1/* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19#include <kvm/iodev.h> 20 21#include <linux/kvm_host.h> 22#include <linux/kvm.h> 23#include <linux/module.h> 24#include <linux/errno.h> 25#include <linux/percpu.h> 26#include <linux/mm.h> 27#include <linux/miscdevice.h> 28#include <linux/vmalloc.h> 29#include <linux/reboot.h> 30#include <linux/debugfs.h> 31#include <linux/highmem.h> 32#include <linux/file.h> 33#include <linux/syscore_ops.h> 34#include <linux/cpu.h> 35#include <linux/sched.h> 36#include <linux/cpumask.h> 37#include <linux/smp.h> 38#include <linux/anon_inodes.h> 39#include <linux/profile.h> 40#include <linux/kvm_para.h> 41#include <linux/pagemap.h> 42#include <linux/mman.h> 43#include <linux/swap.h> 44#include <linux/bitops.h> 45#include <linux/spinlock.h> 46#include <linux/compat.h> 47#include <linux/srcu.h> 48#include <linux/hugetlb.h> 49#include <linux/slab.h> 50#include <linux/sort.h> 51#include <linux/bsearch.h> 52 53#include <asm/processor.h> 54#include <asm/io.h> 55#include <asm/ioctl.h> 56#include <asm/uaccess.h> 57#include <asm/pgtable.h> 58 59#include "coalesced_mmio.h" 60#include "async_pf.h" 61#include "vfio.h" 62 63#define CREATE_TRACE_POINTS 64#include <trace/events/kvm.h> 65 66MODULE_AUTHOR("Qumranet"); 67MODULE_LICENSE("GPL"); 68 69static unsigned int halt_poll_ns; 70module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 71 72/* 73 * Ordering of locks: 74 * 75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 76 */ 77 78DEFINE_SPINLOCK(kvm_lock); 79static DEFINE_RAW_SPINLOCK(kvm_count_lock); 80LIST_HEAD(vm_list); 81 82static cpumask_var_t cpus_hardware_enabled; 83static int kvm_usage_count; 84static atomic_t hardware_enable_failed; 85 86struct kmem_cache *kvm_vcpu_cache; 87EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 88 89static __read_mostly struct preempt_ops kvm_preempt_ops; 90 91struct dentry *kvm_debugfs_dir; 92EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 93 94static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 95 unsigned long arg); 96#ifdef CONFIG_KVM_COMPAT 97static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 98 unsigned long arg); 99#endif 100static int hardware_enable_all(void); 101static void hardware_disable_all(void); 102 103static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 104 105static void kvm_release_pfn_dirty(pfn_t pfn); 106static void mark_page_dirty_in_slot(struct kvm *kvm, 107 struct kvm_memory_slot *memslot, gfn_t gfn); 108 109__visible bool kvm_rebooting; 110EXPORT_SYMBOL_GPL(kvm_rebooting); 111 112static bool largepages_enabled = true; 113 114bool kvm_is_reserved_pfn(pfn_t pfn) 115{ 116 if (pfn_valid(pfn)) 117 return PageReserved(pfn_to_page(pfn)); 118 119 return true; 120} 121 122/* 123 * Switches to specified vcpu, until a matching vcpu_put() 124 */ 125int vcpu_load(struct kvm_vcpu *vcpu) 126{ 127 int cpu; 128 129 if (mutex_lock_killable(&vcpu->mutex)) 130 return -EINTR; 131 cpu = get_cpu(); 132 preempt_notifier_register(&vcpu->preempt_notifier); 133 kvm_arch_vcpu_load(vcpu, cpu); 134 put_cpu(); 135 return 0; 136} 137 138void vcpu_put(struct kvm_vcpu *vcpu) 139{ 140 preempt_disable(); 141 kvm_arch_vcpu_put(vcpu); 142 preempt_notifier_unregister(&vcpu->preempt_notifier); 143 preempt_enable(); 144 mutex_unlock(&vcpu->mutex); 145} 146 147static void ack_flush(void *_completed) 148{ 149} 150 151bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 152{ 153 int i, cpu, me; 154 cpumask_var_t cpus; 155 bool called = true; 156 struct kvm_vcpu *vcpu; 157 158 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 159 160 me = get_cpu(); 161 kvm_for_each_vcpu(i, vcpu, kvm) { 162 kvm_make_request(req, vcpu); 163 cpu = vcpu->cpu; 164 165 /* Set ->requests bit before we read ->mode */ 166 smp_mb(); 167 168 if (cpus != NULL && cpu != -1 && cpu != me && 169 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 170 cpumask_set_cpu(cpu, cpus); 171 } 172 if (unlikely(cpus == NULL)) 173 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 174 else if (!cpumask_empty(cpus)) 175 smp_call_function_many(cpus, ack_flush, NULL, 1); 176 else 177 called = false; 178 put_cpu(); 179 free_cpumask_var(cpus); 180 return called; 181} 182 183#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 184void kvm_flush_remote_tlbs(struct kvm *kvm) 185{ 186 long dirty_count = kvm->tlbs_dirty; 187 188 smp_mb(); 189 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 190 ++kvm->stat.remote_tlb_flush; 191 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 192} 193EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 194#endif 195 196void kvm_reload_remote_mmus(struct kvm *kvm) 197{ 198 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 199} 200 201void kvm_make_mclock_inprogress_request(struct kvm *kvm) 202{ 203 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 204} 205 206void kvm_make_scan_ioapic_request(struct kvm *kvm) 207{ 208 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 209} 210 211int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 212{ 213 struct page *page; 214 int r; 215 216 mutex_init(&vcpu->mutex); 217 vcpu->cpu = -1; 218 vcpu->kvm = kvm; 219 vcpu->vcpu_id = id; 220 vcpu->pid = NULL; 221 init_waitqueue_head(&vcpu->wq); 222 kvm_async_pf_vcpu_init(vcpu); 223 224 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 225 if (!page) { 226 r = -ENOMEM; 227 goto fail; 228 } 229 vcpu->run = page_address(page); 230 231 kvm_vcpu_set_in_spin_loop(vcpu, false); 232 kvm_vcpu_set_dy_eligible(vcpu, false); 233 vcpu->preempted = false; 234 235 r = kvm_arch_vcpu_init(vcpu); 236 if (r < 0) 237 goto fail_free_run; 238 return 0; 239 240fail_free_run: 241 free_page((unsigned long)vcpu->run); 242fail: 243 return r; 244} 245EXPORT_SYMBOL_GPL(kvm_vcpu_init); 246 247void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 248{ 249 put_pid(vcpu->pid); 250 kvm_arch_vcpu_uninit(vcpu); 251 free_page((unsigned long)vcpu->run); 252} 253EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 254 255#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 256static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 257{ 258 return container_of(mn, struct kvm, mmu_notifier); 259} 260 261static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 262 struct mm_struct *mm, 263 unsigned long address) 264{ 265 struct kvm *kvm = mmu_notifier_to_kvm(mn); 266 int need_tlb_flush, idx; 267 268 /* 269 * When ->invalidate_page runs, the linux pte has been zapped 270 * already but the page is still allocated until 271 * ->invalidate_page returns. So if we increase the sequence 272 * here the kvm page fault will notice if the spte can't be 273 * established because the page is going to be freed. If 274 * instead the kvm page fault establishes the spte before 275 * ->invalidate_page runs, kvm_unmap_hva will release it 276 * before returning. 277 * 278 * The sequence increase only need to be seen at spin_unlock 279 * time, and not at spin_lock time. 280 * 281 * Increasing the sequence after the spin_unlock would be 282 * unsafe because the kvm page fault could then establish the 283 * pte after kvm_unmap_hva returned, without noticing the page 284 * is going to be freed. 285 */ 286 idx = srcu_read_lock(&kvm->srcu); 287 spin_lock(&kvm->mmu_lock); 288 289 kvm->mmu_notifier_seq++; 290 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 291 /* we've to flush the tlb before the pages can be freed */ 292 if (need_tlb_flush) 293 kvm_flush_remote_tlbs(kvm); 294 295 spin_unlock(&kvm->mmu_lock); 296 297 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 298 299 srcu_read_unlock(&kvm->srcu, idx); 300} 301 302static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 303 struct mm_struct *mm, 304 unsigned long address, 305 pte_t pte) 306{ 307 struct kvm *kvm = mmu_notifier_to_kvm(mn); 308 int idx; 309 310 idx = srcu_read_lock(&kvm->srcu); 311 spin_lock(&kvm->mmu_lock); 312 kvm->mmu_notifier_seq++; 313 kvm_set_spte_hva(kvm, address, pte); 314 spin_unlock(&kvm->mmu_lock); 315 srcu_read_unlock(&kvm->srcu, idx); 316} 317 318static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 319 struct mm_struct *mm, 320 unsigned long start, 321 unsigned long end) 322{ 323 struct kvm *kvm = mmu_notifier_to_kvm(mn); 324 int need_tlb_flush = 0, idx; 325 326 idx = srcu_read_lock(&kvm->srcu); 327 spin_lock(&kvm->mmu_lock); 328 /* 329 * The count increase must become visible at unlock time as no 330 * spte can be established without taking the mmu_lock and 331 * count is also read inside the mmu_lock critical section. 332 */ 333 kvm->mmu_notifier_count++; 334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 335 need_tlb_flush |= kvm->tlbs_dirty; 336 /* we've to flush the tlb before the pages can be freed */ 337 if (need_tlb_flush) 338 kvm_flush_remote_tlbs(kvm); 339 340 spin_unlock(&kvm->mmu_lock); 341 srcu_read_unlock(&kvm->srcu, idx); 342} 343 344static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 345 struct mm_struct *mm, 346 unsigned long start, 347 unsigned long end) 348{ 349 struct kvm *kvm = mmu_notifier_to_kvm(mn); 350 351 spin_lock(&kvm->mmu_lock); 352 /* 353 * This sequence increase will notify the kvm page fault that 354 * the page that is going to be mapped in the spte could have 355 * been freed. 356 */ 357 kvm->mmu_notifier_seq++; 358 smp_wmb(); 359 /* 360 * The above sequence increase must be visible before the 361 * below count decrease, which is ensured by the smp_wmb above 362 * in conjunction with the smp_rmb in mmu_notifier_retry(). 363 */ 364 kvm->mmu_notifier_count--; 365 spin_unlock(&kvm->mmu_lock); 366 367 BUG_ON(kvm->mmu_notifier_count < 0); 368} 369 370static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 371 struct mm_struct *mm, 372 unsigned long start, 373 unsigned long end) 374{ 375 struct kvm *kvm = mmu_notifier_to_kvm(mn); 376 int young, idx; 377 378 idx = srcu_read_lock(&kvm->srcu); 379 spin_lock(&kvm->mmu_lock); 380 381 young = kvm_age_hva(kvm, start, end); 382 if (young) 383 kvm_flush_remote_tlbs(kvm); 384 385 spin_unlock(&kvm->mmu_lock); 386 srcu_read_unlock(&kvm->srcu, idx); 387 388 return young; 389} 390 391static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 392 struct mm_struct *mm, 393 unsigned long address) 394{ 395 struct kvm *kvm = mmu_notifier_to_kvm(mn); 396 int young, idx; 397 398 idx = srcu_read_lock(&kvm->srcu); 399 spin_lock(&kvm->mmu_lock); 400 young = kvm_test_age_hva(kvm, address); 401 spin_unlock(&kvm->mmu_lock); 402 srcu_read_unlock(&kvm->srcu, idx); 403 404 return young; 405} 406 407static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 408 struct mm_struct *mm) 409{ 410 struct kvm *kvm = mmu_notifier_to_kvm(mn); 411 int idx; 412 413 idx = srcu_read_lock(&kvm->srcu); 414 kvm_arch_flush_shadow_all(kvm); 415 srcu_read_unlock(&kvm->srcu, idx); 416} 417 418static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 419 .invalidate_page = kvm_mmu_notifier_invalidate_page, 420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 423 .test_young = kvm_mmu_notifier_test_young, 424 .change_pte = kvm_mmu_notifier_change_pte, 425 .release = kvm_mmu_notifier_release, 426}; 427 428static int kvm_init_mmu_notifier(struct kvm *kvm) 429{ 430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 432} 433 434#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 435 436static int kvm_init_mmu_notifier(struct kvm *kvm) 437{ 438 return 0; 439} 440 441#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 442 443static void kvm_init_memslots_id(struct kvm *kvm) 444{ 445 int i; 446 struct kvm_memslots *slots = kvm->memslots; 447 448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 449 slots->id_to_index[i] = slots->memslots[i].id = i; 450} 451 452static struct kvm *kvm_create_vm(unsigned long type) 453{ 454 int r, i; 455 struct kvm *kvm = kvm_arch_alloc_vm(); 456 457 if (!kvm) 458 return ERR_PTR(-ENOMEM); 459 460 spin_lock_init(&kvm->mmu_lock); 461 atomic_inc(¤t->mm->mm_count); 462 kvm->mm = current->mm; 463 kvm_eventfd_init(kvm); 464 mutex_init(&kvm->lock); 465 mutex_init(&kvm->irq_lock); 466 mutex_init(&kvm->slots_lock); 467 atomic_set(&kvm->users_count, 1); 468 INIT_LIST_HEAD(&kvm->devices); 469 470 r = kvm_arch_init_vm(kvm, type); 471 if (r) 472 goto out_err_no_disable; 473 474 r = hardware_enable_all(); 475 if (r) 476 goto out_err_no_disable; 477 478#ifdef CONFIG_HAVE_KVM_IRQFD 479 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 480#endif 481 482 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 483 484 r = -ENOMEM; 485 kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 486 if (!kvm->memslots) 487 goto out_err_no_srcu; 488 489 /* 490 * Init kvm generation close to the maximum to easily test the 491 * code of handling generation number wrap-around. 492 */ 493 kvm->memslots->generation = -150; 494 495 kvm_init_memslots_id(kvm); 496 if (init_srcu_struct(&kvm->srcu)) 497 goto out_err_no_srcu; 498 if (init_srcu_struct(&kvm->irq_srcu)) 499 goto out_err_no_irq_srcu; 500 for (i = 0; i < KVM_NR_BUSES; i++) { 501 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 502 GFP_KERNEL); 503 if (!kvm->buses[i]) 504 goto out_err; 505 } 506 507 r = kvm_init_mmu_notifier(kvm); 508 if (r) 509 goto out_err; 510 511 spin_lock(&kvm_lock); 512 list_add(&kvm->vm_list, &vm_list); 513 spin_unlock(&kvm_lock); 514 515 return kvm; 516 517out_err: 518 cleanup_srcu_struct(&kvm->irq_srcu); 519out_err_no_irq_srcu: 520 cleanup_srcu_struct(&kvm->srcu); 521out_err_no_srcu: 522 hardware_disable_all(); 523out_err_no_disable: 524 for (i = 0; i < KVM_NR_BUSES; i++) 525 kfree(kvm->buses[i]); 526 kvfree(kvm->memslots); 527 kvm_arch_free_vm(kvm); 528 mmdrop(current->mm); 529 return ERR_PTR(r); 530} 531 532/* 533 * Avoid using vmalloc for a small buffer. 534 * Should not be used when the size is statically known. 535 */ 536void *kvm_kvzalloc(unsigned long size) 537{ 538 if (size > PAGE_SIZE) 539 return vzalloc(size); 540 else 541 return kzalloc(size, GFP_KERNEL); 542} 543 544static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 545{ 546 if (!memslot->dirty_bitmap) 547 return; 548 549 kvfree(memslot->dirty_bitmap); 550 memslot->dirty_bitmap = NULL; 551} 552 553/* 554 * Free any memory in @free but not in @dont. 555 */ 556static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, 557 struct kvm_memory_slot *dont) 558{ 559 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 560 kvm_destroy_dirty_bitmap(free); 561 562 kvm_arch_free_memslot(kvm, free, dont); 563 564 free->npages = 0; 565} 566 567static void kvm_free_physmem(struct kvm *kvm) 568{ 569 struct kvm_memslots *slots = kvm->memslots; 570 struct kvm_memory_slot *memslot; 571 572 kvm_for_each_memslot(memslot, slots) 573 kvm_free_physmem_slot(kvm, memslot, NULL); 574 575 kvfree(kvm->memslots); 576} 577 578static void kvm_destroy_devices(struct kvm *kvm) 579{ 580 struct list_head *node, *tmp; 581 582 list_for_each_safe(node, tmp, &kvm->devices) { 583 struct kvm_device *dev = 584 list_entry(node, struct kvm_device, vm_node); 585 586 list_del(node); 587 dev->ops->destroy(dev); 588 } 589} 590 591static void kvm_destroy_vm(struct kvm *kvm) 592{ 593 int i; 594 struct mm_struct *mm = kvm->mm; 595 596 kvm_arch_sync_events(kvm); 597 spin_lock(&kvm_lock); 598 list_del(&kvm->vm_list); 599 spin_unlock(&kvm_lock); 600 kvm_free_irq_routing(kvm); 601 for (i = 0; i < KVM_NR_BUSES; i++) 602 kvm_io_bus_destroy(kvm->buses[i]); 603 kvm_coalesced_mmio_free(kvm); 604#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 605 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 606#else 607 kvm_arch_flush_shadow_all(kvm); 608#endif 609 kvm_arch_destroy_vm(kvm); 610 kvm_destroy_devices(kvm); 611 kvm_free_physmem(kvm); 612 cleanup_srcu_struct(&kvm->irq_srcu); 613 cleanup_srcu_struct(&kvm->srcu); 614 kvm_arch_free_vm(kvm); 615 hardware_disable_all(); 616 mmdrop(mm); 617} 618 619void kvm_get_kvm(struct kvm *kvm) 620{ 621 atomic_inc(&kvm->users_count); 622} 623EXPORT_SYMBOL_GPL(kvm_get_kvm); 624 625void kvm_put_kvm(struct kvm *kvm) 626{ 627 if (atomic_dec_and_test(&kvm->users_count)) 628 kvm_destroy_vm(kvm); 629} 630EXPORT_SYMBOL_GPL(kvm_put_kvm); 631 632 633static int kvm_vm_release(struct inode *inode, struct file *filp) 634{ 635 struct kvm *kvm = filp->private_data; 636 637 kvm_irqfd_release(kvm); 638 639 kvm_put_kvm(kvm); 640 return 0; 641} 642 643/* 644 * Allocation size is twice as large as the actual dirty bitmap size. 645 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 646 */ 647static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 648{ 649 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 650 651 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 652 if (!memslot->dirty_bitmap) 653 return -ENOMEM; 654 655 return 0; 656} 657 658/* 659 * Insert memslot and re-sort memslots based on their GFN, 660 * so binary search could be used to lookup GFN. 661 * Sorting algorithm takes advantage of having initially 662 * sorted array and known changed memslot position. 663 */ 664static void update_memslots(struct kvm_memslots *slots, 665 struct kvm_memory_slot *new) 666{ 667 int id = new->id; 668 int i = slots->id_to_index[id]; 669 struct kvm_memory_slot *mslots = slots->memslots; 670 671 WARN_ON(mslots[i].id != id); 672 if (!new->npages) { 673 WARN_ON(!mslots[i].npages); 674 new->base_gfn = 0; 675 new->flags = 0; 676 if (mslots[i].npages) 677 slots->used_slots--; 678 } else { 679 if (!mslots[i].npages) 680 slots->used_slots++; 681 } 682 683 while (i < KVM_MEM_SLOTS_NUM - 1 && 684 new->base_gfn <= mslots[i + 1].base_gfn) { 685 if (!mslots[i + 1].npages) 686 break; 687 mslots[i] = mslots[i + 1]; 688 slots->id_to_index[mslots[i].id] = i; 689 i++; 690 } 691 692 /* 693 * The ">=" is needed when creating a slot with base_gfn == 0, 694 * so that it moves before all those with base_gfn == npages == 0. 695 * 696 * On the other hand, if new->npages is zero, the above loop has 697 * already left i pointing to the beginning of the empty part of 698 * mslots, and the ">=" would move the hole backwards in this 699 * case---which is wrong. So skip the loop when deleting a slot. 700 */ 701 if (new->npages) { 702 while (i > 0 && 703 new->base_gfn >= mslots[i - 1].base_gfn) { 704 mslots[i] = mslots[i - 1]; 705 slots->id_to_index[mslots[i].id] = i; 706 i--; 707 } 708 } else 709 WARN_ON_ONCE(i != slots->used_slots); 710 711 mslots[i] = *new; 712 slots->id_to_index[mslots[i].id] = i; 713} 714 715static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 716{ 717 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 718 719#ifdef __KVM_HAVE_READONLY_MEM 720 valid_flags |= KVM_MEM_READONLY; 721#endif 722 723 if (mem->flags & ~valid_flags) 724 return -EINVAL; 725 726 return 0; 727} 728 729static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 730 struct kvm_memslots *slots) 731{ 732 struct kvm_memslots *old_memslots = kvm->memslots; 733 734 /* 735 * Set the low bit in the generation, which disables SPTE caching 736 * until the end of synchronize_srcu_expedited. 737 */ 738 WARN_ON(old_memslots->generation & 1); 739 slots->generation = old_memslots->generation + 1; 740 741 rcu_assign_pointer(kvm->memslots, slots); 742 synchronize_srcu_expedited(&kvm->srcu); 743 744 /* 745 * Increment the new memslot generation a second time. This prevents 746 * vm exits that race with memslot updates from caching a memslot 747 * generation that will (potentially) be valid forever. 748 */ 749 slots->generation++; 750 751 kvm_arch_memslots_updated(kvm); 752 753 return old_memslots; 754} 755 756/* 757 * Allocate some memory and give it an address in the guest physical address 758 * space. 759 * 760 * Discontiguous memory is allowed, mostly for framebuffers. 761 * 762 * Must be called holding kvm->slots_lock for write. 763 */ 764int __kvm_set_memory_region(struct kvm *kvm, 765 struct kvm_userspace_memory_region *mem) 766{ 767 int r; 768 gfn_t base_gfn; 769 unsigned long npages; 770 struct kvm_memory_slot *slot; 771 struct kvm_memory_slot old, new; 772 struct kvm_memslots *slots = NULL, *old_memslots; 773 enum kvm_mr_change change; 774 775 r = check_memory_region_flags(mem); 776 if (r) 777 goto out; 778 779 r = -EINVAL; 780 /* General sanity checks */ 781 if (mem->memory_size & (PAGE_SIZE - 1)) 782 goto out; 783 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 784 goto out; 785 /* We can read the guest memory with __xxx_user() later on. */ 786 if ((mem->slot < KVM_USER_MEM_SLOTS) && 787 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 788 !access_ok(VERIFY_WRITE, 789 (void __user *)(unsigned long)mem->userspace_addr, 790 mem->memory_size))) 791 goto out; 792 if (mem->slot >= KVM_MEM_SLOTS_NUM) 793 goto out; 794 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 795 goto out; 796 797 slot = id_to_memslot(kvm->memslots, mem->slot); 798 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 799 npages = mem->memory_size >> PAGE_SHIFT; 800 801 if (npages > KVM_MEM_MAX_NR_PAGES) 802 goto out; 803 804 if (!npages) 805 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 806 807 new = old = *slot; 808 809 new.id = mem->slot; 810 new.base_gfn = base_gfn; 811 new.npages = npages; 812 new.flags = mem->flags; 813 814 if (npages) { 815 if (!old.npages) 816 change = KVM_MR_CREATE; 817 else { /* Modify an existing slot. */ 818 if ((mem->userspace_addr != old.userspace_addr) || 819 (npages != old.npages) || 820 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 821 goto out; 822 823 if (base_gfn != old.base_gfn) 824 change = KVM_MR_MOVE; 825 else if (new.flags != old.flags) 826 change = KVM_MR_FLAGS_ONLY; 827 else { /* Nothing to change. */ 828 r = 0; 829 goto out; 830 } 831 } 832 } else if (old.npages) { 833 change = KVM_MR_DELETE; 834 } else /* Modify a non-existent slot: disallowed. */ 835 goto out; 836 837 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 838 /* Check for overlaps */ 839 r = -EEXIST; 840 kvm_for_each_memslot(slot, kvm->memslots) { 841 if ((slot->id >= KVM_USER_MEM_SLOTS) || 842 (slot->id == mem->slot)) 843 continue; 844 if (!((base_gfn + npages <= slot->base_gfn) || 845 (base_gfn >= slot->base_gfn + slot->npages))) 846 goto out; 847 } 848 } 849 850 /* Free page dirty bitmap if unneeded */ 851 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 852 new.dirty_bitmap = NULL; 853 854 r = -ENOMEM; 855 if (change == KVM_MR_CREATE) { 856 new.userspace_addr = mem->userspace_addr; 857 858 if (kvm_arch_create_memslot(kvm, &new, npages)) 859 goto out_free; 860 } 861 862 /* Allocate page dirty bitmap if needed */ 863 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 864 if (kvm_create_dirty_bitmap(&new) < 0) 865 goto out_free; 866 } 867 868 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 869 if (!slots) 870 goto out_free; 871 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); 872 873 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 874 slot = id_to_memslot(slots, mem->slot); 875 slot->flags |= KVM_MEMSLOT_INVALID; 876 877 old_memslots = install_new_memslots(kvm, slots); 878 879 /* slot was deleted or moved, clear iommu mapping */ 880 kvm_iommu_unmap_pages(kvm, &old); 881 /* From this point no new shadow pages pointing to a deleted, 882 * or moved, memslot will be created. 883 * 884 * validation of sp->gfn happens in: 885 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 886 * - kvm_is_visible_gfn (mmu_check_roots) 887 */ 888 kvm_arch_flush_shadow_memslot(kvm, slot); 889 890 /* 891 * We can re-use the old_memslots from above, the only difference 892 * from the currently installed memslots is the invalid flag. This 893 * will get overwritten by update_memslots anyway. 894 */ 895 slots = old_memslots; 896 } 897 898 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 899 if (r) 900 goto out_slots; 901 902 /* actual memory is freed via old in kvm_free_physmem_slot below */ 903 if (change == KVM_MR_DELETE) { 904 new.dirty_bitmap = NULL; 905 memset(&new.arch, 0, sizeof(new.arch)); 906 } 907 908 update_memslots(slots, &new); 909 old_memslots = install_new_memslots(kvm, slots); 910 911 kvm_arch_commit_memory_region(kvm, mem, &old, change); 912 913 kvm_free_physmem_slot(kvm, &old, &new); 914 kvfree(old_memslots); 915 916 /* 917 * IOMMU mapping: New slots need to be mapped. Old slots need to be 918 * un-mapped and re-mapped if their base changes. Since base change 919 * unmapping is handled above with slot deletion, mapping alone is 920 * needed here. Anything else the iommu might care about for existing 921 * slots (size changes, userspace addr changes and read-only flag 922 * changes) is disallowed above, so any other attribute changes getting 923 * here can be skipped. 924 */ 925 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 926 r = kvm_iommu_map_pages(kvm, &new); 927 return r; 928 } 929 930 return 0; 931 932out_slots: 933 kvfree(slots); 934out_free: 935 kvm_free_physmem_slot(kvm, &new, &old); 936out: 937 return r; 938} 939EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 940 941int kvm_set_memory_region(struct kvm *kvm, 942 struct kvm_userspace_memory_region *mem) 943{ 944 int r; 945 946 mutex_lock(&kvm->slots_lock); 947 r = __kvm_set_memory_region(kvm, mem); 948 mutex_unlock(&kvm->slots_lock); 949 return r; 950} 951EXPORT_SYMBOL_GPL(kvm_set_memory_region); 952 953static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 954 struct kvm_userspace_memory_region *mem) 955{ 956 if (mem->slot >= KVM_USER_MEM_SLOTS) 957 return -EINVAL; 958 return kvm_set_memory_region(kvm, mem); 959} 960 961int kvm_get_dirty_log(struct kvm *kvm, 962 struct kvm_dirty_log *log, int *is_dirty) 963{ 964 struct kvm_memory_slot *memslot; 965 int r, i; 966 unsigned long n; 967 unsigned long any = 0; 968 969 r = -EINVAL; 970 if (log->slot >= KVM_USER_MEM_SLOTS) 971 goto out; 972 973 memslot = id_to_memslot(kvm->memslots, log->slot); 974 r = -ENOENT; 975 if (!memslot->dirty_bitmap) 976 goto out; 977 978 n = kvm_dirty_bitmap_bytes(memslot); 979 980 for (i = 0; !any && i < n/sizeof(long); ++i) 981 any = memslot->dirty_bitmap[i]; 982 983 r = -EFAULT; 984 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 985 goto out; 986 987 if (any) 988 *is_dirty = 1; 989 990 r = 0; 991out: 992 return r; 993} 994EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 995 996#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 997/** 998 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 999 * are dirty write protect them for next write. 1000 * @kvm: pointer to kvm instance 1001 * @log: slot id and address to which we copy the log 1002 * @is_dirty: flag set if any page is dirty 1003 * 1004 * We need to keep it in mind that VCPU threads can write to the bitmap 1005 * concurrently. So, to avoid losing track of dirty pages we keep the 1006 * following order: 1007 * 1008 * 1. Take a snapshot of the bit and clear it if needed. 1009 * 2. Write protect the corresponding page. 1010 * 3. Copy the snapshot to the userspace. 1011 * 4. Upon return caller flushes TLB's if needed. 1012 * 1013 * Between 2 and 4, the guest may write to the page using the remaining TLB 1014 * entry. This is not a problem because the page is reported dirty using 1015 * the snapshot taken before and step 4 ensures that writes done after 1016 * exiting to userspace will be logged for the next call. 1017 * 1018 */ 1019int kvm_get_dirty_log_protect(struct kvm *kvm, 1020 struct kvm_dirty_log *log, bool *is_dirty) 1021{ 1022 struct kvm_memory_slot *memslot; 1023 int r, i; 1024 unsigned long n; 1025 unsigned long *dirty_bitmap; 1026 unsigned long *dirty_bitmap_buffer; 1027 1028 r = -EINVAL; 1029 if (log->slot >= KVM_USER_MEM_SLOTS) 1030 goto out; 1031 1032 memslot = id_to_memslot(kvm->memslots, log->slot); 1033 1034 dirty_bitmap = memslot->dirty_bitmap; 1035 r = -ENOENT; 1036 if (!dirty_bitmap) 1037 goto out; 1038 1039 n = kvm_dirty_bitmap_bytes(memslot); 1040 1041 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1042 memset(dirty_bitmap_buffer, 0, n); 1043 1044 spin_lock(&kvm->mmu_lock); 1045 *is_dirty = false; 1046 for (i = 0; i < n / sizeof(long); i++) { 1047 unsigned long mask; 1048 gfn_t offset; 1049 1050 if (!dirty_bitmap[i]) 1051 continue; 1052 1053 *is_dirty = true; 1054 1055 mask = xchg(&dirty_bitmap[i], 0); 1056 dirty_bitmap_buffer[i] = mask; 1057 1058 if (mask) { 1059 offset = i * BITS_PER_LONG; 1060 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1061 offset, mask); 1062 } 1063 } 1064 1065 spin_unlock(&kvm->mmu_lock); 1066 1067 r = -EFAULT; 1068 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1069 goto out; 1070 1071 r = 0; 1072out: 1073 return r; 1074} 1075EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1076#endif 1077 1078bool kvm_largepages_enabled(void) 1079{ 1080 return largepages_enabled; 1081} 1082 1083void kvm_disable_largepages(void) 1084{ 1085 largepages_enabled = false; 1086} 1087EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1088 1089struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1090{ 1091 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1092} 1093EXPORT_SYMBOL_GPL(gfn_to_memslot); 1094 1095int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1096{ 1097 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1098 1099 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1100 memslot->flags & KVM_MEMSLOT_INVALID) 1101 return 0; 1102 1103 return 1; 1104} 1105EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1106 1107unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1108{ 1109 struct vm_area_struct *vma; 1110 unsigned long addr, size; 1111 1112 size = PAGE_SIZE; 1113 1114 addr = gfn_to_hva(kvm, gfn); 1115 if (kvm_is_error_hva(addr)) 1116 return PAGE_SIZE; 1117 1118 down_read(¤t->mm->mmap_sem); 1119 vma = find_vma(current->mm, addr); 1120 if (!vma) 1121 goto out; 1122 1123 size = vma_kernel_pagesize(vma); 1124 1125out: 1126 up_read(¤t->mm->mmap_sem); 1127 1128 return size; 1129} 1130 1131static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1132{ 1133 return slot->flags & KVM_MEM_READONLY; 1134} 1135 1136static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1137 gfn_t *nr_pages, bool write) 1138{ 1139 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1140 return KVM_HVA_ERR_BAD; 1141 1142 if (memslot_is_readonly(slot) && write) 1143 return KVM_HVA_ERR_RO_BAD; 1144 1145 if (nr_pages) 1146 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1147 1148 return __gfn_to_hva_memslot(slot, gfn); 1149} 1150 1151static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1152 gfn_t *nr_pages) 1153{ 1154 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1155} 1156 1157unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1158 gfn_t gfn) 1159{ 1160 return gfn_to_hva_many(slot, gfn, NULL); 1161} 1162EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1163 1164unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1165{ 1166 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1167} 1168EXPORT_SYMBOL_GPL(gfn_to_hva); 1169 1170/* 1171 * If writable is set to false, the hva returned by this function is only 1172 * allowed to be read. 1173 */ 1174unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1175 gfn_t gfn, bool *writable) 1176{ 1177 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1178 1179 if (!kvm_is_error_hva(hva) && writable) 1180 *writable = !memslot_is_readonly(slot); 1181 1182 return hva; 1183} 1184 1185unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1186{ 1187 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1188 1189 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1190} 1191 1192static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1193 unsigned long start, int write, struct page **page) 1194{ 1195 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1196 1197 if (write) 1198 flags |= FOLL_WRITE; 1199 1200 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1201} 1202 1203static inline int check_user_page_hwpoison(unsigned long addr) 1204{ 1205 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1206 1207 rc = __get_user_pages(current, current->mm, addr, 1, 1208 flags, NULL, NULL, NULL); 1209 return rc == -EHWPOISON; 1210} 1211 1212/* 1213 * The atomic path to get the writable pfn which will be stored in @pfn, 1214 * true indicates success, otherwise false is returned. 1215 */ 1216static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1217 bool write_fault, bool *writable, pfn_t *pfn) 1218{ 1219 struct page *page[1]; 1220 int npages; 1221 1222 if (!(async || atomic)) 1223 return false; 1224 1225 /* 1226 * Fast pin a writable pfn only if it is a write fault request 1227 * or the caller allows to map a writable pfn for a read fault 1228 * request. 1229 */ 1230 if (!(write_fault || writable)) 1231 return false; 1232 1233 npages = __get_user_pages_fast(addr, 1, 1, page); 1234 if (npages == 1) { 1235 *pfn = page_to_pfn(page[0]); 1236 1237 if (writable) 1238 *writable = true; 1239 return true; 1240 } 1241 1242 return false; 1243} 1244 1245/* 1246 * The slow path to get the pfn of the specified host virtual address, 1247 * 1 indicates success, -errno is returned if error is detected. 1248 */ 1249static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1250 bool *writable, pfn_t *pfn) 1251{ 1252 struct page *page[1]; 1253 int npages = 0; 1254 1255 might_sleep(); 1256 1257 if (writable) 1258 *writable = write_fault; 1259 1260 if (async) { 1261 down_read(¤t->mm->mmap_sem); 1262 npages = get_user_page_nowait(current, current->mm, 1263 addr, write_fault, page); 1264 up_read(¤t->mm->mmap_sem); 1265 } else 1266 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1267 write_fault, 0, page, 1268 FOLL_TOUCH|FOLL_HWPOISON); 1269 if (npages != 1) 1270 return npages; 1271 1272 /* map read fault as writable if possible */ 1273 if (unlikely(!write_fault) && writable) { 1274 struct page *wpage[1]; 1275 1276 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1277 if (npages == 1) { 1278 *writable = true; 1279 put_page(page[0]); 1280 page[0] = wpage[0]; 1281 } 1282 1283 npages = 1; 1284 } 1285 *pfn = page_to_pfn(page[0]); 1286 return npages; 1287} 1288 1289static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1290{ 1291 if (unlikely(!(vma->vm_flags & VM_READ))) 1292 return false; 1293 1294 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1295 return false; 1296 1297 return true; 1298} 1299 1300/* 1301 * Pin guest page in memory and return its pfn. 1302 * @addr: host virtual address which maps memory to the guest 1303 * @atomic: whether this function can sleep 1304 * @async: whether this function need to wait IO complete if the 1305 * host page is not in the memory 1306 * @write_fault: whether we should get a writable host page 1307 * @writable: whether it allows to map a writable host page for !@write_fault 1308 * 1309 * The function will map a writable host page for these two cases: 1310 * 1): @write_fault = true 1311 * 2): @write_fault = false && @writable, @writable will tell the caller 1312 * whether the mapping is writable. 1313 */ 1314static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1315 bool write_fault, bool *writable) 1316{ 1317 struct vm_area_struct *vma; 1318 pfn_t pfn = 0; 1319 int npages; 1320 1321 /* we can do it either atomically or asynchronously, not both */ 1322 BUG_ON(atomic && async); 1323 1324 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1325 return pfn; 1326 1327 if (atomic) 1328 return KVM_PFN_ERR_FAULT; 1329 1330 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1331 if (npages == 1) 1332 return pfn; 1333 1334 down_read(¤t->mm->mmap_sem); 1335 if (npages == -EHWPOISON || 1336 (!async && check_user_page_hwpoison(addr))) { 1337 pfn = KVM_PFN_ERR_HWPOISON; 1338 goto exit; 1339 } 1340 1341 vma = find_vma_intersection(current->mm, addr, addr + 1); 1342 1343 if (vma == NULL) 1344 pfn = KVM_PFN_ERR_FAULT; 1345 else if ((vma->vm_flags & VM_PFNMAP)) { 1346 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1347 vma->vm_pgoff; 1348 BUG_ON(!kvm_is_reserved_pfn(pfn)); 1349 } else { 1350 if (async && vma_is_valid(vma, write_fault)) 1351 *async = true; 1352 pfn = KVM_PFN_ERR_FAULT; 1353 } 1354exit: 1355 up_read(¤t->mm->mmap_sem); 1356 return pfn; 1357} 1358 1359static pfn_t 1360__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1361 bool *async, bool write_fault, bool *writable) 1362{ 1363 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1364 1365 if (addr == KVM_HVA_ERR_RO_BAD) 1366 return KVM_PFN_ERR_RO_FAULT; 1367 1368 if (kvm_is_error_hva(addr)) 1369 return KVM_PFN_NOSLOT; 1370 1371 /* Do not map writable pfn in the readonly memslot. */ 1372 if (writable && memslot_is_readonly(slot)) { 1373 *writable = false; 1374 writable = NULL; 1375 } 1376 1377 return hva_to_pfn(addr, atomic, async, write_fault, 1378 writable); 1379} 1380 1381static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1382 bool write_fault, bool *writable) 1383{ 1384 struct kvm_memory_slot *slot; 1385 1386 if (async) 1387 *async = false; 1388 1389 slot = gfn_to_memslot(kvm, gfn); 1390 1391 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1392 writable); 1393} 1394 1395pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1396{ 1397 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1398} 1399EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1400 1401pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1402 bool write_fault, bool *writable) 1403{ 1404 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1405} 1406EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1407 1408pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1409{ 1410 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1411} 1412EXPORT_SYMBOL_GPL(gfn_to_pfn); 1413 1414pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1415 bool *writable) 1416{ 1417 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1418} 1419EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1420 1421pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1422{ 1423 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1424} 1425 1426pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1427{ 1428 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1429} 1430EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1431 1432int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1433 int nr_pages) 1434{ 1435 unsigned long addr; 1436 gfn_t entry; 1437 1438 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1439 if (kvm_is_error_hva(addr)) 1440 return -1; 1441 1442 if (entry < nr_pages) 1443 return 0; 1444 1445 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1446} 1447EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1448 1449static struct page *kvm_pfn_to_page(pfn_t pfn) 1450{ 1451 if (is_error_noslot_pfn(pfn)) 1452 return KVM_ERR_PTR_BAD_PAGE; 1453 1454 if (kvm_is_reserved_pfn(pfn)) { 1455 WARN_ON(1); 1456 return KVM_ERR_PTR_BAD_PAGE; 1457 } 1458 1459 return pfn_to_page(pfn); 1460} 1461 1462struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1463{ 1464 pfn_t pfn; 1465 1466 pfn = gfn_to_pfn(kvm, gfn); 1467 1468 return kvm_pfn_to_page(pfn); 1469} 1470EXPORT_SYMBOL_GPL(gfn_to_page); 1471 1472void kvm_release_page_clean(struct page *page) 1473{ 1474 WARN_ON(is_error_page(page)); 1475 1476 kvm_release_pfn_clean(page_to_pfn(page)); 1477} 1478EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1479 1480void kvm_release_pfn_clean(pfn_t pfn) 1481{ 1482 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1483 put_page(pfn_to_page(pfn)); 1484} 1485EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1486 1487void kvm_release_page_dirty(struct page *page) 1488{ 1489 WARN_ON(is_error_page(page)); 1490 1491 kvm_release_pfn_dirty(page_to_pfn(page)); 1492} 1493EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1494 1495static void kvm_release_pfn_dirty(pfn_t pfn) 1496{ 1497 kvm_set_pfn_dirty(pfn); 1498 kvm_release_pfn_clean(pfn); 1499} 1500 1501void kvm_set_pfn_dirty(pfn_t pfn) 1502{ 1503 if (!kvm_is_reserved_pfn(pfn)) { 1504 struct page *page = pfn_to_page(pfn); 1505 1506 if (!PageReserved(page)) 1507 SetPageDirty(page); 1508 } 1509} 1510EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1511 1512void kvm_set_pfn_accessed(pfn_t pfn) 1513{ 1514 if (!kvm_is_reserved_pfn(pfn)) 1515 mark_page_accessed(pfn_to_page(pfn)); 1516} 1517EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1518 1519void kvm_get_pfn(pfn_t pfn) 1520{ 1521 if (!kvm_is_reserved_pfn(pfn)) 1522 get_page(pfn_to_page(pfn)); 1523} 1524EXPORT_SYMBOL_GPL(kvm_get_pfn); 1525 1526static int next_segment(unsigned long len, int offset) 1527{ 1528 if (len > PAGE_SIZE - offset) 1529 return PAGE_SIZE - offset; 1530 else 1531 return len; 1532} 1533 1534int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1535 int len) 1536{ 1537 int r; 1538 unsigned long addr; 1539 1540 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1541 if (kvm_is_error_hva(addr)) 1542 return -EFAULT; 1543 r = __copy_from_user(data, (void __user *)addr + offset, len); 1544 if (r) 1545 return -EFAULT; 1546 return 0; 1547} 1548EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1549 1550int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1551{ 1552 gfn_t gfn = gpa >> PAGE_SHIFT; 1553 int seg; 1554 int offset = offset_in_page(gpa); 1555 int ret; 1556 1557 while ((seg = next_segment(len, offset)) != 0) { 1558 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1559 if (ret < 0) 1560 return ret; 1561 offset = 0; 1562 len -= seg; 1563 data += seg; 1564 ++gfn; 1565 } 1566 return 0; 1567} 1568EXPORT_SYMBOL_GPL(kvm_read_guest); 1569 1570int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1571 unsigned long len) 1572{ 1573 int r; 1574 unsigned long addr; 1575 gfn_t gfn = gpa >> PAGE_SHIFT; 1576 int offset = offset_in_page(gpa); 1577 1578 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1579 if (kvm_is_error_hva(addr)) 1580 return -EFAULT; 1581 pagefault_disable(); 1582 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1583 pagefault_enable(); 1584 if (r) 1585 return -EFAULT; 1586 return 0; 1587} 1588EXPORT_SYMBOL(kvm_read_guest_atomic); 1589 1590int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1591 int offset, int len) 1592{ 1593 int r; 1594 unsigned long addr; 1595 1596 addr = gfn_to_hva(kvm, gfn); 1597 if (kvm_is_error_hva(addr)) 1598 return -EFAULT; 1599 r = __copy_to_user((void __user *)addr + offset, data, len); 1600 if (r) 1601 return -EFAULT; 1602 mark_page_dirty(kvm, gfn); 1603 return 0; 1604} 1605EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1606 1607int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1608 unsigned long len) 1609{ 1610 gfn_t gfn = gpa >> PAGE_SHIFT; 1611 int seg; 1612 int offset = offset_in_page(gpa); 1613 int ret; 1614 1615 while ((seg = next_segment(len, offset)) != 0) { 1616 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1617 if (ret < 0) 1618 return ret; 1619 offset = 0; 1620 len -= seg; 1621 data += seg; 1622 ++gfn; 1623 } 1624 return 0; 1625} 1626EXPORT_SYMBOL_GPL(kvm_write_guest); 1627 1628int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1629 gpa_t gpa, unsigned long len) 1630{ 1631 struct kvm_memslots *slots = kvm_memslots(kvm); 1632 int offset = offset_in_page(gpa); 1633 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1634 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1635 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1636 gfn_t nr_pages_avail; 1637 1638 ghc->gpa = gpa; 1639 ghc->generation = slots->generation; 1640 ghc->len = len; 1641 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1642 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1643 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1644 ghc->hva += offset; 1645 } else { 1646 /* 1647 * If the requested region crosses two memslots, we still 1648 * verify that the entire region is valid here. 1649 */ 1650 while (start_gfn <= end_gfn) { 1651 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1652 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1653 &nr_pages_avail); 1654 if (kvm_is_error_hva(ghc->hva)) 1655 return -EFAULT; 1656 start_gfn += nr_pages_avail; 1657 } 1658 /* Use the slow path for cross page reads and writes. */ 1659 ghc->memslot = NULL; 1660 } 1661 return 0; 1662} 1663EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1664 1665int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1666 void *data, unsigned long len) 1667{ 1668 struct kvm_memslots *slots = kvm_memslots(kvm); 1669 int r; 1670 1671 BUG_ON(len > ghc->len); 1672 1673 if (slots->generation != ghc->generation) 1674 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1675 1676 if (unlikely(!ghc->memslot)) 1677 return kvm_write_guest(kvm, ghc->gpa, data, len); 1678 1679 if (kvm_is_error_hva(ghc->hva)) 1680 return -EFAULT; 1681 1682 r = __copy_to_user((void __user *)ghc->hva, data, len); 1683 if (r) 1684 return -EFAULT; 1685 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1686 1687 return 0; 1688} 1689EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1690 1691int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1692 void *data, unsigned long len) 1693{ 1694 struct kvm_memslots *slots = kvm_memslots(kvm); 1695 int r; 1696 1697 BUG_ON(len > ghc->len); 1698 1699 if (slots->generation != ghc->generation) 1700 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1701 1702 if (unlikely(!ghc->memslot)) 1703 return kvm_read_guest(kvm, ghc->gpa, data, len); 1704 1705 if (kvm_is_error_hva(ghc->hva)) 1706 return -EFAULT; 1707 1708 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1709 if (r) 1710 return -EFAULT; 1711 1712 return 0; 1713} 1714EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1715 1716int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1717{ 1718 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1719 1720 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1721} 1722EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1723 1724int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1725{ 1726 gfn_t gfn = gpa >> PAGE_SHIFT; 1727 int seg; 1728 int offset = offset_in_page(gpa); 1729 int ret; 1730 1731 while ((seg = next_segment(len, offset)) != 0) { 1732 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1733 if (ret < 0) 1734 return ret; 1735 offset = 0; 1736 len -= seg; 1737 ++gfn; 1738 } 1739 return 0; 1740} 1741EXPORT_SYMBOL_GPL(kvm_clear_guest); 1742 1743static void mark_page_dirty_in_slot(struct kvm *kvm, 1744 struct kvm_memory_slot *memslot, 1745 gfn_t gfn) 1746{ 1747 if (memslot && memslot->dirty_bitmap) { 1748 unsigned long rel_gfn = gfn - memslot->base_gfn; 1749 1750 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1751 } 1752} 1753 1754void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1755{ 1756 struct kvm_memory_slot *memslot; 1757 1758 memslot = gfn_to_memslot(kvm, gfn); 1759 mark_page_dirty_in_slot(kvm, memslot, gfn); 1760} 1761EXPORT_SYMBOL_GPL(mark_page_dirty); 1762 1763static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 1764{ 1765 if (kvm_arch_vcpu_runnable(vcpu)) { 1766 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1767 return -EINTR; 1768 } 1769 if (kvm_cpu_has_pending_timer(vcpu)) 1770 return -EINTR; 1771 if (signal_pending(current)) 1772 return -EINTR; 1773 1774 return 0; 1775} 1776 1777/* 1778 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1779 */ 1780void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1781{ 1782 ktime_t start, cur; 1783 DEFINE_WAIT(wait); 1784 bool waited = false; 1785 1786 start = cur = ktime_get(); 1787 if (halt_poll_ns) { 1788 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns); 1789 1790 do { 1791 /* 1792 * This sets KVM_REQ_UNHALT if an interrupt 1793 * arrives. 1794 */ 1795 if (kvm_vcpu_check_block(vcpu) < 0) { 1796 ++vcpu->stat.halt_successful_poll; 1797 goto out; 1798 } 1799 cur = ktime_get(); 1800 } while (single_task_running() && ktime_before(cur, stop)); 1801 } 1802 1803 for (;;) { 1804 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1805 1806 if (kvm_vcpu_check_block(vcpu) < 0) 1807 break; 1808 1809 waited = true; 1810 schedule(); 1811 } 1812 1813 finish_wait(&vcpu->wq, &wait); 1814 cur = ktime_get(); 1815 1816out: 1817 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited); 1818} 1819EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1820 1821#ifndef CONFIG_S390 1822/* 1823 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1824 */ 1825void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1826{ 1827 int me; 1828 int cpu = vcpu->cpu; 1829 wait_queue_head_t *wqp; 1830 1831 wqp = kvm_arch_vcpu_wq(vcpu); 1832 if (waitqueue_active(wqp)) { 1833 wake_up_interruptible(wqp); 1834 ++vcpu->stat.halt_wakeup; 1835 } 1836 1837 me = get_cpu(); 1838 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1839 if (kvm_arch_vcpu_should_kick(vcpu)) 1840 smp_send_reschedule(cpu); 1841 put_cpu(); 1842} 1843EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1844#endif /* !CONFIG_S390 */ 1845 1846int kvm_vcpu_yield_to(struct kvm_vcpu *target) 1847{ 1848 struct pid *pid; 1849 struct task_struct *task = NULL; 1850 int ret = 0; 1851 1852 rcu_read_lock(); 1853 pid = rcu_dereference(target->pid); 1854 if (pid) 1855 task = get_pid_task(pid, PIDTYPE_PID); 1856 rcu_read_unlock(); 1857 if (!task) 1858 return ret; 1859 ret = yield_to(task, 1); 1860 put_task_struct(task); 1861 1862 return ret; 1863} 1864EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1865 1866/* 1867 * Helper that checks whether a VCPU is eligible for directed yield. 1868 * Most eligible candidate to yield is decided by following heuristics: 1869 * 1870 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1871 * (preempted lock holder), indicated by @in_spin_loop. 1872 * Set at the beiginning and cleared at the end of interception/PLE handler. 1873 * 1874 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1875 * chance last time (mostly it has become eligible now since we have probably 1876 * yielded to lockholder in last iteration. This is done by toggling 1877 * @dy_eligible each time a VCPU checked for eligibility.) 1878 * 1879 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1880 * to preempted lock-holder could result in wrong VCPU selection and CPU 1881 * burning. Giving priority for a potential lock-holder increases lock 1882 * progress. 1883 * 1884 * Since algorithm is based on heuristics, accessing another VCPU data without 1885 * locking does not harm. It may result in trying to yield to same VCPU, fail 1886 * and continue with next VCPU and so on. 1887 */ 1888static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1889{ 1890#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1891 bool eligible; 1892 1893 eligible = !vcpu->spin_loop.in_spin_loop || 1894 vcpu->spin_loop.dy_eligible; 1895 1896 if (vcpu->spin_loop.in_spin_loop) 1897 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1898 1899 return eligible; 1900#else 1901 return true; 1902#endif 1903} 1904 1905void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1906{ 1907 struct kvm *kvm = me->kvm; 1908 struct kvm_vcpu *vcpu; 1909 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1910 int yielded = 0; 1911 int try = 3; 1912 int pass; 1913 int i; 1914 1915 kvm_vcpu_set_in_spin_loop(me, true); 1916 /* 1917 * We boost the priority of a VCPU that is runnable but not 1918 * currently running, because it got preempted by something 1919 * else and called schedule in __vcpu_run. Hopefully that 1920 * VCPU is holding the lock that we need and will release it. 1921 * We approximate round-robin by starting at the last boosted VCPU. 1922 */ 1923 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1924 kvm_for_each_vcpu(i, vcpu, kvm) { 1925 if (!pass && i <= last_boosted_vcpu) { 1926 i = last_boosted_vcpu; 1927 continue; 1928 } else if (pass && i > last_boosted_vcpu) 1929 break; 1930 if (!ACCESS_ONCE(vcpu->preempted)) 1931 continue; 1932 if (vcpu == me) 1933 continue; 1934 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 1935 continue; 1936 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1937 continue; 1938 1939 yielded = kvm_vcpu_yield_to(vcpu); 1940 if (yielded > 0) { 1941 kvm->last_boosted_vcpu = i; 1942 break; 1943 } else if (yielded < 0) { 1944 try--; 1945 if (!try) 1946 break; 1947 } 1948 } 1949 } 1950 kvm_vcpu_set_in_spin_loop(me, false); 1951 1952 /* Ensure vcpu is not eligible during next spinloop */ 1953 kvm_vcpu_set_dy_eligible(me, false); 1954} 1955EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1956 1957static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1958{ 1959 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1960 struct page *page; 1961 1962 if (vmf->pgoff == 0) 1963 page = virt_to_page(vcpu->run); 1964#ifdef CONFIG_X86 1965 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1966 page = virt_to_page(vcpu->arch.pio_data); 1967#endif 1968#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1969 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1970 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1971#endif 1972 else 1973 return kvm_arch_vcpu_fault(vcpu, vmf); 1974 get_page(page); 1975 vmf->page = page; 1976 return 0; 1977} 1978 1979static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1980 .fault = kvm_vcpu_fault, 1981}; 1982 1983static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1984{ 1985 vma->vm_ops = &kvm_vcpu_vm_ops; 1986 return 0; 1987} 1988 1989static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1990{ 1991 struct kvm_vcpu *vcpu = filp->private_data; 1992 1993 kvm_put_kvm(vcpu->kvm); 1994 return 0; 1995} 1996 1997static struct file_operations kvm_vcpu_fops = { 1998 .release = kvm_vcpu_release, 1999 .unlocked_ioctl = kvm_vcpu_ioctl, 2000#ifdef CONFIG_KVM_COMPAT 2001 .compat_ioctl = kvm_vcpu_compat_ioctl, 2002#endif 2003 .mmap = kvm_vcpu_mmap, 2004 .llseek = noop_llseek, 2005}; 2006 2007/* 2008 * Allocates an inode for the vcpu. 2009 */ 2010static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2011{ 2012 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2013} 2014 2015/* 2016 * Creates some virtual cpus. Good luck creating more than one. 2017 */ 2018static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2019{ 2020 int r; 2021 struct kvm_vcpu *vcpu, *v; 2022 2023 if (id >= KVM_MAX_VCPUS) 2024 return -EINVAL; 2025 2026 vcpu = kvm_arch_vcpu_create(kvm, id); 2027 if (IS_ERR(vcpu)) 2028 return PTR_ERR(vcpu); 2029 2030 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2031 2032 r = kvm_arch_vcpu_setup(vcpu); 2033 if (r) 2034 goto vcpu_destroy; 2035 2036 mutex_lock(&kvm->lock); 2037 if (!kvm_vcpu_compatible(vcpu)) { 2038 r = -EINVAL; 2039 goto unlock_vcpu_destroy; 2040 } 2041 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 2042 r = -EINVAL; 2043 goto unlock_vcpu_destroy; 2044 } 2045 2046 kvm_for_each_vcpu(r, v, kvm) 2047 if (v->vcpu_id == id) { 2048 r = -EEXIST; 2049 goto unlock_vcpu_destroy; 2050 } 2051 2052 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2053 2054 /* Now it's all set up, let userspace reach it */ 2055 kvm_get_kvm(kvm); 2056 r = create_vcpu_fd(vcpu); 2057 if (r < 0) { 2058 kvm_put_kvm(kvm); 2059 goto unlock_vcpu_destroy; 2060 } 2061 2062 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2063 smp_wmb(); 2064 atomic_inc(&kvm->online_vcpus); 2065 2066 mutex_unlock(&kvm->lock); 2067 kvm_arch_vcpu_postcreate(vcpu); 2068 return r; 2069 2070unlock_vcpu_destroy: 2071 mutex_unlock(&kvm->lock); 2072vcpu_destroy: 2073 kvm_arch_vcpu_destroy(vcpu); 2074 return r; 2075} 2076 2077static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2078{ 2079 if (sigset) { 2080 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2081 vcpu->sigset_active = 1; 2082 vcpu->sigset = *sigset; 2083 } else 2084 vcpu->sigset_active = 0; 2085 return 0; 2086} 2087 2088static long kvm_vcpu_ioctl(struct file *filp, 2089 unsigned int ioctl, unsigned long arg) 2090{ 2091 struct kvm_vcpu *vcpu = filp->private_data; 2092 void __user *argp = (void __user *)arg; 2093 int r; 2094 struct kvm_fpu *fpu = NULL; 2095 struct kvm_sregs *kvm_sregs = NULL; 2096 2097 if (vcpu->kvm->mm != current->mm) 2098 return -EIO; 2099 2100 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2101 return -EINVAL; 2102 2103#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2104 /* 2105 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2106 * so vcpu_load() would break it. 2107 */ 2108 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2109 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2110#endif 2111 2112 2113 r = vcpu_load(vcpu); 2114 if (r) 2115 return r; 2116 switch (ioctl) { 2117 case KVM_RUN: 2118 r = -EINVAL; 2119 if (arg) 2120 goto out; 2121 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2122 /* The thread running this VCPU changed. */ 2123 struct pid *oldpid = vcpu->pid; 2124 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2125 2126 rcu_assign_pointer(vcpu->pid, newpid); 2127 if (oldpid) 2128 synchronize_rcu(); 2129 put_pid(oldpid); 2130 } 2131 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2132 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2133 break; 2134 case KVM_GET_REGS: { 2135 struct kvm_regs *kvm_regs; 2136 2137 r = -ENOMEM; 2138 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2139 if (!kvm_regs) 2140 goto out; 2141 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2142 if (r) 2143 goto out_free1; 2144 r = -EFAULT; 2145 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2146 goto out_free1; 2147 r = 0; 2148out_free1: 2149 kfree(kvm_regs); 2150 break; 2151 } 2152 case KVM_SET_REGS: { 2153 struct kvm_regs *kvm_regs; 2154 2155 r = -ENOMEM; 2156 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2157 if (IS_ERR(kvm_regs)) { 2158 r = PTR_ERR(kvm_regs); 2159 goto out; 2160 } 2161 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2162 kfree(kvm_regs); 2163 break; 2164 } 2165 case KVM_GET_SREGS: { 2166 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2167 r = -ENOMEM; 2168 if (!kvm_sregs) 2169 goto out; 2170 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2171 if (r) 2172 goto out; 2173 r = -EFAULT; 2174 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2175 goto out; 2176 r = 0; 2177 break; 2178 } 2179 case KVM_SET_SREGS: { 2180 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2181 if (IS_ERR(kvm_sregs)) { 2182 r = PTR_ERR(kvm_sregs); 2183 kvm_sregs = NULL; 2184 goto out; 2185 } 2186 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2187 break; 2188 } 2189 case KVM_GET_MP_STATE: { 2190 struct kvm_mp_state mp_state; 2191 2192 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2193 if (r) 2194 goto out; 2195 r = -EFAULT; 2196 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2197 goto out; 2198 r = 0; 2199 break; 2200 } 2201 case KVM_SET_MP_STATE: { 2202 struct kvm_mp_state mp_state; 2203 2204 r = -EFAULT; 2205 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2206 goto out; 2207 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2208 break; 2209 } 2210 case KVM_TRANSLATE: { 2211 struct kvm_translation tr; 2212 2213 r = -EFAULT; 2214 if (copy_from_user(&tr, argp, sizeof(tr))) 2215 goto out; 2216 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2217 if (r) 2218 goto out; 2219 r = -EFAULT; 2220 if (copy_to_user(argp, &tr, sizeof(tr))) 2221 goto out; 2222 r = 0; 2223 break; 2224 } 2225 case KVM_SET_GUEST_DEBUG: { 2226 struct kvm_guest_debug dbg; 2227 2228 r = -EFAULT; 2229 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2230 goto out; 2231 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2232 break; 2233 } 2234 case KVM_SET_SIGNAL_MASK: { 2235 struct kvm_signal_mask __user *sigmask_arg = argp; 2236 struct kvm_signal_mask kvm_sigmask; 2237 sigset_t sigset, *p; 2238 2239 p = NULL; 2240 if (argp) { 2241 r = -EFAULT; 2242 if (copy_from_user(&kvm_sigmask, argp, 2243 sizeof(kvm_sigmask))) 2244 goto out; 2245 r = -EINVAL; 2246 if (kvm_sigmask.len != sizeof(sigset)) 2247 goto out; 2248 r = -EFAULT; 2249 if (copy_from_user(&sigset, sigmask_arg->sigset, 2250 sizeof(sigset))) 2251 goto out; 2252 p = &sigset; 2253 } 2254 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2255 break; 2256 } 2257 case KVM_GET_FPU: { 2258 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2259 r = -ENOMEM; 2260 if (!fpu) 2261 goto out; 2262 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2263 if (r) 2264 goto out; 2265 r = -EFAULT; 2266 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2267 goto out; 2268 r = 0; 2269 break; 2270 } 2271 case KVM_SET_FPU: { 2272 fpu = memdup_user(argp, sizeof(*fpu)); 2273 if (IS_ERR(fpu)) { 2274 r = PTR_ERR(fpu); 2275 fpu = NULL; 2276 goto out; 2277 } 2278 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2279 break; 2280 } 2281 default: 2282 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2283 } 2284out: 2285 vcpu_put(vcpu); 2286 kfree(fpu); 2287 kfree(kvm_sregs); 2288 return r; 2289} 2290 2291#ifdef CONFIG_KVM_COMPAT 2292static long kvm_vcpu_compat_ioctl(struct file *filp, 2293 unsigned int ioctl, unsigned long arg) 2294{ 2295 struct kvm_vcpu *vcpu = filp->private_data; 2296 void __user *argp = compat_ptr(arg); 2297 int r; 2298 2299 if (vcpu->kvm->mm != current->mm) 2300 return -EIO; 2301 2302 switch (ioctl) { 2303 case KVM_SET_SIGNAL_MASK: { 2304 struct kvm_signal_mask __user *sigmask_arg = argp; 2305 struct kvm_signal_mask kvm_sigmask; 2306 compat_sigset_t csigset; 2307 sigset_t sigset; 2308 2309 if (argp) { 2310 r = -EFAULT; 2311 if (copy_from_user(&kvm_sigmask, argp, 2312 sizeof(kvm_sigmask))) 2313 goto out; 2314 r = -EINVAL; 2315 if (kvm_sigmask.len != sizeof(csigset)) 2316 goto out; 2317 r = -EFAULT; 2318 if (copy_from_user(&csigset, sigmask_arg->sigset, 2319 sizeof(csigset))) 2320 goto out; 2321 sigset_from_compat(&sigset, &csigset); 2322 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2323 } else 2324 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2325 break; 2326 } 2327 default: 2328 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2329 } 2330 2331out: 2332 return r; 2333} 2334#endif 2335 2336static int kvm_device_ioctl_attr(struct kvm_device *dev, 2337 int (*accessor)(struct kvm_device *dev, 2338 struct kvm_device_attr *attr), 2339 unsigned long arg) 2340{ 2341 struct kvm_device_attr attr; 2342 2343 if (!accessor) 2344 return -EPERM; 2345 2346 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2347 return -EFAULT; 2348 2349 return accessor(dev, &attr); 2350} 2351 2352static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2353 unsigned long arg) 2354{ 2355 struct kvm_device *dev = filp->private_data; 2356 2357 switch (ioctl) { 2358 case KVM_SET_DEVICE_ATTR: 2359 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2360 case KVM_GET_DEVICE_ATTR: 2361 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2362 case KVM_HAS_DEVICE_ATTR: 2363 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2364 default: 2365 if (dev->ops->ioctl) 2366 return dev->ops->ioctl(dev, ioctl, arg); 2367 2368 return -ENOTTY; 2369 } 2370} 2371 2372static int kvm_device_release(struct inode *inode, struct file *filp) 2373{ 2374 struct kvm_device *dev = filp->private_data; 2375 struct kvm *kvm = dev->kvm; 2376 2377 kvm_put_kvm(kvm); 2378 return 0; 2379} 2380 2381static const struct file_operations kvm_device_fops = { 2382 .unlocked_ioctl = kvm_device_ioctl, 2383#ifdef CONFIG_KVM_COMPAT 2384 .compat_ioctl = kvm_device_ioctl, 2385#endif 2386 .release = kvm_device_release, 2387}; 2388 2389struct kvm_device *kvm_device_from_filp(struct file *filp) 2390{ 2391 if (filp->f_op != &kvm_device_fops) 2392 return NULL; 2393 2394 return filp->private_data; 2395} 2396 2397static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2398#ifdef CONFIG_KVM_MPIC 2399 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2400 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2401#endif 2402 2403#ifdef CONFIG_KVM_XICS 2404 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2405#endif 2406}; 2407 2408int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2409{ 2410 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2411 return -ENOSPC; 2412 2413 if (kvm_device_ops_table[type] != NULL) 2414 return -EEXIST; 2415 2416 kvm_device_ops_table[type] = ops; 2417 return 0; 2418} 2419 2420void kvm_unregister_device_ops(u32 type) 2421{ 2422 if (kvm_device_ops_table[type] != NULL) 2423 kvm_device_ops_table[type] = NULL; 2424} 2425 2426static int kvm_ioctl_create_device(struct kvm *kvm, 2427 struct kvm_create_device *cd) 2428{ 2429 struct kvm_device_ops *ops = NULL; 2430 struct kvm_device *dev; 2431 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2432 int ret; 2433 2434 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2435 return -ENODEV; 2436 2437 ops = kvm_device_ops_table[cd->type]; 2438 if (ops == NULL) 2439 return -ENODEV; 2440 2441 if (test) 2442 return 0; 2443 2444 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2445 if (!dev) 2446 return -ENOMEM; 2447 2448 dev->ops = ops; 2449 dev->kvm = kvm; 2450 2451 ret = ops->create(dev, cd->type); 2452 if (ret < 0) { 2453 kfree(dev); 2454 return ret; 2455 } 2456 2457 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2458 if (ret < 0) { 2459 ops->destroy(dev); 2460 return ret; 2461 } 2462 2463 list_add(&dev->vm_node, &kvm->devices); 2464 kvm_get_kvm(kvm); 2465 cd->fd = ret; 2466 return 0; 2467} 2468 2469static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2470{ 2471 switch (arg) { 2472 case KVM_CAP_USER_MEMORY: 2473 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2474 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2475#ifdef CONFIG_KVM_APIC_ARCHITECTURE 2476 case KVM_CAP_SET_BOOT_CPU_ID: 2477#endif 2478 case KVM_CAP_INTERNAL_ERROR_DATA: 2479#ifdef CONFIG_HAVE_KVM_MSI 2480 case KVM_CAP_SIGNAL_MSI: 2481#endif 2482#ifdef CONFIG_HAVE_KVM_IRQFD 2483 case KVM_CAP_IRQFD: 2484 case KVM_CAP_IRQFD_RESAMPLE: 2485#endif 2486 case KVM_CAP_CHECK_EXTENSION_VM: 2487 return 1; 2488#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2489 case KVM_CAP_IRQ_ROUTING: 2490 return KVM_MAX_IRQ_ROUTES; 2491#endif 2492 default: 2493 break; 2494 } 2495 return kvm_vm_ioctl_check_extension(kvm, arg); 2496} 2497 2498static long kvm_vm_ioctl(struct file *filp, 2499 unsigned int ioctl, unsigned long arg) 2500{ 2501 struct kvm *kvm = filp->private_data; 2502 void __user *argp = (void __user *)arg; 2503 int r; 2504 2505 if (kvm->mm != current->mm) 2506 return -EIO; 2507 switch (ioctl) { 2508 case KVM_CREATE_VCPU: 2509 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2510 break; 2511 case KVM_SET_USER_MEMORY_REGION: { 2512 struct kvm_userspace_memory_region kvm_userspace_mem; 2513 2514 r = -EFAULT; 2515 if (copy_from_user(&kvm_userspace_mem, argp, 2516 sizeof(kvm_userspace_mem))) 2517 goto out; 2518 2519 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2520 break; 2521 } 2522 case KVM_GET_DIRTY_LOG: { 2523 struct kvm_dirty_log log; 2524 2525 r = -EFAULT; 2526 if (copy_from_user(&log, argp, sizeof(log))) 2527 goto out; 2528 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2529 break; 2530 } 2531#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2532 case KVM_REGISTER_COALESCED_MMIO: { 2533 struct kvm_coalesced_mmio_zone zone; 2534 2535 r = -EFAULT; 2536 if (copy_from_user(&zone, argp, sizeof(zone))) 2537 goto out; 2538 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2539 break; 2540 } 2541 case KVM_UNREGISTER_COALESCED_MMIO: { 2542 struct kvm_coalesced_mmio_zone zone; 2543 2544 r = -EFAULT; 2545 if (copy_from_user(&zone, argp, sizeof(zone))) 2546 goto out; 2547 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2548 break; 2549 } 2550#endif 2551 case KVM_IRQFD: { 2552 struct kvm_irqfd data; 2553 2554 r = -EFAULT; 2555 if (copy_from_user(&data, argp, sizeof(data))) 2556 goto out; 2557 r = kvm_irqfd(kvm, &data); 2558 break; 2559 } 2560 case KVM_IOEVENTFD: { 2561 struct kvm_ioeventfd data; 2562 2563 r = -EFAULT; 2564 if (copy_from_user(&data, argp, sizeof(data))) 2565 goto out; 2566 r = kvm_ioeventfd(kvm, &data); 2567 break; 2568 } 2569#ifdef CONFIG_KVM_APIC_ARCHITECTURE 2570 case KVM_SET_BOOT_CPU_ID: 2571 r = 0; 2572 mutex_lock(&kvm->lock); 2573 if (atomic_read(&kvm->online_vcpus) != 0) 2574 r = -EBUSY; 2575 else 2576 kvm->bsp_vcpu_id = arg; 2577 mutex_unlock(&kvm->lock); 2578 break; 2579#endif 2580#ifdef CONFIG_HAVE_KVM_MSI 2581 case KVM_SIGNAL_MSI: { 2582 struct kvm_msi msi; 2583 2584 r = -EFAULT; 2585 if (copy_from_user(&msi, argp, sizeof(msi))) 2586 goto out; 2587 r = kvm_send_userspace_msi(kvm, &msi); 2588 break; 2589 } 2590#endif 2591#ifdef __KVM_HAVE_IRQ_LINE 2592 case KVM_IRQ_LINE_STATUS: 2593 case KVM_IRQ_LINE: { 2594 struct kvm_irq_level irq_event; 2595 2596 r = -EFAULT; 2597 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 2598 goto out; 2599 2600 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2601 ioctl == KVM_IRQ_LINE_STATUS); 2602 if (r) 2603 goto out; 2604 2605 r = -EFAULT; 2606 if (ioctl == KVM_IRQ_LINE_STATUS) { 2607 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 2608 goto out; 2609 } 2610 2611 r = 0; 2612 break; 2613 } 2614#endif 2615#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2616 case KVM_SET_GSI_ROUTING: { 2617 struct kvm_irq_routing routing; 2618 struct kvm_irq_routing __user *urouting; 2619 struct kvm_irq_routing_entry *entries; 2620 2621 r = -EFAULT; 2622 if (copy_from_user(&routing, argp, sizeof(routing))) 2623 goto out; 2624 r = -EINVAL; 2625 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2626 goto out; 2627 if (routing.flags) 2628 goto out; 2629 r = -ENOMEM; 2630 entries = vmalloc(routing.nr * sizeof(*entries)); 2631 if (!entries) 2632 goto out; 2633 r = -EFAULT; 2634 urouting = argp; 2635 if (copy_from_user(entries, urouting->entries, 2636 routing.nr * sizeof(*entries))) 2637 goto out_free_irq_routing; 2638 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2639 routing.flags); 2640out_free_irq_routing: 2641 vfree(entries); 2642 break; 2643 } 2644#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2645 case KVM_CREATE_DEVICE: { 2646 struct kvm_create_device cd; 2647 2648 r = -EFAULT; 2649 if (copy_from_user(&cd, argp, sizeof(cd))) 2650 goto out; 2651 2652 r = kvm_ioctl_create_device(kvm, &cd); 2653 if (r) 2654 goto out; 2655 2656 r = -EFAULT; 2657 if (copy_to_user(argp, &cd, sizeof(cd))) 2658 goto out; 2659 2660 r = 0; 2661 break; 2662 } 2663 case KVM_CHECK_EXTENSION: 2664 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2665 break; 2666 default: 2667 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2668 } 2669out: 2670 return r; 2671} 2672 2673#ifdef CONFIG_KVM_COMPAT 2674struct compat_kvm_dirty_log { 2675 __u32 slot; 2676 __u32 padding1; 2677 union { 2678 compat_uptr_t dirty_bitmap; /* one bit per page */ 2679 __u64 padding2; 2680 }; 2681}; 2682 2683static long kvm_vm_compat_ioctl(struct file *filp, 2684 unsigned int ioctl, unsigned long arg) 2685{ 2686 struct kvm *kvm = filp->private_data; 2687 int r; 2688 2689 if (kvm->mm != current->mm) 2690 return -EIO; 2691 switch (ioctl) { 2692 case KVM_GET_DIRTY_LOG: { 2693 struct compat_kvm_dirty_log compat_log; 2694 struct kvm_dirty_log log; 2695 2696 r = -EFAULT; 2697 if (copy_from_user(&compat_log, (void __user *)arg, 2698 sizeof(compat_log))) 2699 goto out; 2700 log.slot = compat_log.slot; 2701 log.padding1 = compat_log.padding1; 2702 log.padding2 = compat_log.padding2; 2703 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2704 2705 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2706 break; 2707 } 2708 default: 2709 r = kvm_vm_ioctl(filp, ioctl, arg); 2710 } 2711 2712out: 2713 return r; 2714} 2715#endif 2716 2717static struct file_operations kvm_vm_fops = { 2718 .release = kvm_vm_release, 2719 .unlocked_ioctl = kvm_vm_ioctl, 2720#ifdef CONFIG_KVM_COMPAT 2721 .compat_ioctl = kvm_vm_compat_ioctl, 2722#endif 2723 .llseek = noop_llseek, 2724}; 2725 2726static int kvm_dev_ioctl_create_vm(unsigned long type) 2727{ 2728 int r; 2729 struct kvm *kvm; 2730 2731 kvm = kvm_create_vm(type); 2732 if (IS_ERR(kvm)) 2733 return PTR_ERR(kvm); 2734#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2735 r = kvm_coalesced_mmio_init(kvm); 2736 if (r < 0) { 2737 kvm_put_kvm(kvm); 2738 return r; 2739 } 2740#endif 2741 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2742 if (r < 0) 2743 kvm_put_kvm(kvm); 2744 2745 return r; 2746} 2747 2748static long kvm_dev_ioctl(struct file *filp, 2749 unsigned int ioctl, unsigned long arg) 2750{ 2751 long r = -EINVAL; 2752 2753 switch (ioctl) { 2754 case KVM_GET_API_VERSION: 2755 if (arg) 2756 goto out; 2757 r = KVM_API_VERSION; 2758 break; 2759 case KVM_CREATE_VM: 2760 r = kvm_dev_ioctl_create_vm(arg); 2761 break; 2762 case KVM_CHECK_EXTENSION: 2763 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 2764 break; 2765 case KVM_GET_VCPU_MMAP_SIZE: 2766 if (arg) 2767 goto out; 2768 r = PAGE_SIZE; /* struct kvm_run */ 2769#ifdef CONFIG_X86 2770 r += PAGE_SIZE; /* pio data page */ 2771#endif 2772#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2773 r += PAGE_SIZE; /* coalesced mmio ring page */ 2774#endif 2775 break; 2776 case KVM_TRACE_ENABLE: 2777 case KVM_TRACE_PAUSE: 2778 case KVM_TRACE_DISABLE: 2779 r = -EOPNOTSUPP; 2780 break; 2781 default: 2782 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2783 } 2784out: 2785 return r; 2786} 2787 2788static struct file_operations kvm_chardev_ops = { 2789 .unlocked_ioctl = kvm_dev_ioctl, 2790 .compat_ioctl = kvm_dev_ioctl, 2791 .llseek = noop_llseek, 2792}; 2793 2794static struct miscdevice kvm_dev = { 2795 KVM_MINOR, 2796 "kvm", 2797 &kvm_chardev_ops, 2798}; 2799 2800static void hardware_enable_nolock(void *junk) 2801{ 2802 int cpu = raw_smp_processor_id(); 2803 int r; 2804 2805 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2806 return; 2807 2808 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2809 2810 r = kvm_arch_hardware_enable(); 2811 2812 if (r) { 2813 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2814 atomic_inc(&hardware_enable_failed); 2815 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 2816 } 2817} 2818 2819static void hardware_enable(void) 2820{ 2821 raw_spin_lock(&kvm_count_lock); 2822 if (kvm_usage_count) 2823 hardware_enable_nolock(NULL); 2824 raw_spin_unlock(&kvm_count_lock); 2825} 2826 2827static void hardware_disable_nolock(void *junk) 2828{ 2829 int cpu = raw_smp_processor_id(); 2830 2831 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2832 return; 2833 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2834 kvm_arch_hardware_disable(); 2835} 2836 2837static void hardware_disable(void) 2838{ 2839 raw_spin_lock(&kvm_count_lock); 2840 if (kvm_usage_count) 2841 hardware_disable_nolock(NULL); 2842 raw_spin_unlock(&kvm_count_lock); 2843} 2844 2845static void hardware_disable_all_nolock(void) 2846{ 2847 BUG_ON(!kvm_usage_count); 2848 2849 kvm_usage_count--; 2850 if (!kvm_usage_count) 2851 on_each_cpu(hardware_disable_nolock, NULL, 1); 2852} 2853 2854static void hardware_disable_all(void) 2855{ 2856 raw_spin_lock(&kvm_count_lock); 2857 hardware_disable_all_nolock(); 2858 raw_spin_unlock(&kvm_count_lock); 2859} 2860 2861static int hardware_enable_all(void) 2862{ 2863 int r = 0; 2864 2865 raw_spin_lock(&kvm_count_lock); 2866 2867 kvm_usage_count++; 2868 if (kvm_usage_count == 1) { 2869 atomic_set(&hardware_enable_failed, 0); 2870 on_each_cpu(hardware_enable_nolock, NULL, 1); 2871 2872 if (atomic_read(&hardware_enable_failed)) { 2873 hardware_disable_all_nolock(); 2874 r = -EBUSY; 2875 } 2876 } 2877 2878 raw_spin_unlock(&kvm_count_lock); 2879 2880 return r; 2881} 2882 2883static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2884 void *v) 2885{ 2886 int cpu = (long)v; 2887 2888 val &= ~CPU_TASKS_FROZEN; 2889 switch (val) { 2890 case CPU_DYING: 2891 pr_info("kvm: disabling virtualization on CPU%d\n", 2892 cpu); 2893 hardware_disable(); 2894 break; 2895 case CPU_STARTING: 2896 pr_info("kvm: enabling virtualization on CPU%d\n", 2897 cpu); 2898 hardware_enable(); 2899 break; 2900 } 2901 return NOTIFY_OK; 2902} 2903 2904static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2905 void *v) 2906{ 2907 /* 2908 * Some (well, at least mine) BIOSes hang on reboot if 2909 * in vmx root mode. 2910 * 2911 * And Intel TXT required VMX off for all cpu when system shutdown. 2912 */ 2913 pr_info("kvm: exiting hardware virtualization\n"); 2914 kvm_rebooting = true; 2915 on_each_cpu(hardware_disable_nolock, NULL, 1); 2916 return NOTIFY_OK; 2917} 2918 2919static struct notifier_block kvm_reboot_notifier = { 2920 .notifier_call = kvm_reboot, 2921 .priority = 0, 2922}; 2923 2924static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2925{ 2926 int i; 2927 2928 for (i = 0; i < bus->dev_count; i++) { 2929 struct kvm_io_device *pos = bus->range[i].dev; 2930 2931 kvm_iodevice_destructor(pos); 2932 } 2933 kfree(bus); 2934} 2935 2936static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2937 const struct kvm_io_range *r2) 2938{ 2939 gpa_t addr1 = r1->addr; 2940 gpa_t addr2 = r2->addr; 2941 2942 if (addr1 < addr2) 2943 return -1; 2944 2945 /* If r2->len == 0, match the exact address. If r2->len != 0, 2946 * accept any overlapping write. Any order is acceptable for 2947 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 2948 * we process all of them. 2949 */ 2950 if (r2->len) { 2951 addr1 += r1->len; 2952 addr2 += r2->len; 2953 } 2954 2955 if (addr1 > addr2) 2956 return 1; 2957 2958 return 0; 2959} 2960 2961static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2962{ 2963 return kvm_io_bus_cmp(p1, p2); 2964} 2965 2966static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2967 gpa_t addr, int len) 2968{ 2969 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2970 .addr = addr, 2971 .len = len, 2972 .dev = dev, 2973 }; 2974 2975 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2976 kvm_io_bus_sort_cmp, NULL); 2977 2978 return 0; 2979} 2980 2981static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2982 gpa_t addr, int len) 2983{ 2984 struct kvm_io_range *range, key; 2985 int off; 2986 2987 key = (struct kvm_io_range) { 2988 .addr = addr, 2989 .len = len, 2990 }; 2991 2992 range = bsearch(&key, bus->range, bus->dev_count, 2993 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2994 if (range == NULL) 2995 return -ENOENT; 2996 2997 off = range - bus->range; 2998 2999 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3000 off--; 3001 3002 return off; 3003} 3004 3005static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3006 struct kvm_io_range *range, const void *val) 3007{ 3008 int idx; 3009 3010 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3011 if (idx < 0) 3012 return -EOPNOTSUPP; 3013 3014 while (idx < bus->dev_count && 3015 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3016 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3017 range->len, val)) 3018 return idx; 3019 idx++; 3020 } 3021 3022 return -EOPNOTSUPP; 3023} 3024 3025/* kvm_io_bus_write - called under kvm->slots_lock */ 3026int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3027 int len, const void *val) 3028{ 3029 struct kvm_io_bus *bus; 3030 struct kvm_io_range range; 3031 int r; 3032 3033 range = (struct kvm_io_range) { 3034 .addr = addr, 3035 .len = len, 3036 }; 3037 3038 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3039 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3040 return r < 0 ? r : 0; 3041} 3042 3043/* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3044int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3045 gpa_t addr, int len, const void *val, long cookie) 3046{ 3047 struct kvm_io_bus *bus; 3048 struct kvm_io_range range; 3049 3050 range = (struct kvm_io_range) { 3051 .addr = addr, 3052 .len = len, 3053 }; 3054 3055 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3056 3057 /* First try the device referenced by cookie. */ 3058 if ((cookie >= 0) && (cookie < bus->dev_count) && 3059 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3060 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3061 val)) 3062 return cookie; 3063 3064 /* 3065 * cookie contained garbage; fall back to search and return the 3066 * correct cookie value. 3067 */ 3068 return __kvm_io_bus_write(vcpu, bus, &range, val); 3069} 3070 3071static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3072 struct kvm_io_range *range, void *val) 3073{ 3074 int idx; 3075 3076 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3077 if (idx < 0) 3078 return -EOPNOTSUPP; 3079 3080 while (idx < bus->dev_count && 3081 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3082 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3083 range->len, val)) 3084 return idx; 3085 idx++; 3086 } 3087 3088 return -EOPNOTSUPP; 3089} 3090EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3091 3092/* kvm_io_bus_read - called under kvm->slots_lock */ 3093int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3094 int len, void *val) 3095{ 3096 struct kvm_io_bus *bus; 3097 struct kvm_io_range range; 3098 int r; 3099 3100 range = (struct kvm_io_range) { 3101 .addr = addr, 3102 .len = len, 3103 }; 3104 3105 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3106 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3107 return r < 0 ? r : 0; 3108} 3109 3110 3111/* Caller must hold slots_lock. */ 3112int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3113 int len, struct kvm_io_device *dev) 3114{ 3115 struct kvm_io_bus *new_bus, *bus; 3116 3117 bus = kvm->buses[bus_idx]; 3118 /* exclude ioeventfd which is limited by maximum fd */ 3119 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3120 return -ENOSPC; 3121 3122 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3123 sizeof(struct kvm_io_range)), GFP_KERNEL); 3124 if (!new_bus) 3125 return -ENOMEM; 3126 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3127 sizeof(struct kvm_io_range))); 3128 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3129 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3130 synchronize_srcu_expedited(&kvm->srcu); 3131 kfree(bus); 3132 3133 return 0; 3134} 3135 3136/* Caller must hold slots_lock. */ 3137int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3138 struct kvm_io_device *dev) 3139{ 3140 int i, r; 3141 struct kvm_io_bus *new_bus, *bus; 3142 3143 bus = kvm->buses[bus_idx]; 3144 r = -ENOENT; 3145 for (i = 0; i < bus->dev_count; i++) 3146 if (bus->range[i].dev == dev) { 3147 r = 0; 3148 break; 3149 } 3150 3151 if (r) 3152 return r; 3153 3154 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3155 sizeof(struct kvm_io_range)), GFP_KERNEL); 3156 if (!new_bus) 3157 return -ENOMEM; 3158 3159 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3160 new_bus->dev_count--; 3161 memcpy(new_bus->range + i, bus->range + i + 1, 3162 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3163 3164 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3165 synchronize_srcu_expedited(&kvm->srcu); 3166 kfree(bus); 3167 return r; 3168} 3169 3170static struct notifier_block kvm_cpu_notifier = { 3171 .notifier_call = kvm_cpu_hotplug, 3172}; 3173 3174static int vm_stat_get(void *_offset, u64 *val) 3175{ 3176 unsigned offset = (long)_offset; 3177 struct kvm *kvm; 3178 3179 *val = 0; 3180 spin_lock(&kvm_lock); 3181 list_for_each_entry(kvm, &vm_list, vm_list) 3182 *val += *(u32 *)((void *)kvm + offset); 3183 spin_unlock(&kvm_lock); 3184 return 0; 3185} 3186 3187DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3188 3189static int vcpu_stat_get(void *_offset, u64 *val) 3190{ 3191 unsigned offset = (long)_offset; 3192 struct kvm *kvm; 3193 struct kvm_vcpu *vcpu; 3194 int i; 3195 3196 *val = 0; 3197 spin_lock(&kvm_lock); 3198 list_for_each_entry(kvm, &vm_list, vm_list) 3199 kvm_for_each_vcpu(i, vcpu, kvm) 3200 *val += *(u32 *)((void *)vcpu + offset); 3201 3202 spin_unlock(&kvm_lock); 3203 return 0; 3204} 3205 3206DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3207 3208static const struct file_operations *stat_fops[] = { 3209 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3210 [KVM_STAT_VM] = &vm_stat_fops, 3211}; 3212 3213static int kvm_init_debug(void) 3214{ 3215 int r = -EEXIST; 3216 struct kvm_stats_debugfs_item *p; 3217 3218 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3219 if (kvm_debugfs_dir == NULL) 3220 goto out; 3221 3222 for (p = debugfs_entries; p->name; ++p) { 3223 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3224 (void *)(long)p->offset, 3225 stat_fops[p->kind]); 3226 if (p->dentry == NULL) 3227 goto out_dir; 3228 } 3229 3230 return 0; 3231 3232out_dir: 3233 debugfs_remove_recursive(kvm_debugfs_dir); 3234out: 3235 return r; 3236} 3237 3238static void kvm_exit_debug(void) 3239{ 3240 struct kvm_stats_debugfs_item *p; 3241 3242 for (p = debugfs_entries; p->name; ++p) 3243 debugfs_remove(p->dentry); 3244 debugfs_remove(kvm_debugfs_dir); 3245} 3246 3247static int kvm_suspend(void) 3248{ 3249 if (kvm_usage_count) 3250 hardware_disable_nolock(NULL); 3251 return 0; 3252} 3253 3254static void kvm_resume(void) 3255{ 3256 if (kvm_usage_count) { 3257 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3258 hardware_enable_nolock(NULL); 3259 } 3260} 3261 3262static struct syscore_ops kvm_syscore_ops = { 3263 .suspend = kvm_suspend, 3264 .resume = kvm_resume, 3265}; 3266 3267static inline 3268struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3269{ 3270 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3271} 3272 3273static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3274{ 3275 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3276 3277 if (vcpu->preempted) 3278 vcpu->preempted = false; 3279 3280 kvm_arch_sched_in(vcpu, cpu); 3281 3282 kvm_arch_vcpu_load(vcpu, cpu); 3283} 3284 3285static void kvm_sched_out(struct preempt_notifier *pn, 3286 struct task_struct *next) 3287{ 3288 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3289 3290 if (current->state == TASK_RUNNING) 3291 vcpu->preempted = true; 3292 kvm_arch_vcpu_put(vcpu); 3293} 3294 3295int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3296 struct module *module) 3297{ 3298 int r; 3299 int cpu; 3300 3301 r = kvm_arch_init(opaque); 3302 if (r) 3303 goto out_fail; 3304 3305 /* 3306 * kvm_arch_init makes sure there's at most one caller 3307 * for architectures that support multiple implementations, 3308 * like intel and amd on x86. 3309 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3310 * conflicts in case kvm is already setup for another implementation. 3311 */ 3312 r = kvm_irqfd_init(); 3313 if (r) 3314 goto out_irqfd; 3315 3316 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3317 r = -ENOMEM; 3318 goto out_free_0; 3319 } 3320 3321 r = kvm_arch_hardware_setup(); 3322 if (r < 0) 3323 goto out_free_0a; 3324 3325 for_each_online_cpu(cpu) { 3326 smp_call_function_single(cpu, 3327 kvm_arch_check_processor_compat, 3328 &r, 1); 3329 if (r < 0) 3330 goto out_free_1; 3331 } 3332 3333 r = register_cpu_notifier(&kvm_cpu_notifier); 3334 if (r) 3335 goto out_free_2; 3336 register_reboot_notifier(&kvm_reboot_notifier); 3337 3338 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3339 if (!vcpu_align) 3340 vcpu_align = __alignof__(struct kvm_vcpu); 3341 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3342 0, NULL); 3343 if (!kvm_vcpu_cache) { 3344 r = -ENOMEM; 3345 goto out_free_3; 3346 } 3347 3348 r = kvm_async_pf_init(); 3349 if (r) 3350 goto out_free; 3351 3352 kvm_chardev_ops.owner = module; 3353 kvm_vm_fops.owner = module; 3354 kvm_vcpu_fops.owner = module; 3355 3356 r = misc_register(&kvm_dev); 3357 if (r) { 3358 pr_err("kvm: misc device register failed\n"); 3359 goto out_unreg; 3360 } 3361 3362 register_syscore_ops(&kvm_syscore_ops); 3363 3364 kvm_preempt_ops.sched_in = kvm_sched_in; 3365 kvm_preempt_ops.sched_out = kvm_sched_out; 3366 3367 r = kvm_init_debug(); 3368 if (r) { 3369 pr_err("kvm: create debugfs files failed\n"); 3370 goto out_undebugfs; 3371 } 3372 3373 r = kvm_vfio_ops_init(); 3374 WARN_ON(r); 3375 3376 return 0; 3377 3378out_undebugfs: 3379 unregister_syscore_ops(&kvm_syscore_ops); 3380 misc_deregister(&kvm_dev); 3381out_unreg: 3382 kvm_async_pf_deinit(); 3383out_free: 3384 kmem_cache_destroy(kvm_vcpu_cache); 3385out_free_3: 3386 unregister_reboot_notifier(&kvm_reboot_notifier); 3387 unregister_cpu_notifier(&kvm_cpu_notifier); 3388out_free_2: 3389out_free_1: 3390 kvm_arch_hardware_unsetup(); 3391out_free_0a: 3392 free_cpumask_var(cpus_hardware_enabled); 3393out_free_0: 3394 kvm_irqfd_exit(); 3395out_irqfd: 3396 kvm_arch_exit(); 3397out_fail: 3398 return r; 3399} 3400EXPORT_SYMBOL_GPL(kvm_init); 3401 3402void kvm_exit(void) 3403{ 3404 kvm_exit_debug(); 3405 misc_deregister(&kvm_dev); 3406 kmem_cache_destroy(kvm_vcpu_cache); 3407 kvm_async_pf_deinit(); 3408 unregister_syscore_ops(&kvm_syscore_ops); 3409 unregister_reboot_notifier(&kvm_reboot_notifier); 3410 unregister_cpu_notifier(&kvm_cpu_notifier); 3411 on_each_cpu(hardware_disable_nolock, NULL, 1); 3412 kvm_arch_hardware_unsetup(); 3413 kvm_arch_exit(); 3414 kvm_irqfd_exit(); 3415 free_cpumask_var(cpus_hardware_enabled); 3416 kvm_vfio_ops_exit(); 3417} 3418EXPORT_SYMBOL_GPL(kvm_exit); 3419