root/arch/arc/mm/tlb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __tlb_entry_erase
  2. tlb_entry_lkup
  3. tlb_entry_erase
  4. utlb_invalidate
  5. tlb_entry_insert
  6. utlb_invalidate
  7. tlb_entry_erase
  8. tlb_entry_insert
  9. local_flush_tlb_all
  10. local_flush_tlb_mm
  11. local_flush_tlb_range
  12. local_flush_tlb_kernel_range
  13. local_flush_tlb_page
  14. ipi_flush_tlb_page
  15. ipi_flush_tlb_range
  16. ipi_flush_pmd_tlb_range
  17. ipi_flush_tlb_kernel_range
  18. flush_tlb_all
  19. flush_tlb_mm
  20. flush_tlb_page
  21. flush_tlb_range
  22. flush_pmd_tlb_range
  23. flush_tlb_kernel_range
  24. create_tlb
  25. update_mmu_cache
  26. update_mmu_cache_pmd
  27. pgtable_trans_huge_deposit
  28. pgtable_trans_huge_withdraw
  29. local_flush_pmd_tlb_range
  30. read_decode_mmu_bcr
  31. arc_mmu_mumbojumbo
  32. pae40_exist_but_not_enab
  33. arc_mmu_init
  34. do_tlb_overlap_fault
  35. print_asid_mismatch
  36. tlb_paranoid_check

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * TLB Management (flush/create/diagnostics) for ARC700
   4  *
   5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6  *
   7  * vineetg: Aug 2011
   8  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
   9  *
  10  * vineetg: May 2011
  11  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
  12  *   some of the LMBench tests improved amazingly
  13  *      = page-fault thrice as fast (75 usec to 28 usec)
  14  *      = mmap twice as fast (9.6 msec to 4.6 msec),
  15  *      = fork (5.3 msec to 3.7 msec)
  16  *
  17  * vineetg: April 2011 :
  18  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  19  *      helps avoid a shift when preparing PD0 from PTE
  20  *
  21  * vineetg: April 2011 : Preparing for MMU V3
  22  *  -MMU v2/v3 BCRs decoded differently
  23  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  24  *  -tlb_entry_erase( ) can be void
  25  *  -local_flush_tlb_range( ):
  26  *      = need not "ceil" @end
  27  *      = walks MMU only if range spans < 32 entries, as opposed to 256
  28  *
  29  * Vineetg: Sept 10th 2008
  30  *  -Changes related to MMU v2 (Rel 4.8)
  31  *
  32  * Vineetg: Aug 29th 2008
  33  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  34  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  35  *    it fails. Thus need to load it with ANY valid value before invoking
  36  *    TLBIVUTLB cmd
  37  *
  38  * Vineetg: Aug 21th 2008:
  39  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
  40  *  -Multiple copies of TLB erase code seperated into a "single" function
  41  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  42  *       in interrupt-safe region.
  43  *
  44  * Vineetg: April 23rd Bug #93131
  45  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
  46  *              flush is more than the size of TLB itself.
  47  *
  48  * Rahul Trivedi : Codito Technologies 2004
  49  */
  50 
  51 #include <linux/module.h>
  52 #include <linux/bug.h>
  53 #include <linux/mm_types.h>
  54 
  55 #include <asm/arcregs.h>
  56 #include <asm/setup.h>
  57 #include <asm/mmu_context.h>
  58 #include <asm/mmu.h>
  59 
  60 /*                      Need for ARC MMU v2
  61  *
  62  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  63  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  64  * map into same set, there would be contention for the 2 ways causing severe
  65  * Thrashing.
  66  *
  67  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  68  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  69  * Given this, the thrasing problem should never happen because once the 3
  70  * J-TLB entries are created (even though 3rd will knock out one of the prev
  71  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  72  *
  73  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  74  * This is a simple design for keeping them in sync. So what do we do?
  75  * The solution which James came up was pretty neat. It utilised the assoc
  76  * of uTLBs by not invalidating always but only when absolutely necessary.
  77  *
  78  * - Existing TLB commands work as before
  79  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  80  * - New command (TLBIVUTLB) to invalidate uTLBs.
  81  *
  82  * The uTLBs need only be invalidated when pages are being removed from the
  83  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  84  * as a result of a miss, the removed entry is still allowed to exist in the
  85  * uTLBs as it is still valid and present in the OS page table. This allows the
  86  * full associativity of the uTLBs to hide the limited associativity of the main
  87  * TLB.
  88  *
  89  * During a miss handler, the new "TLBWriteNI" command is used to load
  90  * entries without clearing the uTLBs.
  91  *
  92  * When the OS page table is updated, TLB entries that may be associated with a
  93  * removed page are removed (flushed) from the TLB using TLBWrite. In this
  94  * circumstance, the uTLBs must also be cleared. This is done by using the
  95  * existing TLBWrite command. An explicit IVUTLB is also required for those
  96  * corner cases when TLBWrite was not executed at all because the corresp
  97  * J-TLB entry got evicted/replaced.
  98  */
  99 
 100 
 101 /* A copy of the ASID from the PID reg is kept in asid_cache */
 102 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
 103 
 104 static int __read_mostly pae_exists;
 105 
 106 /*
 107  * Utility Routine to erase a J-TLB entry
 108  * Caller needs to setup Index Reg (manually or via getIndex)
 109  */
 110 static inline void __tlb_entry_erase(void)
 111 {
 112         write_aux_reg(ARC_REG_TLBPD1, 0);
 113 
 114         if (is_pae40_enabled())
 115                 write_aux_reg(ARC_REG_TLBPD1HI, 0);
 116 
 117         write_aux_reg(ARC_REG_TLBPD0, 0);
 118         write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 119 }
 120 
 121 #if (CONFIG_ARC_MMU_VER < 4)
 122 
 123 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
 124 {
 125         unsigned int idx;
 126 
 127         write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
 128 
 129         write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
 130         idx = read_aux_reg(ARC_REG_TLBINDEX);
 131 
 132         return idx;
 133 }
 134 
 135 static void tlb_entry_erase(unsigned int vaddr_n_asid)
 136 {
 137         unsigned int idx;
 138 
 139         /* Locate the TLB entry for this vaddr + ASID */
 140         idx = tlb_entry_lkup(vaddr_n_asid);
 141 
 142         /* No error means entry found, zero it out */
 143         if (likely(!(idx & TLB_LKUP_ERR))) {
 144                 __tlb_entry_erase();
 145         } else {
 146                 /* Duplicate entry error */
 147                 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
 148                                            vaddr_n_asid);
 149         }
 150 }
 151 
 152 /****************************************************************************
 153  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
 154  *
 155  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
 156  *
 157  * utlb_invalidate ( )
 158  *  -For v2 MMU calls Flush uTLB Cmd
 159  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
 160  *      This is because in v1 TLBWrite itself invalidate uTLBs
 161  ***************************************************************************/
 162 
 163 static void utlb_invalidate(void)
 164 {
 165 #if (CONFIG_ARC_MMU_VER >= 2)
 166 
 167 #if (CONFIG_ARC_MMU_VER == 2)
 168         /* MMU v2 introduced the uTLB Flush command.
 169          * There was however an obscure hardware bug, where uTLB flush would
 170          * fail when a prior probe for J-TLB (both totally unrelated) would
 171          * return lkup err - because the entry didn't exist in MMU.
 172          * The Workround was to set Index reg with some valid value, prior to
 173          * flush. This was fixed in MMU v3 hence not needed any more
 174          */
 175         unsigned int idx;
 176 
 177         /* make sure INDEX Reg is valid */
 178         idx = read_aux_reg(ARC_REG_TLBINDEX);
 179 
 180         /* If not write some dummy val */
 181         if (unlikely(idx & TLB_LKUP_ERR))
 182                 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
 183 #endif
 184 
 185         write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
 186 #endif
 187 
 188 }
 189 
 190 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 191 {
 192         unsigned int idx;
 193 
 194         /*
 195          * First verify if entry for this vaddr+ASID already exists
 196          * This also sets up PD0 (vaddr, ASID..) for final commit
 197          */
 198         idx = tlb_entry_lkup(pd0);
 199 
 200         /*
 201          * If Not already present get a free slot from MMU.
 202          * Otherwise, Probe would have located the entry and set INDEX Reg
 203          * with existing location. This will cause Write CMD to over-write
 204          * existing entry with new PD0 and PD1
 205          */
 206         if (likely(idx & TLB_LKUP_ERR))
 207                 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
 208 
 209         /* setup the other half of TLB entry (pfn, rwx..) */
 210         write_aux_reg(ARC_REG_TLBPD1, pd1);
 211 
 212         /*
 213          * Commit the Entry to MMU
 214          * It doesn't sound safe to use the TLBWriteNI cmd here
 215          * which doesn't flush uTLBs. I'd rather be safe than sorry.
 216          */
 217         write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 218 }
 219 
 220 #else   /* CONFIG_ARC_MMU_VER >= 4) */
 221 
 222 static void utlb_invalidate(void)
 223 {
 224         /* No need since uTLB is always in sync with JTLB */
 225 }
 226 
 227 static void tlb_entry_erase(unsigned int vaddr_n_asid)
 228 {
 229         write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
 230         write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
 231 }
 232 
 233 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 234 {
 235         write_aux_reg(ARC_REG_TLBPD0, pd0);
 236         write_aux_reg(ARC_REG_TLBPD1, pd1);
 237 
 238         if (is_pae40_enabled())
 239                 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
 240 
 241         write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
 242 }
 243 
 244 #endif
 245 
 246 /*
 247  * Un-conditionally (without lookup) erase the entire MMU contents
 248  */
 249 
 250 noinline void local_flush_tlb_all(void)
 251 {
 252         struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 253         unsigned long flags;
 254         unsigned int entry;
 255         int num_tlb = mmu->sets * mmu->ways;
 256 
 257         local_irq_save(flags);
 258 
 259         /* Load PD0 and PD1 with template for a Blank Entry */
 260         write_aux_reg(ARC_REG_TLBPD1, 0);
 261 
 262         if (is_pae40_enabled())
 263                 write_aux_reg(ARC_REG_TLBPD1HI, 0);
 264 
 265         write_aux_reg(ARC_REG_TLBPD0, 0);
 266 
 267         for (entry = 0; entry < num_tlb; entry++) {
 268                 /* write this entry to the TLB */
 269                 write_aux_reg(ARC_REG_TLBINDEX, entry);
 270                 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 271         }
 272 
 273         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 274                 const int stlb_idx = 0x800;
 275 
 276                 /* Blank sTLB entry */
 277                 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
 278 
 279                 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
 280                         write_aux_reg(ARC_REG_TLBINDEX, entry);
 281                         write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 282                 }
 283         }
 284 
 285         utlb_invalidate();
 286 
 287         local_irq_restore(flags);
 288 }
 289 
 290 /*
 291  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
 292  */
 293 noinline void local_flush_tlb_mm(struct mm_struct *mm)
 294 {
 295         /*
 296          * Small optimisation courtesy IA64
 297          * flush_mm called during fork,exit,munmap etc, multiple times as well.
 298          * Only for fork( ) do we need to move parent to a new MMU ctxt,
 299          * all other cases are NOPs, hence this check.
 300          */
 301         if (atomic_read(&mm->mm_users) == 0)
 302                 return;
 303 
 304         /*
 305          * - Move to a new ASID, but only if the mm is still wired in
 306          *   (Android Binder ended up calling this for vma->mm != tsk->mm,
 307          *    causing h/w - s/w ASID to get out of sync)
 308          * - Also get_new_mmu_context() new implementation allocates a new
 309          *   ASID only if it is not allocated already - so unallocate first
 310          */
 311         destroy_context(mm);
 312         if (current->mm == mm)
 313                 get_new_mmu_context(mm);
 314 }
 315 
 316 /*
 317  * Flush a Range of TLB entries for userland.
 318  * @start is inclusive, while @end is exclusive
 319  * Difference between this and Kernel Range Flush is
 320  *  -Here the fastest way (if range is too large) is to move to next ASID
 321  *      without doing any explicit Shootdown
 322  *  -In case of kernel Flush, entry has to be shot down explictly
 323  */
 324 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 325                            unsigned long end)
 326 {
 327         const unsigned int cpu = smp_processor_id();
 328         unsigned long flags;
 329 
 330         /* If range @start to @end is more than 32 TLB entries deep,
 331          * its better to move to a new ASID rather than searching for
 332          * individual entries and then shooting them down
 333          *
 334          * The calc above is rough, doesn't account for unaligned parts,
 335          * since this is heuristics based anyways
 336          */
 337         if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 338                 local_flush_tlb_mm(vma->vm_mm);
 339                 return;
 340         }
 341 
 342         /*
 343          * @start moved to page start: this alone suffices for checking
 344          * loop end condition below, w/o need for aligning @end to end
 345          * e.g. 2000 to 4001 will anyhow loop twice
 346          */
 347         start &= PAGE_MASK;
 348 
 349         local_irq_save(flags);
 350 
 351         if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 352                 while (start < end) {
 353                         tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
 354                         start += PAGE_SIZE;
 355                 }
 356         }
 357 
 358         utlb_invalidate();
 359 
 360         local_irq_restore(flags);
 361 }
 362 
 363 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
 364  *  @start, @end interpreted as kvaddr
 365  * Interestingly, shared TLB entries can also be flushed using just
 366  * @start,@end alone (interpreted as user vaddr), although technically SASID
 367  * is also needed. However our smart TLbProbe lookup takes care of that.
 368  */
 369 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 370 {
 371         unsigned long flags;
 372 
 373         /* exactly same as above, except for TLB entry not taking ASID */
 374 
 375         if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 376                 local_flush_tlb_all();
 377                 return;
 378         }
 379 
 380         start &= PAGE_MASK;
 381 
 382         local_irq_save(flags);
 383         while (start < end) {
 384                 tlb_entry_erase(start);
 385                 start += PAGE_SIZE;
 386         }
 387 
 388         utlb_invalidate();
 389 
 390         local_irq_restore(flags);
 391 }
 392 
 393 /*
 394  * Delete TLB entry in MMU for a given page (??? address)
 395  * NOTE One TLB entry contains translation for single PAGE
 396  */
 397 
 398 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 399 {
 400         const unsigned int cpu = smp_processor_id();
 401         unsigned long flags;
 402 
 403         /* Note that it is critical that interrupts are DISABLED between
 404          * checking the ASID and using it flush the TLB entry
 405          */
 406         local_irq_save(flags);
 407 
 408         if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 409                 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
 410                 utlb_invalidate();
 411         }
 412 
 413         local_irq_restore(flags);
 414 }
 415 
 416 #ifdef CONFIG_SMP
 417 
 418 struct tlb_args {
 419         struct vm_area_struct *ta_vma;
 420         unsigned long ta_start;
 421         unsigned long ta_end;
 422 };
 423 
 424 static inline void ipi_flush_tlb_page(void *arg)
 425 {
 426         struct tlb_args *ta = arg;
 427 
 428         local_flush_tlb_page(ta->ta_vma, ta->ta_start);
 429 }
 430 
 431 static inline void ipi_flush_tlb_range(void *arg)
 432 {
 433         struct tlb_args *ta = arg;
 434 
 435         local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 436 }
 437 
 438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 439 static inline void ipi_flush_pmd_tlb_range(void *arg)
 440 {
 441         struct tlb_args *ta = arg;
 442 
 443         local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 444 }
 445 #endif
 446 
 447 static inline void ipi_flush_tlb_kernel_range(void *arg)
 448 {
 449         struct tlb_args *ta = (struct tlb_args *)arg;
 450 
 451         local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
 452 }
 453 
 454 void flush_tlb_all(void)
 455 {
 456         on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
 457 }
 458 
 459 void flush_tlb_mm(struct mm_struct *mm)
 460 {
 461         on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
 462                          mm, 1);
 463 }
 464 
 465 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
 466 {
 467         struct tlb_args ta = {
 468                 .ta_vma = vma,
 469                 .ta_start = uaddr
 470         };
 471 
 472         on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
 473 }
 474 
 475 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 476                      unsigned long end)
 477 {
 478         struct tlb_args ta = {
 479                 .ta_vma = vma,
 480                 .ta_start = start,
 481                 .ta_end = end
 482         };
 483 
 484         on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
 485 }
 486 
 487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 488 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 489                          unsigned long end)
 490 {
 491         struct tlb_args ta = {
 492                 .ta_vma = vma,
 493                 .ta_start = start,
 494                 .ta_end = end
 495         };
 496 
 497         on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
 498 }
 499 #endif
 500 
 501 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 502 {
 503         struct tlb_args ta = {
 504                 .ta_start = start,
 505                 .ta_end = end
 506         };
 507 
 508         on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
 509 }
 510 #endif
 511 
 512 /*
 513  * Routine to create a TLB entry
 514  */
 515 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
 516 {
 517         unsigned long flags;
 518         unsigned int asid_or_sasid, rwx;
 519         unsigned long pd0;
 520         pte_t pd1;
 521 
 522         /*
 523          * create_tlb() assumes that current->mm == vma->mm, since
 524          * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
 525          * -completes the lazy write to SASID reg (again valid for curr tsk)
 526          *
 527          * Removing the assumption involves
 528          * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
 529          * -Fix the TLB paranoid debug code to not trigger false negatives.
 530          * -More importantly it makes this handler inconsistent with fast-path
 531          *  TLB Refill handler which always deals with "current"
 532          *
 533          * Lets see the use cases when current->mm != vma->mm and we land here
 534          *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
 535          *     Here VM wants to pre-install a TLB entry for user stack while
 536          *     current->mm still points to pre-execve mm (hence the condition).
 537          *     However the stack vaddr is soon relocated (randomization) and
 538          *     move_page_tables() tries to undo that TLB entry.
 539          *     Thus not creating TLB entry is not any worse.
 540          *
 541          *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
 542          *     breakpoint in debugged task. Not creating a TLB now is not
 543          *     performance critical.
 544          *
 545          * Both the cases above are not good enough for code churn.
 546          */
 547         if (current->active_mm != vma->vm_mm)
 548                 return;
 549 
 550         local_irq_save(flags);
 551 
 552         tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
 553 
 554         vaddr &= PAGE_MASK;
 555 
 556         /* update this PTE credentials */
 557         pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
 558 
 559         /* Create HW TLB(PD0,PD1) from PTE  */
 560 
 561         /* ASID for this task */
 562         asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
 563 
 564         pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
 565 
 566         /*
 567          * ARC MMU provides fully orthogonal access bits for K/U mode,
 568          * however Linux only saves 1 set to save PTE real-estate
 569          * Here we convert 3 PTE bits into 6 MMU bits:
 570          * -Kernel only entries have Kr Kw Kx 0 0 0
 571          * -User entries have mirrored K and U bits
 572          */
 573         rwx = pte_val(*ptep) & PTE_BITS_RWX;
 574 
 575         if (pte_val(*ptep) & _PAGE_GLOBAL)
 576                 rwx <<= 3;              /* r w x => Kr Kw Kx 0 0 0 */
 577         else
 578                 rwx |= (rwx << 3);      /* r w x => Kr Kw Kx Ur Uw Ux */
 579 
 580         pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
 581 
 582         tlb_entry_insert(pd0, pd1);
 583 
 584         local_irq_restore(flags);
 585 }
 586 
 587 /*
 588  * Called at the end of pagefault, for a userspace mapped page
 589  *  -pre-install the corresponding TLB entry into MMU
 590  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
 591  *      flush_dcache_page(), copy_user_page()
 592  *
 593  * Note that flush (when done) involves both WBACK - so physical page is
 594  * in sync as well as INV - so any non-congruent aliases don't remain
 595  */
 596 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
 597                       pte_t *ptep)
 598 {
 599         unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
 600         phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
 601         struct page *page = pfn_to_page(pte_pfn(*ptep));
 602 
 603         create_tlb(vma, vaddr, ptep);
 604 
 605         if (page == ZERO_PAGE(0)) {
 606                 return;
 607         }
 608 
 609         /*
 610          * Exec page : Independent of aliasing/page-color considerations,
 611          *             since icache doesn't snoop dcache on ARC, any dirty
 612          *             K-mapping of a code page needs to be wback+inv so that
 613          *             icache fetch by userspace sees code correctly.
 614          * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
 615          *             so userspace sees the right data.
 616          *  (Avoids the flush for Non-exec + congruent mapping case)
 617          */
 618         if ((vma->vm_flags & VM_EXEC) ||
 619              addr_not_cache_congruent(paddr, vaddr)) {
 620 
 621                 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
 622                 if (dirty) {
 623                         /* wback + inv dcache lines (K-mapping) */
 624                         __flush_dcache_page(paddr, paddr);
 625 
 626                         /* invalidate any existing icache lines (U-mapping) */
 627                         if (vma->vm_flags & VM_EXEC)
 628                                 __inv_icache_page(paddr, vaddr);
 629                 }
 630         }
 631 }
 632 
 633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 634 
 635 /*
 636  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
 637  * support.
 638  *
 639  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
 640  * new bit "SZ" in TLB page descriptor to distinguish between them.
 641  * Super Page size is configurable in hardware (4K to 16M), but fixed once
 642  * RTL builds.
 643  *
 644  * The exact THP size a Linx configuration will support is a function of:
 645  *  - MMU page size (typical 8K, RTL fixed)
 646  *  - software page walker address split between PGD:PTE:PFN (typical
 647  *    11:8:13, but can be changed with 1 line)
 648  * So for above default, THP size supported is 8K * (2^8) = 2M
 649  *
 650  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
 651  * reduces to 1 level (as PTE is folded into PGD and canonically referred
 652  * to as PMD).
 653  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
 654  */
 655 
 656 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 657                                  pmd_t *pmd)
 658 {
 659         pte_t pte = __pte(pmd_val(*pmd));
 660         update_mmu_cache(vma, addr, &pte);
 661 }
 662 
 663 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 664                                 pgtable_t pgtable)
 665 {
 666         struct list_head *lh = (struct list_head *) pgtable;
 667 
 668         assert_spin_locked(&mm->page_table_lock);
 669 
 670         /* FIFO */
 671         if (!pmd_huge_pte(mm, pmdp))
 672                 INIT_LIST_HEAD(lh);
 673         else
 674                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 675         pmd_huge_pte(mm, pmdp) = pgtable;
 676 }
 677 
 678 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 679 {
 680         struct list_head *lh;
 681         pgtable_t pgtable;
 682 
 683         assert_spin_locked(&mm->page_table_lock);
 684 
 685         pgtable = pmd_huge_pte(mm, pmdp);
 686         lh = (struct list_head *) pgtable;
 687         if (list_empty(lh))
 688                 pmd_huge_pte(mm, pmdp) = NULL;
 689         else {
 690                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 691                 list_del(lh);
 692         }
 693 
 694         pte_val(pgtable[0]) = 0;
 695         pte_val(pgtable[1]) = 0;
 696 
 697         return pgtable;
 698 }
 699 
 700 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 701                                unsigned long end)
 702 {
 703         unsigned int cpu;
 704         unsigned long flags;
 705 
 706         local_irq_save(flags);
 707 
 708         cpu = smp_processor_id();
 709 
 710         if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
 711                 unsigned int asid = hw_pid(vma->vm_mm, cpu);
 712 
 713                 /* No need to loop here: this will always be for 1 Huge Page */
 714                 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
 715         }
 716 
 717         local_irq_restore(flags);
 718 }
 719 
 720 #endif
 721 
 722 /* Read the Cache Build Confuration Registers, Decode them and save into
 723  * the cpuinfo structure for later use.
 724  * No Validation is done here, simply read/convert the BCRs
 725  */
 726 void read_decode_mmu_bcr(void)
 727 {
 728         struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 729         unsigned int tmp;
 730         struct bcr_mmu_1_2 {
 731 #ifdef CONFIG_CPU_BIG_ENDIAN
 732                 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
 733 #else
 734                 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
 735 #endif
 736         } *mmu2;
 737 
 738         struct bcr_mmu_3 {
 739 #ifdef CONFIG_CPU_BIG_ENDIAN
 740         unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
 741                      u_itlb:4, u_dtlb:4;
 742 #else
 743         unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
 744                      ways:4, ver:8;
 745 #endif
 746         } *mmu3;
 747 
 748         struct bcr_mmu_4 {
 749 #ifdef CONFIG_CPU_BIG_ENDIAN
 750         unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
 751                      n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
 752 #else
 753         /*           DTLB      ITLB      JES        JE         JA      */
 754         unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
 755                      pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
 756 #endif
 757         } *mmu4;
 758 
 759         tmp = read_aux_reg(ARC_REG_MMU_BCR);
 760         mmu->ver = (tmp >> 24);
 761 
 762         if (is_isa_arcompact()) {
 763                 if (mmu->ver <= 2) {
 764                         mmu2 = (struct bcr_mmu_1_2 *)&tmp;
 765                         mmu->pg_sz_k = TO_KB(0x2000);
 766                         mmu->sets = 1 << mmu2->sets;
 767                         mmu->ways = 1 << mmu2->ways;
 768                         mmu->u_dtlb = mmu2->u_dtlb;
 769                         mmu->u_itlb = mmu2->u_itlb;
 770                 } else {
 771                         mmu3 = (struct bcr_mmu_3 *)&tmp;
 772                         mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
 773                         mmu->sets = 1 << mmu3->sets;
 774                         mmu->ways = 1 << mmu3->ways;
 775                         mmu->u_dtlb = mmu3->u_dtlb;
 776                         mmu->u_itlb = mmu3->u_itlb;
 777                         mmu->sasid = mmu3->sasid;
 778                 }
 779         } else {
 780                 mmu4 = (struct bcr_mmu_4 *)&tmp;
 781                 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
 782                 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
 783                 mmu->sets = 64 << mmu4->n_entry;
 784                 mmu->ways = mmu4->n_ways * 2;
 785                 mmu->u_dtlb = mmu4->u_dtlb * 4;
 786                 mmu->u_itlb = mmu4->u_itlb * 4;
 787                 mmu->sasid = mmu4->sasid;
 788                 pae_exists = mmu->pae = mmu4->pae;
 789         }
 790 }
 791 
 792 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
 793 {
 794         int n = 0;
 795         struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 796         char super_pg[64] = "";
 797 
 798         if (p_mmu->s_pg_sz_m)
 799                 scnprintf(super_pg, 64, "%dM Super Page %s",
 800                           p_mmu->s_pg_sz_m,
 801                           IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
 802 
 803         n += scnprintf(buf + n, len - n,
 804                       "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
 805                        p_mmu->ver, p_mmu->pg_sz_k, super_pg,
 806                        p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
 807                        p_mmu->u_dtlb, p_mmu->u_itlb,
 808                        IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
 809 
 810         return buf;
 811 }
 812 
 813 int pae40_exist_but_not_enab(void)
 814 {
 815         return pae_exists && !is_pae40_enabled();
 816 }
 817 
 818 void arc_mmu_init(void)
 819 {
 820         struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 821         char str[256];
 822         int compat = 0;
 823 
 824         pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
 825 
 826         /*
 827          * Can't be done in processor.h due to header include depenedencies
 828          */
 829         BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
 830 
 831         /*
 832          * stack top size sanity check,
 833          * Can't be done in processor.h due to header include depenedencies
 834          */
 835         BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
 836 
 837         /*
 838          * Ensure that MMU features assumed by kernel exist in hardware.
 839          * For older ARC700 cpus, it has to be exact match, since the MMU
 840          * revisions were not backwards compatible (MMUv3 TLB layout changed
 841          * so even if kernel for v2 didn't use any new cmds of v3, it would
 842          * still not work.
 843          * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
 844          * (will run older software).
 845          */
 846         if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
 847                 compat = 1;
 848         else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
 849                 compat = 1;
 850 
 851         if (!compat) {
 852                 panic("MMU ver %d doesn't match kernel built for %d...\n",
 853                       mmu->ver, CONFIG_ARC_MMU_VER);
 854         }
 855 
 856         if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
 857                 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
 858 
 859         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 860             mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
 861                 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
 862                       (unsigned long)TO_MB(HPAGE_PMD_SIZE));
 863 
 864         if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
 865                 panic("Hardware doesn't support PAE40\n");
 866 
 867         /* Enable the MMU */
 868         write_aux_reg(ARC_REG_PID, MMU_ENABLE);
 869 
 870         /* In smp we use this reg for interrupt 1 scratch */
 871 #ifndef CONFIG_SMP
 872         /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
 873         write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
 874 #endif
 875 
 876         if (pae40_exist_but_not_enab())
 877                 write_aux_reg(ARC_REG_TLBPD1HI, 0);
 878 }
 879 
 880 /*
 881  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
 882  * The mapping is Column-first.
 883  *              ---------------------   -----------
 884  *              |way0|way1|way2|way3|   |way0|way1|
 885  *              ---------------------   -----------
 886  * [set0]       |  0 |  1 |  2 |  3 |   |  0 |  1 |
 887  * [set1]       |  4 |  5 |  6 |  7 |   |  2 |  3 |
 888  *              ~                   ~   ~         ~
 889  * [set127]     | 508| 509| 510| 511|   | 254| 255|
 890  *              ---------------------   -----------
 891  * For normal operations we don't(must not) care how above works since
 892  * MMU cmd getIndex(vaddr) abstracts that out.
 893  * However for walking WAYS of a SET, we need to know this
 894  */
 895 #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
 896 
 897 /* Handling of Duplicate PD (TLB entry) in MMU.
 898  * -Could be due to buggy customer tapeouts or obscure kernel bugs
 899  * -MMU complaints not at the time of duplicate PD installation, but at the
 900  *      time of lookup matching multiple ways.
 901  * -Ideally these should never happen - but if they do - workaround by deleting
 902  *      the duplicate one.
 903  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
 904  */
 905 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
 906 
 907 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
 908                           struct pt_regs *regs)
 909 {
 910         struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 911         unsigned long flags;
 912         int set, n_ways = mmu->ways;
 913 
 914         n_ways = min(n_ways, 4);
 915         BUG_ON(mmu->ways > 4);
 916 
 917         local_irq_save(flags);
 918 
 919         /* loop thru all sets of TLB */
 920         for (set = 0; set < mmu->sets; set++) {
 921 
 922                 int is_valid, way;
 923                 unsigned int pd0[4];
 924 
 925                 /* read out all the ways of current set */
 926                 for (way = 0, is_valid = 0; way < n_ways; way++) {
 927                         write_aux_reg(ARC_REG_TLBINDEX,
 928                                           SET_WAY_TO_IDX(mmu, set, way));
 929                         write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
 930                         pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
 931                         is_valid |= pd0[way] & _PAGE_PRESENT;
 932                         pd0[way] &= PAGE_MASK;
 933                 }
 934 
 935                 /* If all the WAYS in SET are empty, skip to next SET */
 936                 if (!is_valid)
 937                         continue;
 938 
 939                 /* Scan the set for duplicate ways: needs a nested loop */
 940                 for (way = 0; way < n_ways - 1; way++) {
 941 
 942                         int n;
 943 
 944                         if (!pd0[way])
 945                                 continue;
 946 
 947                         for (n = way + 1; n < n_ways; n++) {
 948                                 if (pd0[way] != pd0[n])
 949                                         continue;
 950 
 951                                 if (!dup_pd_silent)
 952                                         pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
 953                                                 pd0[way], set, way, n);
 954 
 955                                 /*
 956                                  * clear entry @way and not @n.
 957                                  * This is critical to our optimised loop
 958                                  */
 959                                 pd0[way] = 0;
 960                                 write_aux_reg(ARC_REG_TLBINDEX,
 961                                                 SET_WAY_TO_IDX(mmu, set, way));
 962                                 __tlb_entry_erase();
 963                         }
 964                 }
 965         }
 966 
 967         local_irq_restore(flags);
 968 }
 969 
 970 /***********************************************************************
 971  * Diagnostic Routines
 972  *  -Called from Low Level TLB Hanlders if things don;t look good
 973  **********************************************************************/
 974 
 975 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
 976 
 977 /*
 978  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
 979  * don't match
 980  */
 981 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
 982 {
 983         pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
 984                is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
 985 
 986         __asm__ __volatile__("flag 1");
 987 }
 988 
 989 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
 990 {
 991         unsigned int mmu_asid;
 992 
 993         mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
 994 
 995         /*
 996          * At the time of a TLB miss/installation
 997          *   - HW version needs to match SW version
 998          *   - SW needs to have a valid ASID
 999          */
1000         if (addr < 0x70000000 &&
1001             ((mm_asid == MM_CTXT_NO_ASID) ||
1002               (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1003                 print_asid_mismatch(mm_asid, mmu_asid, 0);
1004 }
1005 #endif

/* [<][>][^][v][top][bottom][index][help] */