root/sound/soc/fsl/fsl_dma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fsl_dma_abort_stream
  2. fsl_dma_update_pointers
  3. fsl_dma_isr
  4. fsl_dma_new
  5. fsl_dma_open
  6. fsl_dma_hw_params
  7. fsl_dma_pointer
  8. fsl_dma_hw_free
  9. fsl_dma_close
  10. fsl_dma_free_dma_buffers
  11. find_ssi_node
  12. fsl_soc_dma_probe
  13. fsl_soc_dma_remove

   1 // SPDX-License-Identifier: GPL-2.0
   2 //
   3 // Freescale DMA ALSA SoC PCM driver
   4 //
   5 // Author: Timur Tabi <timur@freescale.com>
   6 //
   7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
   8 //
   9 // This driver implements ASoC support for the Elo DMA controller, which is
  10 // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  11 // the PCM driver is what handles the DMA buffer.
  12 
  13 #include <linux/module.h>
  14 #include <linux/init.h>
  15 #include <linux/platform_device.h>
  16 #include <linux/dma-mapping.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/delay.h>
  19 #include <linux/gfp.h>
  20 #include <linux/of_address.h>
  21 #include <linux/of_irq.h>
  22 #include <linux/of_platform.h>
  23 #include <linux/list.h>
  24 #include <linux/slab.h>
  25 
  26 #include <sound/core.h>
  27 #include <sound/pcm.h>
  28 #include <sound/pcm_params.h>
  29 #include <sound/soc.h>
  30 
  31 #include <asm/io.h>
  32 
  33 #include "fsl_dma.h"
  34 #include "fsl_ssi.h"    /* For the offset of stx0 and srx0 */
  35 
  36 #define DRV_NAME "fsl_dma"
  37 
  38 /*
  39  * The formats that the DMA controller supports, which is anything
  40  * that is 8, 16, or 32 bits.
  41  */
  42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8         | \
  43                             SNDRV_PCM_FMTBIT_U8         | \
  44                             SNDRV_PCM_FMTBIT_S16_LE     | \
  45                             SNDRV_PCM_FMTBIT_S16_BE     | \
  46                             SNDRV_PCM_FMTBIT_U16_LE     | \
  47                             SNDRV_PCM_FMTBIT_U16_BE     | \
  48                             SNDRV_PCM_FMTBIT_S24_LE     | \
  49                             SNDRV_PCM_FMTBIT_S24_BE     | \
  50                             SNDRV_PCM_FMTBIT_U24_LE     | \
  51                             SNDRV_PCM_FMTBIT_U24_BE     | \
  52                             SNDRV_PCM_FMTBIT_S32_LE     | \
  53                             SNDRV_PCM_FMTBIT_S32_BE     | \
  54                             SNDRV_PCM_FMTBIT_U32_LE     | \
  55                             SNDRV_PCM_FMTBIT_U32_BE)
  56 struct dma_object {
  57         struct snd_soc_component_driver dai;
  58         dma_addr_t ssi_stx_phys;
  59         dma_addr_t ssi_srx_phys;
  60         unsigned int ssi_fifo_depth;
  61         struct ccsr_dma_channel __iomem *channel;
  62         unsigned int irq;
  63         bool assigned;
  64 };
  65 
  66 /*
  67  * The number of DMA links to use.  Two is the bare minimum, but if you
  68  * have really small links you might need more.
  69  */
  70 #define NUM_DMA_LINKS   2
  71 
  72 /** fsl_dma_private: p-substream DMA data
  73  *
  74  * Each substream has a 1-to-1 association with a DMA channel.
  75  *
  76  * The link[] array is first because it needs to be aligned on a 32-byte
  77  * boundary, so putting it first will ensure alignment without padding the
  78  * structure.
  79  *
  80  * @link[]: array of link descriptors
  81  * @dma_channel: pointer to the DMA channel's registers
  82  * @irq: IRQ for this DMA channel
  83  * @substream: pointer to the substream object, needed by the ISR
  84  * @ssi_sxx_phys: bus address of the STX or SRX register to use
  85  * @ld_buf_phys: physical address of the LD buffer
  86  * @current_link: index into link[] of the link currently being processed
  87  * @dma_buf_phys: physical address of the DMA buffer
  88  * @dma_buf_next: physical address of the next period to process
  89  * @dma_buf_end: physical address of the byte after the end of the DMA
  90  * @buffer period_size: the size of a single period
  91  * @num_periods: the number of periods in the DMA buffer
  92  */
  93 struct fsl_dma_private {
  94         struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  95         struct ccsr_dma_channel __iomem *dma_channel;
  96         unsigned int irq;
  97         struct snd_pcm_substream *substream;
  98         dma_addr_t ssi_sxx_phys;
  99         unsigned int ssi_fifo_depth;
 100         dma_addr_t ld_buf_phys;
 101         unsigned int current_link;
 102         dma_addr_t dma_buf_phys;
 103         dma_addr_t dma_buf_next;
 104         dma_addr_t dma_buf_end;
 105         size_t period_size;
 106         unsigned int num_periods;
 107 };
 108 
 109 /**
 110  * fsl_dma_hardare: define characteristics of the PCM hardware.
 111  *
 112  * The PCM hardware is the Freescale DMA controller.  This structure defines
 113  * the capabilities of that hardware.
 114  *
 115  * Since the sampling rate and data format are not controlled by the DMA
 116  * controller, we specify no limits for those values.  The only exception is
 117  * period_bytes_min, which is set to a reasonably low value to prevent the
 118  * DMA controller from generating too many interrupts per second.
 119  *
 120  * Since each link descriptor has a 32-bit byte count field, we set
 121  * period_bytes_max to the largest 32-bit number.  We also have no maximum
 122  * number of periods.
 123  *
 124  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
 125  * limitation in the SSI driver requires the sample rates for playback and
 126  * capture to be the same.
 127  */
 128 static const struct snd_pcm_hardware fsl_dma_hardware = {
 129 
 130         .info                   = SNDRV_PCM_INFO_INTERLEAVED |
 131                                   SNDRV_PCM_INFO_MMAP |
 132                                   SNDRV_PCM_INFO_MMAP_VALID |
 133                                   SNDRV_PCM_INFO_JOINT_DUPLEX |
 134                                   SNDRV_PCM_INFO_PAUSE,
 135         .formats                = FSLDMA_PCM_FORMATS,
 136         .period_bytes_min       = 512,          /* A reasonable limit */
 137         .period_bytes_max       = (u32) -1,
 138         .periods_min            = NUM_DMA_LINKS,
 139         .periods_max            = (unsigned int) -1,
 140         .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
 141 };
 142 
 143 /**
 144  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
 145  *
 146  * This function should be called by the ISR whenever the DMA controller
 147  * halts data transfer.
 148  */
 149 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
 150 {
 151         snd_pcm_stop_xrun(substream);
 152 }
 153 
 154 /**
 155  * fsl_dma_update_pointers - update LD pointers to point to the next period
 156  *
 157  * As each period is completed, this function changes the the link
 158  * descriptor pointers for that period to point to the next period.
 159  */
 160 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
 161 {
 162         struct fsl_dma_link_descriptor *link =
 163                 &dma_private->link[dma_private->current_link];
 164 
 165         /* Update our link descriptors to point to the next period. On a 36-bit
 166          * system, we also need to update the ESAD bits.  We also set (keep) the
 167          * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
 168          */
 169         if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 170                 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
 171 #ifdef CONFIG_PHYS_64BIT
 172                 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 173                         upper_32_bits(dma_private->dma_buf_next));
 174 #endif
 175         } else {
 176                 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
 177 #ifdef CONFIG_PHYS_64BIT
 178                 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 179                         upper_32_bits(dma_private->dma_buf_next));
 180 #endif
 181         }
 182 
 183         /* Update our variables for next time */
 184         dma_private->dma_buf_next += dma_private->period_size;
 185 
 186         if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 187                 dma_private->dma_buf_next = dma_private->dma_buf_phys;
 188 
 189         if (++dma_private->current_link >= NUM_DMA_LINKS)
 190                 dma_private->current_link = 0;
 191 }
 192 
 193 /**
 194  * fsl_dma_isr: interrupt handler for the DMA controller
 195  *
 196  * @irq: IRQ of the DMA channel
 197  * @dev_id: pointer to the dma_private structure for this DMA channel
 198  */
 199 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
 200 {
 201         struct fsl_dma_private *dma_private = dev_id;
 202         struct snd_pcm_substream *substream = dma_private->substream;
 203         struct snd_soc_pcm_runtime *rtd = substream->private_data;
 204         struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
 205         struct device *dev = component->dev;
 206         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 207         irqreturn_t ret = IRQ_NONE;
 208         u32 sr, sr2 = 0;
 209 
 210         /* We got an interrupt, so read the status register to see what we
 211            were interrupted for.
 212          */
 213         sr = in_be32(&dma_channel->sr);
 214 
 215         if (sr & CCSR_DMA_SR_TE) {
 216                 dev_err(dev, "dma transmit error\n");
 217                 fsl_dma_abort_stream(substream);
 218                 sr2 |= CCSR_DMA_SR_TE;
 219                 ret = IRQ_HANDLED;
 220         }
 221 
 222         if (sr & CCSR_DMA_SR_CH)
 223                 ret = IRQ_HANDLED;
 224 
 225         if (sr & CCSR_DMA_SR_PE) {
 226                 dev_err(dev, "dma programming error\n");
 227                 fsl_dma_abort_stream(substream);
 228                 sr2 |= CCSR_DMA_SR_PE;
 229                 ret = IRQ_HANDLED;
 230         }
 231 
 232         if (sr & CCSR_DMA_SR_EOLNI) {
 233                 sr2 |= CCSR_DMA_SR_EOLNI;
 234                 ret = IRQ_HANDLED;
 235         }
 236 
 237         if (sr & CCSR_DMA_SR_CB)
 238                 ret = IRQ_HANDLED;
 239 
 240         if (sr & CCSR_DMA_SR_EOSI) {
 241                 /* Tell ALSA we completed a period. */
 242                 snd_pcm_period_elapsed(substream);
 243 
 244                 /*
 245                  * Update our link descriptors to point to the next period. We
 246                  * only need to do this if the number of periods is not equal to
 247                  * the number of links.
 248                  */
 249                 if (dma_private->num_periods != NUM_DMA_LINKS)
 250                         fsl_dma_update_pointers(dma_private);
 251 
 252                 sr2 |= CCSR_DMA_SR_EOSI;
 253                 ret = IRQ_HANDLED;
 254         }
 255 
 256         if (sr & CCSR_DMA_SR_EOLSI) {
 257                 sr2 |= CCSR_DMA_SR_EOLSI;
 258                 ret = IRQ_HANDLED;
 259         }
 260 
 261         /* Clear the bits that we set */
 262         if (sr2)
 263                 out_be32(&dma_channel->sr, sr2);
 264 
 265         return ret;
 266 }
 267 
 268 /**
 269  * fsl_dma_new: initialize this PCM driver.
 270  *
 271  * This function is called when the codec driver calls snd_soc_new_pcms(),
 272  * once for each .dai_link in the machine driver's snd_soc_card
 273  * structure.
 274  *
 275  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
 276  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
 277  * is specified. Therefore, any DMA buffers we allocate will always be in low
 278  * memory, but we support for 36-bit physical addresses anyway.
 279  *
 280  * Regardless of where the memory is actually allocated, since the device can
 281  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
 282  */
 283 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
 284 {
 285         struct snd_card *card = rtd->card->snd_card;
 286         struct snd_pcm *pcm = rtd->pcm;
 287         int ret;
 288 
 289         ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
 290         if (ret)
 291                 return ret;
 292 
 293         /* Some codecs have separate DAIs for playback and capture, so we
 294          * should allocate a DMA buffer only for the streams that are valid.
 295          */
 296 
 297         if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
 298                 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
 299                         fsl_dma_hardware.buffer_bytes_max,
 300                         &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
 301                 if (ret) {
 302                         dev_err(card->dev, "can't alloc playback dma buffer\n");
 303                         return ret;
 304                 }
 305         }
 306 
 307         if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
 308                 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
 309                         fsl_dma_hardware.buffer_bytes_max,
 310                         &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
 311                 if (ret) {
 312                         dev_err(card->dev, "can't alloc capture dma buffer\n");
 313                         snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
 314                         return ret;
 315                 }
 316         }
 317 
 318         return 0;
 319 }
 320 
 321 /**
 322  * fsl_dma_open: open a new substream.
 323  *
 324  * Each substream has its own DMA buffer.
 325  *
 326  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
 327  * descriptors that ping-pong from one period to the next.  For example, if
 328  * there are six periods and two link descriptors, this is how they look
 329  * before playback starts:
 330  *
 331  *                 The last link descriptor
 332  *   ____________  points back to the first
 333  *  |            |
 334  *  V            |
 335  *  ___    ___   |
 336  * |   |->|   |->|
 337  * |___|  |___|
 338  *   |      |
 339  *   |      |
 340  *   V      V
 341  *  _________________________________________
 342  * |      |      |      |      |      |      |  The DMA buffer is
 343  * |      |      |      |      |      |      |    divided into 6 parts
 344  * |______|______|______|______|______|______|
 345  *
 346  * and here's how they look after the first period is finished playing:
 347  *
 348  *   ____________
 349  *  |            |
 350  *  V            |
 351  *  ___    ___   |
 352  * |   |->|   |->|
 353  * |___|  |___|
 354  *   |      |
 355  *   |______________
 356  *          |       |
 357  *          V       V
 358  *  _________________________________________
 359  * |      |      |      |      |      |      |
 360  * |      |      |      |      |      |      |
 361  * |______|______|______|______|______|______|
 362  *
 363  * The first link descriptor now points to the third period.  The DMA
 364  * controller is currently playing the second period.  When it finishes, it
 365  * will jump back to the first descriptor and play the third period.
 366  *
 367  * There are four reasons we do this:
 368  *
 369  * 1. The only way to get the DMA controller to automatically restart the
 370  *    transfer when it gets to the end of the buffer is to use chaining
 371  *    mode.  Basic direct mode doesn't offer that feature.
 372  * 2. We need to receive an interrupt at the end of every period.  The DMA
 373  *    controller can generate an interrupt at the end of every link transfer
 374  *    (aka segment).  Making each period into a DMA segment will give us the
 375  *    interrupts we need.
 376  * 3. By creating only two link descriptors, regardless of the number of
 377  *    periods, we do not need to reallocate the link descriptors if the
 378  *    number of periods changes.
 379  * 4. All of the audio data is still stored in a single, contiguous DMA
 380  *    buffer, which is what ALSA expects.  We're just dividing it into
 381  *    contiguous parts, and creating a link descriptor for each one.
 382  */
 383 static int fsl_dma_open(struct snd_pcm_substream *substream)
 384 {
 385         struct snd_pcm_runtime *runtime = substream->runtime;
 386         struct snd_soc_pcm_runtime *rtd = substream->private_data;
 387         struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
 388         struct device *dev = component->dev;
 389         struct dma_object *dma =
 390                 container_of(component->driver, struct dma_object, dai);
 391         struct fsl_dma_private *dma_private;
 392         struct ccsr_dma_channel __iomem *dma_channel;
 393         dma_addr_t ld_buf_phys;
 394         u64 temp_link;          /* Pointer to next link descriptor */
 395         u32 mr;
 396         unsigned int channel;
 397         int ret = 0;
 398         unsigned int i;
 399 
 400         /*
 401          * Reject any DMA buffer whose size is not a multiple of the period
 402          * size.  We need to make sure that the DMA buffer can be evenly divided
 403          * into periods.
 404          */
 405         ret = snd_pcm_hw_constraint_integer(runtime,
 406                 SNDRV_PCM_HW_PARAM_PERIODS);
 407         if (ret < 0) {
 408                 dev_err(dev, "invalid buffer size\n");
 409                 return ret;
 410         }
 411 
 412         channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
 413 
 414         if (dma->assigned) {
 415                 dev_err(dev, "dma channel already assigned\n");
 416                 return -EBUSY;
 417         }
 418 
 419         dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
 420                                          &ld_buf_phys, GFP_KERNEL);
 421         if (!dma_private) {
 422                 dev_err(dev, "can't allocate dma private data\n");
 423                 return -ENOMEM;
 424         }
 425         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 426                 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
 427         else
 428                 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
 429 
 430         dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
 431         dma_private->dma_channel = dma->channel;
 432         dma_private->irq = dma->irq;
 433         dma_private->substream = substream;
 434         dma_private->ld_buf_phys = ld_buf_phys;
 435         dma_private->dma_buf_phys = substream->dma_buffer.addr;
 436 
 437         ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
 438                           dma_private);
 439         if (ret) {
 440                 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
 441                         dma_private->irq, ret);
 442                 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
 443                         dma_private, dma_private->ld_buf_phys);
 444                 return ret;
 445         }
 446 
 447         dma->assigned = true;
 448 
 449         snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
 450         snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
 451         runtime->private_data = dma_private;
 452 
 453         /* Program the fixed DMA controller parameters */
 454 
 455         dma_channel = dma_private->dma_channel;
 456 
 457         temp_link = dma_private->ld_buf_phys +
 458                 sizeof(struct fsl_dma_link_descriptor);
 459 
 460         for (i = 0; i < NUM_DMA_LINKS; i++) {
 461                 dma_private->link[i].next = cpu_to_be64(temp_link);
 462 
 463                 temp_link += sizeof(struct fsl_dma_link_descriptor);
 464         }
 465         /* The last link descriptor points to the first */
 466         dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
 467 
 468         /* Tell the DMA controller where the first link descriptor is */
 469         out_be32(&dma_channel->clndar,
 470                 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
 471         out_be32(&dma_channel->eclndar,
 472                 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
 473 
 474         /* The manual says the BCR must be clear before enabling EMP */
 475         out_be32(&dma_channel->bcr, 0);
 476 
 477         /*
 478          * Program the mode register for interrupts, external master control,
 479          * and source/destination hold.  Also clear the Channel Abort bit.
 480          */
 481         mr = in_be32(&dma_channel->mr) &
 482                 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
 483 
 484         /*
 485          * We want External Master Start and External Master Pause enabled,
 486          * because the SSI is controlling the DMA controller.  We want the DMA
 487          * controller to be set up in advance, and then we signal only the SSI
 488          * to start transferring.
 489          *
 490          * We want End-Of-Segment Interrupts enabled, because this will generate
 491          * an interrupt at the end of each segment (each link descriptor
 492          * represents one segment).  Each DMA segment is the same thing as an
 493          * ALSA period, so this is how we get an interrupt at the end of every
 494          * period.
 495          *
 496          * We want Error Interrupt enabled, so that we can get an error if
 497          * the DMA controller is mis-programmed somehow.
 498          */
 499         mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
 500                 CCSR_DMA_MR_EMS_EN;
 501 
 502         /* For playback, we want the destination address to be held.  For
 503            capture, set the source address to be held. */
 504         mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
 505                 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
 506 
 507         out_be32(&dma_channel->mr, mr);
 508 
 509         return 0;
 510 }
 511 
 512 /**
 513  * fsl_dma_hw_params: continue initializing the DMA links
 514  *
 515  * This function obtains hardware parameters about the opened stream and
 516  * programs the DMA controller accordingly.
 517  *
 518  * One drawback of big-endian is that when copying integers of different
 519  * sizes to a fixed-sized register, the address to which the integer must be
 520  * copied is dependent on the size of the integer.
 521  *
 522  * For example, if P is the address of a 32-bit register, and X is a 32-bit
 523  * integer, then X should be copied to address P.  However, if X is a 16-bit
 524  * integer, then it should be copied to P+2.  If X is an 8-bit register,
 525  * then it should be copied to P+3.
 526  *
 527  * So for playback of 8-bit samples, the DMA controller must transfer single
 528  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
 529  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
 530  *
 531  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
 532  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
 533  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
 534  * 24-bit data must be padded to 32 bits.
 535  */
 536 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
 537         struct snd_pcm_hw_params *hw_params)
 538 {
 539         struct snd_pcm_runtime *runtime = substream->runtime;
 540         struct fsl_dma_private *dma_private = runtime->private_data;
 541         struct snd_soc_pcm_runtime *rtd = substream->private_data;
 542         struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
 543         struct device *dev = component->dev;
 544 
 545         /* Number of bits per sample */
 546         unsigned int sample_bits =
 547                 snd_pcm_format_physical_width(params_format(hw_params));
 548 
 549         /* Number of bytes per frame */
 550         unsigned int sample_bytes = sample_bits / 8;
 551 
 552         /* Bus address of SSI STX register */
 553         dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
 554 
 555         /* Size of the DMA buffer, in bytes */
 556         size_t buffer_size = params_buffer_bytes(hw_params);
 557 
 558         /* Number of bytes per period */
 559         size_t period_size = params_period_bytes(hw_params);
 560 
 561         /* Pointer to next period */
 562         dma_addr_t temp_addr = substream->dma_buffer.addr;
 563 
 564         /* Pointer to DMA controller */
 565         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 566 
 567         u32 mr; /* DMA Mode Register */
 568 
 569         unsigned int i;
 570 
 571         /* Initialize our DMA tracking variables */
 572         dma_private->period_size = period_size;
 573         dma_private->num_periods = params_periods(hw_params);
 574         dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
 575         dma_private->dma_buf_next = dma_private->dma_buf_phys +
 576                 (NUM_DMA_LINKS * period_size);
 577 
 578         if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 579                 /* This happens if the number of periods == NUM_DMA_LINKS */
 580                 dma_private->dma_buf_next = dma_private->dma_buf_phys;
 581 
 582         mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
 583                   CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
 584 
 585         /* Due to a quirk of the SSI's STX register, the target address
 586          * for the DMA operations depends on the sample size.  So we calculate
 587          * that offset here.  While we're at it, also tell the DMA controller
 588          * how much data to transfer per sample.
 589          */
 590         switch (sample_bits) {
 591         case 8:
 592                 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
 593                 ssi_sxx_phys += 3;
 594                 break;
 595         case 16:
 596                 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
 597                 ssi_sxx_phys += 2;
 598                 break;
 599         case 32:
 600                 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
 601                 break;
 602         default:
 603                 /* We should never get here */
 604                 dev_err(dev, "unsupported sample size %u\n", sample_bits);
 605                 return -EINVAL;
 606         }
 607 
 608         /*
 609          * BWC determines how many bytes are sent/received before the DMA
 610          * controller checks the SSI to see if it needs to stop. BWC should
 611          * always be a multiple of the frame size, so that we always transmit
 612          * whole frames.  Each frame occupies two slots in the FIFO.  The
 613          * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
 614          * (MR[BWC] can only represent even powers of two).
 615          *
 616          * To simplify the process, we set BWC to the largest value that is
 617          * less than or equal to the FIFO watermark.  For playback, this ensures
 618          * that we transfer the maximum amount without overrunning the FIFO.
 619          * For capture, this ensures that we transfer the maximum amount without
 620          * underrunning the FIFO.
 621          *
 622          * f = SSI FIFO depth
 623          * w = SSI watermark value (which equals f - 2)
 624          * b = DMA bandwidth count (in bytes)
 625          * s = sample size (in bytes, which equals frame_size * 2)
 626          *
 627          * For playback, we never transmit more than the transmit FIFO
 628          * watermark, otherwise we might write more data than the FIFO can hold.
 629          * The watermark is equal to the FIFO depth minus two.
 630          *
 631          * For capture, two equations must hold:
 632          *      w > f - (b / s)
 633          *      w >= b / s
 634          *
 635          * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
 636          * b = s * w, which is equal to
 637          *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
 638          */
 639         mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
 640 
 641         out_be32(&dma_channel->mr, mr);
 642 
 643         for (i = 0; i < NUM_DMA_LINKS; i++) {
 644                 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
 645 
 646                 link->count = cpu_to_be32(period_size);
 647 
 648                 /* The snoop bit tells the DMA controller whether it should tell
 649                  * the ECM to snoop during a read or write to an address. For
 650                  * audio, we use DMA to transfer data between memory and an I/O
 651                  * device (the SSI's STX0 or SRX0 register). Snooping is only
 652                  * needed if there is a cache, so we need to snoop memory
 653                  * addresses only.  For playback, that means we snoop the source
 654                  * but not the destination.  For capture, we snoop the
 655                  * destination but not the source.
 656                  *
 657                  * Note that failing to snoop properly is unlikely to cause
 658                  * cache incoherency if the period size is larger than the
 659                  * size of L1 cache.  This is because filling in one period will
 660                  * flush out the data for the previous period.  So if you
 661                  * increased period_bytes_min to a large enough size, you might
 662                  * get more performance by not snooping, and you'll still be
 663                  * okay.  You'll need to update fsl_dma_update_pointers() also.
 664                  */
 665                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 666                         link->source_addr = cpu_to_be32(temp_addr);
 667                         link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 668                                 upper_32_bits(temp_addr));
 669 
 670                         link->dest_addr = cpu_to_be32(ssi_sxx_phys);
 671                         link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
 672                                 upper_32_bits(ssi_sxx_phys));
 673                 } else {
 674                         link->source_addr = cpu_to_be32(ssi_sxx_phys);
 675                         link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
 676                                 upper_32_bits(ssi_sxx_phys));
 677 
 678                         link->dest_addr = cpu_to_be32(temp_addr);
 679                         link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 680                                 upper_32_bits(temp_addr));
 681                 }
 682 
 683                 temp_addr += period_size;
 684         }
 685 
 686         return 0;
 687 }
 688 
 689 /**
 690  * fsl_dma_pointer: determine the current position of the DMA transfer
 691  *
 692  * This function is called by ALSA when ALSA wants to know where in the
 693  * stream buffer the hardware currently is.
 694  *
 695  * For playback, the SAR register contains the physical address of the most
 696  * recent DMA transfer.  For capture, the value is in the DAR register.
 697  *
 698  * The base address of the buffer is stored in the source_addr field of the
 699  * first link descriptor.
 700  */
 701 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
 702 {
 703         struct snd_pcm_runtime *runtime = substream->runtime;
 704         struct fsl_dma_private *dma_private = runtime->private_data;
 705         struct snd_soc_pcm_runtime *rtd = substream->private_data;
 706         struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
 707         struct device *dev = component->dev;
 708         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 709         dma_addr_t position;
 710         snd_pcm_uframes_t frames;
 711 
 712         /* Obtain the current DMA pointer, but don't read the ESAD bits if we
 713          * only have 32-bit DMA addresses.  This function is typically called
 714          * in interrupt context, so we need to optimize it.
 715          */
 716         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 717                 position = in_be32(&dma_channel->sar);
 718 #ifdef CONFIG_PHYS_64BIT
 719                 position |= (u64)(in_be32(&dma_channel->satr) &
 720                                   CCSR_DMA_ATR_ESAD_MASK) << 32;
 721 #endif
 722         } else {
 723                 position = in_be32(&dma_channel->dar);
 724 #ifdef CONFIG_PHYS_64BIT
 725                 position |= (u64)(in_be32(&dma_channel->datr) &
 726                                   CCSR_DMA_ATR_ESAD_MASK) << 32;
 727 #endif
 728         }
 729 
 730         /*
 731          * When capture is started, the SSI immediately starts to fill its FIFO.
 732          * This means that the DMA controller is not started until the FIFO is
 733          * full.  However, ALSA calls this function before that happens, when
 734          * MR.DAR is still zero.  In this case, just return zero to indicate
 735          * that nothing has been received yet.
 736          */
 737         if (!position)
 738                 return 0;
 739 
 740         if ((position < dma_private->dma_buf_phys) ||
 741             (position > dma_private->dma_buf_end)) {
 742                 dev_err(dev, "dma pointer is out of range, halting stream\n");
 743                 return SNDRV_PCM_POS_XRUN;
 744         }
 745 
 746         frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
 747 
 748         /*
 749          * If the current address is just past the end of the buffer, wrap it
 750          * around.
 751          */
 752         if (frames == runtime->buffer_size)
 753                 frames = 0;
 754 
 755         return frames;
 756 }
 757 
 758 /**
 759  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
 760  *
 761  * Release the resources allocated in fsl_dma_hw_params() and de-program the
 762  * registers.
 763  *
 764  * This function can be called multiple times.
 765  */
 766 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
 767 {
 768         struct snd_pcm_runtime *runtime = substream->runtime;
 769         struct fsl_dma_private *dma_private = runtime->private_data;
 770 
 771         if (dma_private) {
 772                 struct ccsr_dma_channel __iomem *dma_channel;
 773 
 774                 dma_channel = dma_private->dma_channel;
 775 
 776                 /* Stop the DMA */
 777                 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
 778                 out_be32(&dma_channel->mr, 0);
 779 
 780                 /* Reset all the other registers */
 781                 out_be32(&dma_channel->sr, -1);
 782                 out_be32(&dma_channel->clndar, 0);
 783                 out_be32(&dma_channel->eclndar, 0);
 784                 out_be32(&dma_channel->satr, 0);
 785                 out_be32(&dma_channel->sar, 0);
 786                 out_be32(&dma_channel->datr, 0);
 787                 out_be32(&dma_channel->dar, 0);
 788                 out_be32(&dma_channel->bcr, 0);
 789                 out_be32(&dma_channel->nlndar, 0);
 790                 out_be32(&dma_channel->enlndar, 0);
 791         }
 792 
 793         return 0;
 794 }
 795 
 796 /**
 797  * fsl_dma_close: close the stream.
 798  */
 799 static int fsl_dma_close(struct snd_pcm_substream *substream)
 800 {
 801         struct snd_pcm_runtime *runtime = substream->runtime;
 802         struct fsl_dma_private *dma_private = runtime->private_data;
 803         struct snd_soc_pcm_runtime *rtd = substream->private_data;
 804         struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
 805         struct device *dev = component->dev;
 806         struct dma_object *dma =
 807                 container_of(component->driver, struct dma_object, dai);
 808 
 809         if (dma_private) {
 810                 if (dma_private->irq)
 811                         free_irq(dma_private->irq, dma_private);
 812 
 813                 /* Deallocate the fsl_dma_private structure */
 814                 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
 815                                   dma_private, dma_private->ld_buf_phys);
 816                 substream->runtime->private_data = NULL;
 817         }
 818 
 819         dma->assigned = false;
 820 
 821         return 0;
 822 }
 823 
 824 /*
 825  * Remove this PCM driver.
 826  */
 827 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
 828 {
 829         struct snd_pcm_substream *substream;
 830         unsigned int i;
 831 
 832         for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
 833                 substream = pcm->streams[i].substream;
 834                 if (substream) {
 835                         snd_dma_free_pages(&substream->dma_buffer);
 836                         substream->dma_buffer.area = NULL;
 837                         substream->dma_buffer.addr = 0;
 838                 }
 839         }
 840 }
 841 
 842 /**
 843  * find_ssi_node -- returns the SSI node that points to its DMA channel node
 844  *
 845  * Although this DMA driver attempts to operate independently of the other
 846  * devices, it still needs to determine some information about the SSI device
 847  * that it's working with.  Unfortunately, the device tree does not contain
 848  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
 849  * other way.  So we need to scan the device tree for SSI nodes until we find
 850  * the one that points to the given DMA channel node.  It's ugly, but at least
 851  * it's contained in this one function.
 852  */
 853 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
 854 {
 855         struct device_node *ssi_np, *np;
 856 
 857         for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
 858                 /* Check each DMA phandle to see if it points to us.  We
 859                  * assume that device_node pointers are a valid comparison.
 860                  */
 861                 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
 862                 of_node_put(np);
 863                 if (np == dma_channel_np)
 864                         return ssi_np;
 865 
 866                 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
 867                 of_node_put(np);
 868                 if (np == dma_channel_np)
 869                         return ssi_np;
 870         }
 871 
 872         return NULL;
 873 }
 874 
 875 static const struct snd_pcm_ops fsl_dma_ops = {
 876         .open           = fsl_dma_open,
 877         .close          = fsl_dma_close,
 878         .ioctl          = snd_pcm_lib_ioctl,
 879         .hw_params      = fsl_dma_hw_params,
 880         .hw_free        = fsl_dma_hw_free,
 881         .pointer        = fsl_dma_pointer,
 882 };
 883 
 884 static int fsl_soc_dma_probe(struct platform_device *pdev)
 885 {
 886         struct dma_object *dma;
 887         struct device_node *np = pdev->dev.of_node;
 888         struct device_node *ssi_np;
 889         struct resource res;
 890         const uint32_t *iprop;
 891         int ret;
 892 
 893         /* Find the SSI node that points to us. */
 894         ssi_np = find_ssi_node(np);
 895         if (!ssi_np) {
 896                 dev_err(&pdev->dev, "cannot find parent SSI node\n");
 897                 return -ENODEV;
 898         }
 899 
 900         ret = of_address_to_resource(ssi_np, 0, &res);
 901         if (ret) {
 902                 dev_err(&pdev->dev, "could not determine resources for %pOF\n",
 903                         ssi_np);
 904                 of_node_put(ssi_np);
 905                 return ret;
 906         }
 907 
 908         dma = kzalloc(sizeof(*dma), GFP_KERNEL);
 909         if (!dma) {
 910                 of_node_put(ssi_np);
 911                 return -ENOMEM;
 912         }
 913 
 914         dma->dai.name = DRV_NAME;
 915         dma->dai.ops = &fsl_dma_ops;
 916         dma->dai.pcm_new = fsl_dma_new;
 917         dma->dai.pcm_free = fsl_dma_free_dma_buffers;
 918 
 919         /* Store the SSI-specific information that we need */
 920         dma->ssi_stx_phys = res.start + REG_SSI_STX0;
 921         dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
 922 
 923         iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
 924         if (iprop)
 925                 dma->ssi_fifo_depth = be32_to_cpup(iprop);
 926         else
 927                 /* Older 8610 DTs didn't have the fifo-depth property */
 928                 dma->ssi_fifo_depth = 8;
 929 
 930         of_node_put(ssi_np);
 931 
 932         ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
 933         if (ret) {
 934                 dev_err(&pdev->dev, "could not register platform\n");
 935                 kfree(dma);
 936                 return ret;
 937         }
 938 
 939         dma->channel = of_iomap(np, 0);
 940         dma->irq = irq_of_parse_and_map(np, 0);
 941 
 942         dev_set_drvdata(&pdev->dev, dma);
 943 
 944         return 0;
 945 }
 946 
 947 static int fsl_soc_dma_remove(struct platform_device *pdev)
 948 {
 949         struct dma_object *dma = dev_get_drvdata(&pdev->dev);
 950 
 951         iounmap(dma->channel);
 952         irq_dispose_mapping(dma->irq);
 953         kfree(dma);
 954 
 955         return 0;
 956 }
 957 
 958 static const struct of_device_id fsl_soc_dma_ids[] = {
 959         { .compatible = "fsl,ssi-dma-channel", },
 960         {}
 961 };
 962 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
 963 
 964 static struct platform_driver fsl_soc_dma_driver = {
 965         .driver = {
 966                 .name = "fsl-pcm-audio",
 967                 .of_match_table = fsl_soc_dma_ids,
 968         },
 969         .probe = fsl_soc_dma_probe,
 970         .remove = fsl_soc_dma_remove,
 971 };
 972 
 973 module_platform_driver(fsl_soc_dma_driver);
 974 
 975 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 976 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
 977 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */