1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 *   Avi Kivity   <avi@qumranet.com>
12 *   Yaniv Kamay  <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.  See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include <kvm/iodev.h>
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50#include <linux/sort.h>
51#include <linux/bsearch.h>
52
53#include <asm/processor.h>
54#include <asm/io.h>
55#include <asm/ioctl.h>
56#include <asm/uaccess.h>
57#include <asm/pgtable.h>
58
59#include "coalesced_mmio.h"
60#include "async_pf.h"
61#include "vfio.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/kvm.h>
65
66MODULE_AUTHOR("Qumranet");
67MODULE_LICENSE("GPL");
68
69static unsigned int halt_poll_ns;
70module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72/*
73 * Ordering of locks:
74 *
75 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78DEFINE_SPINLOCK(kvm_lock);
79static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80LIST_HEAD(vm_list);
81
82static cpumask_var_t cpus_hardware_enabled;
83static int kvm_usage_count;
84static atomic_t hardware_enable_failed;
85
86struct kmem_cache *kvm_vcpu_cache;
87EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91struct dentry *kvm_debugfs_dir;
92EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95			   unsigned long arg);
96#ifdef CONFIG_KVM_COMPAT
97static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98				  unsigned long arg);
99#endif
100static int hardware_enable_all(void);
101static void hardware_disable_all(void);
102
103static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105static void kvm_release_pfn_dirty(pfn_t pfn);
106static void mark_page_dirty_in_slot(struct kvm *kvm,
107				    struct kvm_memory_slot *memslot, gfn_t gfn);
108
109__visible bool kvm_rebooting;
110EXPORT_SYMBOL_GPL(kvm_rebooting);
111
112static bool largepages_enabled = true;
113
114bool kvm_is_reserved_pfn(pfn_t pfn)
115{
116	if (pfn_valid(pfn))
117		return PageReserved(pfn_to_page(pfn));
118
119	return true;
120}
121
122/*
123 * Switches to specified vcpu, until a matching vcpu_put()
124 */
125int vcpu_load(struct kvm_vcpu *vcpu)
126{
127	int cpu;
128
129	if (mutex_lock_killable(&vcpu->mutex))
130		return -EINTR;
131	cpu = get_cpu();
132	preempt_notifier_register(&vcpu->preempt_notifier);
133	kvm_arch_vcpu_load(vcpu, cpu);
134	put_cpu();
135	return 0;
136}
137
138void vcpu_put(struct kvm_vcpu *vcpu)
139{
140	preempt_disable();
141	kvm_arch_vcpu_put(vcpu);
142	preempt_notifier_unregister(&vcpu->preempt_notifier);
143	preempt_enable();
144	mutex_unlock(&vcpu->mutex);
145}
146
147static void ack_flush(void *_completed)
148{
149}
150
151bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
152{
153	int i, cpu, me;
154	cpumask_var_t cpus;
155	bool called = true;
156	struct kvm_vcpu *vcpu;
157
158	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
159
160	me = get_cpu();
161	kvm_for_each_vcpu(i, vcpu, kvm) {
162		kvm_make_request(req, vcpu);
163		cpu = vcpu->cpu;
164
165		/* Set ->requests bit before we read ->mode */
166		smp_mb();
167
168		if (cpus != NULL && cpu != -1 && cpu != me &&
169		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
170			cpumask_set_cpu(cpu, cpus);
171	}
172	if (unlikely(cpus == NULL))
173		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
174	else if (!cpumask_empty(cpus))
175		smp_call_function_many(cpus, ack_flush, NULL, 1);
176	else
177		called = false;
178	put_cpu();
179	free_cpumask_var(cpus);
180	return called;
181}
182
183#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
184void kvm_flush_remote_tlbs(struct kvm *kvm)
185{
186	long dirty_count = kvm->tlbs_dirty;
187
188	smp_mb();
189	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190		++kvm->stat.remote_tlb_flush;
191	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
192}
193EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
194#endif
195
196void kvm_reload_remote_mmus(struct kvm *kvm)
197{
198	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
199}
200
201void kvm_make_mclock_inprogress_request(struct kvm *kvm)
202{
203	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
204}
205
206void kvm_make_scan_ioapic_request(struct kvm *kvm)
207{
208	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
209}
210
211int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
212{
213	struct page *page;
214	int r;
215
216	mutex_init(&vcpu->mutex);
217	vcpu->cpu = -1;
218	vcpu->kvm = kvm;
219	vcpu->vcpu_id = id;
220	vcpu->pid = NULL;
221	init_waitqueue_head(&vcpu->wq);
222	kvm_async_pf_vcpu_init(vcpu);
223
224	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
225	if (!page) {
226		r = -ENOMEM;
227		goto fail;
228	}
229	vcpu->run = page_address(page);
230
231	kvm_vcpu_set_in_spin_loop(vcpu, false);
232	kvm_vcpu_set_dy_eligible(vcpu, false);
233	vcpu->preempted = false;
234
235	r = kvm_arch_vcpu_init(vcpu);
236	if (r < 0)
237		goto fail_free_run;
238	return 0;
239
240fail_free_run:
241	free_page((unsigned long)vcpu->run);
242fail:
243	return r;
244}
245EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246
247void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
248{
249	put_pid(vcpu->pid);
250	kvm_arch_vcpu_uninit(vcpu);
251	free_page((unsigned long)vcpu->run);
252}
253EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254
255#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257{
258	return container_of(mn, struct kvm, mmu_notifier);
259}
260
261static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
262					     struct mm_struct *mm,
263					     unsigned long address)
264{
265	struct kvm *kvm = mmu_notifier_to_kvm(mn);
266	int need_tlb_flush, idx;
267
268	/*
269	 * When ->invalidate_page runs, the linux pte has been zapped
270	 * already but the page is still allocated until
271	 * ->invalidate_page returns. So if we increase the sequence
272	 * here the kvm page fault will notice if the spte can't be
273	 * established because the page is going to be freed. If
274	 * instead the kvm page fault establishes the spte before
275	 * ->invalidate_page runs, kvm_unmap_hva will release it
276	 * before returning.
277	 *
278	 * The sequence increase only need to be seen at spin_unlock
279	 * time, and not at spin_lock time.
280	 *
281	 * Increasing the sequence after the spin_unlock would be
282	 * unsafe because the kvm page fault could then establish the
283	 * pte after kvm_unmap_hva returned, without noticing the page
284	 * is going to be freed.
285	 */
286	idx = srcu_read_lock(&kvm->srcu);
287	spin_lock(&kvm->mmu_lock);
288
289	kvm->mmu_notifier_seq++;
290	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
291	/* we've to flush the tlb before the pages can be freed */
292	if (need_tlb_flush)
293		kvm_flush_remote_tlbs(kvm);
294
295	spin_unlock(&kvm->mmu_lock);
296
297	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
298
299	srcu_read_unlock(&kvm->srcu, idx);
300}
301
302static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303					struct mm_struct *mm,
304					unsigned long address,
305					pte_t pte)
306{
307	struct kvm *kvm = mmu_notifier_to_kvm(mn);
308	int idx;
309
310	idx = srcu_read_lock(&kvm->srcu);
311	spin_lock(&kvm->mmu_lock);
312	kvm->mmu_notifier_seq++;
313	kvm_set_spte_hva(kvm, address, pte);
314	spin_unlock(&kvm->mmu_lock);
315	srcu_read_unlock(&kvm->srcu, idx);
316}
317
318static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319						    struct mm_struct *mm,
320						    unsigned long start,
321						    unsigned long end)
322{
323	struct kvm *kvm = mmu_notifier_to_kvm(mn);
324	int need_tlb_flush = 0, idx;
325
326	idx = srcu_read_lock(&kvm->srcu);
327	spin_lock(&kvm->mmu_lock);
328	/*
329	 * The count increase must become visible at unlock time as no
330	 * spte can be established without taking the mmu_lock and
331	 * count is also read inside the mmu_lock critical section.
332	 */
333	kvm->mmu_notifier_count++;
334	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335	need_tlb_flush |= kvm->tlbs_dirty;
336	/* we've to flush the tlb before the pages can be freed */
337	if (need_tlb_flush)
338		kvm_flush_remote_tlbs(kvm);
339
340	spin_unlock(&kvm->mmu_lock);
341	srcu_read_unlock(&kvm->srcu, idx);
342}
343
344static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345						  struct mm_struct *mm,
346						  unsigned long start,
347						  unsigned long end)
348{
349	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351	spin_lock(&kvm->mmu_lock);
352	/*
353	 * This sequence increase will notify the kvm page fault that
354	 * the page that is going to be mapped in the spte could have
355	 * been freed.
356	 */
357	kvm->mmu_notifier_seq++;
358	smp_wmb();
359	/*
360	 * The above sequence increase must be visible before the
361	 * below count decrease, which is ensured by the smp_wmb above
362	 * in conjunction with the smp_rmb in mmu_notifier_retry().
363	 */
364	kvm->mmu_notifier_count--;
365	spin_unlock(&kvm->mmu_lock);
366
367	BUG_ON(kvm->mmu_notifier_count < 0);
368}
369
370static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371					      struct mm_struct *mm,
372					      unsigned long start,
373					      unsigned long end)
374{
375	struct kvm *kvm = mmu_notifier_to_kvm(mn);
376	int young, idx;
377
378	idx = srcu_read_lock(&kvm->srcu);
379	spin_lock(&kvm->mmu_lock);
380
381	young = kvm_age_hva(kvm, start, end);
382	if (young)
383		kvm_flush_remote_tlbs(kvm);
384
385	spin_unlock(&kvm->mmu_lock);
386	srcu_read_unlock(&kvm->srcu, idx);
387
388	return young;
389}
390
391static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392				       struct mm_struct *mm,
393				       unsigned long address)
394{
395	struct kvm *kvm = mmu_notifier_to_kvm(mn);
396	int young, idx;
397
398	idx = srcu_read_lock(&kvm->srcu);
399	spin_lock(&kvm->mmu_lock);
400	young = kvm_test_age_hva(kvm, address);
401	spin_unlock(&kvm->mmu_lock);
402	srcu_read_unlock(&kvm->srcu, idx);
403
404	return young;
405}
406
407static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408				     struct mm_struct *mm)
409{
410	struct kvm *kvm = mmu_notifier_to_kvm(mn);
411	int idx;
412
413	idx = srcu_read_lock(&kvm->srcu);
414	kvm_arch_flush_shadow_all(kvm);
415	srcu_read_unlock(&kvm->srcu, idx);
416}
417
418static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
420	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
421	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
422	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
423	.test_young		= kvm_mmu_notifier_test_young,
424	.change_pte		= kvm_mmu_notifier_change_pte,
425	.release		= kvm_mmu_notifier_release,
426};
427
428static int kvm_init_mmu_notifier(struct kvm *kvm)
429{
430	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432}
433
434#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436static int kvm_init_mmu_notifier(struct kvm *kvm)
437{
438	return 0;
439}
440
441#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443static void kvm_init_memslots_id(struct kvm *kvm)
444{
445	int i;
446	struct kvm_memslots *slots = kvm->memslots;
447
448	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449		slots->id_to_index[i] = slots->memslots[i].id = i;
450}
451
452static struct kvm *kvm_create_vm(unsigned long type)
453{
454	int r, i;
455	struct kvm *kvm = kvm_arch_alloc_vm();
456
457	if (!kvm)
458		return ERR_PTR(-ENOMEM);
459
460	spin_lock_init(&kvm->mmu_lock);
461	atomic_inc(&current->mm->mm_count);
462	kvm->mm = current->mm;
463	kvm_eventfd_init(kvm);
464	mutex_init(&kvm->lock);
465	mutex_init(&kvm->irq_lock);
466	mutex_init(&kvm->slots_lock);
467	atomic_set(&kvm->users_count, 1);
468	INIT_LIST_HEAD(&kvm->devices);
469
470	r = kvm_arch_init_vm(kvm, type);
471	if (r)
472		goto out_err_no_disable;
473
474	r = hardware_enable_all();
475	if (r)
476		goto out_err_no_disable;
477
478#ifdef CONFIG_HAVE_KVM_IRQFD
479	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
480#endif
481
482	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
483
484	r = -ENOMEM;
485	kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
486	if (!kvm->memslots)
487		goto out_err_no_srcu;
488
489	/*
490	 * Init kvm generation close to the maximum to easily test the
491	 * code of handling generation number wrap-around.
492	 */
493	kvm->memslots->generation = -150;
494
495	kvm_init_memslots_id(kvm);
496	if (init_srcu_struct(&kvm->srcu))
497		goto out_err_no_srcu;
498	if (init_srcu_struct(&kvm->irq_srcu))
499		goto out_err_no_irq_srcu;
500	for (i = 0; i < KVM_NR_BUSES; i++) {
501		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
502					GFP_KERNEL);
503		if (!kvm->buses[i])
504			goto out_err;
505	}
506
507	r = kvm_init_mmu_notifier(kvm);
508	if (r)
509		goto out_err;
510
511	spin_lock(&kvm_lock);
512	list_add(&kvm->vm_list, &vm_list);
513	spin_unlock(&kvm_lock);
514
515	return kvm;
516
517out_err:
518	cleanup_srcu_struct(&kvm->irq_srcu);
519out_err_no_irq_srcu:
520	cleanup_srcu_struct(&kvm->srcu);
521out_err_no_srcu:
522	hardware_disable_all();
523out_err_no_disable:
524	for (i = 0; i < KVM_NR_BUSES; i++)
525		kfree(kvm->buses[i]);
526	kvfree(kvm->memslots);
527	kvm_arch_free_vm(kvm);
528	mmdrop(current->mm);
529	return ERR_PTR(r);
530}
531
532/*
533 * Avoid using vmalloc for a small buffer.
534 * Should not be used when the size is statically known.
535 */
536void *kvm_kvzalloc(unsigned long size)
537{
538	if (size > PAGE_SIZE)
539		return vzalloc(size);
540	else
541		return kzalloc(size, GFP_KERNEL);
542}
543
544static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545{
546	if (!memslot->dirty_bitmap)
547		return;
548
549	kvfree(memslot->dirty_bitmap);
550	memslot->dirty_bitmap = NULL;
551}
552
553/*
554 * Free any memory in @free but not in @dont.
555 */
556static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
557				  struct kvm_memory_slot *dont)
558{
559	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560		kvm_destroy_dirty_bitmap(free);
561
562	kvm_arch_free_memslot(kvm, free, dont);
563
564	free->npages = 0;
565}
566
567static void kvm_free_physmem(struct kvm *kvm)
568{
569	struct kvm_memslots *slots = kvm->memslots;
570	struct kvm_memory_slot *memslot;
571
572	kvm_for_each_memslot(memslot, slots)
573		kvm_free_physmem_slot(kvm, memslot, NULL);
574
575	kvfree(kvm->memslots);
576}
577
578static void kvm_destroy_devices(struct kvm *kvm)
579{
580	struct list_head *node, *tmp;
581
582	list_for_each_safe(node, tmp, &kvm->devices) {
583		struct kvm_device *dev =
584			list_entry(node, struct kvm_device, vm_node);
585
586		list_del(node);
587		dev->ops->destroy(dev);
588	}
589}
590
591static void kvm_destroy_vm(struct kvm *kvm)
592{
593	int i;
594	struct mm_struct *mm = kvm->mm;
595
596	kvm_arch_sync_events(kvm);
597	spin_lock(&kvm_lock);
598	list_del(&kvm->vm_list);
599	spin_unlock(&kvm_lock);
600	kvm_free_irq_routing(kvm);
601	for (i = 0; i < KVM_NR_BUSES; i++)
602		kvm_io_bus_destroy(kvm->buses[i]);
603	kvm_coalesced_mmio_free(kvm);
604#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
606#else
607	kvm_arch_flush_shadow_all(kvm);
608#endif
609	kvm_arch_destroy_vm(kvm);
610	kvm_destroy_devices(kvm);
611	kvm_free_physmem(kvm);
612	cleanup_srcu_struct(&kvm->irq_srcu);
613	cleanup_srcu_struct(&kvm->srcu);
614	kvm_arch_free_vm(kvm);
615	hardware_disable_all();
616	mmdrop(mm);
617}
618
619void kvm_get_kvm(struct kvm *kvm)
620{
621	atomic_inc(&kvm->users_count);
622}
623EXPORT_SYMBOL_GPL(kvm_get_kvm);
624
625void kvm_put_kvm(struct kvm *kvm)
626{
627	if (atomic_dec_and_test(&kvm->users_count))
628		kvm_destroy_vm(kvm);
629}
630EXPORT_SYMBOL_GPL(kvm_put_kvm);
631
632
633static int kvm_vm_release(struct inode *inode, struct file *filp)
634{
635	struct kvm *kvm = filp->private_data;
636
637	kvm_irqfd_release(kvm);
638
639	kvm_put_kvm(kvm);
640	return 0;
641}
642
643/*
644 * Allocation size is twice as large as the actual dirty bitmap size.
645 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
646 */
647static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
648{
649	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
650
651	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
652	if (!memslot->dirty_bitmap)
653		return -ENOMEM;
654
655	return 0;
656}
657
658/*
659 * Insert memslot and re-sort memslots based on their GFN,
660 * so binary search could be used to lookup GFN.
661 * Sorting algorithm takes advantage of having initially
662 * sorted array and known changed memslot position.
663 */
664static void update_memslots(struct kvm_memslots *slots,
665			    struct kvm_memory_slot *new)
666{
667	int id = new->id;
668	int i = slots->id_to_index[id];
669	struct kvm_memory_slot *mslots = slots->memslots;
670
671	WARN_ON(mslots[i].id != id);
672	if (!new->npages) {
673		WARN_ON(!mslots[i].npages);
674		new->base_gfn = 0;
675		new->flags = 0;
676		if (mslots[i].npages)
677			slots->used_slots--;
678	} else {
679		if (!mslots[i].npages)
680			slots->used_slots++;
681	}
682
683	while (i < KVM_MEM_SLOTS_NUM - 1 &&
684	       new->base_gfn <= mslots[i + 1].base_gfn) {
685		if (!mslots[i + 1].npages)
686			break;
687		mslots[i] = mslots[i + 1];
688		slots->id_to_index[mslots[i].id] = i;
689		i++;
690	}
691
692	/*
693	 * The ">=" is needed when creating a slot with base_gfn == 0,
694	 * so that it moves before all those with base_gfn == npages == 0.
695	 *
696	 * On the other hand, if new->npages is zero, the above loop has
697	 * already left i pointing to the beginning of the empty part of
698	 * mslots, and the ">=" would move the hole backwards in this
699	 * case---which is wrong.  So skip the loop when deleting a slot.
700	 */
701	if (new->npages) {
702		while (i > 0 &&
703		       new->base_gfn >= mslots[i - 1].base_gfn) {
704			mslots[i] = mslots[i - 1];
705			slots->id_to_index[mslots[i].id] = i;
706			i--;
707		}
708	} else
709		WARN_ON_ONCE(i != slots->used_slots);
710
711	mslots[i] = *new;
712	slots->id_to_index[mslots[i].id] = i;
713}
714
715static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716{
717	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718
719#ifdef __KVM_HAVE_READONLY_MEM
720	valid_flags |= KVM_MEM_READONLY;
721#endif
722
723	if (mem->flags & ~valid_flags)
724		return -EINVAL;
725
726	return 0;
727}
728
729static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730		struct kvm_memslots *slots)
731{
732	struct kvm_memslots *old_memslots = kvm->memslots;
733
734	/*
735	 * Set the low bit in the generation, which disables SPTE caching
736	 * until the end of synchronize_srcu_expedited.
737	 */
738	WARN_ON(old_memslots->generation & 1);
739	slots->generation = old_memslots->generation + 1;
740
741	rcu_assign_pointer(kvm->memslots, slots);
742	synchronize_srcu_expedited(&kvm->srcu);
743
744	/*
745	 * Increment the new memslot generation a second time. This prevents
746	 * vm exits that race with memslot updates from caching a memslot
747	 * generation that will (potentially) be valid forever.
748	 */
749	slots->generation++;
750
751	kvm_arch_memslots_updated(kvm);
752
753	return old_memslots;
754}
755
756/*
757 * Allocate some memory and give it an address in the guest physical address
758 * space.
759 *
760 * Discontiguous memory is allowed, mostly for framebuffers.
761 *
762 * Must be called holding kvm->slots_lock for write.
763 */
764int __kvm_set_memory_region(struct kvm *kvm,
765			    struct kvm_userspace_memory_region *mem)
766{
767	int r;
768	gfn_t base_gfn;
769	unsigned long npages;
770	struct kvm_memory_slot *slot;
771	struct kvm_memory_slot old, new;
772	struct kvm_memslots *slots = NULL, *old_memslots;
773	enum kvm_mr_change change;
774
775	r = check_memory_region_flags(mem);
776	if (r)
777		goto out;
778
779	r = -EINVAL;
780	/* General sanity checks */
781	if (mem->memory_size & (PAGE_SIZE - 1))
782		goto out;
783	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
784		goto out;
785	/* We can read the guest memory with __xxx_user() later on. */
786	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
787	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
788	     !access_ok(VERIFY_WRITE,
789			(void __user *)(unsigned long)mem->userspace_addr,
790			mem->memory_size)))
791		goto out;
792	if (mem->slot >= KVM_MEM_SLOTS_NUM)
793		goto out;
794	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
795		goto out;
796
797	slot = id_to_memslot(kvm->memslots, mem->slot);
798	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
799	npages = mem->memory_size >> PAGE_SHIFT;
800
801	if (npages > KVM_MEM_MAX_NR_PAGES)
802		goto out;
803
804	if (!npages)
805		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
806
807	new = old = *slot;
808
809	new.id = mem->slot;
810	new.base_gfn = base_gfn;
811	new.npages = npages;
812	new.flags = mem->flags;
813
814	if (npages) {
815		if (!old.npages)
816			change = KVM_MR_CREATE;
817		else { /* Modify an existing slot. */
818			if ((mem->userspace_addr != old.userspace_addr) ||
819			    (npages != old.npages) ||
820			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
821				goto out;
822
823			if (base_gfn != old.base_gfn)
824				change = KVM_MR_MOVE;
825			else if (new.flags != old.flags)
826				change = KVM_MR_FLAGS_ONLY;
827			else { /* Nothing to change. */
828				r = 0;
829				goto out;
830			}
831		}
832	} else if (old.npages) {
833		change = KVM_MR_DELETE;
834	} else /* Modify a non-existent slot: disallowed. */
835		goto out;
836
837	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
838		/* Check for overlaps */
839		r = -EEXIST;
840		kvm_for_each_memslot(slot, kvm->memslots) {
841			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
842			    (slot->id == mem->slot))
843				continue;
844			if (!((base_gfn + npages <= slot->base_gfn) ||
845			      (base_gfn >= slot->base_gfn + slot->npages)))
846				goto out;
847		}
848	}
849
850	/* Free page dirty bitmap if unneeded */
851	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
852		new.dirty_bitmap = NULL;
853
854	r = -ENOMEM;
855	if (change == KVM_MR_CREATE) {
856		new.userspace_addr = mem->userspace_addr;
857
858		if (kvm_arch_create_memslot(kvm, &new, npages))
859			goto out_free;
860	}
861
862	/* Allocate page dirty bitmap if needed */
863	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
864		if (kvm_create_dirty_bitmap(&new) < 0)
865			goto out_free;
866	}
867
868	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
869	if (!slots)
870		goto out_free;
871	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
872
873	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
874		slot = id_to_memslot(slots, mem->slot);
875		slot->flags |= KVM_MEMSLOT_INVALID;
876
877		old_memslots = install_new_memslots(kvm, slots);
878
879		/* slot was deleted or moved, clear iommu mapping */
880		kvm_iommu_unmap_pages(kvm, &old);
881		/* From this point no new shadow pages pointing to a deleted,
882		 * or moved, memslot will be created.
883		 *
884		 * validation of sp->gfn happens in:
885		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886		 *	- kvm_is_visible_gfn (mmu_check_roots)
887		 */
888		kvm_arch_flush_shadow_memslot(kvm, slot);
889
890		/*
891		 * We can re-use the old_memslots from above, the only difference
892		 * from the currently installed memslots is the invalid flag.  This
893		 * will get overwritten by update_memslots anyway.
894		 */
895		slots = old_memslots;
896	}
897
898	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
899	if (r)
900		goto out_slots;
901
902	/* actual memory is freed via old in kvm_free_physmem_slot below */
903	if (change == KVM_MR_DELETE) {
904		new.dirty_bitmap = NULL;
905		memset(&new.arch, 0, sizeof(new.arch));
906	}
907
908	update_memslots(slots, &new);
909	old_memslots = install_new_memslots(kvm, slots);
910
911	kvm_arch_commit_memory_region(kvm, mem, &old, change);
912
913	kvm_free_physmem_slot(kvm, &old, &new);
914	kvfree(old_memslots);
915
916	/*
917	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
918	 * un-mapped and re-mapped if their base changes.  Since base change
919	 * unmapping is handled above with slot deletion, mapping alone is
920	 * needed here.  Anything else the iommu might care about for existing
921	 * slots (size changes, userspace addr changes and read-only flag
922	 * changes) is disallowed above, so any other attribute changes getting
923	 * here can be skipped.
924	 */
925	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
926		r = kvm_iommu_map_pages(kvm, &new);
927		return r;
928	}
929
930	return 0;
931
932out_slots:
933	kvfree(slots);
934out_free:
935	kvm_free_physmem_slot(kvm, &new, &old);
936out:
937	return r;
938}
939EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
940
941int kvm_set_memory_region(struct kvm *kvm,
942			  struct kvm_userspace_memory_region *mem)
943{
944	int r;
945
946	mutex_lock(&kvm->slots_lock);
947	r = __kvm_set_memory_region(kvm, mem);
948	mutex_unlock(&kvm->slots_lock);
949	return r;
950}
951EXPORT_SYMBOL_GPL(kvm_set_memory_region);
952
953static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
954					  struct kvm_userspace_memory_region *mem)
955{
956	if (mem->slot >= KVM_USER_MEM_SLOTS)
957		return -EINVAL;
958	return kvm_set_memory_region(kvm, mem);
959}
960
961int kvm_get_dirty_log(struct kvm *kvm,
962			struct kvm_dirty_log *log, int *is_dirty)
963{
964	struct kvm_memory_slot *memslot;
965	int r, i;
966	unsigned long n;
967	unsigned long any = 0;
968
969	r = -EINVAL;
970	if (log->slot >= KVM_USER_MEM_SLOTS)
971		goto out;
972
973	memslot = id_to_memslot(kvm->memslots, log->slot);
974	r = -ENOENT;
975	if (!memslot->dirty_bitmap)
976		goto out;
977
978	n = kvm_dirty_bitmap_bytes(memslot);
979
980	for (i = 0; !any && i < n/sizeof(long); ++i)
981		any = memslot->dirty_bitmap[i];
982
983	r = -EFAULT;
984	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
985		goto out;
986
987	if (any)
988		*is_dirty = 1;
989
990	r = 0;
991out:
992	return r;
993}
994EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
995
996#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
997/**
998 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
999 *	are dirty write protect them for next write.
1000 * @kvm:	pointer to kvm instance
1001 * @log:	slot id and address to which we copy the log
1002 * @is_dirty:	flag set if any page is dirty
1003 *
1004 * We need to keep it in mind that VCPU threads can write to the bitmap
1005 * concurrently. So, to avoid losing track of dirty pages we keep the
1006 * following order:
1007 *
1008 *    1. Take a snapshot of the bit and clear it if needed.
1009 *    2. Write protect the corresponding page.
1010 *    3. Copy the snapshot to the userspace.
1011 *    4. Upon return caller flushes TLB's if needed.
1012 *
1013 * Between 2 and 4, the guest may write to the page using the remaining TLB
1014 * entry.  This is not a problem because the page is reported dirty using
1015 * the snapshot taken before and step 4 ensures that writes done after
1016 * exiting to userspace will be logged for the next call.
1017 *
1018 */
1019int kvm_get_dirty_log_protect(struct kvm *kvm,
1020			struct kvm_dirty_log *log, bool *is_dirty)
1021{
1022	struct kvm_memory_slot *memslot;
1023	int r, i;
1024	unsigned long n;
1025	unsigned long *dirty_bitmap;
1026	unsigned long *dirty_bitmap_buffer;
1027
1028	r = -EINVAL;
1029	if (log->slot >= KVM_USER_MEM_SLOTS)
1030		goto out;
1031
1032	memslot = id_to_memslot(kvm->memslots, log->slot);
1033
1034	dirty_bitmap = memslot->dirty_bitmap;
1035	r = -ENOENT;
1036	if (!dirty_bitmap)
1037		goto out;
1038
1039	n = kvm_dirty_bitmap_bytes(memslot);
1040
1041	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1042	memset(dirty_bitmap_buffer, 0, n);
1043
1044	spin_lock(&kvm->mmu_lock);
1045	*is_dirty = false;
1046	for (i = 0; i < n / sizeof(long); i++) {
1047		unsigned long mask;
1048		gfn_t offset;
1049
1050		if (!dirty_bitmap[i])
1051			continue;
1052
1053		*is_dirty = true;
1054
1055		mask = xchg(&dirty_bitmap[i], 0);
1056		dirty_bitmap_buffer[i] = mask;
1057
1058		if (mask) {
1059			offset = i * BITS_PER_LONG;
1060			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1061								offset, mask);
1062		}
1063	}
1064
1065	spin_unlock(&kvm->mmu_lock);
1066
1067	r = -EFAULT;
1068	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1069		goto out;
1070
1071	r = 0;
1072out:
1073	return r;
1074}
1075EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1076#endif
1077
1078bool kvm_largepages_enabled(void)
1079{
1080	return largepages_enabled;
1081}
1082
1083void kvm_disable_largepages(void)
1084{
1085	largepages_enabled = false;
1086}
1087EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1088
1089struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1090{
1091	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1092}
1093EXPORT_SYMBOL_GPL(gfn_to_memslot);
1094
1095int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1096{
1097	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1098
1099	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1100	      memslot->flags & KVM_MEMSLOT_INVALID)
1101		return 0;
1102
1103	return 1;
1104}
1105EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1106
1107unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1108{
1109	struct vm_area_struct *vma;
1110	unsigned long addr, size;
1111
1112	size = PAGE_SIZE;
1113
1114	addr = gfn_to_hva(kvm, gfn);
1115	if (kvm_is_error_hva(addr))
1116		return PAGE_SIZE;
1117
1118	down_read(&current->mm->mmap_sem);
1119	vma = find_vma(current->mm, addr);
1120	if (!vma)
1121		goto out;
1122
1123	size = vma_kernel_pagesize(vma);
1124
1125out:
1126	up_read(&current->mm->mmap_sem);
1127
1128	return size;
1129}
1130
1131static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1132{
1133	return slot->flags & KVM_MEM_READONLY;
1134}
1135
1136static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1137				       gfn_t *nr_pages, bool write)
1138{
1139	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1140		return KVM_HVA_ERR_BAD;
1141
1142	if (memslot_is_readonly(slot) && write)
1143		return KVM_HVA_ERR_RO_BAD;
1144
1145	if (nr_pages)
1146		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1147
1148	return __gfn_to_hva_memslot(slot, gfn);
1149}
1150
1151static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1152				     gfn_t *nr_pages)
1153{
1154	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1155}
1156
1157unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1158					gfn_t gfn)
1159{
1160	return gfn_to_hva_many(slot, gfn, NULL);
1161}
1162EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1163
1164unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1165{
1166	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1167}
1168EXPORT_SYMBOL_GPL(gfn_to_hva);
1169
1170/*
1171 * If writable is set to false, the hva returned by this function is only
1172 * allowed to be read.
1173 */
1174unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1175				      gfn_t gfn, bool *writable)
1176{
1177	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1178
1179	if (!kvm_is_error_hva(hva) && writable)
1180		*writable = !memslot_is_readonly(slot);
1181
1182	return hva;
1183}
1184
1185unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1186{
1187	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1188
1189	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1190}
1191
1192static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1193	unsigned long start, int write, struct page **page)
1194{
1195	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1196
1197	if (write)
1198		flags |= FOLL_WRITE;
1199
1200	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1201}
1202
1203static inline int check_user_page_hwpoison(unsigned long addr)
1204{
1205	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1206
1207	rc = __get_user_pages(current, current->mm, addr, 1,
1208			      flags, NULL, NULL, NULL);
1209	return rc == -EHWPOISON;
1210}
1211
1212/*
1213 * The atomic path to get the writable pfn which will be stored in @pfn,
1214 * true indicates success, otherwise false is returned.
1215 */
1216static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1217			    bool write_fault, bool *writable, pfn_t *pfn)
1218{
1219	struct page *page[1];
1220	int npages;
1221
1222	if (!(async || atomic))
1223		return false;
1224
1225	/*
1226	 * Fast pin a writable pfn only if it is a write fault request
1227	 * or the caller allows to map a writable pfn for a read fault
1228	 * request.
1229	 */
1230	if (!(write_fault || writable))
1231		return false;
1232
1233	npages = __get_user_pages_fast(addr, 1, 1, page);
1234	if (npages == 1) {
1235		*pfn = page_to_pfn(page[0]);
1236
1237		if (writable)
1238			*writable = true;
1239		return true;
1240	}
1241
1242	return false;
1243}
1244
1245/*
1246 * The slow path to get the pfn of the specified host virtual address,
1247 * 1 indicates success, -errno is returned if error is detected.
1248 */
1249static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1250			   bool *writable, pfn_t *pfn)
1251{
1252	struct page *page[1];
1253	int npages = 0;
1254
1255	might_sleep();
1256
1257	if (writable)
1258		*writable = write_fault;
1259
1260	if (async) {
1261		down_read(&current->mm->mmap_sem);
1262		npages = get_user_page_nowait(current, current->mm,
1263					      addr, write_fault, page);
1264		up_read(&current->mm->mmap_sem);
1265	} else
1266		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1267						   write_fault, 0, page,
1268						   FOLL_TOUCH|FOLL_HWPOISON);
1269	if (npages != 1)
1270		return npages;
1271
1272	/* map read fault as writable if possible */
1273	if (unlikely(!write_fault) && writable) {
1274		struct page *wpage[1];
1275
1276		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1277		if (npages == 1) {
1278			*writable = true;
1279			put_page(page[0]);
1280			page[0] = wpage[0];
1281		}
1282
1283		npages = 1;
1284	}
1285	*pfn = page_to_pfn(page[0]);
1286	return npages;
1287}
1288
1289static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1290{
1291	if (unlikely(!(vma->vm_flags & VM_READ)))
1292		return false;
1293
1294	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1295		return false;
1296
1297	return true;
1298}
1299
1300/*
1301 * Pin guest page in memory and return its pfn.
1302 * @addr: host virtual address which maps memory to the guest
1303 * @atomic: whether this function can sleep
1304 * @async: whether this function need to wait IO complete if the
1305 *         host page is not in the memory
1306 * @write_fault: whether we should get a writable host page
1307 * @writable: whether it allows to map a writable host page for !@write_fault
1308 *
1309 * The function will map a writable host page for these two cases:
1310 * 1): @write_fault = true
1311 * 2): @write_fault = false && @writable, @writable will tell the caller
1312 *     whether the mapping is writable.
1313 */
1314static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1315			bool write_fault, bool *writable)
1316{
1317	struct vm_area_struct *vma;
1318	pfn_t pfn = 0;
1319	int npages;
1320
1321	/* we can do it either atomically or asynchronously, not both */
1322	BUG_ON(atomic && async);
1323
1324	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1325		return pfn;
1326
1327	if (atomic)
1328		return KVM_PFN_ERR_FAULT;
1329
1330	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1331	if (npages == 1)
1332		return pfn;
1333
1334	down_read(&current->mm->mmap_sem);
1335	if (npages == -EHWPOISON ||
1336	      (!async && check_user_page_hwpoison(addr))) {
1337		pfn = KVM_PFN_ERR_HWPOISON;
1338		goto exit;
1339	}
1340
1341	vma = find_vma_intersection(current->mm, addr, addr + 1);
1342
1343	if (vma == NULL)
1344		pfn = KVM_PFN_ERR_FAULT;
1345	else if ((vma->vm_flags & VM_PFNMAP)) {
1346		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1347			vma->vm_pgoff;
1348		BUG_ON(!kvm_is_reserved_pfn(pfn));
1349	} else {
1350		if (async && vma_is_valid(vma, write_fault))
1351			*async = true;
1352		pfn = KVM_PFN_ERR_FAULT;
1353	}
1354exit:
1355	up_read(&current->mm->mmap_sem);
1356	return pfn;
1357}
1358
1359static pfn_t
1360__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1361		     bool *async, bool write_fault, bool *writable)
1362{
1363	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1364
1365	if (addr == KVM_HVA_ERR_RO_BAD)
1366		return KVM_PFN_ERR_RO_FAULT;
1367
1368	if (kvm_is_error_hva(addr))
1369		return KVM_PFN_NOSLOT;
1370
1371	/* Do not map writable pfn in the readonly memslot. */
1372	if (writable && memslot_is_readonly(slot)) {
1373		*writable = false;
1374		writable = NULL;
1375	}
1376
1377	return hva_to_pfn(addr, atomic, async, write_fault,
1378			  writable);
1379}
1380
1381static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1382			  bool write_fault, bool *writable)
1383{
1384	struct kvm_memory_slot *slot;
1385
1386	if (async)
1387		*async = false;
1388
1389	slot = gfn_to_memslot(kvm, gfn);
1390
1391	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1392				    writable);
1393}
1394
1395pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1396{
1397	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1398}
1399EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1400
1401pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1402		       bool write_fault, bool *writable)
1403{
1404	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1405}
1406EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1407
1408pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1409{
1410	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1411}
1412EXPORT_SYMBOL_GPL(gfn_to_pfn);
1413
1414pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1415		      bool *writable)
1416{
1417	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1418}
1419EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1420
1421pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1422{
1423	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1424}
1425
1426pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1427{
1428	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1429}
1430EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1431
1432int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1433								  int nr_pages)
1434{
1435	unsigned long addr;
1436	gfn_t entry;
1437
1438	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1439	if (kvm_is_error_hva(addr))
1440		return -1;
1441
1442	if (entry < nr_pages)
1443		return 0;
1444
1445	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1446}
1447EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1448
1449static struct page *kvm_pfn_to_page(pfn_t pfn)
1450{
1451	if (is_error_noslot_pfn(pfn))
1452		return KVM_ERR_PTR_BAD_PAGE;
1453
1454	if (kvm_is_reserved_pfn(pfn)) {
1455		WARN_ON(1);
1456		return KVM_ERR_PTR_BAD_PAGE;
1457	}
1458
1459	return pfn_to_page(pfn);
1460}
1461
1462struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1463{
1464	pfn_t pfn;
1465
1466	pfn = gfn_to_pfn(kvm, gfn);
1467
1468	return kvm_pfn_to_page(pfn);
1469}
1470EXPORT_SYMBOL_GPL(gfn_to_page);
1471
1472void kvm_release_page_clean(struct page *page)
1473{
1474	WARN_ON(is_error_page(page));
1475
1476	kvm_release_pfn_clean(page_to_pfn(page));
1477}
1478EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1479
1480void kvm_release_pfn_clean(pfn_t pfn)
1481{
1482	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1483		put_page(pfn_to_page(pfn));
1484}
1485EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1486
1487void kvm_release_page_dirty(struct page *page)
1488{
1489	WARN_ON(is_error_page(page));
1490
1491	kvm_release_pfn_dirty(page_to_pfn(page));
1492}
1493EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1494
1495static void kvm_release_pfn_dirty(pfn_t pfn)
1496{
1497	kvm_set_pfn_dirty(pfn);
1498	kvm_release_pfn_clean(pfn);
1499}
1500
1501void kvm_set_pfn_dirty(pfn_t pfn)
1502{
1503	if (!kvm_is_reserved_pfn(pfn)) {
1504		struct page *page = pfn_to_page(pfn);
1505
1506		if (!PageReserved(page))
1507			SetPageDirty(page);
1508	}
1509}
1510EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1511
1512void kvm_set_pfn_accessed(pfn_t pfn)
1513{
1514	if (!kvm_is_reserved_pfn(pfn))
1515		mark_page_accessed(pfn_to_page(pfn));
1516}
1517EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1518
1519void kvm_get_pfn(pfn_t pfn)
1520{
1521	if (!kvm_is_reserved_pfn(pfn))
1522		get_page(pfn_to_page(pfn));
1523}
1524EXPORT_SYMBOL_GPL(kvm_get_pfn);
1525
1526static int next_segment(unsigned long len, int offset)
1527{
1528	if (len > PAGE_SIZE - offset)
1529		return PAGE_SIZE - offset;
1530	else
1531		return len;
1532}
1533
1534int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1535			int len)
1536{
1537	int r;
1538	unsigned long addr;
1539
1540	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1541	if (kvm_is_error_hva(addr))
1542		return -EFAULT;
1543	r = __copy_from_user(data, (void __user *)addr + offset, len);
1544	if (r)
1545		return -EFAULT;
1546	return 0;
1547}
1548EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1549
1550int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1551{
1552	gfn_t gfn = gpa >> PAGE_SHIFT;
1553	int seg;
1554	int offset = offset_in_page(gpa);
1555	int ret;
1556
1557	while ((seg = next_segment(len, offset)) != 0) {
1558		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1559		if (ret < 0)
1560			return ret;
1561		offset = 0;
1562		len -= seg;
1563		data += seg;
1564		++gfn;
1565	}
1566	return 0;
1567}
1568EXPORT_SYMBOL_GPL(kvm_read_guest);
1569
1570int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1571			  unsigned long len)
1572{
1573	int r;
1574	unsigned long addr;
1575	gfn_t gfn = gpa >> PAGE_SHIFT;
1576	int offset = offset_in_page(gpa);
1577
1578	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1579	if (kvm_is_error_hva(addr))
1580		return -EFAULT;
1581	pagefault_disable();
1582	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1583	pagefault_enable();
1584	if (r)
1585		return -EFAULT;
1586	return 0;
1587}
1588EXPORT_SYMBOL(kvm_read_guest_atomic);
1589
1590int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1591			 int offset, int len)
1592{
1593	int r;
1594	unsigned long addr;
1595
1596	addr = gfn_to_hva(kvm, gfn);
1597	if (kvm_is_error_hva(addr))
1598		return -EFAULT;
1599	r = __copy_to_user((void __user *)addr + offset, data, len);
1600	if (r)
1601		return -EFAULT;
1602	mark_page_dirty(kvm, gfn);
1603	return 0;
1604}
1605EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1606
1607int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1608		    unsigned long len)
1609{
1610	gfn_t gfn = gpa >> PAGE_SHIFT;
1611	int seg;
1612	int offset = offset_in_page(gpa);
1613	int ret;
1614
1615	while ((seg = next_segment(len, offset)) != 0) {
1616		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1617		if (ret < 0)
1618			return ret;
1619		offset = 0;
1620		len -= seg;
1621		data += seg;
1622		++gfn;
1623	}
1624	return 0;
1625}
1626EXPORT_SYMBOL_GPL(kvm_write_guest);
1627
1628int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1629			      gpa_t gpa, unsigned long len)
1630{
1631	struct kvm_memslots *slots = kvm_memslots(kvm);
1632	int offset = offset_in_page(gpa);
1633	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1634	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1635	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1636	gfn_t nr_pages_avail;
1637
1638	ghc->gpa = gpa;
1639	ghc->generation = slots->generation;
1640	ghc->len = len;
1641	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1642	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1643	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1644		ghc->hva += offset;
1645	} else {
1646		/*
1647		 * If the requested region crosses two memslots, we still
1648		 * verify that the entire region is valid here.
1649		 */
1650		while (start_gfn <= end_gfn) {
1651			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1652			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1653						   &nr_pages_avail);
1654			if (kvm_is_error_hva(ghc->hva))
1655				return -EFAULT;
1656			start_gfn += nr_pages_avail;
1657		}
1658		/* Use the slow path for cross page reads and writes. */
1659		ghc->memslot = NULL;
1660	}
1661	return 0;
1662}
1663EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1664
1665int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1666			   void *data, unsigned long len)
1667{
1668	struct kvm_memslots *slots = kvm_memslots(kvm);
1669	int r;
1670
1671	BUG_ON(len > ghc->len);
1672
1673	if (slots->generation != ghc->generation)
1674		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1675
1676	if (unlikely(!ghc->memslot))
1677		return kvm_write_guest(kvm, ghc->gpa, data, len);
1678
1679	if (kvm_is_error_hva(ghc->hva))
1680		return -EFAULT;
1681
1682	r = __copy_to_user((void __user *)ghc->hva, data, len);
1683	if (r)
1684		return -EFAULT;
1685	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1686
1687	return 0;
1688}
1689EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1690
1691int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1692			   void *data, unsigned long len)
1693{
1694	struct kvm_memslots *slots = kvm_memslots(kvm);
1695	int r;
1696
1697	BUG_ON(len > ghc->len);
1698
1699	if (slots->generation != ghc->generation)
1700		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1701
1702	if (unlikely(!ghc->memslot))
1703		return kvm_read_guest(kvm, ghc->gpa, data, len);
1704
1705	if (kvm_is_error_hva(ghc->hva))
1706		return -EFAULT;
1707
1708	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1709	if (r)
1710		return -EFAULT;
1711
1712	return 0;
1713}
1714EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1715
1716int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1717{
1718	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1719
1720	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1721}
1722EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1723
1724int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1725{
1726	gfn_t gfn = gpa >> PAGE_SHIFT;
1727	int seg;
1728	int offset = offset_in_page(gpa);
1729	int ret;
1730
1731	while ((seg = next_segment(len, offset)) != 0) {
1732		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1733		if (ret < 0)
1734			return ret;
1735		offset = 0;
1736		len -= seg;
1737		++gfn;
1738	}
1739	return 0;
1740}
1741EXPORT_SYMBOL_GPL(kvm_clear_guest);
1742
1743static void mark_page_dirty_in_slot(struct kvm *kvm,
1744				    struct kvm_memory_slot *memslot,
1745				    gfn_t gfn)
1746{
1747	if (memslot && memslot->dirty_bitmap) {
1748		unsigned long rel_gfn = gfn - memslot->base_gfn;
1749
1750		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1751	}
1752}
1753
1754void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1755{
1756	struct kvm_memory_slot *memslot;
1757
1758	memslot = gfn_to_memslot(kvm, gfn);
1759	mark_page_dirty_in_slot(kvm, memslot, gfn);
1760}
1761EXPORT_SYMBOL_GPL(mark_page_dirty);
1762
1763static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1764{
1765	if (kvm_arch_vcpu_runnable(vcpu)) {
1766		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1767		return -EINTR;
1768	}
1769	if (kvm_cpu_has_pending_timer(vcpu))
1770		return -EINTR;
1771	if (signal_pending(current))
1772		return -EINTR;
1773
1774	return 0;
1775}
1776
1777/*
1778 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1779 */
1780void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1781{
1782	ktime_t start, cur;
1783	DEFINE_WAIT(wait);
1784	bool waited = false;
1785
1786	start = cur = ktime_get();
1787	if (halt_poll_ns) {
1788		ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1789
1790		do {
1791			/*
1792			 * This sets KVM_REQ_UNHALT if an interrupt
1793			 * arrives.
1794			 */
1795			if (kvm_vcpu_check_block(vcpu) < 0) {
1796				++vcpu->stat.halt_successful_poll;
1797				goto out;
1798			}
1799			cur = ktime_get();
1800		} while (single_task_running() && ktime_before(cur, stop));
1801	}
1802
1803	for (;;) {
1804		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1805
1806		if (kvm_vcpu_check_block(vcpu) < 0)
1807			break;
1808
1809		waited = true;
1810		schedule();
1811	}
1812
1813	finish_wait(&vcpu->wq, &wait);
1814	cur = ktime_get();
1815
1816out:
1817	trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1818}
1819EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1820
1821#ifndef CONFIG_S390
1822/*
1823 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1824 */
1825void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1826{
1827	int me;
1828	int cpu = vcpu->cpu;
1829	wait_queue_head_t *wqp;
1830
1831	wqp = kvm_arch_vcpu_wq(vcpu);
1832	if (waitqueue_active(wqp)) {
1833		wake_up_interruptible(wqp);
1834		++vcpu->stat.halt_wakeup;
1835	}
1836
1837	me = get_cpu();
1838	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1839		if (kvm_arch_vcpu_should_kick(vcpu))
1840			smp_send_reschedule(cpu);
1841	put_cpu();
1842}
1843EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1844#endif /* !CONFIG_S390 */
1845
1846int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1847{
1848	struct pid *pid;
1849	struct task_struct *task = NULL;
1850	int ret = 0;
1851
1852	rcu_read_lock();
1853	pid = rcu_dereference(target->pid);
1854	if (pid)
1855		task = get_pid_task(pid, PIDTYPE_PID);
1856	rcu_read_unlock();
1857	if (!task)
1858		return ret;
1859	ret = yield_to(task, 1);
1860	put_task_struct(task);
1861
1862	return ret;
1863}
1864EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1865
1866/*
1867 * Helper that checks whether a VCPU is eligible for directed yield.
1868 * Most eligible candidate to yield is decided by following heuristics:
1869 *
1870 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1871 *  (preempted lock holder), indicated by @in_spin_loop.
1872 *  Set at the beiginning and cleared at the end of interception/PLE handler.
1873 *
1874 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1875 *  chance last time (mostly it has become eligible now since we have probably
1876 *  yielded to lockholder in last iteration. This is done by toggling
1877 *  @dy_eligible each time a VCPU checked for eligibility.)
1878 *
1879 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1880 *  to preempted lock-holder could result in wrong VCPU selection and CPU
1881 *  burning. Giving priority for a potential lock-holder increases lock
1882 *  progress.
1883 *
1884 *  Since algorithm is based on heuristics, accessing another VCPU data without
1885 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1886 *  and continue with next VCPU and so on.
1887 */
1888static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1889{
1890#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1891	bool eligible;
1892
1893	eligible = !vcpu->spin_loop.in_spin_loop ||
1894		    vcpu->spin_loop.dy_eligible;
1895
1896	if (vcpu->spin_loop.in_spin_loop)
1897		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1898
1899	return eligible;
1900#else
1901	return true;
1902#endif
1903}
1904
1905void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1906{
1907	struct kvm *kvm = me->kvm;
1908	struct kvm_vcpu *vcpu;
1909	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1910	int yielded = 0;
1911	int try = 3;
1912	int pass;
1913	int i;
1914
1915	kvm_vcpu_set_in_spin_loop(me, true);
1916	/*
1917	 * We boost the priority of a VCPU that is runnable but not
1918	 * currently running, because it got preempted by something
1919	 * else and called schedule in __vcpu_run.  Hopefully that
1920	 * VCPU is holding the lock that we need and will release it.
1921	 * We approximate round-robin by starting at the last boosted VCPU.
1922	 */
1923	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1924		kvm_for_each_vcpu(i, vcpu, kvm) {
1925			if (!pass && i <= last_boosted_vcpu) {
1926				i = last_boosted_vcpu;
1927				continue;
1928			} else if (pass && i > last_boosted_vcpu)
1929				break;
1930			if (!ACCESS_ONCE(vcpu->preempted))
1931				continue;
1932			if (vcpu == me)
1933				continue;
1934			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1935				continue;
1936			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1937				continue;
1938
1939			yielded = kvm_vcpu_yield_to(vcpu);
1940			if (yielded > 0) {
1941				kvm->last_boosted_vcpu = i;
1942				break;
1943			} else if (yielded < 0) {
1944				try--;
1945				if (!try)
1946					break;
1947			}
1948		}
1949	}
1950	kvm_vcpu_set_in_spin_loop(me, false);
1951
1952	/* Ensure vcpu is not eligible during next spinloop */
1953	kvm_vcpu_set_dy_eligible(me, false);
1954}
1955EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1956
1957static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1958{
1959	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1960	struct page *page;
1961
1962	if (vmf->pgoff == 0)
1963		page = virt_to_page(vcpu->run);
1964#ifdef CONFIG_X86
1965	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1966		page = virt_to_page(vcpu->arch.pio_data);
1967#endif
1968#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1969	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1970		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1971#endif
1972	else
1973		return kvm_arch_vcpu_fault(vcpu, vmf);
1974	get_page(page);
1975	vmf->page = page;
1976	return 0;
1977}
1978
1979static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1980	.fault = kvm_vcpu_fault,
1981};
1982
1983static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1984{
1985	vma->vm_ops = &kvm_vcpu_vm_ops;
1986	return 0;
1987}
1988
1989static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1990{
1991	struct kvm_vcpu *vcpu = filp->private_data;
1992
1993	kvm_put_kvm(vcpu->kvm);
1994	return 0;
1995}
1996
1997static struct file_operations kvm_vcpu_fops = {
1998	.release        = kvm_vcpu_release,
1999	.unlocked_ioctl = kvm_vcpu_ioctl,
2000#ifdef CONFIG_KVM_COMPAT
2001	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2002#endif
2003	.mmap           = kvm_vcpu_mmap,
2004	.llseek		= noop_llseek,
2005};
2006
2007/*
2008 * Allocates an inode for the vcpu.
2009 */
2010static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2011{
2012	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2013}
2014
2015/*
2016 * Creates some virtual cpus.  Good luck creating more than one.
2017 */
2018static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2019{
2020	int r;
2021	struct kvm_vcpu *vcpu, *v;
2022
2023	if (id >= KVM_MAX_VCPUS)
2024		return -EINVAL;
2025
2026	vcpu = kvm_arch_vcpu_create(kvm, id);
2027	if (IS_ERR(vcpu))
2028		return PTR_ERR(vcpu);
2029
2030	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2031
2032	r = kvm_arch_vcpu_setup(vcpu);
2033	if (r)
2034		goto vcpu_destroy;
2035
2036	mutex_lock(&kvm->lock);
2037	if (!kvm_vcpu_compatible(vcpu)) {
2038		r = -EINVAL;
2039		goto unlock_vcpu_destroy;
2040	}
2041	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2042		r = -EINVAL;
2043		goto unlock_vcpu_destroy;
2044	}
2045
2046	kvm_for_each_vcpu(r, v, kvm)
2047		if (v->vcpu_id == id) {
2048			r = -EEXIST;
2049			goto unlock_vcpu_destroy;
2050		}
2051
2052	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2053
2054	/* Now it's all set up, let userspace reach it */
2055	kvm_get_kvm(kvm);
2056	r = create_vcpu_fd(vcpu);
2057	if (r < 0) {
2058		kvm_put_kvm(kvm);
2059		goto unlock_vcpu_destroy;
2060	}
2061
2062	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2063	smp_wmb();
2064	atomic_inc(&kvm->online_vcpus);
2065
2066	mutex_unlock(&kvm->lock);
2067	kvm_arch_vcpu_postcreate(vcpu);
2068	return r;
2069
2070unlock_vcpu_destroy:
2071	mutex_unlock(&kvm->lock);
2072vcpu_destroy:
2073	kvm_arch_vcpu_destroy(vcpu);
2074	return r;
2075}
2076
2077static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2078{
2079	if (sigset) {
2080		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2081		vcpu->sigset_active = 1;
2082		vcpu->sigset = *sigset;
2083	} else
2084		vcpu->sigset_active = 0;
2085	return 0;
2086}
2087
2088static long kvm_vcpu_ioctl(struct file *filp,
2089			   unsigned int ioctl, unsigned long arg)
2090{
2091	struct kvm_vcpu *vcpu = filp->private_data;
2092	void __user *argp = (void __user *)arg;
2093	int r;
2094	struct kvm_fpu *fpu = NULL;
2095	struct kvm_sregs *kvm_sregs = NULL;
2096
2097	if (vcpu->kvm->mm != current->mm)
2098		return -EIO;
2099
2100	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2101		return -EINVAL;
2102
2103#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2104	/*
2105	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2106	 * so vcpu_load() would break it.
2107	 */
2108	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2109		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2110#endif
2111
2112
2113	r = vcpu_load(vcpu);
2114	if (r)
2115		return r;
2116	switch (ioctl) {
2117	case KVM_RUN:
2118		r = -EINVAL;
2119		if (arg)
2120			goto out;
2121		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2122			/* The thread running this VCPU changed. */
2123			struct pid *oldpid = vcpu->pid;
2124			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2125
2126			rcu_assign_pointer(vcpu->pid, newpid);
2127			if (oldpid)
2128				synchronize_rcu();
2129			put_pid(oldpid);
2130		}
2131		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2132		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2133		break;
2134	case KVM_GET_REGS: {
2135		struct kvm_regs *kvm_regs;
2136
2137		r = -ENOMEM;
2138		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2139		if (!kvm_regs)
2140			goto out;
2141		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2142		if (r)
2143			goto out_free1;
2144		r = -EFAULT;
2145		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2146			goto out_free1;
2147		r = 0;
2148out_free1:
2149		kfree(kvm_regs);
2150		break;
2151	}
2152	case KVM_SET_REGS: {
2153		struct kvm_regs *kvm_regs;
2154
2155		r = -ENOMEM;
2156		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2157		if (IS_ERR(kvm_regs)) {
2158			r = PTR_ERR(kvm_regs);
2159			goto out;
2160		}
2161		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2162		kfree(kvm_regs);
2163		break;
2164	}
2165	case KVM_GET_SREGS: {
2166		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2167		r = -ENOMEM;
2168		if (!kvm_sregs)
2169			goto out;
2170		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2171		if (r)
2172			goto out;
2173		r = -EFAULT;
2174		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2175			goto out;
2176		r = 0;
2177		break;
2178	}
2179	case KVM_SET_SREGS: {
2180		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2181		if (IS_ERR(kvm_sregs)) {
2182			r = PTR_ERR(kvm_sregs);
2183			kvm_sregs = NULL;
2184			goto out;
2185		}
2186		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2187		break;
2188	}
2189	case KVM_GET_MP_STATE: {
2190		struct kvm_mp_state mp_state;
2191
2192		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2193		if (r)
2194			goto out;
2195		r = -EFAULT;
2196		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2197			goto out;
2198		r = 0;
2199		break;
2200	}
2201	case KVM_SET_MP_STATE: {
2202		struct kvm_mp_state mp_state;
2203
2204		r = -EFAULT;
2205		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2206			goto out;
2207		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2208		break;
2209	}
2210	case KVM_TRANSLATE: {
2211		struct kvm_translation tr;
2212
2213		r = -EFAULT;
2214		if (copy_from_user(&tr, argp, sizeof(tr)))
2215			goto out;
2216		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2217		if (r)
2218			goto out;
2219		r = -EFAULT;
2220		if (copy_to_user(argp, &tr, sizeof(tr)))
2221			goto out;
2222		r = 0;
2223		break;
2224	}
2225	case KVM_SET_GUEST_DEBUG: {
2226		struct kvm_guest_debug dbg;
2227
2228		r = -EFAULT;
2229		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2230			goto out;
2231		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2232		break;
2233	}
2234	case KVM_SET_SIGNAL_MASK: {
2235		struct kvm_signal_mask __user *sigmask_arg = argp;
2236		struct kvm_signal_mask kvm_sigmask;
2237		sigset_t sigset, *p;
2238
2239		p = NULL;
2240		if (argp) {
2241			r = -EFAULT;
2242			if (copy_from_user(&kvm_sigmask, argp,
2243					   sizeof(kvm_sigmask)))
2244				goto out;
2245			r = -EINVAL;
2246			if (kvm_sigmask.len != sizeof(sigset))
2247				goto out;
2248			r = -EFAULT;
2249			if (copy_from_user(&sigset, sigmask_arg->sigset,
2250					   sizeof(sigset)))
2251				goto out;
2252			p = &sigset;
2253		}
2254		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2255		break;
2256	}
2257	case KVM_GET_FPU: {
2258		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2259		r = -ENOMEM;
2260		if (!fpu)
2261			goto out;
2262		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2263		if (r)
2264			goto out;
2265		r = -EFAULT;
2266		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2267			goto out;
2268		r = 0;
2269		break;
2270	}
2271	case KVM_SET_FPU: {
2272		fpu = memdup_user(argp, sizeof(*fpu));
2273		if (IS_ERR(fpu)) {
2274			r = PTR_ERR(fpu);
2275			fpu = NULL;
2276			goto out;
2277		}
2278		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2279		break;
2280	}
2281	default:
2282		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2283	}
2284out:
2285	vcpu_put(vcpu);
2286	kfree(fpu);
2287	kfree(kvm_sregs);
2288	return r;
2289}
2290
2291#ifdef CONFIG_KVM_COMPAT
2292static long kvm_vcpu_compat_ioctl(struct file *filp,
2293				  unsigned int ioctl, unsigned long arg)
2294{
2295	struct kvm_vcpu *vcpu = filp->private_data;
2296	void __user *argp = compat_ptr(arg);
2297	int r;
2298
2299	if (vcpu->kvm->mm != current->mm)
2300		return -EIO;
2301
2302	switch (ioctl) {
2303	case KVM_SET_SIGNAL_MASK: {
2304		struct kvm_signal_mask __user *sigmask_arg = argp;
2305		struct kvm_signal_mask kvm_sigmask;
2306		compat_sigset_t csigset;
2307		sigset_t sigset;
2308
2309		if (argp) {
2310			r = -EFAULT;
2311			if (copy_from_user(&kvm_sigmask, argp,
2312					   sizeof(kvm_sigmask)))
2313				goto out;
2314			r = -EINVAL;
2315			if (kvm_sigmask.len != sizeof(csigset))
2316				goto out;
2317			r = -EFAULT;
2318			if (copy_from_user(&csigset, sigmask_arg->sigset,
2319					   sizeof(csigset)))
2320				goto out;
2321			sigset_from_compat(&sigset, &csigset);
2322			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2323		} else
2324			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2325		break;
2326	}
2327	default:
2328		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2329	}
2330
2331out:
2332	return r;
2333}
2334#endif
2335
2336static int kvm_device_ioctl_attr(struct kvm_device *dev,
2337				 int (*accessor)(struct kvm_device *dev,
2338						 struct kvm_device_attr *attr),
2339				 unsigned long arg)
2340{
2341	struct kvm_device_attr attr;
2342
2343	if (!accessor)
2344		return -EPERM;
2345
2346	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2347		return -EFAULT;
2348
2349	return accessor(dev, &attr);
2350}
2351
2352static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2353			     unsigned long arg)
2354{
2355	struct kvm_device *dev = filp->private_data;
2356
2357	switch (ioctl) {
2358	case KVM_SET_DEVICE_ATTR:
2359		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2360	case KVM_GET_DEVICE_ATTR:
2361		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2362	case KVM_HAS_DEVICE_ATTR:
2363		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2364	default:
2365		if (dev->ops->ioctl)
2366			return dev->ops->ioctl(dev, ioctl, arg);
2367
2368		return -ENOTTY;
2369	}
2370}
2371
2372static int kvm_device_release(struct inode *inode, struct file *filp)
2373{
2374	struct kvm_device *dev = filp->private_data;
2375	struct kvm *kvm = dev->kvm;
2376
2377	kvm_put_kvm(kvm);
2378	return 0;
2379}
2380
2381static const struct file_operations kvm_device_fops = {
2382	.unlocked_ioctl = kvm_device_ioctl,
2383#ifdef CONFIG_KVM_COMPAT
2384	.compat_ioctl = kvm_device_ioctl,
2385#endif
2386	.release = kvm_device_release,
2387};
2388
2389struct kvm_device *kvm_device_from_filp(struct file *filp)
2390{
2391	if (filp->f_op != &kvm_device_fops)
2392		return NULL;
2393
2394	return filp->private_data;
2395}
2396
2397static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2398#ifdef CONFIG_KVM_MPIC
2399	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2400	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2401#endif
2402
2403#ifdef CONFIG_KVM_XICS
2404	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2405#endif
2406};
2407
2408int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2409{
2410	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2411		return -ENOSPC;
2412
2413	if (kvm_device_ops_table[type] != NULL)
2414		return -EEXIST;
2415
2416	kvm_device_ops_table[type] = ops;
2417	return 0;
2418}
2419
2420void kvm_unregister_device_ops(u32 type)
2421{
2422	if (kvm_device_ops_table[type] != NULL)
2423		kvm_device_ops_table[type] = NULL;
2424}
2425
2426static int kvm_ioctl_create_device(struct kvm *kvm,
2427				   struct kvm_create_device *cd)
2428{
2429	struct kvm_device_ops *ops = NULL;
2430	struct kvm_device *dev;
2431	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2432	int ret;
2433
2434	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2435		return -ENODEV;
2436
2437	ops = kvm_device_ops_table[cd->type];
2438	if (ops == NULL)
2439		return -ENODEV;
2440
2441	if (test)
2442		return 0;
2443
2444	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2445	if (!dev)
2446		return -ENOMEM;
2447
2448	dev->ops = ops;
2449	dev->kvm = kvm;
2450
2451	ret = ops->create(dev, cd->type);
2452	if (ret < 0) {
2453		kfree(dev);
2454		return ret;
2455	}
2456
2457	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2458	if (ret < 0) {
2459		ops->destroy(dev);
2460		return ret;
2461	}
2462
2463	list_add(&dev->vm_node, &kvm->devices);
2464	kvm_get_kvm(kvm);
2465	cd->fd = ret;
2466	return 0;
2467}
2468
2469static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2470{
2471	switch (arg) {
2472	case KVM_CAP_USER_MEMORY:
2473	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2474	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2475#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2476	case KVM_CAP_SET_BOOT_CPU_ID:
2477#endif
2478	case KVM_CAP_INTERNAL_ERROR_DATA:
2479#ifdef CONFIG_HAVE_KVM_MSI
2480	case KVM_CAP_SIGNAL_MSI:
2481#endif
2482#ifdef CONFIG_HAVE_KVM_IRQFD
2483	case KVM_CAP_IRQFD:
2484	case KVM_CAP_IRQFD_RESAMPLE:
2485#endif
2486	case KVM_CAP_CHECK_EXTENSION_VM:
2487		return 1;
2488#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2489	case KVM_CAP_IRQ_ROUTING:
2490		return KVM_MAX_IRQ_ROUTES;
2491#endif
2492	default:
2493		break;
2494	}
2495	return kvm_vm_ioctl_check_extension(kvm, arg);
2496}
2497
2498static long kvm_vm_ioctl(struct file *filp,
2499			   unsigned int ioctl, unsigned long arg)
2500{
2501	struct kvm *kvm = filp->private_data;
2502	void __user *argp = (void __user *)arg;
2503	int r;
2504
2505	if (kvm->mm != current->mm)
2506		return -EIO;
2507	switch (ioctl) {
2508	case KVM_CREATE_VCPU:
2509		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2510		break;
2511	case KVM_SET_USER_MEMORY_REGION: {
2512		struct kvm_userspace_memory_region kvm_userspace_mem;
2513
2514		r = -EFAULT;
2515		if (copy_from_user(&kvm_userspace_mem, argp,
2516						sizeof(kvm_userspace_mem)))
2517			goto out;
2518
2519		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2520		break;
2521	}
2522	case KVM_GET_DIRTY_LOG: {
2523		struct kvm_dirty_log log;
2524
2525		r = -EFAULT;
2526		if (copy_from_user(&log, argp, sizeof(log)))
2527			goto out;
2528		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2529		break;
2530	}
2531#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2532	case KVM_REGISTER_COALESCED_MMIO: {
2533		struct kvm_coalesced_mmio_zone zone;
2534
2535		r = -EFAULT;
2536		if (copy_from_user(&zone, argp, sizeof(zone)))
2537			goto out;
2538		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2539		break;
2540	}
2541	case KVM_UNREGISTER_COALESCED_MMIO: {
2542		struct kvm_coalesced_mmio_zone zone;
2543
2544		r = -EFAULT;
2545		if (copy_from_user(&zone, argp, sizeof(zone)))
2546			goto out;
2547		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2548		break;
2549	}
2550#endif
2551	case KVM_IRQFD: {
2552		struct kvm_irqfd data;
2553
2554		r = -EFAULT;
2555		if (copy_from_user(&data, argp, sizeof(data)))
2556			goto out;
2557		r = kvm_irqfd(kvm, &data);
2558		break;
2559	}
2560	case KVM_IOEVENTFD: {
2561		struct kvm_ioeventfd data;
2562
2563		r = -EFAULT;
2564		if (copy_from_user(&data, argp, sizeof(data)))
2565			goto out;
2566		r = kvm_ioeventfd(kvm, &data);
2567		break;
2568	}
2569#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2570	case KVM_SET_BOOT_CPU_ID:
2571		r = 0;
2572		mutex_lock(&kvm->lock);
2573		if (atomic_read(&kvm->online_vcpus) != 0)
2574			r = -EBUSY;
2575		else
2576			kvm->bsp_vcpu_id = arg;
2577		mutex_unlock(&kvm->lock);
2578		break;
2579#endif
2580#ifdef CONFIG_HAVE_KVM_MSI
2581	case KVM_SIGNAL_MSI: {
2582		struct kvm_msi msi;
2583
2584		r = -EFAULT;
2585		if (copy_from_user(&msi, argp, sizeof(msi)))
2586			goto out;
2587		r = kvm_send_userspace_msi(kvm, &msi);
2588		break;
2589	}
2590#endif
2591#ifdef __KVM_HAVE_IRQ_LINE
2592	case KVM_IRQ_LINE_STATUS:
2593	case KVM_IRQ_LINE: {
2594		struct kvm_irq_level irq_event;
2595
2596		r = -EFAULT;
2597		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2598			goto out;
2599
2600		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2601					ioctl == KVM_IRQ_LINE_STATUS);
2602		if (r)
2603			goto out;
2604
2605		r = -EFAULT;
2606		if (ioctl == KVM_IRQ_LINE_STATUS) {
2607			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2608				goto out;
2609		}
2610
2611		r = 0;
2612		break;
2613	}
2614#endif
2615#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2616	case KVM_SET_GSI_ROUTING: {
2617		struct kvm_irq_routing routing;
2618		struct kvm_irq_routing __user *urouting;
2619		struct kvm_irq_routing_entry *entries;
2620
2621		r = -EFAULT;
2622		if (copy_from_user(&routing, argp, sizeof(routing)))
2623			goto out;
2624		r = -EINVAL;
2625		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2626			goto out;
2627		if (routing.flags)
2628			goto out;
2629		r = -ENOMEM;
2630		entries = vmalloc(routing.nr * sizeof(*entries));
2631		if (!entries)
2632			goto out;
2633		r = -EFAULT;
2634		urouting = argp;
2635		if (copy_from_user(entries, urouting->entries,
2636				   routing.nr * sizeof(*entries)))
2637			goto out_free_irq_routing;
2638		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2639					routing.flags);
2640out_free_irq_routing:
2641		vfree(entries);
2642		break;
2643	}
2644#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2645	case KVM_CREATE_DEVICE: {
2646		struct kvm_create_device cd;
2647
2648		r = -EFAULT;
2649		if (copy_from_user(&cd, argp, sizeof(cd)))
2650			goto out;
2651
2652		r = kvm_ioctl_create_device(kvm, &cd);
2653		if (r)
2654			goto out;
2655
2656		r = -EFAULT;
2657		if (copy_to_user(argp, &cd, sizeof(cd)))
2658			goto out;
2659
2660		r = 0;
2661		break;
2662	}
2663	case KVM_CHECK_EXTENSION:
2664		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2665		break;
2666	default:
2667		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2668	}
2669out:
2670	return r;
2671}
2672
2673#ifdef CONFIG_KVM_COMPAT
2674struct compat_kvm_dirty_log {
2675	__u32 slot;
2676	__u32 padding1;
2677	union {
2678		compat_uptr_t dirty_bitmap; /* one bit per page */
2679		__u64 padding2;
2680	};
2681};
2682
2683static long kvm_vm_compat_ioctl(struct file *filp,
2684			   unsigned int ioctl, unsigned long arg)
2685{
2686	struct kvm *kvm = filp->private_data;
2687	int r;
2688
2689	if (kvm->mm != current->mm)
2690		return -EIO;
2691	switch (ioctl) {
2692	case KVM_GET_DIRTY_LOG: {
2693		struct compat_kvm_dirty_log compat_log;
2694		struct kvm_dirty_log log;
2695
2696		r = -EFAULT;
2697		if (copy_from_user(&compat_log, (void __user *)arg,
2698				   sizeof(compat_log)))
2699			goto out;
2700		log.slot	 = compat_log.slot;
2701		log.padding1	 = compat_log.padding1;
2702		log.padding2	 = compat_log.padding2;
2703		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2704
2705		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2706		break;
2707	}
2708	default:
2709		r = kvm_vm_ioctl(filp, ioctl, arg);
2710	}
2711
2712out:
2713	return r;
2714}
2715#endif
2716
2717static struct file_operations kvm_vm_fops = {
2718	.release        = kvm_vm_release,
2719	.unlocked_ioctl = kvm_vm_ioctl,
2720#ifdef CONFIG_KVM_COMPAT
2721	.compat_ioctl   = kvm_vm_compat_ioctl,
2722#endif
2723	.llseek		= noop_llseek,
2724};
2725
2726static int kvm_dev_ioctl_create_vm(unsigned long type)
2727{
2728	int r;
2729	struct kvm *kvm;
2730
2731	kvm = kvm_create_vm(type);
2732	if (IS_ERR(kvm))
2733		return PTR_ERR(kvm);
2734#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2735	r = kvm_coalesced_mmio_init(kvm);
2736	if (r < 0) {
2737		kvm_put_kvm(kvm);
2738		return r;
2739	}
2740#endif
2741	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2742	if (r < 0)
2743		kvm_put_kvm(kvm);
2744
2745	return r;
2746}
2747
2748static long kvm_dev_ioctl(struct file *filp,
2749			  unsigned int ioctl, unsigned long arg)
2750{
2751	long r = -EINVAL;
2752
2753	switch (ioctl) {
2754	case KVM_GET_API_VERSION:
2755		if (arg)
2756			goto out;
2757		r = KVM_API_VERSION;
2758		break;
2759	case KVM_CREATE_VM:
2760		r = kvm_dev_ioctl_create_vm(arg);
2761		break;
2762	case KVM_CHECK_EXTENSION:
2763		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2764		break;
2765	case KVM_GET_VCPU_MMAP_SIZE:
2766		if (arg)
2767			goto out;
2768		r = PAGE_SIZE;     /* struct kvm_run */
2769#ifdef CONFIG_X86
2770		r += PAGE_SIZE;    /* pio data page */
2771#endif
2772#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2773		r += PAGE_SIZE;    /* coalesced mmio ring page */
2774#endif
2775		break;
2776	case KVM_TRACE_ENABLE:
2777	case KVM_TRACE_PAUSE:
2778	case KVM_TRACE_DISABLE:
2779		r = -EOPNOTSUPP;
2780		break;
2781	default:
2782		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2783	}
2784out:
2785	return r;
2786}
2787
2788static struct file_operations kvm_chardev_ops = {
2789	.unlocked_ioctl = kvm_dev_ioctl,
2790	.compat_ioctl   = kvm_dev_ioctl,
2791	.llseek		= noop_llseek,
2792};
2793
2794static struct miscdevice kvm_dev = {
2795	KVM_MINOR,
2796	"kvm",
2797	&kvm_chardev_ops,
2798};
2799
2800static void hardware_enable_nolock(void *junk)
2801{
2802	int cpu = raw_smp_processor_id();
2803	int r;
2804
2805	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2806		return;
2807
2808	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2809
2810	r = kvm_arch_hardware_enable();
2811
2812	if (r) {
2813		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2814		atomic_inc(&hardware_enable_failed);
2815		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2816	}
2817}
2818
2819static void hardware_enable(void)
2820{
2821	raw_spin_lock(&kvm_count_lock);
2822	if (kvm_usage_count)
2823		hardware_enable_nolock(NULL);
2824	raw_spin_unlock(&kvm_count_lock);
2825}
2826
2827static void hardware_disable_nolock(void *junk)
2828{
2829	int cpu = raw_smp_processor_id();
2830
2831	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2832		return;
2833	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2834	kvm_arch_hardware_disable();
2835}
2836
2837static void hardware_disable(void)
2838{
2839	raw_spin_lock(&kvm_count_lock);
2840	if (kvm_usage_count)
2841		hardware_disable_nolock(NULL);
2842	raw_spin_unlock(&kvm_count_lock);
2843}
2844
2845static void hardware_disable_all_nolock(void)
2846{
2847	BUG_ON(!kvm_usage_count);
2848
2849	kvm_usage_count--;
2850	if (!kvm_usage_count)
2851		on_each_cpu(hardware_disable_nolock, NULL, 1);
2852}
2853
2854static void hardware_disable_all(void)
2855{
2856	raw_spin_lock(&kvm_count_lock);
2857	hardware_disable_all_nolock();
2858	raw_spin_unlock(&kvm_count_lock);
2859}
2860
2861static int hardware_enable_all(void)
2862{
2863	int r = 0;
2864
2865	raw_spin_lock(&kvm_count_lock);
2866
2867	kvm_usage_count++;
2868	if (kvm_usage_count == 1) {
2869		atomic_set(&hardware_enable_failed, 0);
2870		on_each_cpu(hardware_enable_nolock, NULL, 1);
2871
2872		if (atomic_read(&hardware_enable_failed)) {
2873			hardware_disable_all_nolock();
2874			r = -EBUSY;
2875		}
2876	}
2877
2878	raw_spin_unlock(&kvm_count_lock);
2879
2880	return r;
2881}
2882
2883static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2884			   void *v)
2885{
2886	int cpu = (long)v;
2887
2888	val &= ~CPU_TASKS_FROZEN;
2889	switch (val) {
2890	case CPU_DYING:
2891		pr_info("kvm: disabling virtualization on CPU%d\n",
2892		       cpu);
2893		hardware_disable();
2894		break;
2895	case CPU_STARTING:
2896		pr_info("kvm: enabling virtualization on CPU%d\n",
2897		       cpu);
2898		hardware_enable();
2899		break;
2900	}
2901	return NOTIFY_OK;
2902}
2903
2904static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2905		      void *v)
2906{
2907	/*
2908	 * Some (well, at least mine) BIOSes hang on reboot if
2909	 * in vmx root mode.
2910	 *
2911	 * And Intel TXT required VMX off for all cpu when system shutdown.
2912	 */
2913	pr_info("kvm: exiting hardware virtualization\n");
2914	kvm_rebooting = true;
2915	on_each_cpu(hardware_disable_nolock, NULL, 1);
2916	return NOTIFY_OK;
2917}
2918
2919static struct notifier_block kvm_reboot_notifier = {
2920	.notifier_call = kvm_reboot,
2921	.priority = 0,
2922};
2923
2924static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2925{
2926	int i;
2927
2928	for (i = 0; i < bus->dev_count; i++) {
2929		struct kvm_io_device *pos = bus->range[i].dev;
2930
2931		kvm_iodevice_destructor(pos);
2932	}
2933	kfree(bus);
2934}
2935
2936static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2937				 const struct kvm_io_range *r2)
2938{
2939	gpa_t addr1 = r1->addr;
2940	gpa_t addr2 = r2->addr;
2941
2942	if (addr1 < addr2)
2943		return -1;
2944
2945	/* If r2->len == 0, match the exact address.  If r2->len != 0,
2946	 * accept any overlapping write.  Any order is acceptable for
2947	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
2948	 * we process all of them.
2949	 */
2950	if (r2->len) {
2951		addr1 += r1->len;
2952		addr2 += r2->len;
2953	}
2954
2955	if (addr1 > addr2)
2956		return 1;
2957
2958	return 0;
2959}
2960
2961static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2962{
2963	return kvm_io_bus_cmp(p1, p2);
2964}
2965
2966static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2967			  gpa_t addr, int len)
2968{
2969	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2970		.addr = addr,
2971		.len = len,
2972		.dev = dev,
2973	};
2974
2975	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2976		kvm_io_bus_sort_cmp, NULL);
2977
2978	return 0;
2979}
2980
2981static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2982			     gpa_t addr, int len)
2983{
2984	struct kvm_io_range *range, key;
2985	int off;
2986
2987	key = (struct kvm_io_range) {
2988		.addr = addr,
2989		.len = len,
2990	};
2991
2992	range = bsearch(&key, bus->range, bus->dev_count,
2993			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2994	if (range == NULL)
2995		return -ENOENT;
2996
2997	off = range - bus->range;
2998
2999	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3000		off--;
3001
3002	return off;
3003}
3004
3005static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3006			      struct kvm_io_range *range, const void *val)
3007{
3008	int idx;
3009
3010	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3011	if (idx < 0)
3012		return -EOPNOTSUPP;
3013
3014	while (idx < bus->dev_count &&
3015		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3016		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3017					range->len, val))
3018			return idx;
3019		idx++;
3020	}
3021
3022	return -EOPNOTSUPP;
3023}
3024
3025/* kvm_io_bus_write - called under kvm->slots_lock */
3026int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3027		     int len, const void *val)
3028{
3029	struct kvm_io_bus *bus;
3030	struct kvm_io_range range;
3031	int r;
3032
3033	range = (struct kvm_io_range) {
3034		.addr = addr,
3035		.len = len,
3036	};
3037
3038	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3039	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3040	return r < 0 ? r : 0;
3041}
3042
3043/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3044int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3045			    gpa_t addr, int len, const void *val, long cookie)
3046{
3047	struct kvm_io_bus *bus;
3048	struct kvm_io_range range;
3049
3050	range = (struct kvm_io_range) {
3051		.addr = addr,
3052		.len = len,
3053	};
3054
3055	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3056
3057	/* First try the device referenced by cookie. */
3058	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3059	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3060		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3061					val))
3062			return cookie;
3063
3064	/*
3065	 * cookie contained garbage; fall back to search and return the
3066	 * correct cookie value.
3067	 */
3068	return __kvm_io_bus_write(vcpu, bus, &range, val);
3069}
3070
3071static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3072			     struct kvm_io_range *range, void *val)
3073{
3074	int idx;
3075
3076	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3077	if (idx < 0)
3078		return -EOPNOTSUPP;
3079
3080	while (idx < bus->dev_count &&
3081		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3082		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3083				       range->len, val))
3084			return idx;
3085		idx++;
3086	}
3087
3088	return -EOPNOTSUPP;
3089}
3090EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3091
3092/* kvm_io_bus_read - called under kvm->slots_lock */
3093int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3094		    int len, void *val)
3095{
3096	struct kvm_io_bus *bus;
3097	struct kvm_io_range range;
3098	int r;
3099
3100	range = (struct kvm_io_range) {
3101		.addr = addr,
3102		.len = len,
3103	};
3104
3105	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3106	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3107	return r < 0 ? r : 0;
3108}
3109
3110
3111/* Caller must hold slots_lock. */
3112int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3113			    int len, struct kvm_io_device *dev)
3114{
3115	struct kvm_io_bus *new_bus, *bus;
3116
3117	bus = kvm->buses[bus_idx];
3118	/* exclude ioeventfd which is limited by maximum fd */
3119	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3120		return -ENOSPC;
3121
3122	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3123			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3124	if (!new_bus)
3125		return -ENOMEM;
3126	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3127	       sizeof(struct kvm_io_range)));
3128	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3129	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3130	synchronize_srcu_expedited(&kvm->srcu);
3131	kfree(bus);
3132
3133	return 0;
3134}
3135
3136/* Caller must hold slots_lock. */
3137int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3138			      struct kvm_io_device *dev)
3139{
3140	int i, r;
3141	struct kvm_io_bus *new_bus, *bus;
3142
3143	bus = kvm->buses[bus_idx];
3144	r = -ENOENT;
3145	for (i = 0; i < bus->dev_count; i++)
3146		if (bus->range[i].dev == dev) {
3147			r = 0;
3148			break;
3149		}
3150
3151	if (r)
3152		return r;
3153
3154	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3155			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3156	if (!new_bus)
3157		return -ENOMEM;
3158
3159	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3160	new_bus->dev_count--;
3161	memcpy(new_bus->range + i, bus->range + i + 1,
3162	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3163
3164	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3165	synchronize_srcu_expedited(&kvm->srcu);
3166	kfree(bus);
3167	return r;
3168}
3169
3170static struct notifier_block kvm_cpu_notifier = {
3171	.notifier_call = kvm_cpu_hotplug,
3172};
3173
3174static int vm_stat_get(void *_offset, u64 *val)
3175{
3176	unsigned offset = (long)_offset;
3177	struct kvm *kvm;
3178
3179	*val = 0;
3180	spin_lock(&kvm_lock);
3181	list_for_each_entry(kvm, &vm_list, vm_list)
3182		*val += *(u32 *)((void *)kvm + offset);
3183	spin_unlock(&kvm_lock);
3184	return 0;
3185}
3186
3187DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3188
3189static int vcpu_stat_get(void *_offset, u64 *val)
3190{
3191	unsigned offset = (long)_offset;
3192	struct kvm *kvm;
3193	struct kvm_vcpu *vcpu;
3194	int i;
3195
3196	*val = 0;
3197	spin_lock(&kvm_lock);
3198	list_for_each_entry(kvm, &vm_list, vm_list)
3199		kvm_for_each_vcpu(i, vcpu, kvm)
3200			*val += *(u32 *)((void *)vcpu + offset);
3201
3202	spin_unlock(&kvm_lock);
3203	return 0;
3204}
3205
3206DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3207
3208static const struct file_operations *stat_fops[] = {
3209	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3210	[KVM_STAT_VM]   = &vm_stat_fops,
3211};
3212
3213static int kvm_init_debug(void)
3214{
3215	int r = -EEXIST;
3216	struct kvm_stats_debugfs_item *p;
3217
3218	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3219	if (kvm_debugfs_dir == NULL)
3220		goto out;
3221
3222	for (p = debugfs_entries; p->name; ++p) {
3223		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3224						(void *)(long)p->offset,
3225						stat_fops[p->kind]);
3226		if (p->dentry == NULL)
3227			goto out_dir;
3228	}
3229
3230	return 0;
3231
3232out_dir:
3233	debugfs_remove_recursive(kvm_debugfs_dir);
3234out:
3235	return r;
3236}
3237
3238static void kvm_exit_debug(void)
3239{
3240	struct kvm_stats_debugfs_item *p;
3241
3242	for (p = debugfs_entries; p->name; ++p)
3243		debugfs_remove(p->dentry);
3244	debugfs_remove(kvm_debugfs_dir);
3245}
3246
3247static int kvm_suspend(void)
3248{
3249	if (kvm_usage_count)
3250		hardware_disable_nolock(NULL);
3251	return 0;
3252}
3253
3254static void kvm_resume(void)
3255{
3256	if (kvm_usage_count) {
3257		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3258		hardware_enable_nolock(NULL);
3259	}
3260}
3261
3262static struct syscore_ops kvm_syscore_ops = {
3263	.suspend = kvm_suspend,
3264	.resume = kvm_resume,
3265};
3266
3267static inline
3268struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3269{
3270	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3271}
3272
3273static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3274{
3275	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3276
3277	if (vcpu->preempted)
3278		vcpu->preempted = false;
3279
3280	kvm_arch_sched_in(vcpu, cpu);
3281
3282	kvm_arch_vcpu_load(vcpu, cpu);
3283}
3284
3285static void kvm_sched_out(struct preempt_notifier *pn,
3286			  struct task_struct *next)
3287{
3288	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3289
3290	if (current->state == TASK_RUNNING)
3291		vcpu->preempted = true;
3292	kvm_arch_vcpu_put(vcpu);
3293}
3294
3295int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3296		  struct module *module)
3297{
3298	int r;
3299	int cpu;
3300
3301	r = kvm_arch_init(opaque);
3302	if (r)
3303		goto out_fail;
3304
3305	/*
3306	 * kvm_arch_init makes sure there's at most one caller
3307	 * for architectures that support multiple implementations,
3308	 * like intel and amd on x86.
3309	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3310	 * conflicts in case kvm is already setup for another implementation.
3311	 */
3312	r = kvm_irqfd_init();
3313	if (r)
3314		goto out_irqfd;
3315
3316	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3317		r = -ENOMEM;
3318		goto out_free_0;
3319	}
3320
3321	r = kvm_arch_hardware_setup();
3322	if (r < 0)
3323		goto out_free_0a;
3324
3325	for_each_online_cpu(cpu) {
3326		smp_call_function_single(cpu,
3327				kvm_arch_check_processor_compat,
3328				&r, 1);
3329		if (r < 0)
3330			goto out_free_1;
3331	}
3332
3333	r = register_cpu_notifier(&kvm_cpu_notifier);
3334	if (r)
3335		goto out_free_2;
3336	register_reboot_notifier(&kvm_reboot_notifier);
3337
3338	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3339	if (!vcpu_align)
3340		vcpu_align = __alignof__(struct kvm_vcpu);
3341	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3342					   0, NULL);
3343	if (!kvm_vcpu_cache) {
3344		r = -ENOMEM;
3345		goto out_free_3;
3346	}
3347
3348	r = kvm_async_pf_init();
3349	if (r)
3350		goto out_free;
3351
3352	kvm_chardev_ops.owner = module;
3353	kvm_vm_fops.owner = module;
3354	kvm_vcpu_fops.owner = module;
3355
3356	r = misc_register(&kvm_dev);
3357	if (r) {
3358		pr_err("kvm: misc device register failed\n");
3359		goto out_unreg;
3360	}
3361
3362	register_syscore_ops(&kvm_syscore_ops);
3363
3364	kvm_preempt_ops.sched_in = kvm_sched_in;
3365	kvm_preempt_ops.sched_out = kvm_sched_out;
3366
3367	r = kvm_init_debug();
3368	if (r) {
3369		pr_err("kvm: create debugfs files failed\n");
3370		goto out_undebugfs;
3371	}
3372
3373	r = kvm_vfio_ops_init();
3374	WARN_ON(r);
3375
3376	return 0;
3377
3378out_undebugfs:
3379	unregister_syscore_ops(&kvm_syscore_ops);
3380	misc_deregister(&kvm_dev);
3381out_unreg:
3382	kvm_async_pf_deinit();
3383out_free:
3384	kmem_cache_destroy(kvm_vcpu_cache);
3385out_free_3:
3386	unregister_reboot_notifier(&kvm_reboot_notifier);
3387	unregister_cpu_notifier(&kvm_cpu_notifier);
3388out_free_2:
3389out_free_1:
3390	kvm_arch_hardware_unsetup();
3391out_free_0a:
3392	free_cpumask_var(cpus_hardware_enabled);
3393out_free_0:
3394	kvm_irqfd_exit();
3395out_irqfd:
3396	kvm_arch_exit();
3397out_fail:
3398	return r;
3399}
3400EXPORT_SYMBOL_GPL(kvm_init);
3401
3402void kvm_exit(void)
3403{
3404	kvm_exit_debug();
3405	misc_deregister(&kvm_dev);
3406	kmem_cache_destroy(kvm_vcpu_cache);
3407	kvm_async_pf_deinit();
3408	unregister_syscore_ops(&kvm_syscore_ops);
3409	unregister_reboot_notifier(&kvm_reboot_notifier);
3410	unregister_cpu_notifier(&kvm_cpu_notifier);
3411	on_each_cpu(hardware_disable_nolock, NULL, 1);
3412	kvm_arch_hardware_unsetup();
3413	kvm_arch_exit();
3414	kvm_irqfd_exit();
3415	free_cpumask_var(cpus_hardware_enabled);
3416	kvm_vfio_ops_exit();
3417}
3418EXPORT_SYMBOL_GPL(kvm_exit);
3419