root/sound/pci/sis7019.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sis_update_sso
  2. sis_update_voice
  3. sis_voice_irq
  4. sis_interrupt
  5. sis_rate_to_delta
  6. __sis_map_silence
  7. __sis_unmap_silence
  8. sis_free_voice
  9. __sis_alloc_playback_voice
  10. sis_alloc_playback_voice
  11. sis_alloc_timing_voice
  12. sis_playback_open
  13. sis_substream_close
  14. sis_playback_hw_params
  15. sis_hw_free
  16. sis_pcm_playback_prepare
  17. sis_pcm_trigger
  18. sis_pcm_pointer
  19. sis_capture_open
  20. sis_capture_hw_params
  21. sis_prepare_timing_voice
  22. sis_pcm_capture_prepare
  23. sis_pcm_create
  24. sis_ac97_rw
  25. sis_ac97_write
  26. sis_ac97_read
  27. sis_mixer_create
  28. sis_free_suspend
  29. sis_chip_free
  30. sis_dev_free
  31. sis_chip_init
  32. sis_suspend
  33. sis_resume
  34. sis_alloc_suspend
  35. sis_chip_create
  36. snd_sis7019_probe
  37. snd_sis7019_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  Driver for SiS7019 Audio Accelerator
   4  *
   5  *  Copyright (C) 2004-2007, David Dillow
   6  *  Written by David Dillow <dave@thedillows.org>
   7  *  Inspired by the Trident 4D-WaveDX/NX driver.
   8  *
   9  *  All rights reserved.
  10  */
  11 
  12 #include <linux/init.h>
  13 #include <linux/pci.h>
  14 #include <linux/time.h>
  15 #include <linux/slab.h>
  16 #include <linux/module.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/delay.h>
  19 #include <sound/core.h>
  20 #include <sound/ac97_codec.h>
  21 #include <sound/initval.h>
  22 #include "sis7019.h"
  23 
  24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
  25 MODULE_DESCRIPTION("SiS7019");
  26 MODULE_LICENSE("GPL");
  27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
  28 
  29 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
  30 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
  31 static bool enable = 1;
  32 static int codecs = 1;
  33 
  34 module_param(index, int, 0444);
  35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
  36 module_param(id, charp, 0444);
  37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
  38 module_param(enable, bool, 0444);
  39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
  40 module_param(codecs, int, 0444);
  41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
  42 
  43 static const struct pci_device_id snd_sis7019_ids[] = {
  44         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
  45         { 0, }
  46 };
  47 
  48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
  49 
  50 /* There are three timing modes for the voices.
  51  *
  52  * For both playback and capture, when the buffer is one or two periods long,
  53  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
  54  * to let us know when the periods have ended.
  55  *
  56  * When performing playback with more than two periods per buffer, we set
  57  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
  58  * reach it. We then update the offset and continue on until we are
  59  * interrupted for the next period.
  60  *
  61  * Capture channels do not have a SSO, so we allocate a playback channel to
  62  * use as a timer for the capture periods. We use the SSO on the playback
  63  * channel to clock out virtual periods, and adjust the virtual period length
  64  * to maintain synchronization. This algorithm came from the Trident driver.
  65  *
  66  * FIXME: It'd be nice to make use of some of the synth features in the
  67  * hardware, but a woeful lack of documentation is a significant roadblock.
  68  */
  69 struct voice {
  70         u16 flags;
  71 #define         VOICE_IN_USE            1
  72 #define         VOICE_CAPTURE           2
  73 #define         VOICE_SSO_TIMING        4
  74 #define         VOICE_SYNC_TIMING       8
  75         u16 sync_cso;
  76         u16 period_size;
  77         u16 buffer_size;
  78         u16 sync_period_size;
  79         u16 sync_buffer_size;
  80         u32 sso;
  81         u32 vperiod;
  82         struct snd_pcm_substream *substream;
  83         struct voice *timing;
  84         void __iomem *ctrl_base;
  85         void __iomem *wave_base;
  86         void __iomem *sync_base;
  87         int num;
  88 };
  89 
  90 /* We need four pages to store our wave parameters during a suspend. If
  91  * we're not doing power management, we still need to allocate a page
  92  * for the silence buffer.
  93  */
  94 #ifdef CONFIG_PM_SLEEP
  95 #define SIS_SUSPEND_PAGES       4
  96 #else
  97 #define SIS_SUSPEND_PAGES       1
  98 #endif
  99 
 100 struct sis7019 {
 101         unsigned long ioport;
 102         void __iomem *ioaddr;
 103         int irq;
 104         int codecs_present;
 105 
 106         struct pci_dev *pci;
 107         struct snd_pcm *pcm;
 108         struct snd_card *card;
 109         struct snd_ac97 *ac97[3];
 110 
 111         /* Protect against more than one thread hitting the AC97
 112          * registers (in a more polite manner than pounding the hardware
 113          * semaphore)
 114          */
 115         struct mutex ac97_mutex;
 116 
 117         /* voice_lock protects allocation/freeing of the voice descriptions
 118          */
 119         spinlock_t voice_lock;
 120 
 121         struct voice voices[64];
 122         struct voice capture_voice;
 123 
 124         /* Allocate pages to store the internal wave state during
 125          * suspends. When we're operating, this can be used as a silence
 126          * buffer for a timing channel.
 127          */
 128         void *suspend_state[SIS_SUSPEND_PAGES];
 129 
 130         int silence_users;
 131         dma_addr_t silence_dma_addr;
 132 };
 133 
 134 /* These values are also used by the module param 'codecs' to indicate
 135  * which codecs should be present.
 136  */
 137 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
 138 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
 139 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
 140 
 141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 142  * documented range of 8-0xfff8 samples. Given that they are 0-based,
 143  * that places our period/buffer range at 9-0xfff9 samples. That makes the
 144  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 145  * max samples / min samples gives us the max periods in a buffer.
 146  *
 147  * We'll add a constraint upon open that limits the period and buffer sample
 148  * size to values that are legal for the hardware.
 149  */
 150 static const struct snd_pcm_hardware sis_playback_hw_info = {
 151         .info = (SNDRV_PCM_INFO_MMAP |
 152                  SNDRV_PCM_INFO_MMAP_VALID |
 153                  SNDRV_PCM_INFO_INTERLEAVED |
 154                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
 155                  SNDRV_PCM_INFO_SYNC_START |
 156                  SNDRV_PCM_INFO_RESUME),
 157         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 158                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 159         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 160         .rate_min = 4000,
 161         .rate_max = 48000,
 162         .channels_min = 1,
 163         .channels_max = 2,
 164         .buffer_bytes_max = (0xfff9 * 4),
 165         .period_bytes_min = 9,
 166         .period_bytes_max = (0xfff9 * 4),
 167         .periods_min = 1,
 168         .periods_max = (0xfff9 / 9),
 169 };
 170 
 171 static const struct snd_pcm_hardware sis_capture_hw_info = {
 172         .info = (SNDRV_PCM_INFO_MMAP |
 173                  SNDRV_PCM_INFO_MMAP_VALID |
 174                  SNDRV_PCM_INFO_INTERLEAVED |
 175                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
 176                  SNDRV_PCM_INFO_SYNC_START |
 177                  SNDRV_PCM_INFO_RESUME),
 178         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 179                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 180         .rates = SNDRV_PCM_RATE_48000,
 181         .rate_min = 4000,
 182         .rate_max = 48000,
 183         .channels_min = 1,
 184         .channels_max = 2,
 185         .buffer_bytes_max = (0xfff9 * 4),
 186         .period_bytes_min = 9,
 187         .period_bytes_max = (0xfff9 * 4),
 188         .periods_min = 1,
 189         .periods_max = (0xfff9 / 9),
 190 };
 191 
 192 static void sis_update_sso(struct voice *voice, u16 period)
 193 {
 194         void __iomem *base = voice->ctrl_base;
 195 
 196         voice->sso += period;
 197         if (voice->sso >= voice->buffer_size)
 198                 voice->sso -= voice->buffer_size;
 199 
 200         /* Enforce the documented hardware minimum offset */
 201         if (voice->sso < 8)
 202                 voice->sso = 8;
 203 
 204         /* The SSO is in the upper 16 bits of the register. */
 205         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 206 }
 207 
 208 static void sis_update_voice(struct voice *voice)
 209 {
 210         if (voice->flags & VOICE_SSO_TIMING) {
 211                 sis_update_sso(voice, voice->period_size);
 212         } else if (voice->flags & VOICE_SYNC_TIMING) {
 213                 int sync;
 214 
 215                 /* If we've not hit the end of the virtual period, update
 216                  * our records and keep going.
 217                  */
 218                 if (voice->vperiod > voice->period_size) {
 219                         voice->vperiod -= voice->period_size;
 220                         if (voice->vperiod < voice->period_size)
 221                                 sis_update_sso(voice, voice->vperiod);
 222                         else
 223                                 sis_update_sso(voice, voice->period_size);
 224                         return;
 225                 }
 226 
 227                 /* Calculate our relative offset between the target and
 228                  * the actual CSO value. Since we're operating in a loop,
 229                  * if the value is more than half way around, we can
 230                  * consider ourselves wrapped.
 231                  */
 232                 sync = voice->sync_cso;
 233                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 234                 if (sync > (voice->sync_buffer_size / 2))
 235                         sync -= voice->sync_buffer_size;
 236 
 237                 /* If sync is positive, then we interrupted too early, and
 238                  * we'll need to come back in a few samples and try again.
 239                  * There's a minimum wait, as it takes some time for the DMA
 240                  * engine to startup, etc...
 241                  */
 242                 if (sync > 0) {
 243                         if (sync < 16)
 244                                 sync = 16;
 245                         sis_update_sso(voice, sync);
 246                         return;
 247                 }
 248 
 249                 /* Ok, we interrupted right on time, or (hopefully) just
 250                  * a bit late. We'll adjst our next waiting period based
 251                  * on how close we got.
 252                  *
 253                  * We need to stay just behind the actual channel to ensure
 254                  * it really is past a period when we get our interrupt --
 255                  * otherwise we'll fall into the early code above and have
 256                  * a minimum wait time, which makes us quite late here,
 257                  * eating into the user's time to refresh the buffer, esp.
 258                  * if using small periods.
 259                  *
 260                  * If we're less than 9 samples behind, we're on target.
 261                  * Otherwise, shorten the next vperiod by the amount we've
 262                  * been delayed.
 263                  */
 264                 if (sync > -9)
 265                         voice->vperiod = voice->sync_period_size + 1;
 266                 else
 267                         voice->vperiod = voice->sync_period_size + sync + 10;
 268 
 269                 if (voice->vperiod < voice->buffer_size) {
 270                         sis_update_sso(voice, voice->vperiod);
 271                         voice->vperiod = 0;
 272                 } else
 273                         sis_update_sso(voice, voice->period_size);
 274 
 275                 sync = voice->sync_cso + voice->sync_period_size;
 276                 if (sync >= voice->sync_buffer_size)
 277                         sync -= voice->sync_buffer_size;
 278                 voice->sync_cso = sync;
 279         }
 280 
 281         snd_pcm_period_elapsed(voice->substream);
 282 }
 283 
 284 static void sis_voice_irq(u32 status, struct voice *voice)
 285 {
 286         int bit;
 287 
 288         while (status) {
 289                 bit = __ffs(status);
 290                 status >>= bit + 1;
 291                 voice += bit;
 292                 sis_update_voice(voice);
 293                 voice++;
 294         }
 295 }
 296 
 297 static irqreturn_t sis_interrupt(int irq, void *dev)
 298 {
 299         struct sis7019 *sis = dev;
 300         unsigned long io = sis->ioport;
 301         struct voice *voice;
 302         u32 intr, status;
 303 
 304         /* We only use the DMA interrupts, and we don't enable any other
 305          * source of interrupts. But, it is possible to see an interrupt
 306          * status that didn't actually interrupt us, so eliminate anything
 307          * we're not expecting to avoid falsely claiming an IRQ, and an
 308          * ensuing endless loop.
 309          */
 310         intr = inl(io + SIS_GISR);
 311         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 312                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 313         if (!intr)
 314                 return IRQ_NONE;
 315 
 316         do {
 317                 status = inl(io + SIS_PISR_A);
 318                 if (status) {
 319                         sis_voice_irq(status, sis->voices);
 320                         outl(status, io + SIS_PISR_A);
 321                 }
 322 
 323                 status = inl(io + SIS_PISR_B);
 324                 if (status) {
 325                         sis_voice_irq(status, &sis->voices[32]);
 326                         outl(status, io + SIS_PISR_B);
 327                 }
 328 
 329                 status = inl(io + SIS_RISR);
 330                 if (status) {
 331                         voice = &sis->capture_voice;
 332                         if (!voice->timing)
 333                                 snd_pcm_period_elapsed(voice->substream);
 334 
 335                         outl(status, io + SIS_RISR);
 336                 }
 337 
 338                 outl(intr, io + SIS_GISR);
 339                 intr = inl(io + SIS_GISR);
 340                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 341                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 342         } while (intr);
 343 
 344         return IRQ_HANDLED;
 345 }
 346 
 347 static u32 sis_rate_to_delta(unsigned int rate)
 348 {
 349         u32 delta;
 350 
 351         /* This was copied from the trident driver, but it seems its gotten
 352          * around a bit... nevertheless, it works well.
 353          *
 354          * We special case 44100 and 8000 since rounding with the equation
 355          * does not give us an accurate enough value. For 11025 and 22050
 356          * the equation gives us the best answer. All other frequencies will
 357          * also use the equation. JDW
 358          */
 359         if (rate == 44100)
 360                 delta = 0xeb3;
 361         else if (rate == 8000)
 362                 delta = 0x2ab;
 363         else if (rate == 48000)
 364                 delta = 0x1000;
 365         else
 366                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
 367         return delta;
 368 }
 369 
 370 static void __sis_map_silence(struct sis7019 *sis)
 371 {
 372         /* Helper function: must hold sis->voice_lock on entry */
 373         if (!sis->silence_users)
 374                 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
 375                                                 sis->suspend_state[0],
 376                                                 4096, DMA_TO_DEVICE);
 377         sis->silence_users++;
 378 }
 379 
 380 static void __sis_unmap_silence(struct sis7019 *sis)
 381 {
 382         /* Helper function: must hold sis->voice_lock on entry */
 383         sis->silence_users--;
 384         if (!sis->silence_users)
 385                 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
 386                                         DMA_TO_DEVICE);
 387 }
 388 
 389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 390 {
 391         unsigned long flags;
 392 
 393         spin_lock_irqsave(&sis->voice_lock, flags);
 394         if (voice->timing) {
 395                 __sis_unmap_silence(sis);
 396                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 397                                                 VOICE_SYNC_TIMING);
 398                 voice->timing = NULL;
 399         }
 400         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 401         spin_unlock_irqrestore(&sis->voice_lock, flags);
 402 }
 403 
 404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 405 {
 406         /* Must hold the voice_lock on entry */
 407         struct voice *voice;
 408         int i;
 409 
 410         for (i = 0; i < 64; i++) {
 411                 voice = &sis->voices[i];
 412                 if (voice->flags & VOICE_IN_USE)
 413                         continue;
 414                 voice->flags |= VOICE_IN_USE;
 415                 goto found_one;
 416         }
 417         voice = NULL;
 418 
 419 found_one:
 420         return voice;
 421 }
 422 
 423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 424 {
 425         struct voice *voice;
 426         unsigned long flags;
 427 
 428         spin_lock_irqsave(&sis->voice_lock, flags);
 429         voice = __sis_alloc_playback_voice(sis);
 430         spin_unlock_irqrestore(&sis->voice_lock, flags);
 431 
 432         return voice;
 433 }
 434 
 435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 436                                         struct snd_pcm_hw_params *hw_params)
 437 {
 438         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 439         struct snd_pcm_runtime *runtime = substream->runtime;
 440         struct voice *voice = runtime->private_data;
 441         unsigned int period_size, buffer_size;
 442         unsigned long flags;
 443         int needed;
 444 
 445         /* If there are one or two periods per buffer, we don't need a
 446          * timing voice, as we can use the capture channel's interrupts
 447          * to clock out the periods.
 448          */
 449         period_size = params_period_size(hw_params);
 450         buffer_size = params_buffer_size(hw_params);
 451         needed = (period_size != buffer_size &&
 452                         period_size != (buffer_size / 2));
 453 
 454         if (needed && !voice->timing) {
 455                 spin_lock_irqsave(&sis->voice_lock, flags);
 456                 voice->timing = __sis_alloc_playback_voice(sis);
 457                 if (voice->timing)
 458                         __sis_map_silence(sis);
 459                 spin_unlock_irqrestore(&sis->voice_lock, flags);
 460                 if (!voice->timing)
 461                         return -ENOMEM;
 462                 voice->timing->substream = substream;
 463         } else if (!needed && voice->timing) {
 464                 sis_free_voice(sis, voice);
 465                 voice->timing = NULL;
 466         }
 467 
 468         return 0;
 469 }
 470 
 471 static int sis_playback_open(struct snd_pcm_substream *substream)
 472 {
 473         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 474         struct snd_pcm_runtime *runtime = substream->runtime;
 475         struct voice *voice;
 476 
 477         voice = sis_alloc_playback_voice(sis);
 478         if (!voice)
 479                 return -EAGAIN;
 480 
 481         voice->substream = substream;
 482         runtime->private_data = voice;
 483         runtime->hw = sis_playback_hw_info;
 484         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 485                                                 9, 0xfff9);
 486         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 487                                                 9, 0xfff9);
 488         snd_pcm_set_sync(substream);
 489         return 0;
 490 }
 491 
 492 static int sis_substream_close(struct snd_pcm_substream *substream)
 493 {
 494         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 495         struct snd_pcm_runtime *runtime = substream->runtime;
 496         struct voice *voice = runtime->private_data;
 497 
 498         sis_free_voice(sis, voice);
 499         return 0;
 500 }
 501 
 502 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
 503                                         struct snd_pcm_hw_params *hw_params)
 504 {
 505         return snd_pcm_lib_malloc_pages(substream,
 506                                         params_buffer_bytes(hw_params));
 507 }
 508 
 509 static int sis_hw_free(struct snd_pcm_substream *substream)
 510 {
 511         return snd_pcm_lib_free_pages(substream);
 512 }
 513 
 514 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 515 {
 516         struct snd_pcm_runtime *runtime = substream->runtime;
 517         struct voice *voice = runtime->private_data;
 518         void __iomem *ctrl_base = voice->ctrl_base;
 519         void __iomem *wave_base = voice->wave_base;
 520         u32 format, dma_addr, control, sso_eso, delta, reg;
 521         u16 leo;
 522 
 523         /* We rely on the PCM core to ensure that the parameters for this
 524          * substream do not change on us while we're programming the HW.
 525          */
 526         format = 0;
 527         if (snd_pcm_format_width(runtime->format) == 8)
 528                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
 529         if (!snd_pcm_format_signed(runtime->format))
 530                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 531         if (runtime->channels == 1)
 532                 format |= SIS_PLAY_DMA_FORMAT_MONO;
 533 
 534         /* The baseline setup is for a single period per buffer, and
 535          * we add bells and whistles as needed from there.
 536          */
 537         dma_addr = runtime->dma_addr;
 538         leo = runtime->buffer_size - 1;
 539         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 540         sso_eso = leo;
 541 
 542         if (runtime->period_size == (runtime->buffer_size / 2)) {
 543                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
 544         } else if (runtime->period_size != runtime->buffer_size) {
 545                 voice->flags |= VOICE_SSO_TIMING;
 546                 voice->sso = runtime->period_size - 1;
 547                 voice->period_size = runtime->period_size;
 548                 voice->buffer_size = runtime->buffer_size;
 549 
 550                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 551                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
 552                 sso_eso |= (runtime->period_size - 1) << 16;
 553         }
 554 
 555         delta = sis_rate_to_delta(runtime->rate);
 556 
 557         /* Ok, we're ready to go, set up the channel.
 558          */
 559         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 560         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 561         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 562         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 563 
 564         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 565                 writel(0, wave_base + reg);
 566 
 567         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 568         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 569         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 570                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 571                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 572                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
 573 
 574         /* Force PCI writes to post. */
 575         readl(ctrl_base);
 576 
 577         return 0;
 578 }
 579 
 580 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 581 {
 582         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 583         unsigned long io = sis->ioport;
 584         struct snd_pcm_substream *s;
 585         struct voice *voice;
 586         void *chip;
 587         int starting;
 588         u32 record = 0;
 589         u32 play[2] = { 0, 0 };
 590 
 591         /* No locks needed, as the PCM core will hold the locks on the
 592          * substreams, and the HW will only start/stop the indicated voices
 593          * without changing the state of the others.
 594          */
 595         switch (cmd) {
 596         case SNDRV_PCM_TRIGGER_START:
 597         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 598         case SNDRV_PCM_TRIGGER_RESUME:
 599                 starting = 1;
 600                 break;
 601         case SNDRV_PCM_TRIGGER_STOP:
 602         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 603         case SNDRV_PCM_TRIGGER_SUSPEND:
 604                 starting = 0;
 605                 break;
 606         default:
 607                 return -EINVAL;
 608         }
 609 
 610         snd_pcm_group_for_each_entry(s, substream) {
 611                 /* Make sure it is for us... */
 612                 chip = snd_pcm_substream_chip(s);
 613                 if (chip != sis)
 614                         continue;
 615 
 616                 voice = s->runtime->private_data;
 617                 if (voice->flags & VOICE_CAPTURE) {
 618                         record |= 1 << voice->num;
 619                         voice = voice->timing;
 620                 }
 621 
 622                 /* voice could be NULL if this a recording stream, and it
 623                  * doesn't have an external timing channel.
 624                  */
 625                 if (voice)
 626                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 627 
 628                 snd_pcm_trigger_done(s, substream);
 629         }
 630 
 631         if (starting) {
 632                 if (record)
 633                         outl(record, io + SIS_RECORD_START_REG);
 634                 if (play[0])
 635                         outl(play[0], io + SIS_PLAY_START_A_REG);
 636                 if (play[1])
 637                         outl(play[1], io + SIS_PLAY_START_B_REG);
 638         } else {
 639                 if (record)
 640                         outl(record, io + SIS_RECORD_STOP_REG);
 641                 if (play[0])
 642                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
 643                 if (play[1])
 644                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
 645         }
 646         return 0;
 647 }
 648 
 649 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 650 {
 651         struct snd_pcm_runtime *runtime = substream->runtime;
 652         struct voice *voice = runtime->private_data;
 653         u32 cso;
 654 
 655         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 656         cso &= 0xffff;
 657         return cso;
 658 }
 659 
 660 static int sis_capture_open(struct snd_pcm_substream *substream)
 661 {
 662         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 663         struct snd_pcm_runtime *runtime = substream->runtime;
 664         struct voice *voice = &sis->capture_voice;
 665         unsigned long flags;
 666 
 667         /* FIXME: The driver only supports recording from one channel
 668          * at the moment, but it could support more.
 669          */
 670         spin_lock_irqsave(&sis->voice_lock, flags);
 671         if (voice->flags & VOICE_IN_USE)
 672                 voice = NULL;
 673         else
 674                 voice->flags |= VOICE_IN_USE;
 675         spin_unlock_irqrestore(&sis->voice_lock, flags);
 676 
 677         if (!voice)
 678                 return -EAGAIN;
 679 
 680         voice->substream = substream;
 681         runtime->private_data = voice;
 682         runtime->hw = sis_capture_hw_info;
 683         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 684         snd_pcm_limit_hw_rates(runtime);
 685         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 686                                                 9, 0xfff9);
 687         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 688                                                 9, 0xfff9);
 689         snd_pcm_set_sync(substream);
 690         return 0;
 691 }
 692 
 693 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 694                                         struct snd_pcm_hw_params *hw_params)
 695 {
 696         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 697         int rc;
 698 
 699         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 700                                                 params_rate(hw_params));
 701         if (rc)
 702                 goto out;
 703 
 704         rc = snd_pcm_lib_malloc_pages(substream,
 705                                         params_buffer_bytes(hw_params));
 706         if (rc < 0)
 707                 goto out;
 708 
 709         rc = sis_alloc_timing_voice(substream, hw_params);
 710 
 711 out:
 712         return rc;
 713 }
 714 
 715 static void sis_prepare_timing_voice(struct voice *voice,
 716                                         struct snd_pcm_substream *substream)
 717 {
 718         struct sis7019 *sis = snd_pcm_substream_chip(substream);
 719         struct snd_pcm_runtime *runtime = substream->runtime;
 720         struct voice *timing = voice->timing;
 721         void __iomem *play_base = timing->ctrl_base;
 722         void __iomem *wave_base = timing->wave_base;
 723         u16 buffer_size, period_size;
 724         u32 format, control, sso_eso, delta;
 725         u32 vperiod, sso, reg;
 726 
 727         /* Set our initial buffer and period as large as we can given a
 728          * single page of silence.
 729          */
 730         buffer_size = 4096 / runtime->channels;
 731         buffer_size /= snd_pcm_format_size(runtime->format, 1);
 732         period_size = buffer_size;
 733 
 734         /* Initially, we want to interrupt just a bit behind the end of
 735          * the period we're clocking out. 12 samples seems to give a good
 736          * delay.
 737          *
 738          * We want to spread our interrupts throughout the virtual period,
 739          * so that we don't end up with two interrupts back to back at the
 740          * end -- this helps minimize the effects of any jitter. Adjust our
 741          * clocking period size so that the last period is at least a fourth
 742          * of a full period.
 743          *
 744          * This is all moot if we don't need to use virtual periods.
 745          */
 746         vperiod = runtime->period_size + 12;
 747         if (vperiod > period_size) {
 748                 u16 tail = vperiod % period_size;
 749                 u16 quarter_period = period_size / 4;
 750 
 751                 if (tail && tail < quarter_period) {
 752                         u16 loops = vperiod / period_size;
 753 
 754                         tail = quarter_period - tail;
 755                         tail += loops - 1;
 756                         tail /= loops;
 757                         period_size -= tail;
 758                 }
 759 
 760                 sso = period_size - 1;
 761         } else {
 762                 /* The initial period will fit inside the buffer, so we
 763                  * don't need to use virtual periods -- disable them.
 764                  */
 765                 period_size = runtime->period_size;
 766                 sso = vperiod - 1;
 767                 vperiod = 0;
 768         }
 769 
 770         /* The interrupt handler implements the timing synchronization, so
 771          * setup its state.
 772          */
 773         timing->flags |= VOICE_SYNC_TIMING;
 774         timing->sync_base = voice->ctrl_base;
 775         timing->sync_cso = runtime->period_size;
 776         timing->sync_period_size = runtime->period_size;
 777         timing->sync_buffer_size = runtime->buffer_size;
 778         timing->period_size = period_size;
 779         timing->buffer_size = buffer_size;
 780         timing->sso = sso;
 781         timing->vperiod = vperiod;
 782 
 783         /* Using unsigned samples with the all-zero silence buffer
 784          * forces the output to the lower rail, killing playback.
 785          * So ignore unsigned vs signed -- it doesn't change the timing.
 786          */
 787         format = 0;
 788         if (snd_pcm_format_width(runtime->format) == 8)
 789                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 790         if (runtime->channels == 1)
 791                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 792 
 793         control = timing->buffer_size - 1;
 794         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 795         sso_eso = timing->buffer_size - 1;
 796         sso_eso |= timing->sso << 16;
 797 
 798         delta = sis_rate_to_delta(runtime->rate);
 799 
 800         /* We've done the math, now configure the channel.
 801          */
 802         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 803         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 804         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 805         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 806 
 807         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 808                 writel(0, wave_base + reg);
 809 
 810         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 811         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 812         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 813                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 814                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 815                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
 816 }
 817 
 818 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 819 {
 820         struct snd_pcm_runtime *runtime = substream->runtime;
 821         struct voice *voice = runtime->private_data;
 822         void __iomem *rec_base = voice->ctrl_base;
 823         u32 format, dma_addr, control;
 824         u16 leo;
 825 
 826         /* We rely on the PCM core to ensure that the parameters for this
 827          * substream do not change on us while we're programming the HW.
 828          */
 829         format = 0;
 830         if (snd_pcm_format_width(runtime->format) == 8)
 831                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 832         if (!snd_pcm_format_signed(runtime->format))
 833                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 834         if (runtime->channels == 1)
 835                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 836 
 837         dma_addr = runtime->dma_addr;
 838         leo = runtime->buffer_size - 1;
 839         control = leo | SIS_CAPTURE_DMA_LOOP;
 840 
 841         /* If we've got more than two periods per buffer, then we have
 842          * use a timing voice to clock out the periods. Otherwise, we can
 843          * use the capture channel's interrupts.
 844          */
 845         if (voice->timing) {
 846                 sis_prepare_timing_voice(voice, substream);
 847         } else {
 848                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 849                 if (runtime->period_size != runtime->buffer_size)
 850                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 851         }
 852 
 853         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 854         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 855         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 856 
 857         /* Force the writes to post. */
 858         readl(rec_base);
 859 
 860         return 0;
 861 }
 862 
 863 static const struct snd_pcm_ops sis_playback_ops = {
 864         .open = sis_playback_open,
 865         .close = sis_substream_close,
 866         .ioctl = snd_pcm_lib_ioctl,
 867         .hw_params = sis_playback_hw_params,
 868         .hw_free = sis_hw_free,
 869         .prepare = sis_pcm_playback_prepare,
 870         .trigger = sis_pcm_trigger,
 871         .pointer = sis_pcm_pointer,
 872 };
 873 
 874 static const struct snd_pcm_ops sis_capture_ops = {
 875         .open = sis_capture_open,
 876         .close = sis_substream_close,
 877         .ioctl = snd_pcm_lib_ioctl,
 878         .hw_params = sis_capture_hw_params,
 879         .hw_free = sis_hw_free,
 880         .prepare = sis_pcm_capture_prepare,
 881         .trigger = sis_pcm_trigger,
 882         .pointer = sis_pcm_pointer,
 883 };
 884 
 885 static int sis_pcm_create(struct sis7019 *sis)
 886 {
 887         struct snd_pcm *pcm;
 888         int rc;
 889 
 890         /* We have 64 voices, and the driver currently records from
 891          * only one channel, though that could change in the future.
 892          */
 893         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 894         if (rc)
 895                 return rc;
 896 
 897         pcm->private_data = sis;
 898         strcpy(pcm->name, "SiS7019");
 899         sis->pcm = pcm;
 900 
 901         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 902         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 903 
 904         /* Try to preallocate some memory, but it's not the end of the
 905          * world if this fails.
 906          */
 907         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
 908                                 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
 909 
 910         return 0;
 911 }
 912 
 913 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 914 {
 915         unsigned long io = sis->ioport;
 916         unsigned short val = 0xffff;
 917         u16 status;
 918         u16 rdy;
 919         int count;
 920         static const u16 codec_ready[3] = {
 921                 SIS_AC97_STATUS_CODEC_READY,
 922                 SIS_AC97_STATUS_CODEC2_READY,
 923                 SIS_AC97_STATUS_CODEC3_READY,
 924         };
 925 
 926         rdy = codec_ready[codec];
 927 
 928 
 929         /* Get the AC97 semaphore -- software first, so we don't spin
 930          * pounding out IO reads on the hardware semaphore...
 931          */
 932         mutex_lock(&sis->ac97_mutex);
 933 
 934         count = 0xffff;
 935         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 936                 udelay(1);
 937 
 938         if (!count)
 939                 goto timeout;
 940 
 941         /* ... and wait for any outstanding commands to complete ...
 942          */
 943         count = 0xffff;
 944         do {
 945                 status = inw(io + SIS_AC97_STATUS);
 946                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 947                         break;
 948 
 949                 udelay(1);
 950         } while (--count);
 951 
 952         if (!count)
 953                 goto timeout_sema;
 954 
 955         /* ... before sending our command and waiting for it to finish ...
 956          */
 957         outl(cmd, io + SIS_AC97_CMD);
 958         udelay(10);
 959 
 960         count = 0xffff;
 961         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 962                 udelay(1);
 963 
 964         /* ... and reading the results (if any).
 965          */
 966         val = inl(io + SIS_AC97_CMD) >> 16;
 967 
 968 timeout_sema:
 969         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 970 timeout:
 971         mutex_unlock(&sis->ac97_mutex);
 972 
 973         if (!count) {
 974                 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
 975                                         codec, cmd);
 976         }
 977 
 978         return val;
 979 }
 980 
 981 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 982                                 unsigned short val)
 983 {
 984         static const u32 cmd[3] = {
 985                 SIS_AC97_CMD_CODEC_WRITE,
 986                 SIS_AC97_CMD_CODEC2_WRITE,
 987                 SIS_AC97_CMD_CODEC3_WRITE,
 988         };
 989         sis_ac97_rw(ac97->private_data, ac97->num,
 990                         (val << 16) | (reg << 8) | cmd[ac97->num]);
 991 }
 992 
 993 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
 994 {
 995         static const u32 cmd[3] = {
 996                 SIS_AC97_CMD_CODEC_READ,
 997                 SIS_AC97_CMD_CODEC2_READ,
 998                 SIS_AC97_CMD_CODEC3_READ,
 999         };
1000         return sis_ac97_rw(ac97->private_data, ac97->num,
1001                                         (reg << 8) | cmd[ac97->num]);
1002 }
1003 
1004 static int sis_mixer_create(struct sis7019 *sis)
1005 {
1006         struct snd_ac97_bus *bus;
1007         struct snd_ac97_template ac97;
1008         static struct snd_ac97_bus_ops ops = {
1009                 .write = sis_ac97_write,
1010                 .read = sis_ac97_read,
1011         };
1012         int rc;
1013 
1014         memset(&ac97, 0, sizeof(ac97));
1015         ac97.private_data = sis;
1016 
1017         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1018         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1019                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1020         ac97.num = 1;
1021         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1022                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1023         ac97.num = 2;
1024         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1025                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1026 
1027         /* If we return an error here, then snd_card_free() should
1028          * free up any ac97 codecs that got created, as well as the bus.
1029          */
1030         return rc;
1031 }
1032 
1033 static void sis_free_suspend(struct sis7019 *sis)
1034 {
1035         int i;
1036 
1037         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1038                 kfree(sis->suspend_state[i]);
1039 }
1040 
1041 static int sis_chip_free(struct sis7019 *sis)
1042 {
1043         /* Reset the chip, and disable all interrputs.
1044          */
1045         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1046         udelay(25);
1047         outl(0, sis->ioport + SIS_GCR);
1048         outl(0, sis->ioport + SIS_GIER);
1049 
1050         /* Now, free everything we allocated.
1051          */
1052         if (sis->irq >= 0)
1053                 free_irq(sis->irq, sis);
1054 
1055         iounmap(sis->ioaddr);
1056         pci_release_regions(sis->pci);
1057         pci_disable_device(sis->pci);
1058         sis_free_suspend(sis);
1059         return 0;
1060 }
1061 
1062 static int sis_dev_free(struct snd_device *dev)
1063 {
1064         struct sis7019 *sis = dev->device_data;
1065         return sis_chip_free(sis);
1066 }
1067 
1068 static int sis_chip_init(struct sis7019 *sis)
1069 {
1070         unsigned long io = sis->ioport;
1071         void __iomem *ioaddr = sis->ioaddr;
1072         unsigned long timeout;
1073         u16 status;
1074         int count;
1075         int i;
1076 
1077         /* Reset the audio controller
1078          */
1079         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1080         udelay(25);
1081         outl(0, io + SIS_GCR);
1082 
1083         /* Get the AC-link semaphore, and reset the codecs
1084          */
1085         count = 0xffff;
1086         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1087                 udelay(1);
1088 
1089         if (!count)
1090                 return -EIO;
1091 
1092         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1093         udelay(250);
1094 
1095         count = 0xffff;
1096         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1097                 udelay(1);
1098 
1099         /* Command complete, we can let go of the semaphore now.
1100          */
1101         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1102         if (!count)
1103                 return -EIO;
1104 
1105         /* Now that we've finished the reset, find out what's attached.
1106          * There are some codec/board combinations that take an extremely
1107          * long time to come up. 350+ ms has been observed in the field,
1108          * so we'll give them up to 500ms.
1109          */
1110         sis->codecs_present = 0;
1111         timeout = msecs_to_jiffies(500) + jiffies;
1112         while (time_before_eq(jiffies, timeout)) {
1113                 status = inl(io + SIS_AC97_STATUS);
1114                 if (status & SIS_AC97_STATUS_CODEC_READY)
1115                         sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1116                 if (status & SIS_AC97_STATUS_CODEC2_READY)
1117                         sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1118                 if (status & SIS_AC97_STATUS_CODEC3_READY)
1119                         sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1120 
1121                 if (sis->codecs_present == codecs)
1122                         break;
1123 
1124                 msleep(1);
1125         }
1126 
1127         /* All done, check for errors.
1128          */
1129         if (!sis->codecs_present) {
1130                 dev_err(&sis->pci->dev, "could not find any codecs\n");
1131                 return -EIO;
1132         }
1133 
1134         if (sis->codecs_present != codecs) {
1135                 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1136                                          sis->codecs_present, codecs);
1137         }
1138 
1139         /* Let the hardware know that the audio driver is alive,
1140          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1141          * record channels. We're going to want to use Variable Rate Audio
1142          * for recording, to avoid needlessly resampling from 48kHZ.
1143          */
1144         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1145         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1146                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1147                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1148                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1149 
1150         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1151          */
1152         outl(0, io + SIS_AC97_PSR);
1153 
1154         /* There is only one valid DMA setup for a PCI environment.
1155          */
1156         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1157 
1158         /* Reset the synchronization groups for all of the channels
1159          * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1160          * we'll need to change how we handle these. Until then, we just
1161          * assign sub-mixer 0 to all playback channels, and avoid any
1162          * attenuation on the audio.
1163          */
1164         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1165         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1166         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1167         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1168         outl(0, io + SIS_MIXER_SYNC_GROUP);
1169 
1170         for (i = 0; i < 64; i++) {
1171                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1172                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1173                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1174         }
1175 
1176         /* Don't attenuate any audio set for the wave amplifier.
1177          *
1178          * FIXME: Maximum attenuation is set for the music amp, which will
1179          * need to change if we start using the synth engine.
1180          */
1181         outl(0xffff0000, io + SIS_WEVCR);
1182 
1183         /* Ensure that the wave engine is in normal operating mode.
1184          */
1185         outl(0, io + SIS_WECCR);
1186 
1187         /* Go ahead and enable the DMA interrupts. They won't go live
1188          * until we start a channel.
1189          */
1190         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1191                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1192 
1193         return 0;
1194 }
1195 
1196 #ifdef CONFIG_PM_SLEEP
1197 static int sis_suspend(struct device *dev)
1198 {
1199         struct snd_card *card = dev_get_drvdata(dev);
1200         struct sis7019 *sis = card->private_data;
1201         void __iomem *ioaddr = sis->ioaddr;
1202         int i;
1203 
1204         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1205         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1206                 snd_ac97_suspend(sis->ac97[0]);
1207         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1208                 snd_ac97_suspend(sis->ac97[1]);
1209         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1210                 snd_ac97_suspend(sis->ac97[2]);
1211 
1212         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1213          */
1214         if (sis->irq >= 0) {
1215                 free_irq(sis->irq, sis);
1216                 sis->irq = -1;
1217         }
1218 
1219         /* Save the internal state away
1220          */
1221         for (i = 0; i < 4; i++) {
1222                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1223                 ioaddr += 4096;
1224         }
1225 
1226         return 0;
1227 }
1228 
1229 static int sis_resume(struct device *dev)
1230 {
1231         struct pci_dev *pci = to_pci_dev(dev);
1232         struct snd_card *card = dev_get_drvdata(dev);
1233         struct sis7019 *sis = card->private_data;
1234         void __iomem *ioaddr = sis->ioaddr;
1235         int i;
1236 
1237         if (sis_chip_init(sis)) {
1238                 dev_err(&pci->dev, "unable to re-init controller\n");
1239                 goto error;
1240         }
1241 
1242         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1243                         KBUILD_MODNAME, sis)) {
1244                 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1245                 goto error;
1246         }
1247 
1248         /* Restore saved state, then clear out the page we use for the
1249          * silence buffer.
1250          */
1251         for (i = 0; i < 4; i++) {
1252                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1253                 ioaddr += 4096;
1254         }
1255 
1256         memset(sis->suspend_state[0], 0, 4096);
1257 
1258         sis->irq = pci->irq;
1259 
1260         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1261                 snd_ac97_resume(sis->ac97[0]);
1262         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1263                 snd_ac97_resume(sis->ac97[1]);
1264         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1265                 snd_ac97_resume(sis->ac97[2]);
1266 
1267         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1268         return 0;
1269 
1270 error:
1271         snd_card_disconnect(card);
1272         return -EIO;
1273 }
1274 
1275 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1276 #define SIS_PM_OPS      &sis_pm
1277 #else
1278 #define SIS_PM_OPS      NULL
1279 #endif /* CONFIG_PM_SLEEP */
1280 
1281 static int sis_alloc_suspend(struct sis7019 *sis)
1282 {
1283         int i;
1284 
1285         /* We need 16K to store the internal wave engine state during a
1286          * suspend, but we don't need it to be contiguous, so play nice
1287          * with the memory system. We'll also use this area for a silence
1288          * buffer.
1289          */
1290         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1291                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1292                 if (!sis->suspend_state[i])
1293                         return -ENOMEM;
1294         }
1295         memset(sis->suspend_state[0], 0, 4096);
1296 
1297         return 0;
1298 }
1299 
1300 static int sis_chip_create(struct snd_card *card,
1301                            struct pci_dev *pci)
1302 {
1303         struct sis7019 *sis = card->private_data;
1304         struct voice *voice;
1305         static struct snd_device_ops ops = {
1306                 .dev_free = sis_dev_free,
1307         };
1308         int rc;
1309         int i;
1310 
1311         rc = pci_enable_device(pci);
1312         if (rc)
1313                 goto error_out;
1314 
1315         rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1316         if (rc < 0) {
1317                 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1318                 goto error_out_enabled;
1319         }
1320 
1321         memset(sis, 0, sizeof(*sis));
1322         mutex_init(&sis->ac97_mutex);
1323         spin_lock_init(&sis->voice_lock);
1324         sis->card = card;
1325         sis->pci = pci;
1326         sis->irq = -1;
1327         sis->ioport = pci_resource_start(pci, 0);
1328 
1329         rc = pci_request_regions(pci, "SiS7019");
1330         if (rc) {
1331                 dev_err(&pci->dev, "unable request regions\n");
1332                 goto error_out_enabled;
1333         }
1334 
1335         rc = -EIO;
1336         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1337         if (!sis->ioaddr) {
1338                 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1339                 goto error_out_cleanup;
1340         }
1341 
1342         rc = sis_alloc_suspend(sis);
1343         if (rc < 0) {
1344                 dev_err(&pci->dev, "unable to allocate state storage\n");
1345                 goto error_out_cleanup;
1346         }
1347 
1348         rc = sis_chip_init(sis);
1349         if (rc)
1350                 goto error_out_cleanup;
1351 
1352         rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1353                          sis);
1354         if (rc) {
1355                 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1356                 goto error_out_cleanup;
1357         }
1358 
1359         sis->irq = pci->irq;
1360         pci_set_master(pci);
1361 
1362         for (i = 0; i < 64; i++) {
1363                 voice = &sis->voices[i];
1364                 voice->num = i;
1365                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1366                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1367         }
1368 
1369         voice = &sis->capture_voice;
1370         voice->flags = VOICE_CAPTURE;
1371         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1372         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1373 
1374         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1375         if (rc)
1376                 goto error_out_cleanup;
1377 
1378         return 0;
1379 
1380 error_out_cleanup:
1381         sis_chip_free(sis);
1382 
1383 error_out_enabled:
1384         pci_disable_device(pci);
1385 
1386 error_out:
1387         return rc;
1388 }
1389 
1390 static int snd_sis7019_probe(struct pci_dev *pci,
1391                              const struct pci_device_id *pci_id)
1392 {
1393         struct snd_card *card;
1394         struct sis7019 *sis;
1395         int rc;
1396 
1397         rc = -ENOENT;
1398         if (!enable)
1399                 goto error_out;
1400 
1401         /* The user can specify which codecs should be present so that we
1402          * can wait for them to show up if they are slow to recover from
1403          * the AC97 cold reset. We default to a single codec, the primary.
1404          *
1405          * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1406          */
1407         codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1408                   SIS_TERTIARY_CODEC_PRESENT;
1409         if (!codecs)
1410                 codecs = SIS_PRIMARY_CODEC_PRESENT;
1411 
1412         rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1413                           sizeof(*sis), &card);
1414         if (rc < 0)
1415                 goto error_out;
1416 
1417         strcpy(card->driver, "SiS7019");
1418         strcpy(card->shortname, "SiS7019");
1419         rc = sis_chip_create(card, pci);
1420         if (rc)
1421                 goto card_error_out;
1422 
1423         sis = card->private_data;
1424 
1425         rc = sis_mixer_create(sis);
1426         if (rc)
1427                 goto card_error_out;
1428 
1429         rc = sis_pcm_create(sis);
1430         if (rc)
1431                 goto card_error_out;
1432 
1433         snprintf(card->longname, sizeof(card->longname),
1434                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1435                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1436                         sis->ioport, sis->irq);
1437 
1438         rc = snd_card_register(card);
1439         if (rc)
1440                 goto card_error_out;
1441 
1442         pci_set_drvdata(pci, card);
1443         return 0;
1444 
1445 card_error_out:
1446         snd_card_free(card);
1447 
1448 error_out:
1449         return rc;
1450 }
1451 
1452 static void snd_sis7019_remove(struct pci_dev *pci)
1453 {
1454         snd_card_free(pci_get_drvdata(pci));
1455 }
1456 
1457 static struct pci_driver sis7019_driver = {
1458         .name = KBUILD_MODNAME,
1459         .id_table = snd_sis7019_ids,
1460         .probe = snd_sis7019_probe,
1461         .remove = snd_sis7019_remove,
1462         .driver = {
1463                 .pm = SIS_PM_OPS,
1464         },
1465 };
1466 
1467 module_pci_driver(sis7019_driver);

/* [<][>][^][v][top][bottom][index][help] */