root/arch/parisc/kernel/irq.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cpu_mask_irq
  2. __cpu_unmask_irq
  3. cpu_unmask_irq
  4. cpu_ack_irq
  5. cpu_eoi_irq
  6. cpu_check_affinity
  7. cpu_set_affinity_irq
  8. arch_show_interrupts
  9. show_interrupts
  10. cpu_claim_irq
  11. txn_claim_irq
  12. txn_alloc_irq
  13. txn_affinity_addr
  14. txn_alloc_addr
  15. txn_alloc_data
  16. eirr_to_irq
  17. stack_overflow_check
  18. execute_on_irq_stack
  19. do_softirq_own_stack
  20. do_cpu_irq_mask
  21. claim_cpu_irqs
  22. init_IRQ

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* 
   3  * Code to handle x86 style IRQs plus some generic interrupt stuff.
   4  *
   5  * Copyright (C) 1992 Linus Torvalds
   6  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
   7  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
   8  * Copyright (C) 1999-2000 Grant Grundler
   9  * Copyright (c) 2005 Matthew Wilcox
  10  */
  11 #include <linux/bitops.h>
  12 #include <linux/errno.h>
  13 #include <linux/init.h>
  14 #include <linux/interrupt.h>
  15 #include <linux/kernel_stat.h>
  16 #include <linux/seq_file.h>
  17 #include <linux/types.h>
  18 #include <asm/io.h>
  19 
  20 #include <asm/smp.h>
  21 #include <asm/ldcw.h>
  22 
  23 #undef PARISC_IRQ_CR16_COUNTS
  24 
  25 extern irqreturn_t timer_interrupt(int, void *);
  26 extern irqreturn_t ipi_interrupt(int, void *);
  27 
  28 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
  29 
  30 /* Bits in EIEM correlate with cpu_irq_action[].
  31 ** Numbered *Big Endian*! (ie bit 0 is MSB)
  32 */
  33 static volatile unsigned long cpu_eiem = 0;
  34 
  35 /*
  36 ** local ACK bitmap ... habitually set to 1, but reset to zero
  37 ** between ->ack() and ->end() of the interrupt to prevent
  38 ** re-interruption of a processing interrupt.
  39 */
  40 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
  41 
  42 static void cpu_mask_irq(struct irq_data *d)
  43 {
  44         unsigned long eirr_bit = EIEM_MASK(d->irq);
  45 
  46         cpu_eiem &= ~eirr_bit;
  47         /* Do nothing on the other CPUs.  If they get this interrupt,
  48          * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
  49          * handle it, and the set_eiem() at the bottom will ensure it
  50          * then gets disabled */
  51 }
  52 
  53 static void __cpu_unmask_irq(unsigned int irq)
  54 {
  55         unsigned long eirr_bit = EIEM_MASK(irq);
  56 
  57         cpu_eiem |= eirr_bit;
  58 
  59         /* This is just a simple NOP IPI.  But what it does is cause
  60          * all the other CPUs to do a set_eiem(cpu_eiem) at the end
  61          * of the interrupt handler */
  62         smp_send_all_nop();
  63 }
  64 
  65 static void cpu_unmask_irq(struct irq_data *d)
  66 {
  67         __cpu_unmask_irq(d->irq);
  68 }
  69 
  70 void cpu_ack_irq(struct irq_data *d)
  71 {
  72         unsigned long mask = EIEM_MASK(d->irq);
  73         int cpu = smp_processor_id();
  74 
  75         /* Clear in EIEM so we can no longer process */
  76         per_cpu(local_ack_eiem, cpu) &= ~mask;
  77 
  78         /* disable the interrupt */
  79         set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
  80 
  81         /* and now ack it */
  82         mtctl(mask, 23);
  83 }
  84 
  85 void cpu_eoi_irq(struct irq_data *d)
  86 {
  87         unsigned long mask = EIEM_MASK(d->irq);
  88         int cpu = smp_processor_id();
  89 
  90         /* set it in the eiems---it's no longer in process */
  91         per_cpu(local_ack_eiem, cpu) |= mask;
  92 
  93         /* enable the interrupt */
  94         set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
  95 }
  96 
  97 #ifdef CONFIG_SMP
  98 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
  99 {
 100         int cpu_dest;
 101 
 102         /* timer and ipi have to always be received on all CPUs */
 103         if (irqd_is_per_cpu(d))
 104                 return -EINVAL;
 105 
 106         /* whatever mask they set, we just allow one CPU */
 107         cpu_dest = cpumask_next_and(d->irq & (num_online_cpus()-1),
 108                                         dest, cpu_online_mask);
 109         if (cpu_dest >= nr_cpu_ids)
 110                 cpu_dest = cpumask_first_and(dest, cpu_online_mask);
 111 
 112         return cpu_dest;
 113 }
 114 
 115 static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
 116                                 bool force)
 117 {
 118         int cpu_dest;
 119 
 120         cpu_dest = cpu_check_affinity(d, dest);
 121         if (cpu_dest < 0)
 122                 return -1;
 123 
 124         cpumask_copy(irq_data_get_affinity_mask(d), dest);
 125 
 126         return 0;
 127 }
 128 #endif
 129 
 130 static struct irq_chip cpu_interrupt_type = {
 131         .name                   = "CPU",
 132         .irq_mask               = cpu_mask_irq,
 133         .irq_unmask             = cpu_unmask_irq,
 134         .irq_ack                = cpu_ack_irq,
 135         .irq_eoi                = cpu_eoi_irq,
 136 #ifdef CONFIG_SMP
 137         .irq_set_affinity       = cpu_set_affinity_irq,
 138 #endif
 139         /* XXX: Needs to be written.  We managed without it so far, but
 140          * we really ought to write it.
 141          */
 142         .irq_retrigger  = NULL,
 143 };
 144 
 145 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 146 #define irq_stats(x)            (&per_cpu(irq_stat, x))
 147 
 148 /*
 149  * /proc/interrupts printing for arch specific interrupts
 150  */
 151 int arch_show_interrupts(struct seq_file *p, int prec)
 152 {
 153         int j;
 154 
 155 #ifdef CONFIG_DEBUG_STACKOVERFLOW
 156         seq_printf(p, "%*s: ", prec, "STK");
 157         for_each_online_cpu(j)
 158                 seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
 159         seq_puts(p, "  Kernel stack usage\n");
 160 # ifdef CONFIG_IRQSTACKS
 161         seq_printf(p, "%*s: ", prec, "IST");
 162         for_each_online_cpu(j)
 163                 seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
 164         seq_puts(p, "  Interrupt stack usage\n");
 165 # endif
 166 #endif
 167 #ifdef CONFIG_SMP
 168         if (num_online_cpus() > 1) {
 169                 seq_printf(p, "%*s: ", prec, "RES");
 170                 for_each_online_cpu(j)
 171                         seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 172                 seq_puts(p, "  Rescheduling interrupts\n");
 173                 seq_printf(p, "%*s: ", prec, "CAL");
 174                 for_each_online_cpu(j)
 175                         seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
 176                 seq_puts(p, "  Function call interrupts\n");
 177         }
 178 #endif
 179         seq_printf(p, "%*s: ", prec, "UAH");
 180         for_each_online_cpu(j)
 181                 seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
 182         seq_puts(p, "  Unaligned access handler traps\n");
 183         seq_printf(p, "%*s: ", prec, "FPA");
 184         for_each_online_cpu(j)
 185                 seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
 186         seq_puts(p, "  Floating point assist traps\n");
 187         seq_printf(p, "%*s: ", prec, "TLB");
 188         for_each_online_cpu(j)
 189                 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
 190         seq_puts(p, "  TLB shootdowns\n");
 191         return 0;
 192 }
 193 
 194 int show_interrupts(struct seq_file *p, void *v)
 195 {
 196         int i = *(loff_t *) v, j;
 197         unsigned long flags;
 198 
 199         if (i == 0) {
 200                 seq_puts(p, "    ");
 201                 for_each_online_cpu(j)
 202                         seq_printf(p, "       CPU%d", j);
 203 
 204 #ifdef PARISC_IRQ_CR16_COUNTS
 205                 seq_printf(p, " [min/avg/max] (CPU cycle counts)");
 206 #endif
 207                 seq_putc(p, '\n');
 208         }
 209 
 210         if (i < NR_IRQS) {
 211                 struct irq_desc *desc = irq_to_desc(i);
 212                 struct irqaction *action;
 213 
 214                 raw_spin_lock_irqsave(&desc->lock, flags);
 215                 action = desc->action;
 216                 if (!action)
 217                         goto skip;
 218                 seq_printf(p, "%3d: ", i);
 219 #ifdef CONFIG_SMP
 220                 for_each_online_cpu(j)
 221                         seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
 222 #else
 223                 seq_printf(p, "%10u ", kstat_irqs(i));
 224 #endif
 225 
 226                 seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
 227 #ifndef PARISC_IRQ_CR16_COUNTS
 228                 seq_printf(p, "  %s", action->name);
 229 
 230                 while ((action = action->next))
 231                         seq_printf(p, ", %s", action->name);
 232 #else
 233                 for ( ;action; action = action->next) {
 234                         unsigned int k, avg, min, max;
 235 
 236                         min = max = action->cr16_hist[0];
 237 
 238                         for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
 239                                 int hist = action->cr16_hist[k];
 240 
 241                                 if (hist) {
 242                                         avg += hist;
 243                                 } else
 244                                         break;
 245 
 246                                 if (hist > max) max = hist;
 247                                 if (hist < min) min = hist;
 248                         }
 249 
 250                         avg /= k;
 251                         seq_printf(p, " %s[%d/%d/%d]", action->name,
 252                                         min,avg,max);
 253                 }
 254 #endif
 255 
 256                 seq_putc(p, '\n');
 257  skip:
 258                 raw_spin_unlock_irqrestore(&desc->lock, flags);
 259         }
 260 
 261         if (i == NR_IRQS)
 262                 arch_show_interrupts(p, 3);
 263 
 264         return 0;
 265 }
 266 
 267 
 268 
 269 /*
 270 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
 271 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
 272 **
 273 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
 274 ** Then use that to get the Transaction address and data.
 275 */
 276 
 277 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
 278 {
 279         if (irq_has_action(irq))
 280                 return -EBUSY;
 281         if (irq_get_chip(irq) != &cpu_interrupt_type)
 282                 return -EBUSY;
 283 
 284         /* for iosapic interrupts */
 285         if (type) {
 286                 irq_set_chip_and_handler(irq, type, handle_percpu_irq);
 287                 irq_set_chip_data(irq, data);
 288                 __cpu_unmask_irq(irq);
 289         }
 290         return 0;
 291 }
 292 
 293 int txn_claim_irq(int irq)
 294 {
 295         return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
 296 }
 297 
 298 /*
 299  * The bits_wide parameter accommodates the limitations of the HW/SW which
 300  * use these bits:
 301  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
 302  * V-class (EPIC):          6 bits
 303  * N/L/A-class (iosapic):   8 bits
 304  * PCI 2.2 MSI:            16 bits
 305  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
 306  *
 307  * On the service provider side:
 308  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
 309  * o PA 2.0 wide mode                   6-bits (per processor)
 310  * o IA64                               8-bits (0-256 total)
 311  *
 312  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
 313  * by the processor...and the N/L-class I/O subsystem supports more bits than
 314  * PA2.0 has. The first case is the problem.
 315  */
 316 int txn_alloc_irq(unsigned int bits_wide)
 317 {
 318         int irq;
 319 
 320         /* never return irq 0 cause that's the interval timer */
 321         for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
 322                 if (cpu_claim_irq(irq, NULL, NULL) < 0)
 323                         continue;
 324                 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
 325                         continue;
 326                 return irq;
 327         }
 328 
 329         /* unlikely, but be prepared */
 330         return -1;
 331 }
 332 
 333 
 334 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
 335 {
 336 #ifdef CONFIG_SMP
 337         struct irq_data *d = irq_get_irq_data(irq);
 338         cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu));
 339 #endif
 340 
 341         return per_cpu(cpu_data, cpu).txn_addr;
 342 }
 343 
 344 
 345 unsigned long txn_alloc_addr(unsigned int virt_irq)
 346 {
 347         static int next_cpu = -1;
 348 
 349         next_cpu++; /* assign to "next" CPU we want this bugger on */
 350 
 351         /* validate entry */
 352         while ((next_cpu < nr_cpu_ids) &&
 353                 (!per_cpu(cpu_data, next_cpu).txn_addr ||
 354                  !cpu_online(next_cpu)))
 355                 next_cpu++;
 356 
 357         if (next_cpu >= nr_cpu_ids) 
 358                 next_cpu = 0;   /* nothing else, assign monarch */
 359 
 360         return txn_affinity_addr(virt_irq, next_cpu);
 361 }
 362 
 363 
 364 unsigned int txn_alloc_data(unsigned int virt_irq)
 365 {
 366         return virt_irq - CPU_IRQ_BASE;
 367 }
 368 
 369 static inline int eirr_to_irq(unsigned long eirr)
 370 {
 371         int bit = fls_long(eirr);
 372         return (BITS_PER_LONG - bit) + TIMER_IRQ;
 373 }
 374 
 375 #ifdef CONFIG_IRQSTACKS
 376 /*
 377  * IRQ STACK - used for irq handler
 378  */
 379 #define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
 380 
 381 union irq_stack_union {
 382         unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
 383         volatile unsigned int slock[4];
 384         volatile unsigned int lock[1];
 385 };
 386 
 387 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
 388                 .slock = { 1,1,1,1 },
 389         };
 390 #endif
 391 
 392 
 393 int sysctl_panic_on_stackoverflow = 1;
 394 
 395 static inline void stack_overflow_check(struct pt_regs *regs)
 396 {
 397 #ifdef CONFIG_DEBUG_STACKOVERFLOW
 398         #define STACK_MARGIN    (256*6)
 399 
 400         /* Our stack starts directly behind the thread_info struct. */
 401         unsigned long stack_start = (unsigned long) current_thread_info();
 402         unsigned long sp = regs->gr[30];
 403         unsigned long stack_usage;
 404         unsigned int *last_usage;
 405         int cpu = smp_processor_id();
 406 
 407         /* if sr7 != 0, we interrupted a userspace process which we do not want
 408          * to check for stack overflow. We will only check the kernel stack. */
 409         if (regs->sr[7])
 410                 return;
 411 
 412         /* exit if already in panic */
 413         if (sysctl_panic_on_stackoverflow < 0)
 414                 return;
 415 
 416         /* calculate kernel stack usage */
 417         stack_usage = sp - stack_start;
 418 #ifdef CONFIG_IRQSTACKS
 419         if (likely(stack_usage <= THREAD_SIZE))
 420                 goto check_kernel_stack; /* found kernel stack */
 421 
 422         /* check irq stack usage */
 423         stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
 424         stack_usage = sp - stack_start;
 425 
 426         last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
 427         if (unlikely(stack_usage > *last_usage))
 428                 *last_usage = stack_usage;
 429 
 430         if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
 431                 return;
 432 
 433         pr_emerg("stackcheck: %s will most likely overflow irq stack "
 434                  "(sp:%lx, stk bottom-top:%lx-%lx)\n",
 435                 current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
 436         goto panic_check;
 437 
 438 check_kernel_stack:
 439 #endif
 440 
 441         /* check kernel stack usage */
 442         last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
 443 
 444         if (unlikely(stack_usage > *last_usage))
 445                 *last_usage = stack_usage;
 446 
 447         if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
 448                 return;
 449 
 450         pr_emerg("stackcheck: %s will most likely overflow kernel stack "
 451                  "(sp:%lx, stk bottom-top:%lx-%lx)\n",
 452                 current->comm, sp, stack_start, stack_start + THREAD_SIZE);
 453 
 454 #ifdef CONFIG_IRQSTACKS
 455 panic_check:
 456 #endif
 457         if (sysctl_panic_on_stackoverflow) {
 458                 sysctl_panic_on_stackoverflow = -1; /* disable further checks */
 459                 panic("low stack detected by irq handler - check messages\n");
 460         }
 461 #endif
 462 }
 463 
 464 #ifdef CONFIG_IRQSTACKS
 465 /* in entry.S: */
 466 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
 467 
 468 static void execute_on_irq_stack(void *func, unsigned long param1)
 469 {
 470         union irq_stack_union *union_ptr;
 471         unsigned long irq_stack;
 472         volatile unsigned int *irq_stack_in_use;
 473 
 474         union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
 475         irq_stack = (unsigned long) &union_ptr->stack;
 476         irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
 477                          64); /* align for stack frame usage */
 478 
 479         /* We may be called recursive. If we are already using the irq stack,
 480          * just continue to use it. Use spinlocks to serialize
 481          * the irq stack usage.
 482          */
 483         irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
 484         if (!__ldcw(irq_stack_in_use)) {
 485                 void (*direct_call)(unsigned long p1) = func;
 486 
 487                 /* We are using the IRQ stack already.
 488                  * Do direct call on current stack. */
 489                 direct_call(param1);
 490                 return;
 491         }
 492 
 493         /* This is where we switch to the IRQ stack. */
 494         call_on_stack(param1, func, irq_stack);
 495 
 496         /* free up irq stack usage. */
 497         *irq_stack_in_use = 1;
 498 }
 499 
 500 void do_softirq_own_stack(void)
 501 {
 502         execute_on_irq_stack(__do_softirq, 0);
 503 }
 504 #endif /* CONFIG_IRQSTACKS */
 505 
 506 /* ONLY called from entry.S:intr_extint() */
 507 void do_cpu_irq_mask(struct pt_regs *regs)
 508 {
 509         struct pt_regs *old_regs;
 510         unsigned long eirr_val;
 511         int irq, cpu = smp_processor_id();
 512         struct irq_data *irq_data;
 513 #ifdef CONFIG_SMP
 514         cpumask_t dest;
 515 #endif
 516 
 517         old_regs = set_irq_regs(regs);
 518         local_irq_disable();
 519         irq_enter();
 520 
 521         eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
 522         if (!eirr_val)
 523                 goto set_out;
 524         irq = eirr_to_irq(eirr_val);
 525 
 526         irq_data = irq_get_irq_data(irq);
 527 
 528         /* Filter out spurious interrupts, mostly from serial port at bootup */
 529         if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
 530                 goto set_out;
 531 
 532 #ifdef CONFIG_SMP
 533         cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
 534         if (irqd_is_per_cpu(irq_data) &&
 535             !cpumask_test_cpu(smp_processor_id(), &dest)) {
 536                 int cpu = cpumask_first(&dest);
 537 
 538                 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
 539                        irq, smp_processor_id(), cpu);
 540                 gsc_writel(irq + CPU_IRQ_BASE,
 541                            per_cpu(cpu_data, cpu).hpa);
 542                 goto set_out;
 543         }
 544 #endif
 545         stack_overflow_check(regs);
 546 
 547 #ifdef CONFIG_IRQSTACKS
 548         execute_on_irq_stack(&generic_handle_irq, irq);
 549 #else
 550         generic_handle_irq(irq);
 551 #endif /* CONFIG_IRQSTACKS */
 552 
 553  out:
 554         irq_exit();
 555         set_irq_regs(old_regs);
 556         return;
 557 
 558  set_out:
 559         set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 560         goto out;
 561 }
 562 
 563 static struct irqaction timer_action = {
 564         .handler = timer_interrupt,
 565         .name = "timer",
 566         .flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL,
 567 };
 568 
 569 #ifdef CONFIG_SMP
 570 static struct irqaction ipi_action = {
 571         .handler = ipi_interrupt,
 572         .name = "IPI",
 573         .flags = IRQF_PERCPU,
 574 };
 575 #endif
 576 
 577 static void claim_cpu_irqs(void)
 578 {
 579         int i;
 580         for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
 581                 irq_set_chip_and_handler(i, &cpu_interrupt_type,
 582                                          handle_percpu_irq);
 583         }
 584 
 585         irq_set_handler(TIMER_IRQ, handle_percpu_irq);
 586         setup_irq(TIMER_IRQ, &timer_action);
 587 #ifdef CONFIG_SMP
 588         irq_set_handler(IPI_IRQ, handle_percpu_irq);
 589         setup_irq(IPI_IRQ, &ipi_action);
 590 #endif
 591 }
 592 
 593 void __init init_IRQ(void)
 594 {
 595         local_irq_disable();    /* PARANOID - should already be disabled */
 596         mtctl(~0UL, 23);        /* EIRR : clear all pending external intr */
 597 #ifdef CONFIG_SMP
 598         if (!cpu_eiem) {
 599                 claim_cpu_irqs();
 600                 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
 601         }
 602 #else
 603         claim_cpu_irqs();
 604         cpu_eiem = EIEM_MASK(TIMER_IRQ);
 605 #endif
 606         set_eiem(cpu_eiem);     /* EIEM : enable all external intr */
 607 }

/* [<][>][^][v][top][bottom][index][help] */