root/arch/s390/include/asm/pgtable.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. update_page_count
  2. is_module_addr
  3. mm_p4d_folded
  4. mm_pud_folded
  5. mm_pmd_folded
  6. mm_has_pgste
  7. mm_alloc_pgste
  8. mm_uses_skeys
  9. csp
  10. cspg
  11. crdte
  12. pgd_folded
  13. pgd_present
  14. pgd_none
  15. pgd_bad
  16. pgd_pfn
  17. p4d_folded
  18. p4d_present
  19. p4d_none
  20. p4d_pfn
  21. pud_folded
  22. pud_present
  23. pud_none
  24. pud_large
  25. pud_pfn
  26. pmd_large
  27. pmd_bad
  28. pud_bad
  29. p4d_bad
  30. pmd_present
  31. pmd_none
  32. pmd_pfn
  33. pmd_write
  34. pud_write
  35. pmd_dirty
  36. pmd_young
  37. pte_present
  38. pte_none
  39. pte_swap
  40. pte_special
  41. pte_same
  42. pte_protnone
  43. pmd_protnone
  44. pte_soft_dirty
  45. pte_mksoft_dirty
  46. pte_clear_soft_dirty
  47. pmd_soft_dirty
  48. pmd_mksoft_dirty
  49. pmd_clear_soft_dirty
  50. pte_write
  51. pte_dirty
  52. pte_young
  53. pte_unused
  54. pgd_clear
  55. p4d_clear
  56. pud_clear
  57. pmd_clear
  58. pte_clear
  59. pte_modify
  60. pte_wrprotect
  61. pte_mkwrite
  62. pte_mkclean
  63. pte_mkdirty
  64. pte_mkold
  65. pte_mkyoung
  66. pte_mkspecial
  67. pte_mkhuge
  68. __ptep_ipte
  69. __ptep_ipte_range
  70. ptep_test_and_clear_young
  71. ptep_clear_flush_young
  72. ptep_get_and_clear
  73. ptep_clear_flush
  74. ptep_get_and_clear_full
  75. ptep_set_wrprotect
  76. ptep_set_access_flags
  77. set_pte_at
  78. mk_pte_phys
  79. mk_pte
  80. pgd_offset_raw
  81. p4d_offset
  82. pud_offset
  83. pmd_offset
  84. pte_offset
  85. pte_unmap
  86. gup_fast_permitted
  87. pmd_wrprotect
  88. pmd_mkwrite
  89. pmd_mkclean
  90. pmd_mkdirty
  91. pud_wrprotect
  92. pud_mkwrite
  93. pud_mkclean
  94. pud_mkdirty
  95. massage_pgprot_pmd
  96. pmd_mkyoung
  97. pmd_mkold
  98. pmd_modify
  99. mk_pmd_phys
  100. __pmdp_csp
  101. __pmdp_idte
  102. __pudp_idte
  103. pmdp_set_access_flags
  104. pmdp_test_and_clear_young
  105. pmdp_clear_flush_young
  106. set_pmd_at
  107. pmd_mkhuge
  108. pmdp_huge_get_and_clear
  109. pmdp_huge_get_and_clear_full
  110. pmdp_huge_clear_flush
  111. pmdp_invalidate
  112. pmdp_set_wrprotect
  113. pmdp_collapse_flush
  114. pmd_trans_huge
  115. has_transparent_hugepage
  116. mk_swap_pte
  117. __swp_type
  118. __swp_offset
  119. __swp_entry

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  *  S390 version
   4  *    Copyright IBM Corp. 1999, 2000
   5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6  *               Ulrich Weigand (weigand@de.ibm.com)
   7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8  *
   9  *  Derived from "include/asm-i386/pgtable.h"
  10  */
  11 
  12 #ifndef _ASM_S390_PGTABLE_H
  13 #define _ASM_S390_PGTABLE_H
  14 
  15 #include <linux/sched.h>
  16 #include <linux/mm_types.h>
  17 #include <linux/page-flags.h>
  18 #include <linux/radix-tree.h>
  19 #include <linux/atomic.h>
  20 #include <asm/bug.h>
  21 #include <asm/page.h>
  22 
  23 extern pgd_t swapper_pg_dir[];
  24 extern void paging_init(void);
  25 
  26 enum {
  27         PG_DIRECT_MAP_4K = 0,
  28         PG_DIRECT_MAP_1M,
  29         PG_DIRECT_MAP_2G,
  30         PG_DIRECT_MAP_MAX
  31 };
  32 
  33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  34 
  35 static inline void update_page_count(int level, long count)
  36 {
  37         if (IS_ENABLED(CONFIG_PROC_FS))
  38                 atomic_long_add(count, &direct_pages_count[level]);
  39 }
  40 
  41 struct seq_file;
  42 void arch_report_meminfo(struct seq_file *m);
  43 
  44 /*
  45  * The S390 doesn't have any external MMU info: the kernel page
  46  * tables contain all the necessary information.
  47  */
  48 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
  49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  50 
  51 /*
  52  * ZERO_PAGE is a global shared page that is always zero; used
  53  * for zero-mapped memory areas etc..
  54  */
  55 
  56 extern unsigned long empty_zero_page;
  57 extern unsigned long zero_page_mask;
  58 
  59 #define ZERO_PAGE(vaddr) \
  60         (virt_to_page((void *)(empty_zero_page + \
  61          (((unsigned long)(vaddr)) &zero_page_mask))))
  62 #define __HAVE_COLOR_ZERO_PAGE
  63 
  64 /* TODO: s390 cannot support io_remap_pfn_range... */
  65 
  66 #define FIRST_USER_ADDRESS  0UL
  67 
  68 #define pte_ERROR(e) \
  69         printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  70 #define pmd_ERROR(e) \
  71         printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  72 #define pud_ERROR(e) \
  73         printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  74 #define p4d_ERROR(e) \
  75         printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
  76 #define pgd_ERROR(e) \
  77         printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  78 
  79 /*
  80  * The vmalloc and module area will always be on the topmost area of the
  81  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  82  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  83  * modules will reside. That makes sure that inter module branches always
  84  * happen without trampolines and in addition the placement within a 2GB frame
  85  * is branch prediction unit friendly.
  86  */
  87 extern unsigned long VMALLOC_START;
  88 extern unsigned long VMALLOC_END;
  89 #define VMALLOC_DEFAULT_SIZE    ((128UL << 30) - MODULES_LEN)
  90 extern struct page *vmemmap;
  91 
  92 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  93 
  94 extern unsigned long MODULES_VADDR;
  95 extern unsigned long MODULES_END;
  96 #define MODULES_VADDR   MODULES_VADDR
  97 #define MODULES_END     MODULES_END
  98 #define MODULES_LEN     (1UL << 31)
  99 
 100 static inline int is_module_addr(void *addr)
 101 {
 102         BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 103         if (addr < (void *)MODULES_VADDR)
 104                 return 0;
 105         if (addr > (void *)MODULES_END)
 106                 return 0;
 107         return 1;
 108 }
 109 
 110 /*
 111  * A 64 bit pagetable entry of S390 has following format:
 112  * |                     PFRA                         |0IPC|  OS  |
 113  * 0000000000111111111122222222223333333333444444444455555555556666
 114  * 0123456789012345678901234567890123456789012345678901234567890123
 115  *
 116  * I Page-Invalid Bit:    Page is not available for address-translation
 117  * P Page-Protection Bit: Store access not possible for page
 118  * C Change-bit override: HW is not required to set change bit
 119  *
 120  * A 64 bit segmenttable entry of S390 has following format:
 121  * |        P-table origin                              |      TT
 122  * 0000000000111111111122222222223333333333444444444455555555556666
 123  * 0123456789012345678901234567890123456789012345678901234567890123
 124  *
 125  * I Segment-Invalid Bit:    Segment is not available for address-translation
 126  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 127  * P Page-Protection Bit: Store access not possible for page
 128  * TT Type 00
 129  *
 130  * A 64 bit region table entry of S390 has following format:
 131  * |        S-table origin                             |   TF  TTTL
 132  * 0000000000111111111122222222223333333333444444444455555555556666
 133  * 0123456789012345678901234567890123456789012345678901234567890123
 134  *
 135  * I Segment-Invalid Bit:    Segment is not available for address-translation
 136  * TT Type 01
 137  * TF
 138  * TL Table length
 139  *
 140  * The 64 bit regiontable origin of S390 has following format:
 141  * |      region table origon                          |       DTTL
 142  * 0000000000111111111122222222223333333333444444444455555555556666
 143  * 0123456789012345678901234567890123456789012345678901234567890123
 144  *
 145  * X Space-Switch event:
 146  * G Segment-Invalid Bit:  
 147  * P Private-Space Bit:    
 148  * S Storage-Alteration:
 149  * R Real space
 150  * TL Table-Length:
 151  *
 152  * A storage key has the following format:
 153  * | ACC |F|R|C|0|
 154  *  0   3 4 5 6 7
 155  * ACC: access key
 156  * F  : fetch protection bit
 157  * R  : referenced bit
 158  * C  : changed bit
 159  */
 160 
 161 /* Hardware bits in the page table entry */
 162 #define _PAGE_NOEXEC    0x100           /* HW no-execute bit  */
 163 #define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 164 #define _PAGE_INVALID   0x400           /* HW invalid bit    */
 165 #define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 166 
 167 /* Software bits in the page table entry */
 168 #define _PAGE_PRESENT   0x001           /* SW pte present bit */
 169 #define _PAGE_YOUNG     0x004           /* SW pte young bit */
 170 #define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 171 #define _PAGE_READ      0x010           /* SW pte read bit */
 172 #define _PAGE_WRITE     0x020           /* SW pte write bit */
 173 #define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 174 #define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 175 
 176 #ifdef CONFIG_MEM_SOFT_DIRTY
 177 #define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 178 #else
 179 #define _PAGE_SOFT_DIRTY 0x000
 180 #endif
 181 
 182 /* Set of bits not changed in pte_modify */
 183 #define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 184                                  _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 185 
 186 /*
 187  * handle_pte_fault uses pte_present and pte_none to find out the pte type
 188  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 189  * distinguish present from not-present ptes. It is changed only with the page
 190  * table lock held.
 191  *
 192  * The following table gives the different possible bit combinations for
 193  * the pte hardware and software bits in the last 12 bits of a pte
 194  * (. unassigned bit, x don't care, t swap type):
 195  *
 196  *                              842100000000
 197  *                              000084210000
 198  *                              000000008421
 199  *                              .IR.uswrdy.p
 200  * empty                        .10.00000000
 201  * swap                         .11..ttttt.0
 202  * prot-none, clean, old        .11.xx0000.1
 203  * prot-none, clean, young      .11.xx0001.1
 204  * prot-none, dirty, old        .11.xx0010.1
 205  * prot-none, dirty, young      .11.xx0011.1
 206  * read-only, clean, old        .11.xx0100.1
 207  * read-only, clean, young      .01.xx0101.1
 208  * read-only, dirty, old        .11.xx0110.1
 209  * read-only, dirty, young      .01.xx0111.1
 210  * read-write, clean, old       .11.xx1100.1
 211  * read-write, clean, young     .01.xx1101.1
 212  * read-write, dirty, old       .10.xx1110.1
 213  * read-write, dirty, young     .00.xx1111.1
 214  * HW-bits: R read-only, I invalid
 215  * SW-bits: p present, y young, d dirty, r read, w write, s special,
 216  *          u unused, l large
 217  *
 218  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 219  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 220  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 221  */
 222 
 223 /* Bits in the segment/region table address-space-control-element */
 224 #define _ASCE_ORIGIN            ~0xfffUL/* region/segment table origin      */
 225 #define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 226 #define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 227 #define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 228 #define _ASCE_REAL_SPACE        0x20    /* real space control               */
 229 #define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 230 #define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 231 #define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 232 #define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 233 #define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 234 #define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 235 
 236 /* Bits in the region table entry */
 237 #define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 238 #define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 239 #define _REGION_ENTRY_NOEXEC    0x100   /* region no-execute bit            */
 240 #define _REGION_ENTRY_OFFSET    0xc0    /* region table offset              */
 241 #define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 242 #define _REGION_ENTRY_TYPE_MASK 0x0c    /* region table type mask           */
 243 #define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 244 #define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 245 #define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 246 #define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 247 
 248 #define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 249 #define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 250 #define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 251 #define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 252 #define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 253 #define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 254 
 255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address      */
 256 #define _REGION3_ENTRY_DIRTY    0x2000  /* SW region dirty bit */
 257 #define _REGION3_ENTRY_YOUNG    0x1000  /* SW region young bit */
 258 #define _REGION3_ENTRY_LARGE    0x0400  /* RTTE-format control, large page  */
 259 #define _REGION3_ENTRY_READ     0x0002  /* SW region read bit */
 260 #define _REGION3_ENTRY_WRITE    0x0001  /* SW region write bit */
 261 
 262 #ifdef CONFIG_MEM_SOFT_DIRTY
 263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 264 #else
 265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 266 #endif
 267 
 268 #define _REGION_ENTRY_BITS       0xfffffffffffff22fUL
 269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
 270 
 271 /* Bits in the segment table entry */
 272 #define _SEGMENT_ENTRY_BITS                     0xfffffffffffffe33UL
 273 #define _SEGMENT_ENTRY_BITS_LARGE               0xfffffffffff0ff33UL
 274 #define _SEGMENT_ENTRY_HARDWARE_BITS            0xfffffffffffffe30UL
 275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE      0xfffffffffff00730UL
 276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 277 #define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* page table origin                */
 278 #define _SEGMENT_ENTRY_PROTECT  0x200   /* segment protection bit           */
 279 #define _SEGMENT_ENTRY_NOEXEC   0x100   /* segment no-execute bit           */
 280 #define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c   /* segment table type mask          */
 282 
 283 #define _SEGMENT_ENTRY          (0)
 284 #define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 285 
 286 #define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 287 #define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 288 #define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 289 #define _SEGMENT_ENTRY_WRITE    0x0002  /* SW segment write bit */
 290 #define _SEGMENT_ENTRY_READ     0x0001  /* SW segment read bit */
 291 
 292 #ifdef CONFIG_MEM_SOFT_DIRTY
 293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 294 #else
 295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 296 #endif
 297 
 298 #define _CRST_ENTRIES   2048    /* number of region/segment table entries */
 299 #define _PAGE_ENTRIES   256     /* number of page table entries */
 300 
 301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 303 
 304 #define _REGION1_SHIFT  53
 305 #define _REGION2_SHIFT  42
 306 #define _REGION3_SHIFT  31
 307 #define _SEGMENT_SHIFT  20
 308 
 309 #define _REGION1_INDEX  (0x7ffUL << _REGION1_SHIFT)
 310 #define _REGION2_INDEX  (0x7ffUL << _REGION2_SHIFT)
 311 #define _REGION3_INDEX  (0x7ffUL << _REGION3_SHIFT)
 312 #define _SEGMENT_INDEX  (0x7ffUL << _SEGMENT_SHIFT)
 313 #define _PAGE_INDEX     (0xffUL  << _PAGE_SHIFT)
 314 
 315 #define _REGION1_SIZE   (1UL << _REGION1_SHIFT)
 316 #define _REGION2_SIZE   (1UL << _REGION2_SHIFT)
 317 #define _REGION3_SIZE   (1UL << _REGION3_SHIFT)
 318 #define _SEGMENT_SIZE   (1UL << _SEGMENT_SHIFT)
 319 
 320 #define _REGION1_MASK   (~(_REGION1_SIZE - 1))
 321 #define _REGION2_MASK   (~(_REGION2_SIZE - 1))
 322 #define _REGION3_MASK   (~(_REGION3_SIZE - 1))
 323 #define _SEGMENT_MASK   (~(_SEGMENT_SIZE - 1))
 324 
 325 #define PMD_SHIFT       _SEGMENT_SHIFT
 326 #define PUD_SHIFT       _REGION3_SHIFT
 327 #define P4D_SHIFT       _REGION2_SHIFT
 328 #define PGDIR_SHIFT     _REGION1_SHIFT
 329 
 330 #define PMD_SIZE        _SEGMENT_SIZE
 331 #define PUD_SIZE        _REGION3_SIZE
 332 #define P4D_SIZE        _REGION2_SIZE
 333 #define PGDIR_SIZE      _REGION1_SIZE
 334 
 335 #define PMD_MASK        _SEGMENT_MASK
 336 #define PUD_MASK        _REGION3_MASK
 337 #define P4D_MASK        _REGION2_MASK
 338 #define PGDIR_MASK      _REGION1_MASK
 339 
 340 #define PTRS_PER_PTE    _PAGE_ENTRIES
 341 #define PTRS_PER_PMD    _CRST_ENTRIES
 342 #define PTRS_PER_PUD    _CRST_ENTRIES
 343 #define PTRS_PER_P4D    _CRST_ENTRIES
 344 #define PTRS_PER_PGD    _CRST_ENTRIES
 345 
 346 #define MAX_PTRS_PER_P4D        PTRS_PER_P4D
 347 
 348 /*
 349  * Segment table and region3 table entry encoding
 350  * (R = read-only, I = invalid, y = young bit):
 351  *                              dy..R...I...wr
 352  * prot-none, clean, old        00..1...1...00
 353  * prot-none, clean, young      01..1...1...00
 354  * prot-none, dirty, old        10..1...1...00
 355  * prot-none, dirty, young      11..1...1...00
 356  * read-only, clean, old        00..1...1...01
 357  * read-only, clean, young      01..1...0...01
 358  * read-only, dirty, old        10..1...1...01
 359  * read-only, dirty, young      11..1...0...01
 360  * read-write, clean, old       00..1...1...11
 361  * read-write, clean, young     01..1...0...11
 362  * read-write, dirty, old       10..0...1...11
 363  * read-write, dirty, young     11..0...0...11
 364  * The segment table origin is used to distinguish empty (origin==0) from
 365  * read-write, old segment table entries (origin!=0)
 366  * HW-bits: R read-only, I invalid
 367  * SW-bits: y young, d dirty, r read, w write
 368  */
 369 
 370 /* Page status table bits for virtualization */
 371 #define PGSTE_ACC_BITS  0xf000000000000000UL
 372 #define PGSTE_FP_BIT    0x0800000000000000UL
 373 #define PGSTE_PCL_BIT   0x0080000000000000UL
 374 #define PGSTE_HR_BIT    0x0040000000000000UL
 375 #define PGSTE_HC_BIT    0x0020000000000000UL
 376 #define PGSTE_GR_BIT    0x0004000000000000UL
 377 #define PGSTE_GC_BIT    0x0002000000000000UL
 378 #define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 379 #define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 380 #define PGSTE_VSIE_BIT  0x0000200000000000UL    /* ref'd in a shadow table */
 381 
 382 /* Guest Page State used for virtualization */
 383 #define _PGSTE_GPS_ZERO                 0x0000000080000000UL
 384 #define _PGSTE_GPS_NODAT                0x0000000040000000UL
 385 #define _PGSTE_GPS_USAGE_MASK           0x0000000003000000UL
 386 #define _PGSTE_GPS_USAGE_STABLE         0x0000000000000000UL
 387 #define _PGSTE_GPS_USAGE_UNUSED         0x0000000001000000UL
 388 #define _PGSTE_GPS_USAGE_POT_VOLATILE   0x0000000002000000UL
 389 #define _PGSTE_GPS_USAGE_VOLATILE       _PGSTE_GPS_USAGE_MASK
 390 
 391 /*
 392  * A user page table pointer has the space-switch-event bit, the
 393  * private-space-control bit and the storage-alteration-event-control
 394  * bit set. A kernel page table pointer doesn't need them.
 395  */
 396 #define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 397                                  _ASCE_ALT_EVENT)
 398 
 399 /*
 400  * Page protection definitions.
 401  */
 402 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 403 #define PAGE_RO         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 404                                  _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 405 #define PAGE_RX         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 406                                  _PAGE_INVALID | _PAGE_PROTECT)
 407 #define PAGE_RW         __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 408                                  _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 409 #define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 410                                  _PAGE_INVALID | _PAGE_PROTECT)
 411 
 412 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 413                                  _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 414 #define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 415                                  _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 416 #define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 417                                  _PAGE_PROTECT | _PAGE_NOEXEC)
 418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 419                                   _PAGE_YOUNG | _PAGE_DIRTY)
 420 
 421 /*
 422  * On s390 the page table entry has an invalid bit and a read-only bit.
 423  * Read permission implies execute permission and write permission
 424  * implies read permission.
 425  */
 426          /*xwr*/
 427 #define __P000  PAGE_NONE
 428 #define __P001  PAGE_RO
 429 #define __P010  PAGE_RO
 430 #define __P011  PAGE_RO
 431 #define __P100  PAGE_RX
 432 #define __P101  PAGE_RX
 433 #define __P110  PAGE_RX
 434 #define __P111  PAGE_RX
 435 
 436 #define __S000  PAGE_NONE
 437 #define __S001  PAGE_RO
 438 #define __S010  PAGE_RW
 439 #define __S011  PAGE_RW
 440 #define __S100  PAGE_RX
 441 #define __S101  PAGE_RX
 442 #define __S110  PAGE_RWX
 443 #define __S111  PAGE_RWX
 444 
 445 /*
 446  * Segment entry (large page) protection definitions.
 447  */
 448 #define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 449                                  _SEGMENT_ENTRY_PROTECT)
 450 #define SEGMENT_RO      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 451                                  _SEGMENT_ENTRY_READ | \
 452                                  _SEGMENT_ENTRY_NOEXEC)
 453 #define SEGMENT_RX      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 454                                  _SEGMENT_ENTRY_READ)
 455 #define SEGMENT_RW      __pgprot(_SEGMENT_ENTRY_READ | \
 456                                  _SEGMENT_ENTRY_WRITE | \
 457                                  _SEGMENT_ENTRY_NOEXEC)
 458 #define SEGMENT_RWX     __pgprot(_SEGMENT_ENTRY_READ | \
 459                                  _SEGMENT_ENTRY_WRITE)
 460 #define SEGMENT_KERNEL  __pgprot(_SEGMENT_ENTRY |       \
 461                                  _SEGMENT_ENTRY_LARGE | \
 462                                  _SEGMENT_ENTRY_READ |  \
 463                                  _SEGMENT_ENTRY_WRITE | \
 464                                  _SEGMENT_ENTRY_YOUNG | \
 465                                  _SEGMENT_ENTRY_DIRTY | \
 466                                  _SEGMENT_ENTRY_NOEXEC)
 467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |     \
 468                                  _SEGMENT_ENTRY_LARGE | \
 469                                  _SEGMENT_ENTRY_READ |  \
 470                                  _SEGMENT_ENTRY_YOUNG | \
 471                                  _SEGMENT_ENTRY_PROTECT | \
 472                                  _SEGMENT_ENTRY_NOEXEC)
 473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |   \
 474                                  _SEGMENT_ENTRY_LARGE | \
 475                                  _SEGMENT_ENTRY_READ |  \
 476                                  _SEGMENT_ENTRY_WRITE | \
 477                                  _SEGMENT_ENTRY_YOUNG | \
 478                                  _SEGMENT_ENTRY_DIRTY)
 479 
 480 /*
 481  * Region3 entry (large page) protection definitions.
 482  */
 483 
 484 #define REGION3_KERNEL  __pgprot(_REGION_ENTRY_TYPE_R3 | \
 485                                  _REGION3_ENTRY_LARGE |  \
 486                                  _REGION3_ENTRY_READ |   \
 487                                  _REGION3_ENTRY_WRITE |  \
 488                                  _REGION3_ENTRY_YOUNG |  \
 489                                  _REGION3_ENTRY_DIRTY | \
 490                                  _REGION_ENTRY_NOEXEC)
 491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 492                                    _REGION3_ENTRY_LARGE |  \
 493                                    _REGION3_ENTRY_READ |   \
 494                                    _REGION3_ENTRY_YOUNG |  \
 495                                    _REGION_ENTRY_PROTECT | \
 496                                    _REGION_ENTRY_NOEXEC)
 497 
 498 static inline bool mm_p4d_folded(struct mm_struct *mm)
 499 {
 500         return mm->context.asce_limit <= _REGION1_SIZE;
 501 }
 502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
 503 
 504 static inline bool mm_pud_folded(struct mm_struct *mm)
 505 {
 506         return mm->context.asce_limit <= _REGION2_SIZE;
 507 }
 508 #define mm_pud_folded(mm) mm_pud_folded(mm)
 509 
 510 static inline bool mm_pmd_folded(struct mm_struct *mm)
 511 {
 512         return mm->context.asce_limit <= _REGION3_SIZE;
 513 }
 514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
 515 
 516 static inline int mm_has_pgste(struct mm_struct *mm)
 517 {
 518 #ifdef CONFIG_PGSTE
 519         if (unlikely(mm->context.has_pgste))
 520                 return 1;
 521 #endif
 522         return 0;
 523 }
 524 
 525 static inline int mm_alloc_pgste(struct mm_struct *mm)
 526 {
 527 #ifdef CONFIG_PGSTE
 528         if (unlikely(mm->context.alloc_pgste))
 529                 return 1;
 530 #endif
 531         return 0;
 532 }
 533 
 534 /*
 535  * In the case that a guest uses storage keys
 536  * faults should no longer be backed by zero pages
 537  */
 538 #define mm_forbids_zeropage mm_has_pgste
 539 static inline int mm_uses_skeys(struct mm_struct *mm)
 540 {
 541 #ifdef CONFIG_PGSTE
 542         if (mm->context.uses_skeys)
 543                 return 1;
 544 #endif
 545         return 0;
 546 }
 547 
 548 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 549 {
 550         register unsigned long reg2 asm("2") = old;
 551         register unsigned long reg3 asm("3") = new;
 552         unsigned long address = (unsigned long)ptr | 1;
 553 
 554         asm volatile(
 555                 "       csp     %0,%3"
 556                 : "+d" (reg2), "+m" (*ptr)
 557                 : "d" (reg3), "d" (address)
 558                 : "cc");
 559 }
 560 
 561 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 562 {
 563         register unsigned long reg2 asm("2") = old;
 564         register unsigned long reg3 asm("3") = new;
 565         unsigned long address = (unsigned long)ptr | 1;
 566 
 567         asm volatile(
 568                 "       .insn   rre,0xb98a0000,%0,%3"
 569                 : "+d" (reg2), "+m" (*ptr)
 570                 : "d" (reg3), "d" (address)
 571                 : "cc");
 572 }
 573 
 574 #define CRDTE_DTT_PAGE          0x00UL
 575 #define CRDTE_DTT_SEGMENT       0x10UL
 576 #define CRDTE_DTT_REGION3       0x14UL
 577 #define CRDTE_DTT_REGION2       0x18UL
 578 #define CRDTE_DTT_REGION1       0x1cUL
 579 
 580 static inline void crdte(unsigned long old, unsigned long new,
 581                          unsigned long table, unsigned long dtt,
 582                          unsigned long address, unsigned long asce)
 583 {
 584         register unsigned long reg2 asm("2") = old;
 585         register unsigned long reg3 asm("3") = new;
 586         register unsigned long reg4 asm("4") = table | dtt;
 587         register unsigned long reg5 asm("5") = address;
 588 
 589         asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
 590                      : "+d" (reg2)
 591                      : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
 592                      : "memory", "cc");
 593 }
 594 
 595 /*
 596  * pgd/p4d/pud/pmd/pte query functions
 597  */
 598 static inline int pgd_folded(pgd_t pgd)
 599 {
 600         return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 601 }
 602 
 603 static inline int pgd_present(pgd_t pgd)
 604 {
 605         if (pgd_folded(pgd))
 606                 return 1;
 607         return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 608 }
 609 
 610 static inline int pgd_none(pgd_t pgd)
 611 {
 612         if (pgd_folded(pgd))
 613                 return 0;
 614         return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 615 }
 616 
 617 static inline int pgd_bad(pgd_t pgd)
 618 {
 619         if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 620                 return 0;
 621         return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 622 }
 623 
 624 static inline unsigned long pgd_pfn(pgd_t pgd)
 625 {
 626         unsigned long origin_mask;
 627 
 628         origin_mask = _REGION_ENTRY_ORIGIN;
 629         return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 630 }
 631 
 632 static inline int p4d_folded(p4d_t p4d)
 633 {
 634         return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 635 }
 636 
 637 static inline int p4d_present(p4d_t p4d)
 638 {
 639         if (p4d_folded(p4d))
 640                 return 1;
 641         return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 642 }
 643 
 644 static inline int p4d_none(p4d_t p4d)
 645 {
 646         if (p4d_folded(p4d))
 647                 return 0;
 648         return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 649 }
 650 
 651 static inline unsigned long p4d_pfn(p4d_t p4d)
 652 {
 653         unsigned long origin_mask;
 654 
 655         origin_mask = _REGION_ENTRY_ORIGIN;
 656         return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 657 }
 658 
 659 static inline int pud_folded(pud_t pud)
 660 {
 661         return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 662 }
 663 
 664 static inline int pud_present(pud_t pud)
 665 {
 666         if (pud_folded(pud))
 667                 return 1;
 668         return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 669 }
 670 
 671 static inline int pud_none(pud_t pud)
 672 {
 673         if (pud_folded(pud))
 674                 return 0;
 675         return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 676 }
 677 
 678 static inline int pud_large(pud_t pud)
 679 {
 680         if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 681                 return 0;
 682         return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 683 }
 684 
 685 static inline unsigned long pud_pfn(pud_t pud)
 686 {
 687         unsigned long origin_mask;
 688 
 689         origin_mask = _REGION_ENTRY_ORIGIN;
 690         if (pud_large(pud))
 691                 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
 692         return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
 693 }
 694 
 695 static inline int pmd_large(pmd_t pmd)
 696 {
 697         return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 698 }
 699 
 700 static inline int pmd_bad(pmd_t pmd)
 701 {
 702         if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
 703                 return 1;
 704         if (pmd_large(pmd))
 705                 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 706         return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 707 }
 708 
 709 static inline int pud_bad(pud_t pud)
 710 {
 711         unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 712 
 713         if (type > _REGION_ENTRY_TYPE_R3)
 714                 return 1;
 715         if (type < _REGION_ENTRY_TYPE_R3)
 716                 return 0;
 717         if (pud_large(pud))
 718                 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
 719         return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 720 }
 721 
 722 static inline int p4d_bad(p4d_t p4d)
 723 {
 724         unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 725 
 726         if (type > _REGION_ENTRY_TYPE_R2)
 727                 return 1;
 728         if (type < _REGION_ENTRY_TYPE_R2)
 729                 return 0;
 730         return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 731 }
 732 
 733 static inline int pmd_present(pmd_t pmd)
 734 {
 735         return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 736 }
 737 
 738 static inline int pmd_none(pmd_t pmd)
 739 {
 740         return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 741 }
 742 
 743 static inline unsigned long pmd_pfn(pmd_t pmd)
 744 {
 745         unsigned long origin_mask;
 746 
 747         origin_mask = _SEGMENT_ENTRY_ORIGIN;
 748         if (pmd_large(pmd))
 749                 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 750         return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 751 }
 752 
 753 #define pmd_write pmd_write
 754 static inline int pmd_write(pmd_t pmd)
 755 {
 756         return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 757 }
 758 
 759 #define pud_write pud_write
 760 static inline int pud_write(pud_t pud)
 761 {
 762         return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 763 }
 764 
 765 static inline int pmd_dirty(pmd_t pmd)
 766 {
 767         int dirty = 1;
 768         if (pmd_large(pmd))
 769                 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 770         return dirty;
 771 }
 772 
 773 static inline int pmd_young(pmd_t pmd)
 774 {
 775         int young = 1;
 776         if (pmd_large(pmd))
 777                 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 778         return young;
 779 }
 780 
 781 static inline int pte_present(pte_t pte)
 782 {
 783         /* Bit pattern: (pte & 0x001) == 0x001 */
 784         return (pte_val(pte) & _PAGE_PRESENT) != 0;
 785 }
 786 
 787 static inline int pte_none(pte_t pte)
 788 {
 789         /* Bit pattern: pte == 0x400 */
 790         return pte_val(pte) == _PAGE_INVALID;
 791 }
 792 
 793 static inline int pte_swap(pte_t pte)
 794 {
 795         /* Bit pattern: (pte & 0x201) == 0x200 */
 796         return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 797                 == _PAGE_PROTECT;
 798 }
 799 
 800 static inline int pte_special(pte_t pte)
 801 {
 802         return (pte_val(pte) & _PAGE_SPECIAL);
 803 }
 804 
 805 #define __HAVE_ARCH_PTE_SAME
 806 static inline int pte_same(pte_t a, pte_t b)
 807 {
 808         return pte_val(a) == pte_val(b);
 809 }
 810 
 811 #ifdef CONFIG_NUMA_BALANCING
 812 static inline int pte_protnone(pte_t pte)
 813 {
 814         return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 815 }
 816 
 817 static inline int pmd_protnone(pmd_t pmd)
 818 {
 819         /* pmd_large(pmd) implies pmd_present(pmd) */
 820         return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 821 }
 822 #endif
 823 
 824 static inline int pte_soft_dirty(pte_t pte)
 825 {
 826         return pte_val(pte) & _PAGE_SOFT_DIRTY;
 827 }
 828 #define pte_swp_soft_dirty pte_soft_dirty
 829 
 830 static inline pte_t pte_mksoft_dirty(pte_t pte)
 831 {
 832         pte_val(pte) |= _PAGE_SOFT_DIRTY;
 833         return pte;
 834 }
 835 #define pte_swp_mksoft_dirty pte_mksoft_dirty
 836 
 837 static inline pte_t pte_clear_soft_dirty(pte_t pte)
 838 {
 839         pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 840         return pte;
 841 }
 842 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 843 
 844 static inline int pmd_soft_dirty(pmd_t pmd)
 845 {
 846         return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 847 }
 848 
 849 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 850 {
 851         pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 852         return pmd;
 853 }
 854 
 855 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 856 {
 857         pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 858         return pmd;
 859 }
 860 
 861 /*
 862  * query functions pte_write/pte_dirty/pte_young only work if
 863  * pte_present() is true. Undefined behaviour if not..
 864  */
 865 static inline int pte_write(pte_t pte)
 866 {
 867         return (pte_val(pte) & _PAGE_WRITE) != 0;
 868 }
 869 
 870 static inline int pte_dirty(pte_t pte)
 871 {
 872         return (pte_val(pte) & _PAGE_DIRTY) != 0;
 873 }
 874 
 875 static inline int pte_young(pte_t pte)
 876 {
 877         return (pte_val(pte) & _PAGE_YOUNG) != 0;
 878 }
 879 
 880 #define __HAVE_ARCH_PTE_UNUSED
 881 static inline int pte_unused(pte_t pte)
 882 {
 883         return pte_val(pte) & _PAGE_UNUSED;
 884 }
 885 
 886 /*
 887  * pgd/pmd/pte modification functions
 888  */
 889 
 890 static inline void pgd_clear(pgd_t *pgd)
 891 {
 892         if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 893                 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
 894 }
 895 
 896 static inline void p4d_clear(p4d_t *p4d)
 897 {
 898         if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 899                 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
 900 }
 901 
 902 static inline void pud_clear(pud_t *pud)
 903 {
 904         if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 905                 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 906 }
 907 
 908 static inline void pmd_clear(pmd_t *pmdp)
 909 {
 910         pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 911 }
 912 
 913 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 914 {
 915         pte_val(*ptep) = _PAGE_INVALID;
 916 }
 917 
 918 /*
 919  * The following pte modification functions only work if
 920  * pte_present() is true. Undefined behaviour if not..
 921  */
 922 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 923 {
 924         pte_val(pte) &= _PAGE_CHG_MASK;
 925         pte_val(pte) |= pgprot_val(newprot);
 926         /*
 927          * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 928          * has the invalid bit set, clear it again for readable, young pages
 929          */
 930         if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 931                 pte_val(pte) &= ~_PAGE_INVALID;
 932         /*
 933          * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 934          * protection bit set, clear it again for writable, dirty pages
 935          */
 936         if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 937                 pte_val(pte) &= ~_PAGE_PROTECT;
 938         return pte;
 939 }
 940 
 941 static inline pte_t pte_wrprotect(pte_t pte)
 942 {
 943         pte_val(pte) &= ~_PAGE_WRITE;
 944         pte_val(pte) |= _PAGE_PROTECT;
 945         return pte;
 946 }
 947 
 948 static inline pte_t pte_mkwrite(pte_t pte)
 949 {
 950         pte_val(pte) |= _PAGE_WRITE;
 951         if (pte_val(pte) & _PAGE_DIRTY)
 952                 pte_val(pte) &= ~_PAGE_PROTECT;
 953         return pte;
 954 }
 955 
 956 static inline pte_t pte_mkclean(pte_t pte)
 957 {
 958         pte_val(pte) &= ~_PAGE_DIRTY;
 959         pte_val(pte) |= _PAGE_PROTECT;
 960         return pte;
 961 }
 962 
 963 static inline pte_t pte_mkdirty(pte_t pte)
 964 {
 965         pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 966         if (pte_val(pte) & _PAGE_WRITE)
 967                 pte_val(pte) &= ~_PAGE_PROTECT;
 968         return pte;
 969 }
 970 
 971 static inline pte_t pte_mkold(pte_t pte)
 972 {
 973         pte_val(pte) &= ~_PAGE_YOUNG;
 974         pte_val(pte) |= _PAGE_INVALID;
 975         return pte;
 976 }
 977 
 978 static inline pte_t pte_mkyoung(pte_t pte)
 979 {
 980         pte_val(pte) |= _PAGE_YOUNG;
 981         if (pte_val(pte) & _PAGE_READ)
 982                 pte_val(pte) &= ~_PAGE_INVALID;
 983         return pte;
 984 }
 985 
 986 static inline pte_t pte_mkspecial(pte_t pte)
 987 {
 988         pte_val(pte) |= _PAGE_SPECIAL;
 989         return pte;
 990 }
 991 
 992 #ifdef CONFIG_HUGETLB_PAGE
 993 static inline pte_t pte_mkhuge(pte_t pte)
 994 {
 995         pte_val(pte) |= _PAGE_LARGE;
 996         return pte;
 997 }
 998 #endif
 999 
1000 #define IPTE_GLOBAL     0
1001 #define IPTE_LOCAL      1
1002 
1003 #define IPTE_NODAT      0x400
1004 #define IPTE_GUEST_ASCE 0x800
1005 
1006 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1007                                         unsigned long opt, unsigned long asce,
1008                                         int local)
1009 {
1010         unsigned long pto = (unsigned long) ptep;
1011 
1012         if (__builtin_constant_p(opt) && opt == 0) {
1013                 /* Invalidation + TLB flush for the pte */
1014                 asm volatile(
1015                         "       .insn   rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1016                         : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1017                           [m4] "i" (local));
1018                 return;
1019         }
1020 
1021         /* Invalidate ptes with options + TLB flush of the ptes */
1022         opt = opt | (asce & _ASCE_ORIGIN);
1023         asm volatile(
1024                 "       .insn   rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1025                 : [r2] "+a" (address), [r3] "+a" (opt)
1026                 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1027 }
1028 
1029 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1030                                               pte_t *ptep, int local)
1031 {
1032         unsigned long pto = (unsigned long) ptep;
1033 
1034         /* Invalidate a range of ptes + TLB flush of the ptes */
1035         do {
1036                 asm volatile(
1037                         "       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1038                         : [r2] "+a" (address), [r3] "+a" (nr)
1039                         : [r1] "a" (pto), [m4] "i" (local) : "memory");
1040         } while (nr != 255);
1041 }
1042 
1043 /*
1044  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1045  * both clear the TLB for the unmapped pte. The reason is that
1046  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1047  * to modify an active pte. The sequence is
1048  *   1) ptep_get_and_clear
1049  *   2) set_pte_at
1050  *   3) flush_tlb_range
1051  * On s390 the tlb needs to get flushed with the modification of the pte
1052  * if the pte is active. The only way how this can be implemented is to
1053  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1054  * is a nop.
1055  */
1056 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1058 
1059 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1060 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1061                                             unsigned long addr, pte_t *ptep)
1062 {
1063         pte_t pte = *ptep;
1064 
1065         pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1066         return pte_young(pte);
1067 }
1068 
1069 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1070 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1071                                          unsigned long address, pte_t *ptep)
1072 {
1073         return ptep_test_and_clear_young(vma, address, ptep);
1074 }
1075 
1076 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1077 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1078                                        unsigned long addr, pte_t *ptep)
1079 {
1080         return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1081 }
1082 
1083 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1084 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1085 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1086                              pte_t *, pte_t, pte_t);
1087 
1088 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1089 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1090                                      unsigned long addr, pte_t *ptep)
1091 {
1092         return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1093 }
1094 
1095 /*
1096  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1097  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1098  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1099  * cannot be accessed while the batched unmap is running. In this case
1100  * full==1 and a simple pte_clear is enough. See tlb.h.
1101  */
1102 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1103 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1104                                             unsigned long addr,
1105                                             pte_t *ptep, int full)
1106 {
1107         if (full) {
1108                 pte_t pte = *ptep;
1109                 *ptep = __pte(_PAGE_INVALID);
1110                 return pte;
1111         }
1112         return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1113 }
1114 
1115 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1116 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1117                                       unsigned long addr, pte_t *ptep)
1118 {
1119         pte_t pte = *ptep;
1120 
1121         if (pte_write(pte))
1122                 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1123 }
1124 
1125 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1126 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1127                                         unsigned long addr, pte_t *ptep,
1128                                         pte_t entry, int dirty)
1129 {
1130         if (pte_same(*ptep, entry))
1131                 return 0;
1132         ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1133         return 1;
1134 }
1135 
1136 /*
1137  * Additional functions to handle KVM guest page tables
1138  */
1139 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1140                      pte_t *ptep, pte_t entry);
1141 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1142 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1143                  pte_t *ptep, unsigned long bits);
1144 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1145                     pte_t *ptep, int prot, unsigned long bit);
1146 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1147                      pte_t *ptep , int reset);
1148 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1149 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1150                     pte_t *sptep, pte_t *tptep, pte_t pte);
1151 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1152 
1153 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1154                             pte_t *ptep);
1155 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156                           unsigned char key, bool nq);
1157 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1158                                unsigned char key, unsigned char *oldkey,
1159                                bool nq, bool mr, bool mc);
1160 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1161 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1162                           unsigned char *key);
1163 
1164 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1165                                 unsigned long bits, unsigned long value);
1166 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1167 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1168                         unsigned long *oldpte, unsigned long *oldpgste);
1169 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1170 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1171 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1172 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1173 
1174 /*
1175  * Certain architectures need to do special things when PTEs
1176  * within a page table are directly modified.  Thus, the following
1177  * hook is made available.
1178  */
1179 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1180                               pte_t *ptep, pte_t entry)
1181 {
1182         if (pte_present(entry))
1183                 pte_val(entry) &= ~_PAGE_UNUSED;
1184         if (mm_has_pgste(mm))
1185                 ptep_set_pte_at(mm, addr, ptep, entry);
1186         else
1187                 *ptep = entry;
1188 }
1189 
1190 /*
1191  * Conversion functions: convert a page and protection to a page entry,
1192  * and a page entry and page directory to the page they refer to.
1193  */
1194 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1195 {
1196         pte_t __pte;
1197         pte_val(__pte) = physpage + pgprot_val(pgprot);
1198         if (!MACHINE_HAS_NX)
1199                 pte_val(__pte) &= ~_PAGE_NOEXEC;
1200         return pte_mkyoung(__pte);
1201 }
1202 
1203 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1204 {
1205         unsigned long physpage = page_to_phys(page);
1206         pte_t __pte = mk_pte_phys(physpage, pgprot);
1207 
1208         if (pte_write(__pte) && PageDirty(page))
1209                 __pte = pte_mkdirty(__pte);
1210         return __pte;
1211 }
1212 
1213 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1214 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1215 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1216 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1217 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1218 
1219 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1220 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1221 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1222 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1223 
1224 /*
1225  * The pgd_offset function *always* adds the index for the top-level
1226  * region/segment table. This is done to get a sequence like the
1227  * following to work:
1228  *      pgdp = pgd_offset(current->mm, addr);
1229  *      pgd = READ_ONCE(*pgdp);
1230  *      p4dp = p4d_offset(&pgd, addr);
1231  *      ...
1232  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1233  * only add an index if they dereferenced the pointer.
1234  */
1235 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1236 {
1237         unsigned long rste;
1238         unsigned int shift;
1239 
1240         /* Get the first entry of the top level table */
1241         rste = pgd_val(*pgd);
1242         /* Pick up the shift from the table type of the first entry */
1243         shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1244         return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1245 }
1246 
1247 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1248 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1249 
1250 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1251 {
1252         if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1253                 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1254         return (p4d_t *) pgd;
1255 }
1256 
1257 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1258 {
1259         if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1260                 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1261         return (pud_t *) p4d;
1262 }
1263 
1264 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1265 {
1266         if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1267                 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1268         return (pmd_t *) pud;
1269 }
1270 
1271 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1272 {
1273         return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1274 }
1275 
1276 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1277 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1278 
1279 static inline void pte_unmap(pte_t *pte) { }
1280 
1281 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1282 {
1283         return end <= current->mm->context.asce_limit;
1284 }
1285 #define gup_fast_permitted gup_fast_permitted
1286 
1287 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1288 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1289 #define pte_page(x) pfn_to_page(pte_pfn(x))
1290 
1291 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1292 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1293 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1294 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1295 
1296 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1297 {
1298         pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1299         pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1300         return pmd;
1301 }
1302 
1303 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1304 {
1305         pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1306         if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1307                 return pmd;
1308         pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1309         return pmd;
1310 }
1311 
1312 static inline pmd_t pmd_mkclean(pmd_t pmd)
1313 {
1314         if (pmd_large(pmd)) {
1315                 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1316                 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1317         }
1318         return pmd;
1319 }
1320 
1321 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1322 {
1323         if (pmd_large(pmd)) {
1324                 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1325                                 _SEGMENT_ENTRY_SOFT_DIRTY;
1326                 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1327                         pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1328         }
1329         return pmd;
1330 }
1331 
1332 static inline pud_t pud_wrprotect(pud_t pud)
1333 {
1334         pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1335         pud_val(pud) |= _REGION_ENTRY_PROTECT;
1336         return pud;
1337 }
1338 
1339 static inline pud_t pud_mkwrite(pud_t pud)
1340 {
1341         pud_val(pud) |= _REGION3_ENTRY_WRITE;
1342         if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1343                 return pud;
1344         pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1345         return pud;
1346 }
1347 
1348 static inline pud_t pud_mkclean(pud_t pud)
1349 {
1350         if (pud_large(pud)) {
1351                 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1352                 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1353         }
1354         return pud;
1355 }
1356 
1357 static inline pud_t pud_mkdirty(pud_t pud)
1358 {
1359         if (pud_large(pud)) {
1360                 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1361                                 _REGION3_ENTRY_SOFT_DIRTY;
1362                 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1363                         pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1364         }
1365         return pud;
1366 }
1367 
1368 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1369 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1370 {
1371         /*
1372          * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1373          * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1374          */
1375         if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1376                 return pgprot_val(SEGMENT_NONE);
1377         if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1378                 return pgprot_val(SEGMENT_RO);
1379         if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1380                 return pgprot_val(SEGMENT_RX);
1381         if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1382                 return pgprot_val(SEGMENT_RW);
1383         return pgprot_val(SEGMENT_RWX);
1384 }
1385 
1386 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1387 {
1388         if (pmd_large(pmd)) {
1389                 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1390                 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1391                         pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1392         }
1393         return pmd;
1394 }
1395 
1396 static inline pmd_t pmd_mkold(pmd_t pmd)
1397 {
1398         if (pmd_large(pmd)) {
1399                 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1400                 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1401         }
1402         return pmd;
1403 }
1404 
1405 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1406 {
1407         if (pmd_large(pmd)) {
1408                 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1409                         _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1410                         _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1411                 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1412                 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1413                         pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1414                 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1415                         pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1416                 return pmd;
1417         }
1418         pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1419         pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1420         return pmd;
1421 }
1422 
1423 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1424 {
1425         pmd_t __pmd;
1426         pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1427         return __pmd;
1428 }
1429 
1430 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1431 
1432 static inline void __pmdp_csp(pmd_t *pmdp)
1433 {
1434         csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1435             pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1436 }
1437 
1438 #define IDTE_GLOBAL     0
1439 #define IDTE_LOCAL      1
1440 
1441 #define IDTE_PTOA       0x0800
1442 #define IDTE_NODAT      0x1000
1443 #define IDTE_GUEST_ASCE 0x2000
1444 
1445 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1446                                         unsigned long opt, unsigned long asce,
1447                                         int local)
1448 {
1449         unsigned long sto;
1450 
1451         sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1452         if (__builtin_constant_p(opt) && opt == 0) {
1453                 /* flush without guest asce */
1454                 asm volatile(
1455                         "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1456                         : "+m" (*pmdp)
1457                         : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1458                           [m4] "i" (local)
1459                         : "cc" );
1460         } else {
1461                 /* flush with guest asce */
1462                 asm volatile(
1463                         "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1464                         : "+m" (*pmdp)
1465                         : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1466                           [r3] "a" (asce), [m4] "i" (local)
1467                         : "cc" );
1468         }
1469 }
1470 
1471 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1472                                         unsigned long opt, unsigned long asce,
1473                                         int local)
1474 {
1475         unsigned long r3o;
1476 
1477         r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1478         r3o |= _ASCE_TYPE_REGION3;
1479         if (__builtin_constant_p(opt) && opt == 0) {
1480                 /* flush without guest asce */
1481                 asm volatile(
1482                         "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1483                         : "+m" (*pudp)
1484                         : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1485                           [m4] "i" (local)
1486                         : "cc");
1487         } else {
1488                 /* flush with guest asce */
1489                 asm volatile(
1490                         "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1491                         : "+m" (*pudp)
1492                         : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1493                           [r3] "a" (asce), [m4] "i" (local)
1494                         : "cc" );
1495         }
1496 }
1497 
1498 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1499 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1500 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1501 
1502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1503 
1504 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1505 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1506                                 pgtable_t pgtable);
1507 
1508 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1509 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1510 
1511 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1512 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1513                                         unsigned long addr, pmd_t *pmdp,
1514                                         pmd_t entry, int dirty)
1515 {
1516         VM_BUG_ON(addr & ~HPAGE_MASK);
1517 
1518         entry = pmd_mkyoung(entry);
1519         if (dirty)
1520                 entry = pmd_mkdirty(entry);
1521         if (pmd_val(*pmdp) == pmd_val(entry))
1522                 return 0;
1523         pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1524         return 1;
1525 }
1526 
1527 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1528 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1529                                             unsigned long addr, pmd_t *pmdp)
1530 {
1531         pmd_t pmd = *pmdp;
1532 
1533         pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1534         return pmd_young(pmd);
1535 }
1536 
1537 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1538 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1539                                          unsigned long addr, pmd_t *pmdp)
1540 {
1541         VM_BUG_ON(addr & ~HPAGE_MASK);
1542         return pmdp_test_and_clear_young(vma, addr, pmdp);
1543 }
1544 
1545 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1546                               pmd_t *pmdp, pmd_t entry)
1547 {
1548         if (!MACHINE_HAS_NX)
1549                 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1550         *pmdp = entry;
1551 }
1552 
1553 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1554 {
1555         pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1556         pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1557         pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1558         return pmd;
1559 }
1560 
1561 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1562 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1563                                             unsigned long addr, pmd_t *pmdp)
1564 {
1565         return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1566 }
1567 
1568 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1569 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1570                                                  unsigned long addr,
1571                                                  pmd_t *pmdp, int full)
1572 {
1573         if (full) {
1574                 pmd_t pmd = *pmdp;
1575                 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1576                 return pmd;
1577         }
1578         return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1579 }
1580 
1581 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1582 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1583                                           unsigned long addr, pmd_t *pmdp)
1584 {
1585         return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1586 }
1587 
1588 #define __HAVE_ARCH_PMDP_INVALIDATE
1589 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1590                                    unsigned long addr, pmd_t *pmdp)
1591 {
1592         pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1593 
1594         return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1595 }
1596 
1597 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1598 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1599                                       unsigned long addr, pmd_t *pmdp)
1600 {
1601         pmd_t pmd = *pmdp;
1602 
1603         if (pmd_write(pmd))
1604                 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1605 }
1606 
1607 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1608                                         unsigned long address,
1609                                         pmd_t *pmdp)
1610 {
1611         return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1612 }
1613 #define pmdp_collapse_flush pmdp_collapse_flush
1614 
1615 #define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1616 #define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1617 
1618 static inline int pmd_trans_huge(pmd_t pmd)
1619 {
1620         return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1621 }
1622 
1623 #define has_transparent_hugepage has_transparent_hugepage
1624 static inline int has_transparent_hugepage(void)
1625 {
1626         return MACHINE_HAS_EDAT1 ? 1 : 0;
1627 }
1628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1629 
1630 /*
1631  * 64 bit swap entry format:
1632  * A page-table entry has some bits we have to treat in a special way.
1633  * Bits 52 and bit 55 have to be zero, otherwise a specification
1634  * exception will occur instead of a page translation exception. The
1635  * specification exception has the bad habit not to store necessary
1636  * information in the lowcore.
1637  * Bits 54 and 63 are used to indicate the page type.
1638  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1639  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1640  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1641  * for the offset.
1642  * |                      offset                        |01100|type |00|
1643  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1644  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1645  */
1646 
1647 #define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1648 #define __SWP_OFFSET_SHIFT      12
1649 #define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1650 #define __SWP_TYPE_SHIFT        2
1651 
1652 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1653 {
1654         pte_t pte;
1655 
1656         pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1657         pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1658         pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1659         return pte;
1660 }
1661 
1662 static inline unsigned long __swp_type(swp_entry_t entry)
1663 {
1664         return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1665 }
1666 
1667 static inline unsigned long __swp_offset(swp_entry_t entry)
1668 {
1669         return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1670 }
1671 
1672 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1673 {
1674         return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1675 }
1676 
1677 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1678 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1679 
1680 #define kern_addr_valid(addr)   (1)
1681 
1682 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1683 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1684 extern int s390_enable_sie(void);
1685 extern int s390_enable_skey(void);
1686 extern void s390_reset_cmma(struct mm_struct *mm);
1687 
1688 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1689 #define HAVE_ARCH_UNMAPPED_AREA
1690 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1691 
1692 #include <asm-generic/pgtable.h>
1693 
1694 #endif /* _S390_PAGE_H */

/* [<][>][^][v][top][bottom][index][help] */