root/arch/s390/pci/pci_irq.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. zpci_set_airq
  2. zpci_clear_airq
  3. zpci_set_directed_irq
  4. zpci_clear_directed_irq
  5. zpci_set_irq_affinity
  6. zpci_handle_cpu_local_irq
  7. zpci_handle_remote_irq
  8. zpci_handle_fallback_irq
  9. zpci_directed_irq_handler
  10. zpci_floating_irq_handler
  11. arch_setup_msi_irqs
  12. arch_teardown_msi_irqs
  13. cpu_enable_directed_irq
  14. zpci_directed_irq_init
  15. zpci_floating_irq_init
  16. zpci_irq_init
  17. zpci_irq_exit

   1 // SPDX-License-Identifier: GPL-2.0
   2 #define KMSG_COMPONENT "zpci"
   3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
   4 
   5 #include <linux/kernel.h>
   6 #include <linux/irq.h>
   7 #include <linux/kernel_stat.h>
   8 #include <linux/pci.h>
   9 #include <linux/msi.h>
  10 #include <linux/smp.h>
  11 
  12 #include <asm/isc.h>
  13 #include <asm/airq.h>
  14 
  15 static enum {FLOATING, DIRECTED} irq_delivery;
  16 
  17 #define SIC_IRQ_MODE_ALL                0
  18 #define SIC_IRQ_MODE_SINGLE             1
  19 #define SIC_IRQ_MODE_DIRECT             4
  20 #define SIC_IRQ_MODE_D_ALL              16
  21 #define SIC_IRQ_MODE_D_SINGLE           17
  22 #define SIC_IRQ_MODE_SET_CPU            18
  23 
  24 /*
  25  * summary bit vector
  26  * FLOATING - summary bit per function
  27  * DIRECTED - summary bit per cpu (only used in fallback path)
  28  */
  29 static struct airq_iv *zpci_sbv;
  30 
  31 /*
  32  * interrupt bit vectors
  33  * FLOATING - interrupt bit vector per function
  34  * DIRECTED - interrupt bit vector per cpu
  35  */
  36 static struct airq_iv **zpci_ibv;
  37 
  38 /* Modify PCI: Register adapter interruptions */
  39 static int zpci_set_airq(struct zpci_dev *zdev)
  40 {
  41         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
  42         struct zpci_fib fib = {0};
  43         u8 status;
  44 
  45         fib.fmt0.isc = PCI_ISC;
  46         fib.fmt0.sum = 1;       /* enable summary notifications */
  47         fib.fmt0.noi = airq_iv_end(zdev->aibv);
  48         fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
  49         fib.fmt0.aibvo = 0;     /* each zdev has its own interrupt vector */
  50         fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
  51         fib.fmt0.aisbo = zdev->aisb & 63;
  52 
  53         return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
  54 }
  55 
  56 /* Modify PCI: Unregister adapter interruptions */
  57 static int zpci_clear_airq(struct zpci_dev *zdev)
  58 {
  59         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
  60         struct zpci_fib fib = {0};
  61         u8 cc, status;
  62 
  63         cc = zpci_mod_fc(req, &fib, &status);
  64         if (cc == 3 || (cc == 1 && status == 24))
  65                 /* Function already gone or IRQs already deregistered. */
  66                 cc = 0;
  67 
  68         return cc ? -EIO : 0;
  69 }
  70 
  71 /* Modify PCI: Register CPU directed interruptions */
  72 static int zpci_set_directed_irq(struct zpci_dev *zdev)
  73 {
  74         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
  75         struct zpci_fib fib = {0};
  76         u8 status;
  77 
  78         fib.fmt = 1;
  79         fib.fmt1.noi = zdev->msi_nr_irqs;
  80         fib.fmt1.dibvo = zdev->msi_first_bit;
  81 
  82         return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
  83 }
  84 
  85 /* Modify PCI: Unregister CPU directed interruptions */
  86 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
  87 {
  88         u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
  89         struct zpci_fib fib = {0};
  90         u8 cc, status;
  91 
  92         fib.fmt = 1;
  93         cc = zpci_mod_fc(req, &fib, &status);
  94         if (cc == 3 || (cc == 1 && status == 24))
  95                 /* Function already gone or IRQs already deregistered. */
  96                 cc = 0;
  97 
  98         return cc ? -EIO : 0;
  99 }
 100 
 101 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
 102                                  bool force)
 103 {
 104         struct msi_desc *entry = irq_get_msi_desc(data->irq);
 105         struct msi_msg msg = entry->msg;
 106 
 107         msg.address_lo &= 0xff0000ff;
 108         msg.address_lo |= (cpumask_first(dest) << 8);
 109         pci_write_msi_msg(data->irq, &msg);
 110 
 111         return IRQ_SET_MASK_OK;
 112 }
 113 
 114 static struct irq_chip zpci_irq_chip = {
 115         .name = "PCI-MSI",
 116         .irq_unmask = pci_msi_unmask_irq,
 117         .irq_mask = pci_msi_mask_irq,
 118 };
 119 
 120 static void zpci_handle_cpu_local_irq(bool rescan)
 121 {
 122         struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
 123         unsigned long bit;
 124         int irqs_on = 0;
 125 
 126         for (bit = 0;;) {
 127                 /* Scan the directed IRQ bit vector */
 128                 bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
 129                 if (bit == -1UL) {
 130                         if (!rescan || irqs_on++)
 131                                 /* End of second scan with interrupts on. */
 132                                 break;
 133                         /* First scan complete, reenable interrupts. */
 134                         if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
 135                                 break;
 136                         bit = 0;
 137                         continue;
 138                 }
 139                 inc_irq_stat(IRQIO_MSI);
 140                 generic_handle_irq(airq_iv_get_data(dibv, bit));
 141         }
 142 }
 143 
 144 struct cpu_irq_data {
 145         call_single_data_t csd;
 146         atomic_t scheduled;
 147 };
 148 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
 149 
 150 static void zpci_handle_remote_irq(void *data)
 151 {
 152         atomic_t *scheduled = data;
 153 
 154         do {
 155                 zpci_handle_cpu_local_irq(false);
 156         } while (atomic_dec_return(scheduled));
 157 }
 158 
 159 static void zpci_handle_fallback_irq(void)
 160 {
 161         struct cpu_irq_data *cpu_data;
 162         unsigned long cpu;
 163         int irqs_on = 0;
 164 
 165         for (cpu = 0;;) {
 166                 cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
 167                 if (cpu == -1UL) {
 168                         if (irqs_on++)
 169                                 /* End of second scan with interrupts on. */
 170                                 break;
 171                         /* First scan complete, reenable interrupts. */
 172                         if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
 173                                 break;
 174                         cpu = 0;
 175                         continue;
 176                 }
 177                 cpu_data = &per_cpu(irq_data, cpu);
 178                 if (atomic_inc_return(&cpu_data->scheduled) > 1)
 179                         continue;
 180 
 181                 cpu_data->csd.func = zpci_handle_remote_irq;
 182                 cpu_data->csd.info = &cpu_data->scheduled;
 183                 cpu_data->csd.flags = 0;
 184                 smp_call_function_single_async(cpu, &cpu_data->csd);
 185         }
 186 }
 187 
 188 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
 189 {
 190         if (floating) {
 191                 inc_irq_stat(IRQIO_PCF);
 192                 zpci_handle_fallback_irq();
 193         } else {
 194                 inc_irq_stat(IRQIO_PCD);
 195                 zpci_handle_cpu_local_irq(true);
 196         }
 197 }
 198 
 199 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
 200 {
 201         unsigned long si, ai;
 202         struct airq_iv *aibv;
 203         int irqs_on = 0;
 204 
 205         inc_irq_stat(IRQIO_PCF);
 206         for (si = 0;;) {
 207                 /* Scan adapter summary indicator bit vector */
 208                 si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
 209                 if (si == -1UL) {
 210                         if (irqs_on++)
 211                                 /* End of second scan with interrupts on. */
 212                                 break;
 213                         /* First scan complete, reenable interrupts. */
 214                         if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
 215                                 break;
 216                         si = 0;
 217                         continue;
 218                 }
 219 
 220                 /* Scan the adapter interrupt vector for this device. */
 221                 aibv = zpci_ibv[si];
 222                 for (ai = 0;;) {
 223                         ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
 224                         if (ai == -1UL)
 225                                 break;
 226                         inc_irq_stat(IRQIO_MSI);
 227                         airq_iv_lock(aibv, ai);
 228                         generic_handle_irq(airq_iv_get_data(aibv, ai));
 229                         airq_iv_unlock(aibv, ai);
 230                 }
 231         }
 232 }
 233 
 234 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
 235 {
 236         struct zpci_dev *zdev = to_zpci(pdev);
 237         unsigned int hwirq, msi_vecs, cpu;
 238         unsigned long bit;
 239         struct msi_desc *msi;
 240         struct msi_msg msg;
 241         int rc, irq;
 242 
 243         zdev->aisb = -1UL;
 244         zdev->msi_first_bit = -1U;
 245         if (type == PCI_CAP_ID_MSI && nvec > 1)
 246                 return 1;
 247         msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
 248 
 249         if (irq_delivery == DIRECTED) {
 250                 /* Allocate cpu vector bits */
 251                 bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
 252                 if (bit == -1UL)
 253                         return -EIO;
 254         } else {
 255                 /* Allocate adapter summary indicator bit */
 256                 bit = airq_iv_alloc_bit(zpci_sbv);
 257                 if (bit == -1UL)
 258                         return -EIO;
 259                 zdev->aisb = bit;
 260 
 261                 /* Create adapter interrupt vector */
 262                 zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
 263                 if (!zdev->aibv)
 264                         return -ENOMEM;
 265 
 266                 /* Wire up shortcut pointer */
 267                 zpci_ibv[bit] = zdev->aibv;
 268                 /* Each function has its own interrupt vector */
 269                 bit = 0;
 270         }
 271 
 272         /* Request MSI interrupts */
 273         hwirq = bit;
 274         for_each_pci_msi_entry(msi, pdev) {
 275                 rc = -EIO;
 276                 if (hwirq - bit >= msi_vecs)
 277                         break;
 278                 irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
 279                                 (irq_delivery == DIRECTED) ?
 280                                 msi->affinity : NULL);
 281                 if (irq < 0)
 282                         return -ENOMEM;
 283                 rc = irq_set_msi_desc(irq, msi);
 284                 if (rc)
 285                         return rc;
 286                 irq_set_chip_and_handler(irq, &zpci_irq_chip,
 287                                          handle_percpu_irq);
 288                 msg.data = hwirq - bit;
 289                 if (irq_delivery == DIRECTED) {
 290                         msg.address_lo = zdev->msi_addr & 0xff0000ff;
 291                         msg.address_lo |= msi->affinity ?
 292                                 (cpumask_first(&msi->affinity->mask) << 8) : 0;
 293                         for_each_possible_cpu(cpu) {
 294                                 airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
 295                         }
 296                 } else {
 297                         msg.address_lo = zdev->msi_addr & 0xffffffff;
 298                         airq_iv_set_data(zdev->aibv, hwirq, irq);
 299                 }
 300                 msg.address_hi = zdev->msi_addr >> 32;
 301                 pci_write_msi_msg(irq, &msg);
 302                 hwirq++;
 303         }
 304 
 305         zdev->msi_first_bit = bit;
 306         zdev->msi_nr_irqs = msi_vecs;
 307 
 308         if (irq_delivery == DIRECTED)
 309                 rc = zpci_set_directed_irq(zdev);
 310         else
 311                 rc = zpci_set_airq(zdev);
 312         if (rc)
 313                 return rc;
 314 
 315         return (msi_vecs == nvec) ? 0 : msi_vecs;
 316 }
 317 
 318 void arch_teardown_msi_irqs(struct pci_dev *pdev)
 319 {
 320         struct zpci_dev *zdev = to_zpci(pdev);
 321         struct msi_desc *msi;
 322         int rc;
 323 
 324         /* Disable interrupts */
 325         if (irq_delivery == DIRECTED)
 326                 rc = zpci_clear_directed_irq(zdev);
 327         else
 328                 rc = zpci_clear_airq(zdev);
 329         if (rc)
 330                 return;
 331 
 332         /* Release MSI interrupts */
 333         for_each_pci_msi_entry(msi, pdev) {
 334                 if (!msi->irq)
 335                         continue;
 336                 if (msi->msi_attrib.is_msix)
 337                         __pci_msix_desc_mask_irq(msi, 1);
 338                 else
 339                         __pci_msi_desc_mask_irq(msi, 1, 1);
 340                 irq_set_msi_desc(msi->irq, NULL);
 341                 irq_free_desc(msi->irq);
 342                 msi->msg.address_lo = 0;
 343                 msi->msg.address_hi = 0;
 344                 msi->msg.data = 0;
 345                 msi->irq = 0;
 346         }
 347 
 348         if (zdev->aisb != -1UL) {
 349                 zpci_ibv[zdev->aisb] = NULL;
 350                 airq_iv_free_bit(zpci_sbv, zdev->aisb);
 351                 zdev->aisb = -1UL;
 352         }
 353         if (zdev->aibv) {
 354                 airq_iv_release(zdev->aibv);
 355                 zdev->aibv = NULL;
 356         }
 357 
 358         if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
 359                 airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
 360 }
 361 
 362 static struct airq_struct zpci_airq = {
 363         .handler = zpci_floating_irq_handler,
 364         .isc = PCI_ISC,
 365 };
 366 
 367 static void __init cpu_enable_directed_irq(void *unused)
 368 {
 369         union zpci_sic_iib iib = {{0}};
 370 
 371         iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
 372 
 373         __zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
 374         zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
 375 }
 376 
 377 static int __init zpci_directed_irq_init(void)
 378 {
 379         union zpci_sic_iib iib = {{0}};
 380         unsigned int cpu;
 381 
 382         zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
 383         if (!zpci_sbv)
 384                 return -ENOMEM;
 385 
 386         iib.diib.isc = PCI_ISC;
 387         iib.diib.nr_cpus = num_possible_cpus();
 388         iib.diib.disb_addr = (u64) zpci_sbv->vector;
 389         __zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
 390 
 391         zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
 392                            GFP_KERNEL);
 393         if (!zpci_ibv)
 394                 return -ENOMEM;
 395 
 396         for_each_possible_cpu(cpu) {
 397                 /*
 398                  * Per CPU IRQ vectors look the same but bit-allocation
 399                  * is only done on the first vector.
 400                  */
 401                 zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
 402                                                AIRQ_IV_DATA |
 403                                                AIRQ_IV_CACHELINE |
 404                                                (!cpu ? AIRQ_IV_ALLOC : 0));
 405                 if (!zpci_ibv[cpu])
 406                         return -ENOMEM;
 407         }
 408         on_each_cpu(cpu_enable_directed_irq, NULL, 1);
 409 
 410         zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
 411 
 412         return 0;
 413 }
 414 
 415 static int __init zpci_floating_irq_init(void)
 416 {
 417         zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
 418         if (!zpci_ibv)
 419                 return -ENOMEM;
 420 
 421         zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
 422         if (!zpci_sbv)
 423                 goto out_free;
 424 
 425         return 0;
 426 
 427 out_free:
 428         kfree(zpci_ibv);
 429         return -ENOMEM;
 430 }
 431 
 432 int __init zpci_irq_init(void)
 433 {
 434         int rc;
 435 
 436         irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
 437         if (s390_pci_force_floating)
 438                 irq_delivery = FLOATING;
 439 
 440         if (irq_delivery == DIRECTED)
 441                 zpci_airq.handler = zpci_directed_irq_handler;
 442 
 443         rc = register_adapter_interrupt(&zpci_airq);
 444         if (rc)
 445                 goto out;
 446         /* Set summary to 1 to be called every time for the ISC. */
 447         *zpci_airq.lsi_ptr = 1;
 448 
 449         switch (irq_delivery) {
 450         case FLOATING:
 451                 rc = zpci_floating_irq_init();
 452                 break;
 453         case DIRECTED:
 454                 rc = zpci_directed_irq_init();
 455                 break;
 456         }
 457 
 458         if (rc)
 459                 goto out_airq;
 460 
 461         /*
 462          * Enable floating IRQs (with suppression after one IRQ). When using
 463          * directed IRQs this enables the fallback path.
 464          */
 465         zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
 466 
 467         return 0;
 468 out_airq:
 469         unregister_adapter_interrupt(&zpci_airq);
 470 out:
 471         return rc;
 472 }
 473 
 474 void __init zpci_irq_exit(void)
 475 {
 476         unsigned int cpu;
 477 
 478         if (irq_delivery == DIRECTED) {
 479                 for_each_possible_cpu(cpu) {
 480                         airq_iv_release(zpci_ibv[cpu]);
 481                 }
 482         }
 483         kfree(zpci_ibv);
 484         if (zpci_sbv)
 485                 airq_iv_release(zpci_sbv);
 486         unregister_adapter_interrupt(&zpci_airq);
 487 }

/* [<][>][^][v][top][bottom][index][help] */