1#ifndef _LINUX_MMU_NOTIFIER_H
2#define _LINUX_MMU_NOTIFIER_H
3
4#include <linux/list.h>
5#include <linux/spinlock.h>
6#include <linux/mm_types.h>
7#include <linux/srcu.h>
8
9struct mmu_notifier;
10struct mmu_notifier_ops;
11
12#ifdef CONFIG_MMU_NOTIFIER
13
14/*
15 * The mmu notifier_mm structure is allocated and installed in
16 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17 * critical section and it's released only when mm_count reaches zero
18 * in mmdrop().
19 */
20struct mmu_notifier_mm {
21	/* all mmu notifiers registerd in this mm are queued in this list */
22	struct hlist_head list;
23	/* to serialize the list modifications and hlist_unhashed */
24	spinlock_t lock;
25};
26
27struct mmu_notifier_ops {
28	/*
29	 * Called either by mmu_notifier_unregister or when the mm is
30	 * being destroyed by exit_mmap, always before all pages are
31	 * freed. This can run concurrently with other mmu notifier
32	 * methods (the ones invoked outside the mm context) and it
33	 * should tear down all secondary mmu mappings and freeze the
34	 * secondary mmu. If this method isn't implemented you've to
35	 * be sure that nothing could possibly write to the pages
36	 * through the secondary mmu by the time the last thread with
37	 * tsk->mm == mm exits.
38	 *
39	 * As side note: the pages freed after ->release returns could
40	 * be immediately reallocated by the gart at an alias physical
41	 * address with a different cache model, so if ->release isn't
42	 * implemented because all _software_ driven memory accesses
43	 * through the secondary mmu are terminated by the time the
44	 * last thread of this mm quits, you've also to be sure that
45	 * speculative _hardware_ operations can't allocate dirty
46	 * cachelines in the cpu that could not be snooped and made
47	 * coherent with the other read and write operations happening
48	 * through the gart alias address, so leading to memory
49	 * corruption.
50	 */
51	void (*release)(struct mmu_notifier *mn,
52			struct mm_struct *mm);
53
54	/*
55	 * clear_flush_young is called after the VM is
56	 * test-and-clearing the young/accessed bitflag in the
57	 * pte. This way the VM will provide proper aging to the
58	 * accesses to the page through the secondary MMUs and not
59	 * only to the ones through the Linux pte.
60	 * Start-end is necessary in case the secondary MMU is mapping the page
61	 * at a smaller granularity than the primary MMU.
62	 */
63	int (*clear_flush_young)(struct mmu_notifier *mn,
64				 struct mm_struct *mm,
65				 unsigned long start,
66				 unsigned long end);
67
68	/*
69	 * clear_young is a lightweight version of clear_flush_young. Like the
70	 * latter, it is supposed to test-and-clear the young/accessed bitflag
71	 * in the secondary pte, but it may omit flushing the secondary tlb.
72	 */
73	int (*clear_young)(struct mmu_notifier *mn,
74			   struct mm_struct *mm,
75			   unsigned long start,
76			   unsigned long end);
77
78	/*
79	 * test_young is called to check the young/accessed bitflag in
80	 * the secondary pte. This is used to know if the page is
81	 * frequently used without actually clearing the flag or tearing
82	 * down the secondary mapping on the page.
83	 */
84	int (*test_young)(struct mmu_notifier *mn,
85			  struct mm_struct *mm,
86			  unsigned long address);
87
88	/*
89	 * change_pte is called in cases that pte mapping to page is changed:
90	 * for example, when ksm remaps pte to point to a new shared page.
91	 */
92	void (*change_pte)(struct mmu_notifier *mn,
93			   struct mm_struct *mm,
94			   unsigned long address,
95			   pte_t pte);
96
97	/*
98	 * Before this is invoked any secondary MMU is still ok to
99	 * read/write to the page previously pointed to by the Linux
100	 * pte because the page hasn't been freed yet and it won't be
101	 * freed until this returns. If required set_page_dirty has to
102	 * be called internally to this method.
103	 */
104	void (*invalidate_page)(struct mmu_notifier *mn,
105				struct mm_struct *mm,
106				unsigned long address);
107
108	/*
109	 * invalidate_range_start() and invalidate_range_end() must be
110	 * paired and are called only when the mmap_sem and/or the
111	 * locks protecting the reverse maps are held. If the subsystem
112	 * can't guarantee that no additional references are taken to
113	 * the pages in the range, it has to implement the
114	 * invalidate_range() notifier to remove any references taken
115	 * after invalidate_range_start().
116	 *
117	 * Invalidation of multiple concurrent ranges may be
118	 * optionally permitted by the driver. Either way the
119	 * establishment of sptes is forbidden in the range passed to
120	 * invalidate_range_begin/end for the whole duration of the
121	 * invalidate_range_begin/end critical section.
122	 *
123	 * invalidate_range_start() is called when all pages in the
124	 * range are still mapped and have at least a refcount of one.
125	 *
126	 * invalidate_range_end() is called when all pages in the
127	 * range have been unmapped and the pages have been freed by
128	 * the VM.
129	 *
130	 * The VM will remove the page table entries and potentially
131	 * the page between invalidate_range_start() and
132	 * invalidate_range_end(). If the page must not be freed
133	 * because of pending I/O or other circumstances then the
134	 * invalidate_range_start() callback (or the initial mapping
135	 * by the driver) must make sure that the refcount is kept
136	 * elevated.
137	 *
138	 * If the driver increases the refcount when the pages are
139	 * initially mapped into an address space then either
140	 * invalidate_range_start() or invalidate_range_end() may
141	 * decrease the refcount. If the refcount is decreased on
142	 * invalidate_range_start() then the VM can free pages as page
143	 * table entries are removed.  If the refcount is only
144	 * droppped on invalidate_range_end() then the driver itself
145	 * will drop the last refcount but it must take care to flush
146	 * any secondary tlb before doing the final free on the
147	 * page. Pages will no longer be referenced by the linux
148	 * address space but may still be referenced by sptes until
149	 * the last refcount is dropped.
150	 */
151	void (*invalidate_range_start)(struct mmu_notifier *mn,
152				       struct mm_struct *mm,
153				       unsigned long start, unsigned long end);
154	void (*invalidate_range_end)(struct mmu_notifier *mn,
155				     struct mm_struct *mm,
156				     unsigned long start, unsigned long end);
157
158	/*
159	 * invalidate_range() is either called between
160	 * invalidate_range_start() and invalidate_range_end() when the
161	 * VM has to free pages that where unmapped, but before the
162	 * pages are actually freed, or outside of _start()/_end() when
163	 * a (remote) TLB is necessary.
164	 *
165	 * If invalidate_range() is used to manage a non-CPU TLB with
166	 * shared page-tables, it not necessary to implement the
167	 * invalidate_range_start()/end() notifiers, as
168	 * invalidate_range() alread catches the points in time when an
169	 * external TLB range needs to be flushed.
170	 *
171	 * The invalidate_range() function is called under the ptl
172	 * spin-lock and not allowed to sleep.
173	 *
174	 * Note that this function might be called with just a sub-range
175	 * of what was passed to invalidate_range_start()/end(), if
176	 * called between those functions.
177	 */
178	void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
179				 unsigned long start, unsigned long end);
180};
181
182/*
183 * The notifier chains are protected by mmap_sem and/or the reverse map
184 * semaphores. Notifier chains are only changed when all reverse maps and
185 * the mmap_sem locks are taken.
186 *
187 * Therefore notifier chains can only be traversed when either
188 *
189 * 1. mmap_sem is held.
190 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
191 * 3. No other concurrent thread can access the list (release)
192 */
193struct mmu_notifier {
194	struct hlist_node hlist;
195	const struct mmu_notifier_ops *ops;
196};
197
198static inline int mm_has_notifiers(struct mm_struct *mm)
199{
200	return unlikely(mm->mmu_notifier_mm);
201}
202
203extern int mmu_notifier_register(struct mmu_notifier *mn,
204				 struct mm_struct *mm);
205extern int __mmu_notifier_register(struct mmu_notifier *mn,
206				   struct mm_struct *mm);
207extern void mmu_notifier_unregister(struct mmu_notifier *mn,
208				    struct mm_struct *mm);
209extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
210					       struct mm_struct *mm);
211extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
212extern void __mmu_notifier_release(struct mm_struct *mm);
213extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
214					  unsigned long start,
215					  unsigned long end);
216extern int __mmu_notifier_clear_young(struct mm_struct *mm,
217				      unsigned long start,
218				      unsigned long end);
219extern int __mmu_notifier_test_young(struct mm_struct *mm,
220				     unsigned long address);
221extern void __mmu_notifier_change_pte(struct mm_struct *mm,
222				      unsigned long address, pte_t pte);
223extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
224					  unsigned long address);
225extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
226				  unsigned long start, unsigned long end);
227extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
228				  unsigned long start, unsigned long end);
229extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
230				  unsigned long start, unsigned long end);
231
232static inline void mmu_notifier_release(struct mm_struct *mm)
233{
234	if (mm_has_notifiers(mm))
235		__mmu_notifier_release(mm);
236}
237
238static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
239					  unsigned long start,
240					  unsigned long end)
241{
242	if (mm_has_notifiers(mm))
243		return __mmu_notifier_clear_flush_young(mm, start, end);
244	return 0;
245}
246
247static inline int mmu_notifier_clear_young(struct mm_struct *mm,
248					   unsigned long start,
249					   unsigned long end)
250{
251	if (mm_has_notifiers(mm))
252		return __mmu_notifier_clear_young(mm, start, end);
253	return 0;
254}
255
256static inline int mmu_notifier_test_young(struct mm_struct *mm,
257					  unsigned long address)
258{
259	if (mm_has_notifiers(mm))
260		return __mmu_notifier_test_young(mm, address);
261	return 0;
262}
263
264static inline void mmu_notifier_change_pte(struct mm_struct *mm,
265					   unsigned long address, pte_t pte)
266{
267	if (mm_has_notifiers(mm))
268		__mmu_notifier_change_pte(mm, address, pte);
269}
270
271static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
272					  unsigned long address)
273{
274	if (mm_has_notifiers(mm))
275		__mmu_notifier_invalidate_page(mm, address);
276}
277
278static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
279				  unsigned long start, unsigned long end)
280{
281	if (mm_has_notifiers(mm))
282		__mmu_notifier_invalidate_range_start(mm, start, end);
283}
284
285static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
286				  unsigned long start, unsigned long end)
287{
288	if (mm_has_notifiers(mm))
289		__mmu_notifier_invalidate_range_end(mm, start, end);
290}
291
292static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
293				  unsigned long start, unsigned long end)
294{
295	if (mm_has_notifiers(mm))
296		__mmu_notifier_invalidate_range(mm, start, end);
297}
298
299static inline void mmu_notifier_mm_init(struct mm_struct *mm)
300{
301	mm->mmu_notifier_mm = NULL;
302}
303
304static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
305{
306	if (mm_has_notifiers(mm))
307		__mmu_notifier_mm_destroy(mm);
308}
309
310#define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
311({									\
312	int __young;							\
313	struct vm_area_struct *___vma = __vma;				\
314	unsigned long ___address = __address;				\
315	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
316	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
317						  ___address,		\
318						  ___address +		\
319							PAGE_SIZE);	\
320	__young;							\
321})
322
323#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
324({									\
325	int __young;							\
326	struct vm_area_struct *___vma = __vma;				\
327	unsigned long ___address = __address;				\
328	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
329	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
330						  ___address,		\
331						  ___address +		\
332							PMD_SIZE);	\
333	__young;							\
334})
335
336#define ptep_clear_young_notify(__vma, __address, __ptep)		\
337({									\
338	int __young;							\
339	struct vm_area_struct *___vma = __vma;				\
340	unsigned long ___address = __address;				\
341	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
342	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
343					    ___address + PAGE_SIZE);	\
344	__young;							\
345})
346
347#define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
348({									\
349	int __young;							\
350	struct vm_area_struct *___vma = __vma;				\
351	unsigned long ___address = __address;				\
352	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
353	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
354					    ___address + PMD_SIZE);	\
355	__young;							\
356})
357
358#define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
359({									\
360	unsigned long ___addr = __address & PAGE_MASK;			\
361	struct mm_struct *___mm = (__vma)->vm_mm;			\
362	pte_t ___pte;							\
363									\
364	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
365	mmu_notifier_invalidate_range(___mm, ___addr,			\
366					___addr + PAGE_SIZE);		\
367									\
368	___pte;								\
369})
370
371#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
372({									\
373	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
374	struct mm_struct *___mm = (__vma)->vm_mm;			\
375	pmd_t ___pmd;							\
376									\
377	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
378	mmu_notifier_invalidate_range(___mm, ___haddr,			\
379				      ___haddr + HPAGE_PMD_SIZE);	\
380									\
381	___pmd;								\
382})
383
384#define pmdp_huge_get_and_clear_notify(__mm, __haddr, __pmd)		\
385({									\
386	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
387	pmd_t ___pmd;							\
388									\
389	___pmd = pmdp_huge_get_and_clear(__mm, __haddr, __pmd);		\
390	mmu_notifier_invalidate_range(__mm, ___haddr,			\
391				      ___haddr + HPAGE_PMD_SIZE);	\
392									\
393	___pmd;								\
394})
395
396/*
397 * set_pte_at_notify() sets the pte _after_ running the notifier.
398 * This is safe to start by updating the secondary MMUs, because the primary MMU
399 * pte invalidate must have already happened with a ptep_clear_flush() before
400 * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
401 * required when we change both the protection of the mapping from read-only to
402 * read-write and the pfn (like during copy on write page faults). Otherwise the
403 * old page would remain mapped readonly in the secondary MMUs after the new
404 * page is already writable by some CPU through the primary MMU.
405 */
406#define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
407({									\
408	struct mm_struct *___mm = __mm;					\
409	unsigned long ___address = __address;				\
410	pte_t ___pte = __pte;						\
411									\
412	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
413	set_pte_at(___mm, ___address, __ptep, ___pte);			\
414})
415
416extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
417				   void (*func)(struct rcu_head *rcu));
418extern void mmu_notifier_synchronize(void);
419
420#else /* CONFIG_MMU_NOTIFIER */
421
422static inline void mmu_notifier_release(struct mm_struct *mm)
423{
424}
425
426static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
427					  unsigned long start,
428					  unsigned long end)
429{
430	return 0;
431}
432
433static inline int mmu_notifier_test_young(struct mm_struct *mm,
434					  unsigned long address)
435{
436	return 0;
437}
438
439static inline void mmu_notifier_change_pte(struct mm_struct *mm,
440					   unsigned long address, pte_t pte)
441{
442}
443
444static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
445					  unsigned long address)
446{
447}
448
449static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
450				  unsigned long start, unsigned long end)
451{
452}
453
454static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
455				  unsigned long start, unsigned long end)
456{
457}
458
459static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
460				  unsigned long start, unsigned long end)
461{
462}
463
464static inline void mmu_notifier_mm_init(struct mm_struct *mm)
465{
466}
467
468static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
469{
470}
471
472#define ptep_clear_flush_young_notify ptep_clear_flush_young
473#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
474#define ptep_clear_young_notify ptep_test_and_clear_young
475#define pmdp_clear_young_notify pmdp_test_and_clear_young
476#define	ptep_clear_flush_notify ptep_clear_flush
477#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
478#define pmdp_huge_get_and_clear_notify pmdp_huge_get_and_clear
479#define set_pte_at_notify set_pte_at
480
481#endif /* CONFIG_MMU_NOTIFIER */
482
483#endif /* _LINUX_MMU_NOTIFIER_H */
484