__delete(evsel->sample_id);
847		evsel->sample_id = NULL;
848		return -ENOMEM;
849	}
850
851	return 0;
852}
853
854void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
855{
856	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
857				 (ncpus * sizeof(struct perf_counts_values))));
858}
859
860int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
861{
862	evsel->counts = zalloc((sizeof(*evsel->counts) +
863				(ncpus * sizeof(struct perf_counts_values))));
864	return evsel->counts != NULL ? 0 : -ENOMEM;
865}
866
867static void perf_evsel__free_fd(struct perf_evsel *evsel)
868{
869	xyarray__delete(evsel->fd);
870	evsel->fd = NULL;
871}
872
873static void perf_evsel__free_id(struct perf_evsel *evsel)
874{
875	xyarray__delete(evsel->sample_id);
876	evsel->sample_id = NULL;
877	zfree(&evsel->id);
878}
879
880void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
881{
882	int cpu, thread;
883
884	if (evsel->system_wide)
885		nthreads = 1;
886
887	for (cpu = 0; cpu < ncpus; cpu++)
888		for (thread = 0; thread < nthreads; ++thread) {
889			close(FD(evsel, cpu, thread));
890			FD(evsel, cpu, thread) = -1;
891		}
892}
893
894void perf_evsel__free_counts(struct perf_evsel *evsel)
895{
896	zfree(&evsel->counts);
897}
898
899void perf_evsel__exit(struct perf_evsel *evsel)
900{
901	assert(list_empty(&evsel->node));
902	perf_evsel__free_fd(evsel);
903	perf_evsel__free_id(evsel);
904	close_cgroup(evsel->cgrp);
905	zfree(&evsel->group_name);
906	zfree(&evsel->name);
907	perf_evsel__object.fini(evsel);
908}
909
910void perf_evsel__delete(struct perf_evsel *evsel)
911{
912	perf_evsel__exit(evsel);
913	free(evsel);
914}
915
916void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
917				struct perf_counts_values *count)
918{
919	struct perf_counts_values tmp;
920
921	if (!evsel->prev_raw_counts)
922		return;
923
924	if (cpu == -1) {
925		tmp = evsel->prev_raw_counts->aggr;
926		evsel->prev_raw_counts->aggr = *count;
927	} else {
928		tmp = evsel->prev_raw_counts->cpu[cpu];
929		evsel->prev_raw_counts->cpu[cpu] = *count;
930	}
931
932	count->val = count->val - tmp.val;
933	count->ena = count->ena - tmp.ena;
934	count->run = count->run - tmp.run;
935}
936
937void perf_counts_values__scale(struct perf_counts_values *count,
938			       bool scale, s8 *pscaled)
939{
940	s8 scaled = 0;
941
942	if (scale) {
943		if (count->run == 0) {
944			scaled = -1;
945			count->val = 0;
946		} else if (count->run < count->ena) {
947			scaled = 1;
948			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
949		}
950	} else
951		count->ena = count->run = 0;
952
953	if (pscaled)
954		*pscaled = scaled;
955}
956
957int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
958			perf_evsel__read_cb_t cb)
959{
960	struct perf_counts_values count;
961
962	memset(&count, 0, sizeof(count));
963
964	if (FD(evsel, cpu, thread) < 0)
965		return -EINVAL;
966
967	if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
968		return -errno;
969
970	return cb(evsel, cpu, thread, &count);
971}
972
973int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
974			      int cpu, int thread, bool scale)
975{
976	struct perf_counts_values count;
977	size_t nv = scale ? 3 : 1;
978
979	if (FD(evsel, cpu, thread) < 0)
980		return -EINVAL;
981
982	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
983		return -ENOMEM;
984
985	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
986		return -errno;
987
988	perf_evsel__compute_deltas(evsel, cpu, &count);
989	perf_counts_values__scale(&count, scale, NULL);
990	evsel->counts->cpu[cpu] = count;
991	return 0;
992}
993
994static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
995{
996	struct perf_evsel *leader = evsel->leader;
997	int fd;
998
999	if (perf_evsel__is_group_leader(evsel))
1000		return -1;
1001
1002	/*
1003	 * Leader must be already processed/open,
1004	 * if not it's a bug.
1005	 */
1006	BUG_ON(!leader->fd);
1007
1008	fd = FD(leader, cpu, thread);
1009	BUG_ON(fd == -1);
1010
1011	return fd;
1012}
1013
1014struct bit_names {
1015	int bit;
1016	const char *name;
1017};
1018
1019static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1020{
1021	bool first_bit = true;
1022	int i = 0;
1023
1024	do {
1025		if (value & bits[i].bit) {
1026			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1027			first_bit = false;
1028		}
1029	} while (bits[++i].name != NULL);
1030}
1031
1032static void __p_sample_type(char *buf, size_t size, u64 value)
1033{
1034#define bit_name(n) { PERF_SAMPLE_##n, #n }
1035	struct bit_names bits[] = {
1036		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1037		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1038		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1039		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1040		bit_name(IDENTIFIER), bit_name(REGS_INTR),
1041		{ .name = NULL, }
1042	};
1043#undef bit_name
1044	__p_bits(buf, size, value, bits);
1045}
1046
1047static void __p_read_format(char *buf, size_t size, u64 value)
1048{
1049#define bit_name(n) { PERF_FORMAT_##n, #n }
1050	struct bit_names bits[] = {
1051		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1052		bit_name(ID), bit_name(GROUP),
1053		{ .name = NULL, }
1054	};
1055#undef bit_name
1056	__p_bits(buf, size, value, bits);
1057}
1058
1059#define BUF_SIZE		1024
1060
1061#define p_hex(val)		snprintf(buf, BUF_SIZE, "%"PRIx64, (uint64_t)(val))
1062#define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1063#define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1064#define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1065#define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1066
1067#define PRINT_ATTRn(_n, _f, _p)				\
1068do {							\
1069	if (attr->_f) {					\
1070		_p(attr->_f);				\
1071		ret += attr__fprintf(fp, _n, buf, priv);\
1072	}						\
1073} while (0)
1074
1075#define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1076
1077int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1078			     attr__fprintf_f attr__fprintf, void *priv)
1079{
1080	char buf[BUF_SIZE];
1081	int ret = 0;
1082
1083	PRINT_ATTRf(type, p_unsigned);
1084	PRINT_ATTRf(size, p_unsigned);
1085	PRINT_ATTRf(config, p_hex);
1086	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1087	PRINT_ATTRf(sample_type, p_sample_type);
1088	PRINT_ATTRf(read_format, p_read_format);
1089
1090	PRINT_ATTRf(disabled, p_unsigned);
1091	PRINT_ATTRf(inherit, p_unsigned);
1092	PRINT_ATTRf(pinned, p_unsigned);
1093	PRINT_ATTRf(exclusive, p_unsigned);
1094	PRINT_ATTRf(exclude_user, p_unsigned);
1095	PRINT_ATTRf(exclude_kernel, p_unsigned);
1096	PRINT_ATTRf(exclude_hv, p_unsigned);
1097	PRINT_ATTRf(exclude_idle, p_unsigned);
1098	PRINT_ATTRf(mmap, p_unsigned);
1099	PRINT_ATTRf(comm, p_unsigned);
1100	PRINT_ATTRf(freq, p_unsigned);
1101	PRINT_ATTRf(inherit_stat, p_unsigned);
1102	PRINT_ATTRf(enable_on_exec, p_unsigned);
1103	PRINT_ATTRf(task, p_unsigned);
1104	PRINT_ATTRf(watermark, p_unsigned);
1105	PRINT_ATTRf(precise_ip, p_unsigned);
1106	PRINT_ATTRf(mmap_data, p_unsigned);
1107	PRINT_ATTRf(sample_id_all, p_unsigned);
1108	PRINT_ATTRf(exclude_host, p_unsigned);
1109	PRINT_ATTRf(exclude_guest, p_unsigned);
1110	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1111	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1112	PRINT_ATTRf(mmap2, p_unsigned);
1113	PRINT_ATTRf(comm_exec, p_unsigned);
1114	PRINT_ATTRf(use_clockid, p_unsigned);
1115
1116	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1117	PRINT_ATTRf(bp_type, p_unsigned);
1118	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1119	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1120	PRINT_ATTRf(sample_regs_user, p_hex);
1121	PRINT_ATTRf(sample_stack_user, p_unsigned);
1122	PRINT_ATTRf(clockid, p_signed);
1123	PRINT_ATTRf(sample_regs_intr, p_hex);
1124
1125	return ret;
1126}
1127
1128static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1129				void *priv __attribute__((unused)))
1130{
1131	return fprintf(fp, "  %-32s %s\n", name, val);
1132}
1133
1134static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1135			      struct thread_map *threads)
1136{
1137	int cpu, thread, nthreads;
1138	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1139	int pid = -1, err;
1140	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1141
1142	if (evsel->system_wide)
1143		nthreads = 1;
1144	else
1145		nthreads = threads->nr;
1146
1147	if (evsel->fd == NULL &&
1148	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1149		return -ENOMEM;
1150
1151	if (evsel->cgrp) {
1152		flags |= PERF_FLAG_PID_CGROUP;
1153		pid = evsel->cgrp->fd;
1154	}
1155
1156fallback_missing_features:
1157	if (perf_missing_features.clockid_wrong)
1158		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1159	if (perf_missing_features.clockid) {
1160		evsel->attr.use_clockid = 0;
1161		evsel->attr.clockid = 0;
1162	}
1163	if (perf_missing_features.cloexec)
1164		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1165	if (perf_missing_features.mmap2)
1166		evsel->attr.mmap2 = 0;
1167	if (perf_missing_features.exclude_guest)
1168		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1169retry_sample_id:
1170	if (perf_missing_features.sample_id_all)
1171		evsel->attr.sample_id_all = 0;
1172
1173	if (verbose >= 2) {
1174		fprintf(stderr, "%.60s\n", graph_dotted_line);
1175		fprintf(stderr, "perf_event_attr:\n");
1176		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1177		fprintf(stderr, "%.60s\n", graph_dotted_line);
1178	}
1179
1180	for (cpu = 0; cpu < cpus->nr; cpu++) {
1181
1182		for (thread = 0; thread < nthreads; thread++) {
1183			int group_fd;
1184
1185			if (!evsel->cgrp && !evsel->system_wide)
1186				pid = threads->map[thread];
1187
1188			group_fd = get_group_fd(evsel, cpu, thread);
1189retry_open:
1190			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1191				  pid, cpus->map[cpu], group_fd, flags);
1192
1193			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1194								     pid,
1195								     cpus->map[cpu],
1196								     group_fd, flags);
1197			if (FD(evsel, cpu, thread) < 0) {
1198				err = -errno;
1199				pr_debug2("sys_perf_event_open failed, error %d\n",
1200					  err);
1201				goto try_fallback;
1202			}
1203			set_rlimit = NO_CHANGE;
1204
1205			/*
1206			 * If we succeeded but had to kill clockid, fail and
1207			 * have perf_evsel__open_strerror() print us a nice
1208			 * error.
1209			 */
1210			if (perf_missing_features.clockid ||
1211			    perf_missing_features.clockid_wrong) {
1212				err = -EINVAL;
1213				goto out_close;
1214			}
1215		}
1216	}
1217
1218	return 0;
1219
1220try_fallback:
1221	/*
1222	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1223	 * of them try to increase the limits.
1224	 */
1225	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1226		struct rlimit l;
1227		int old_errno = errno;
1228
1229		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1230			if (set_rlimit == NO_CHANGE)
1231				l.rlim_cur = l.rlim_max;
1232			else {
1233				l.rlim_cur = l.rlim_max + 1000;
1234				l.rlim_max = l.rlim_cur;
1235			}
1236			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1237				set_rlimit++;
1238				errno = old_errno;
1239				goto retry_open;
1240			}
1241		}
1242		errno = old_errno;
1243	}
1244
1245	if (err != -EINVAL || cpu > 0 || thread > 0)
1246		goto out_close;
1247
1248	/*
1249	 * Must probe features in the order they were added to the
1250	 * perf_event_attr interface.
1251	 */
1252	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1253		perf_missing_features.clockid_wrong = true;
1254		goto fallback_missing_features;
1255	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1256		perf_missing_features.clockid = true;
1257		goto fallback_missing_features;
1258	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1259		perf_missing_features.cloexec = true;
1260		goto fallback_missing_features;
1261	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1262		perf_missing_features.mmap2 = true;
1263		goto fallback_missing_features;
1264	} else if (!perf_missing_features.exclude_guest &&
1265		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1266		perf_missing_features.exclude_guest = true;
1267		goto fallback_missing_features;
1268	} else if (!perf_missing_features.sample_id_all) {
1269		perf_missing_features.sample_id_all = true;
1270		goto retry_sample_id;
1271	}
1272
1273out_close:
1274	do {
1275		while (--thread >= 0) {
1276			close(FD(evsel, cpu, thread));
1277			FD(evsel, cpu, thread) = -1;
1278		}
1279		thread = nthreads;
1280	} while (--cpu >= 0);
1281	return err;
1282}
1283
1284void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1285{
1286	if (evsel->fd == NULL)
1287		return;
1288
1289	perf_evsel__close_fd(evsel, ncpus, nthreads);
1290	perf_evsel__free_fd(evsel);
1291}
1292
1293static struct {
1294	struct cpu_map map;
1295	int cpus[1];
1296} empty_cpu_map = {
1297	.map.nr	= 1,
1298	.cpus	= { -1, },
1299};
1300
1301static struct {
1302	struct thread_map map;
1303	int threads[1];
1304} empty_thread_map = {
1305	.map.nr	 = 1,
1306	.threads = { -1, },
1307};
1308
1309int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1310		     struct thread_map *threads)
1311{
1312	if (cpus == NULL) {
1313		/* Work around old compiler warnings about strict aliasing */
1314		cpus = &empty_cpu_map.map;
1315	}
1316
1317	if (threads == NULL)
1318		threads = &empty_thread_map.map;
1319
1320	return __perf_evsel__open(evsel, cpus, threads);
1321}
1322
1323int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1324			     struct cpu_map *cpus)
1325{
1326	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1327}
1328
1329int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1330				struct thread_map *threads)
1331{
1332	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1333}
1334
1335static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1336				       const union perf_event *event,
1337				       struct perf_sample *sample)
1338{
1339	u64 type = evsel->attr.sample_type;
1340	const u64 *array = event->sample.array;
1341	bool swapped = evsel->needs_swap;
1342	union u64_swap u;
1343
1344	array += ((event->header.size -
1345		   sizeof(event->header)) / sizeof(u64)) - 1;
1346
1347	if (type & PERF_SAMPLE_IDENTIFIER) {
1348		sample->id = *array;
1349		array--;
1350	}
1351
1352	if (type & PERF_SAMPLE_CPU) {
1353		u.val64 = *array;
1354		if (swapped) {
1355			/* undo swap of u64, then swap on individual u32s */
1356			u.val64 = bswap_64(u.val64);
1357			u.val32[0] = bswap_32(u.val32[0]);
1358		}
1359
1360		sample->cpu = u.val32[0];
1361		array--;
1362	}
1363
1364	if (type & PERF_SAMPLE_STREAM_ID) {
1365		sample->stream_id = *array;
1366		array--;
1367	}
1368
1369	if (type & PERF_SAMPLE_ID) {
1370		sample->id = *array;
1371		array--;
1372	}
1373
1374	if (type & PERF_SAMPLE_TIME) {
1375		sample->time = *array;
1376		array--;
1377	}
1378
1379	if (type & PERF_SAMPLE_TID) {
1380		u.val64 = *array;
1381		if (swapped) {
1382			/* undo swap of u64, then swap on individual u32s */
1383			u.val64 = bswap_64(u.val64);
1384			u.val32[0] = bswap_32(u.val32[0]);
1385			u.val32[1] = bswap_32(u.val32[1]);
1386		}
1387
1388		sample->pid = u.val32[0];
1389		sample->tid = u.val32[1];
1390		array--;
1391	}
1392
1393	return 0;
1394}
1395
1396static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1397			    u64 size)
1398{
1399	return size > max_size || offset + size > endp;
1400}
1401
1402#define OVERFLOW_CHECK(offset, size, max_size)				\
1403	do {								\
1404		if (overflow(endp, (max_size), (offset), (size)))	\
1405			return -EFAULT;					\
1406	} while (0)
1407
1408#define OVERFLOW_CHECK_u64(offset) \
1409	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1410
1411int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1412			     struct perf_sample *data)
1413{
1414	u64 type = evsel->attr.sample_type;
1415	bool swapped = evsel->needs_swap;
1416	const u64 *array;
1417	u16 max_size = event->header.size;
1418	const void *endp = (void *)event + max_size;
1419	u64 sz;
1420
1421	/*
1422	 * used for cross-endian analysis. See git commit 65014ab3
1423	 * for why this goofiness is needed.
1424	 */
1425	union u64_swap u;
1426
1427	memset(data, 0, sizeof(*data));
1428	data->cpu = data->pid = data->tid = -1;
1429	data->stream_id = data->id = data->time = -1ULL;
1430	data->period = evsel->attr.sample_period;
1431	data->weight = 0;
1432
1433	if (event->header.type != PERF_RECORD_SAMPLE) {
1434		if (!evsel->attr.sample_id_all)
1435			return 0;
1436		return perf_evsel__parse_id_sample(evsel, event, data);
1437	}
1438
1439	array = event->sample.array;
1440
1441	/*
1442	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1443	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1444	 * check the format does not go past the end of the event.
1445	 */
1446	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1447		return -EFAULT;
1448
1449	data->id = -1ULL;
1450	if (type & PERF_SAMPLE_IDENTIFIER) {
1451		data->id = *array;
1452		array++;
1453	}
1454
1455	if (type & PERF_SAMPLE_IP) {
1456		data->ip = *array;
1457		array++;
1458	}
1459
1460	if (type & PERF_SAMPLE_TID) {
1461		u.val64 = *array;
1462		if (swapped) {
1463			/* undo swap of u64, then swap on individual u32s */
1464			u.val64 = bswap_64(u.val64);
1465			u.val32[0] = bswap_32(u.val32[0]);
1466			u.val32[1] = bswap_32(u.val32[1]);
1467		}
1468
1469		data->pid = u.val32[0];
1470		data->tid = u.val32[1];
1471		array++;
1472	}
1473
1474	if (type & PERF_SAMPLE_TIME) {
1475		data->time = *array;
1476		array++;
1477	}
1478
1479	data->addr = 0;
1480	if (type & PERF_SAMPLE_ADDR) {
1481		data->addr = *array;
1482		array++;
1483	}
1484
1485	if (type & PERF_SAMPLE_ID) {
1486		data->id = *array;
1487		array++;
1488	}
1489
1490	if (type & PERF_SAMPLE_STREAM_ID) {
1491		data->stream_id = *array;
1492		array++;
1493	}
1494
1495	if (type & PERF_SAMPLE_CPU) {
1496
1497		u.val64 = *array;
1498		if (swapped) {
1499			/* undo swap of u64, then swap on individual u32s */
1500			u.val64 = bswap_64(u.val64);
1501			u.val32[0] = bswap_32(u.val32[0]);
1502		}
1503
1504		data->cpu = u.val32[0];
1505		array++;
1506	}
1507
1508	if (type & PERF_SAMPLE_PERIOD) {
1509		data->period = *array;
1510		array++;
1511	}
1512
1513	if (type & PERF_SAMPLE_READ) {
1514		u64 read_format = evsel->attr.read_format;
1515
1516		OVERFLOW_CHECK_u64(array);
1517		if (read_format & PERF_FORMAT_GROUP)
1518			data->read.group.nr = *array;
1519		else
1520			data->read.one.value = *array;
1521
1522		array++;
1523
1524		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1525			OVERFLOW_CHECK_u64(array);
1526			data->read.time_enabled = *array;
1527			array++;
1528		}
1529
1530		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1531			OVERFLOW_CHECK_u64(array);
1532			data->read.time_running = *array;
1533			array++;
1534		}
1535
1536		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1537		if (read_format & PERF_FORMAT_GROUP) {
1538			const u64 max_group_nr = UINT64_MAX /
1539					sizeof(struct sample_read_value);
1540
1541			if (data->read.group.nr > max_group_nr)
1542				return -EFAULT;
1543			sz = data->read.group.nr *
1544			     sizeof(struct sample_read_value);
1545			OVERFLOW_CHECK(array, sz, max_size);
1546			data->read.group.values =
1547					(struct sample_read_value *)array;
1548			array = (void *)array + sz;
1549		} else {
1550			OVERFLOW_CHECK_u64(array);
1551			data->read.one.id = *array;
1552			array++;
1553		}
1554	}
1555
1556	if (type & PERF_SAMPLE_CALLCHAIN) {
1557		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1558
1559		OVERFLOW_CHECK_u64(array);
1560		data->callchain = (struct ip_callchain *)array++;
1561		if (data->callchain->nr > max_callchain_nr)
1562			return -EFAULT;
1563		sz = data->callchain->nr * sizeof(u64);
1564		OVERFLOW_CHECK(array, sz, max_size);
1565		array = (void *)array + sz;
1566	}
1567
1568	if (type & PERF_SAMPLE_RAW) {
1569		OVERFLOW_CHECK_u64(array);
1570		u.val64 = *array;
1571		if (WARN_ONCE(swapped,
1572			      "Endianness of raw data not corrected!\n")) {
1573			/* undo swap of u64, then swap on individual u32s */
1574			u.val64 = bswap_64(u.val64);
1575			u.val32[0] = bswap_32(u.val32[0]);
1576			u.val32[1] = bswap_32(u.val32[1]);
1577		}
1578		data->raw_size = u.val32[0];
1579		array = (void *)array + sizeof(u32);
1580
1581		OVERFLOW_CHECK(array, data->raw_size, max_size);
1582		data->raw_data = (void *)array;
1583		array = (void *)array + data->raw_size;
1584	}
1585
1586	if (type & PERF_SAMPLE_BRANCH_STACK) {
1587		const u64 max_branch_nr = UINT64_MAX /
1588					  sizeof(struct branch_entry);
1589
1590		OVERFLOW_CHECK_u64(array);
1591		data->branch_stack = (struct branch_stack *)array++;
1592
1593		if (data->branch_stack->nr > max_branch_nr)
1594			return -EFAULT;
1595		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1596		OVERFLOW_CHECK(array, sz, max_size);
1597		array = (void *)array + sz;
1598	}
1599
1600	if (type & PERF_SAMPLE_REGS_USER) {
1601		OVERFLOW_CHECK_u64(array);
1602		data->user_regs.abi = *array;
1603		array++;
1604
1605		if (data->user_regs.abi) {
1606			u64 mask = evsel->attr.sample_regs_user;
1607
1608			sz = hweight_long(mask) * sizeof(u64);
1609			OVERFLOW_CHECK(array, sz, max_size);
1610			data->user_regs.mask = mask;
1611			data->user_regs.regs = (u64 *)array;
1612			array = (void *)array + sz;
1613		}
1614	}
1615
1616	if (type & PERF_SAMPLE_STACK_USER) {
1617		OVERFLOW_CHECK_u64(array);
1618		sz = *array++;
1619
1620		data->user_stack.offset = ((char *)(array - 1)
1621					  - (char *) event);
1622
1623		if (!sz) {
1624			data->user_stack.size = 0;
1625		} else {
1626			OVERFLOW_CHECK(array, sz, max_size);
1627			data->user_stack.data = (char *)array;
1628			array = (void *)array + sz;
1629			OVERFLOW_CHECK_u64(array);
1630			data->user_stack.size = *array++;
1631			if (WARN_ONCE(data->user_stack.size > sz,
1632				      "user stack dump failure\n"))
1633				return -EFAULT;
1634		}
1635	}
1636
1637	data->weight = 0;
1638	if (type & PERF_SAMPLE_WEIGHT) {
1639		OVERFLOW_CHECK_u64(array);
1640		data->weight = *array;
1641		array++;
1642	}
1643
1644	data->data_src = PERF_MEM_DATA_SRC_NONE;
1645	if (type & PERF_SAMPLE_DATA_SRC) {
1646		OVERFLOW_CHECK_u64(array);
1647		data->data_src = *array;
1648		array++;
1649	}
1650
1651	data->transaction = 0;
1652	if (type & PERF_SAMPLE_TRANSACTION) {
1653		OVERFLOW_CHECK_u64(array);
1654		data->transaction = *array;
1655		array++;
1656	}
1657
1658	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1659	if (type & PERF_SAMPLE_REGS_INTR) {
1660		OVERFLOW_CHECK_u64(array);
1661		data->intr_regs.abi = *array;
1662		array++;
1663
1664		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1665			u64 mask = evsel->attr.sample_regs_intr;
1666
1667			sz = hweight_long(mask) * sizeof(u64);
1668			OVERFLOW_CHECK(array, sz, max_size);
1669			data->intr_regs.mask = mask;
1670			data->intr_regs.regs = (u64 *)array;
1671			array = (void *)array + sz;
1672		}
1673	}
1674
1675	return 0;
1676}
1677
1678size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1679				     u64 read_format)
1680{
1681	size_t sz, result = sizeof(struct sample_event);
1682
1683	if (type & PERF_SAMPLE_IDENTIFIER)
1684		result += sizeof(u64);
1685
1686	if (type & PERF_SAMPLE_IP)
1687		result += sizeof(u64);
1688
1689	if (type & PERF_SAMPLE_TID)
1690		result += sizeof(u64);
1691
1692	if (type & PERF_SAMPLE_TIME)
1693		result += sizeof(u64);
1694
1695	if (type & PERF_SAMPLE_ADDR)
1696		result += sizeof(u64);
1697
1698	if (type & PERF_SAMPLE_ID)
1699		result += sizeof(u64);
1700
1701	if (type & PERF_SAMPLE_STREAM_ID)
1702		result += sizeof(u64);
1703
1704	if (type & PERF_SAMPLE_CPU)
1705		result += sizeof(u64);
1706
1707	if (type & PERF_SAMPLE_PERIOD)
1708		result += sizeof(u64);
1709
1710	if (type & PERF_SAMPLE_READ) {
1711		result += sizeof(u64);
1712		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1713			result += sizeof(u64);
1714		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1715			result += sizeof(u64);
1716		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1717		if (read_format & PERF_FORMAT_GROUP) {
1718			sz = sample->read.group.nr *
1719			     sizeof(struct sample_read_value);
1720			result += sz;
1721		} else {
1722			result += sizeof(u64);
1723		}
1724	}
1725
1726	if (type & PERF_SAMPLE_CALLCHAIN) {
1727		sz = (sample->callchain->nr + 1) * sizeof(u64);
1728		result += sz;
1729	}
1730
1731	if (type & PERF_SAMPLE_RAW) {
1732		result += sizeof(u32);
1733		result += sample->raw_size;
1734	}
1735
1736	if (type & PERF_SAMPLE_BRANCH_STACK) {
1737		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1738		sz += sizeof(u64);
1739		result += sz;
1740	}
1741
1742	if (type & PERF_SAMPLE_REGS_USER) {
1743		if (sample->user_regs.abi) {
1744			result += sizeof(u64);
1745			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1746			result += sz;
1747		} else {
1748			result += sizeof(u64);
1749		}
1750	}
1751
1752	if (type & PERF_SAMPLE_STACK_USER) {
1753		sz = sample->user_stack.size;
1754		result += sizeof(u64);
1755		if (sz) {
1756			result += sz;
1757			result += sizeof(u64);
1758		}
1759	}
1760
1761	if (type & PERF_SAMPLE_WEIGHT)
1762		result += sizeof(u64);
1763
1764	if (type & PERF_SAMPLE_DATA_SRC)
1765		result += sizeof(u64);
1766
1767	if (type & PERF_SAMPLE_TRANSACTION)
1768		result += sizeof(u64);
1769
1770	if (type & PERF_SAMPLE_REGS_INTR) {
1771		if (sample->intr_regs.abi) {
1772			result += sizeof(u64);
1773			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1774			result += sz;
1775		} else {
1776			result += sizeof(u64);
1777		}
1778	}
1779
1780	return result;
1781}
1782
1783int perf_event__synthesize_sample(union perf_event *event, u64 type,
1784				  u64 read_format,
1785				  const struct perf_sample *sample,
1786				  bool swapped)
1787{
1788	u64 *array;
1789	size_t sz;
1790	/*
1791	 * used for cross-endian analysis. See git commit 65014ab3
1792	 * for why this goofiness is needed.
1793	 */
1794	union u64_swap u;
1795
1796	array = event->sample.array;
1797
1798	if (type & PERF_SAMPLE_IDENTIFIER) {
1799		*array = sample->id;
1800		array++;
1801	}
1802
1803	if (type & PERF_SAMPLE_IP) {
1804		*array = sample->ip;
1805		array++;
1806	}
1807
1808	if (type & PERF_SAMPLE_TID) {
1809		u.val32[0] = sample->pid;
1810		u.val32[1] = sample->tid;
1811		if (swapped) {
1812			/*
1813			 * Inverse of what is done in perf_evsel__parse_sample
1814			 */
1815			u.val32[0] = bswap_32(u.val32[0]);
1816			u.val32[1] = bswap_32(u.val32[1]);
1817			u.val64 = bswap_64(u.val64);
1818		}
1819
1820		*array = u.val64;
1821		array++;
1822	}
1823
1824	if (type & PERF_SAMPLE_TIME) {
1825		*array = sample->time;
1826		array++;
1827	}
1828
1829	if (type & PERF_SAMPLE_ADDR) {
1830		*array = sample->addr;
1831		array++;
1832	}
1833
1834	if (type & PERF_SAMPLE_ID) {
1835		*array = sample->id;
1836		array++;
1837	}
1838
1839	if (type & PERF_SAMPLE_STREAM_ID) {
1840		*array = sample->stream_id;
1841		array++;
1842	}
1843
1844	if (type & PERF_SAMPLE_CPU) {
1845		u.val32[0] = sample->cpu;
1846		if (swapped) {
1847			/*
1848			 * Inverse of what is done in perf_evsel__parse_sample
1849			 */
1850			u.val32[0] = bswap_32(u.val32[0]);
1851			u.val64 = bswap_64(u.val64);
1852		}
1853		*array = u.val64;
1854		array++;
1855	}
1856
1857	if (type & PERF_SAMPLE_PERIOD) {
1858		*array = sample->period;
1859		array++;
1860	}
1861
1862	if (type & PERF_SAMPLE_READ) {
1863		if (read_format & PERF_FORMAT_GROUP)
1864			*array = sample->read.group.nr;
1865		else
1866			*array = sample->read.one.value;
1867		array++;
1868
1869		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1870			*array = sample->read.time_enabled;
1871			array++;
1872		}
1873
1874		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1875			*array = sample->read.time_running;
1876			array++;
1877		}
1878
1879		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1880		if (read_format & PERF_FORMAT_GROUP) {
1881			sz = sample->read.group.nr *
1882			     sizeof(struct sample_read_value);
1883			memcpy(array, sample->read.group.values, sz);
1884			array = (void *)array + sz;
1885		} else {
1886			*array = sample->read.one.id;
1887			array++;
1888		}
1889	}
1890
1891	if (type & PERF_SAMPLE_CALLCHAIN) {
1892		sz = (sample->callchain->nr + 1) * sizeof(u64);
1893		memcpy(array, sample->callchain, sz);
1894		array = (void *)array + sz;
1895	}
1896
1897	if (type & PERF_SAMPLE_RAW) {
1898		u.val32[0] = sample->raw_size;
1899		if (WARN_ONCE(swapped,
1900			      "Endianness of raw data not corrected!\n")) {
1901			/*
1902			 * Inverse of what is done in perf_evsel__parse_sample
1903			 */
1904			u.val32[0] = bswap_32(u.val32[0]);
1905			u.val32[1] = bswap_32(u.val32[1]);
1906			u.val64 = bswap_64(u.val64);
1907		}
1908		*array = u.val64;
1909		array = (void *)array + sizeof(u32);
1910
1911		memcpy(array, sample->raw_data, sample->raw_size);
1912		array = (void *)array + sample->raw_size;
1913	}
1914
1915	if (type & PERF_SAMPLE_BRANCH_STACK) {
1916		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1917		sz += sizeof(u64);
1918		memcpy(array, sample->branch_stack, sz);
1919		array = (void *)array + sz;
1920	}
1921
1922	if (type & PERF_SAMPLE_REGS_USER) {
1923		if (sample->user_regs.abi) {
1924			*array++ = sample->user_regs.abi;
1925			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1926			memcpy(array, sample->user_regs.regs, sz);
1927			array = (void *)array + sz;
1928		} else {
1929			*array++ = 0;
1930		}
1931	}
1932
1933	if (type & PERF_SAMPLE_STACK_USER) {
1934		sz = sample->user_stack.size;
1935		*array++ = sz;
1936		if (sz) {
1937			memcpy(array, sample->user_stack.data, sz);
1938			array = (void *)array + sz;
1939			*array++ = sz;
1940		}
1941	}
1942
1943	if (type & PERF_SAMPLE_WEIGHT) {
1944		*array = sample->weight;
1945		array++;
1946	}
1947
1948	if (type & PERF_SAMPLE_DATA_SRC) {
1949		*array = sample->data_src;
1950		array++;
1951	}
1952
1953	if (type & PERF_SAMPLE_TRANSACTION) {
1954		*array = sample->transaction;
1955		array++;
1956	}
1957
1958	if (type & PERF_SAMPLE_REGS_INTR) {
1959		if (sample->intr_regs.abi) {
1960			*array++ = sample->intr_regs.abi;
1961			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1962			memcpy(array, sample->intr_regs.regs, sz);
1963			array = (void *)array + sz;
1964		} else {
1965			*array++ = 0;
1966		}
1967	}
1968
1969	return 0;
1970}
1971
1972struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1973{
1974	return pevent_find_field(evsel->tp_format, name);
1975}
1976
1977void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1978			 const char *name)
1979{
1980	struct format_field *field = perf_evsel__field(evsel, name);
1981	int offset;
1982
1983	if (!field)
1984		return NULL;
1985
1986	offset = field->offset;
1987
1988	if (field->flags & FIELD_IS_DYNAMIC) {
1989		offset = *(int *)(sample->raw_data + field->offset);
1990		offset &= 0xffff;
1991	}
1992
1993	return sample->raw_data + offset;
1994}
1995
1996u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1997		       const char *name)
1998{
1999	struct format_field *field = perf_evsel__field(evsel, name);
2000	void *ptr;
2001	u64 value;
2002
2003	if (!field)
2004		return 0;
2005
2006	ptr = sample->raw_data + field->offset;
2007
2008	switch (field->size) {
2009	case 1:
2010		return *(u8 *)ptr;
2011	case 2:
2012		value = *(u16 *)ptr;
2013		break;
2014	case 4:
2015		value = *(u32 *)ptr;
2016		break;
2017	case 8:
2018		memcpy(&value, ptr, sizeof(u64));
2019		break;
2020	default:
2021		return 0;
2022	}
2023
2024	if (!evsel->needs_swap)
2025		return value;
2026
2027	switch (field->size) {
2028	case 2:
2029		return bswap_16(value);
2030	case 4:
2031		return bswap_32(value);
2032	case 8:
2033		return bswap_64(value);
2034	default:
2035		return 0;
2036	}
2037
2038	return 0;
2039}
2040
2041static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2042{
2043	va_list args;
2044	int ret = 0;
2045
2046	if (!*first) {
2047		ret += fprintf(fp, ",");
2048	} else {
2049		ret += fprintf(fp, ":");
2050		*first = false;
2051	}
2052
2053	va_start(args, fmt);
2054	ret += vfprintf(fp, fmt, args);
2055	va_end(args);
2056	return ret;
2057}
2058
2059static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2060{
2061	return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2062}
2063
2064int perf_evsel__fprintf(struct perf_evsel *evsel,
2065			struct perf_attr_details *details, FILE *fp)
2066{
2067	bool first = true;
2068	int printed = 0;
2069
2070	if (details->event_group) {
2071		struct perf_evsel *pos;
2072
2073		if (!perf_evsel__is_group_leader(evsel))
2074			return 0;
2075
2076		if (evsel->nr_members > 1)
2077			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2078
2079		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2080		for_each_group_member(pos, evsel)
2081			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2082
2083		if (evsel->nr_members > 1)
2084			printed += fprintf(fp, "}");
2085		goto out;
2086	}
2087
2088	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2089
2090	if (details->verbose) {
2091		printed += perf_event_attr__fprintf(fp, &evsel->attr,
2092						    __print_attr__fprintf, &first);
2093	} else if (details->freq) {
2094		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2095					 (u64)evsel->attr.sample_freq);
2096	}
2097out:
2098	fputc('\n', fp);
2099	return ++printed;
2100}
2101
2102bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2103			  char *msg, size_t msgsize)
2104{
2105	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2106	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2107	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2108		/*
2109		 * If it's cycles then fall back to hrtimer based
2110		 * cpu-clock-tick sw counter, which is always available even if
2111		 * no PMU support.
2112		 *
2113		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2114		 * b0a873e).
2115		 */
2116		scnprintf(msg, msgsize, "%s",
2117"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2118
2119		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2120		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2121
2122		zfree(&evsel->name);
2123		return true;
2124	}
2125
2126	return false;
2127}
2128
2129int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2130			      int err, char *msg, size_t size)
2131{
2132	char sbuf[STRERR_BUFSIZE];
2133
2134	switch (err) {
2135	case EPERM:
2136	case EACCES:
2137		return scnprintf(msg, size,
2138		 "You may not have permission to collect %sstats.\n"
2139		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2140		 " -1 - Not paranoid at all\n"
2141		 "  0 - Disallow raw tracepoint access for unpriv\n"
2142		 "  1 - Disallow cpu events for unpriv\n"
2143		 "  2 - Disallow kernel profiling for unpriv",
2144				 target->system_wide ? "system-wide " : "");
2145	case ENOENT:
2146		return scnprintf(msg, size, "The %s event is not supported.",
2147				 perf_evsel__name(evsel));
2148	case EMFILE:
2149		return scnprintf(msg, size, "%s",
2150			 "Too many events are opened.\n"
2151			 "Try again after reducing the number of events.");
2152	case ENODEV:
2153		if (target->cpu_list)
2154			return scnprintf(msg, size, "%s",
2155	 "No such device - did you specify an out-of-range profile CPU?\n");
2156		break;
2157	case EOPNOTSUPP:
2158		if (evsel->attr.precise_ip)
2159			return scnprintf(msg, size, "%s",
2160	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2161#if defined(__i386__) || defined(__x86_64__)
2162		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2163			return scnprintf(msg, size, "%s",
2164	"No hardware sampling interrupt available.\n"
2165	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2166#endif
2167		break;
2168	case EBUSY:
2169		if (find_process("oprofiled"))
2170			return scnprintf(msg, size,
2171	"The PMU counters are busy/taken by another profiler.\n"
2172	"We found oprofile daemon running, please stop it and try again.");
2173		break;
2174	case EINVAL:
2175		if (perf_missing_features.clockid)
2176			return scnprintf(msg, size, "clockid feature not supported.");
2177		if (perf_missing_features.clockid_wrong)
2178			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2179		break;
2180	default:
2181		break;
2182	}
2183
2184	return scnprintf(msg, size,
2185	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2186	"/bin/dmesg may provide additional information.\n"
2187	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2188			 err, strerror_r(err, sbuf, sizeof(sbuf)),
2189			 perf_evsel__name(evsel));
2190}
2191