root/arch/arm/mm/fault-armv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. do_adjust_pte
  2. do_pte_lock
  3. do_pte_unlock
  4. do_pte_lock
  5. do_pte_unlock
  6. adjust_pte
  7. make_coherent
  8. update_mmu_cache
  9. check_writebuffer
  10. check_writebuffer_bugs

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  linux/arch/arm/mm/fault-armv.c
   4  *
   5  *  Copyright (C) 1995  Linus Torvalds
   6  *  Modifications for ARM processor (c) 1995-2002 Russell King
   7  */
   8 #include <linux/sched.h>
   9 #include <linux/kernel.h>
  10 #include <linux/mm.h>
  11 #include <linux/bitops.h>
  12 #include <linux/vmalloc.h>
  13 #include <linux/init.h>
  14 #include <linux/pagemap.h>
  15 #include <linux/gfp.h>
  16 
  17 #include <asm/bugs.h>
  18 #include <asm/cacheflush.h>
  19 #include <asm/cachetype.h>
  20 #include <asm/pgtable.h>
  21 #include <asm/tlbflush.h>
  22 
  23 #include "mm.h"
  24 
  25 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
  26 
  27 #if __LINUX_ARM_ARCH__ < 6
  28 /*
  29  * We take the easy way out of this problem - we make the
  30  * PTE uncacheable.  However, we leave the write buffer on.
  31  *
  32  * Note that the pte lock held when calling update_mmu_cache must also
  33  * guard the pte (somewhere else in the same mm) that we modify here.
  34  * Therefore those configurations which might call adjust_pte (those
  35  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
  36  */
  37 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
  38         unsigned long pfn, pte_t *ptep)
  39 {
  40         pte_t entry = *ptep;
  41         int ret;
  42 
  43         /*
  44          * If this page is present, it's actually being shared.
  45          */
  46         ret = pte_present(entry);
  47 
  48         /*
  49          * If this page isn't present, or is already setup to
  50          * fault (ie, is old), we can safely ignore any issues.
  51          */
  52         if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
  53                 flush_cache_page(vma, address, pfn);
  54                 outer_flush_range((pfn << PAGE_SHIFT),
  55                                   (pfn << PAGE_SHIFT) + PAGE_SIZE);
  56                 pte_val(entry) &= ~L_PTE_MT_MASK;
  57                 pte_val(entry) |= shared_pte_mask;
  58                 set_pte_at(vma->vm_mm, address, ptep, entry);
  59                 flush_tlb_page(vma, address);
  60         }
  61 
  62         return ret;
  63 }
  64 
  65 #if USE_SPLIT_PTE_PTLOCKS
  66 /*
  67  * If we are using split PTE locks, then we need to take the page
  68  * lock here.  Otherwise we are using shared mm->page_table_lock
  69  * which is already locked, thus cannot take it.
  70  */
  71 static inline void do_pte_lock(spinlock_t *ptl)
  72 {
  73         /*
  74          * Use nested version here to indicate that we are already
  75          * holding one similar spinlock.
  76          */
  77         spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
  78 }
  79 
  80 static inline void do_pte_unlock(spinlock_t *ptl)
  81 {
  82         spin_unlock(ptl);
  83 }
  84 #else /* !USE_SPLIT_PTE_PTLOCKS */
  85 static inline void do_pte_lock(spinlock_t *ptl) {}
  86 static inline void do_pte_unlock(spinlock_t *ptl) {}
  87 #endif /* USE_SPLIT_PTE_PTLOCKS */
  88 
  89 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
  90         unsigned long pfn)
  91 {
  92         spinlock_t *ptl;
  93         pgd_t *pgd;
  94         pud_t *pud;
  95         pmd_t *pmd;
  96         pte_t *pte;
  97         int ret;
  98 
  99         pgd = pgd_offset(vma->vm_mm, address);
 100         if (pgd_none_or_clear_bad(pgd))
 101                 return 0;
 102 
 103         pud = pud_offset(pgd, address);
 104         if (pud_none_or_clear_bad(pud))
 105                 return 0;
 106 
 107         pmd = pmd_offset(pud, address);
 108         if (pmd_none_or_clear_bad(pmd))
 109                 return 0;
 110 
 111         /*
 112          * This is called while another page table is mapped, so we
 113          * must use the nested version.  This also means we need to
 114          * open-code the spin-locking.
 115          */
 116         ptl = pte_lockptr(vma->vm_mm, pmd);
 117         pte = pte_offset_map(pmd, address);
 118         do_pte_lock(ptl);
 119 
 120         ret = do_adjust_pte(vma, address, pfn, pte);
 121 
 122         do_pte_unlock(ptl);
 123         pte_unmap(pte);
 124 
 125         return ret;
 126 }
 127 
 128 static void
 129 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
 130         unsigned long addr, pte_t *ptep, unsigned long pfn)
 131 {
 132         struct mm_struct *mm = vma->vm_mm;
 133         struct vm_area_struct *mpnt;
 134         unsigned long offset;
 135         pgoff_t pgoff;
 136         int aliases = 0;
 137 
 138         pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
 139 
 140         /*
 141          * If we have any shared mappings that are in the same mm
 142          * space, then we need to handle them specially to maintain
 143          * cache coherency.
 144          */
 145         flush_dcache_mmap_lock(mapping);
 146         vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
 147                 /*
 148                  * If this VMA is not in our MM, we can ignore it.
 149                  * Note that we intentionally mask out the VMA
 150                  * that we are fixing up.
 151                  */
 152                 if (mpnt->vm_mm != mm || mpnt == vma)
 153                         continue;
 154                 if (!(mpnt->vm_flags & VM_MAYSHARE))
 155                         continue;
 156                 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
 157                 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
 158         }
 159         flush_dcache_mmap_unlock(mapping);
 160         if (aliases)
 161                 do_adjust_pte(vma, addr, pfn, ptep);
 162 }
 163 
 164 /*
 165  * Take care of architecture specific things when placing a new PTE into
 166  * a page table, or changing an existing PTE.  Basically, there are two
 167  * things that we need to take care of:
 168  *
 169  *  1. If PG_dcache_clean is not set for the page, we need to ensure
 170  *     that any cache entries for the kernels virtual memory
 171  *     range are written back to the page.
 172  *  2. If we have multiple shared mappings of the same space in
 173  *     an object, we need to deal with the cache aliasing issues.
 174  *
 175  * Note that the pte lock will be held.
 176  */
 177 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
 178         pte_t *ptep)
 179 {
 180         unsigned long pfn = pte_pfn(*ptep);
 181         struct address_space *mapping;
 182         struct page *page;
 183 
 184         if (!pfn_valid(pfn))
 185                 return;
 186 
 187         /*
 188          * The zero page is never written to, so never has any dirty
 189          * cache lines, and therefore never needs to be flushed.
 190          */
 191         page = pfn_to_page(pfn);
 192         if (page == ZERO_PAGE(0))
 193                 return;
 194 
 195         mapping = page_mapping_file(page);
 196         if (!test_and_set_bit(PG_dcache_clean, &page->flags))
 197                 __flush_dcache_page(mapping, page);
 198         if (mapping) {
 199                 if (cache_is_vivt())
 200                         make_coherent(mapping, vma, addr, ptep, pfn);
 201                 else if (vma->vm_flags & VM_EXEC)
 202                         __flush_icache_all();
 203         }
 204 }
 205 #endif  /* __LINUX_ARM_ARCH__ < 6 */
 206 
 207 /*
 208  * Check whether the write buffer has physical address aliasing
 209  * issues.  If it has, we need to avoid them for the case where
 210  * we have several shared mappings of the same object in user
 211  * space.
 212  */
 213 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
 214 {
 215         register unsigned long zero = 0, one = 1, val;
 216 
 217         local_irq_disable();
 218         mb();
 219         *p1 = one;
 220         mb();
 221         *p2 = zero;
 222         mb();
 223         val = *p1;
 224         mb();
 225         local_irq_enable();
 226         return val != zero;
 227 }
 228 
 229 void __init check_writebuffer_bugs(void)
 230 {
 231         struct page *page;
 232         const char *reason;
 233         unsigned long v = 1;
 234 
 235         pr_info("CPU: Testing write buffer coherency: ");
 236 
 237         page = alloc_page(GFP_KERNEL);
 238         if (page) {
 239                 unsigned long *p1, *p2;
 240                 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
 241                                         L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
 242 
 243                 p1 = vmap(&page, 1, VM_IOREMAP, prot);
 244                 p2 = vmap(&page, 1, VM_IOREMAP, prot);
 245 
 246                 if (p1 && p2) {
 247                         v = check_writebuffer(p1, p2);
 248                         reason = "enabling work-around";
 249                 } else {
 250                         reason = "unable to map memory\n";
 251                 }
 252 
 253                 vunmap(p1);
 254                 vunmap(p2);
 255                 put_page(page);
 256         } else {
 257                 reason = "unable to grab page\n";
 258         }
 259 
 260         if (v) {
 261                 pr_cont("failed, %s\n", reason);
 262                 shared_pte_mask = L_PTE_MT_UNCACHED;
 263         } else {
 264                 pr_cont("ok\n");
 265         }
 266 }

/* [<][>][^][v][top][bottom][index][help] */