root/block/bfq-wf2q.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bfq_gt
  2. bfq_root_active_entity
  3. bfq_class_idx
  4. bfq_tot_busy_queues
  5. bfq_update_next_in_service
  6. bfq_bfqq_to_bfqg
  7. bfq_update_parent_budget
  8. bfq_no_longer_next_in_service
  9. bfq_bfqq_to_bfqg
  10. bfq_update_parent_budget
  11. bfq_no_longer_next_in_service
  12. bfq_entity_to_bfqq
  13. bfq_delta
  14. bfq_calc_finish
  15. bfq_entity_of
  16. bfq_extract
  17. bfq_idle_extract
  18. bfq_insert
  19. bfq_update_min
  20. bfq_update_active_node
  21. bfq_update_active_tree
  22. bfq_active_insert
  23. bfq_ioprio_to_weight
  24. bfq_weight_to_ioprio
  25. bfq_get_entity
  26. bfq_find_deepest
  27. bfq_active_extract
  28. bfq_idle_insert
  29. bfq_forget_entity
  30. bfq_put_idle_entity
  31. bfq_forget_idle
  32. bfq_entity_service_tree
  33. __bfq_entity_update_weight_prio
  34. bfq_bfqq_served
  35. bfq_bfqq_charge_time
  36. bfq_update_fin_time_enqueue
  37. __bfq_activate_entity
  38. __bfq_requeue_entity
  39. __bfq_activate_requeue_entity
  40. bfq_activate_requeue_entity
  41. __bfq_deactivate_entity
  42. bfq_deactivate_entity
  43. bfq_calc_vtime_jump
  44. bfq_update_vtime
  45. bfq_first_active_entity
  46. __bfq_lookup_next_entity
  47. bfq_lookup_next_entity
  48. next_queue_may_preempt
  49. bfq_get_next_queue
  50. __bfq_bfqd_reset_in_service
  51. bfq_deactivate_bfqq
  52. bfq_activate_bfqq
  53. bfq_requeue_bfqq
  54. bfq_del_bfqq_busy
  55. bfq_add_bfqq_busy

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
   4  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
   5  * scheduler schedules generic entities. The latter can represent
   6  * either single bfq queues (associated with processes) or groups of
   7  * bfq queues (associated with cgroups).
   8  */
   9 #include "bfq-iosched.h"
  10 
  11 /**
  12  * bfq_gt - compare two timestamps.
  13  * @a: first ts.
  14  * @b: second ts.
  15  *
  16  * Return @a > @b, dealing with wrapping correctly.
  17  */
  18 static int bfq_gt(u64 a, u64 b)
  19 {
  20         return (s64)(a - b) > 0;
  21 }
  22 
  23 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
  24 {
  25         struct rb_node *node = tree->rb_node;
  26 
  27         return rb_entry(node, struct bfq_entity, rb_node);
  28 }
  29 
  30 static unsigned int bfq_class_idx(struct bfq_entity *entity)
  31 {
  32         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
  33 
  34         return bfqq ? bfqq->ioprio_class - 1 :
  35                 BFQ_DEFAULT_GRP_CLASS - 1;
  36 }
  37 
  38 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
  39 {
  40         return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
  41                 bfqd->busy_queues[2];
  42 }
  43 
  44 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
  45                                                  bool expiration);
  46 
  47 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
  48 
  49 /**
  50  * bfq_update_next_in_service - update sd->next_in_service
  51  * @sd: sched_data for which to perform the update.
  52  * @new_entity: if not NULL, pointer to the entity whose activation,
  53  *              requeueing or repositioning triggered the invocation of
  54  *              this function.
  55  * @expiration: id true, this function is being invoked after the
  56  *             expiration of the in-service entity
  57  *
  58  * This function is called to update sd->next_in_service, which, in
  59  * its turn, may change as a consequence of the insertion or
  60  * extraction of an entity into/from one of the active trees of
  61  * sd. These insertions/extractions occur as a consequence of
  62  * activations/deactivations of entities, with some activations being
  63  * 'true' activations, and other activations being requeueings (i.e.,
  64  * implementing the second, requeueing phase of the mechanism used to
  65  * reposition an entity in its active tree; see comments on
  66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
  67  * both the last two activation sub-cases, new_entity points to the
  68  * just activated or requeued entity.
  69  *
  70  * Returns true if sd->next_in_service changes in such a way that
  71  * entity->parent may become the next_in_service for its parent
  72  * entity.
  73  */
  74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
  75                                        struct bfq_entity *new_entity,
  76                                        bool expiration)
  77 {
  78         struct bfq_entity *next_in_service = sd->next_in_service;
  79         bool parent_sched_may_change = false;
  80         bool change_without_lookup = false;
  81 
  82         /*
  83          * If this update is triggered by the activation, requeueing
  84          * or repositioning of an entity that does not coincide with
  85          * sd->next_in_service, then a full lookup in the active tree
  86          * can be avoided. In fact, it is enough to check whether the
  87          * just-modified entity has the same priority as
  88          * sd->next_in_service, is eligible and has a lower virtual
  89          * finish time than sd->next_in_service. If this compound
  90          * condition holds, then the new entity becomes the new
  91          * next_in_service. Otherwise no change is needed.
  92          */
  93         if (new_entity && new_entity != sd->next_in_service) {
  94                 /*
  95                  * Flag used to decide whether to replace
  96                  * sd->next_in_service with new_entity. Tentatively
  97                  * set to true, and left as true if
  98                  * sd->next_in_service is NULL.
  99                  */
 100                 change_without_lookup = true;
 101 
 102                 /*
 103                  * If there is already a next_in_service candidate
 104                  * entity, then compare timestamps to decide whether
 105                  * to replace sd->service_tree with new_entity.
 106                  */
 107                 if (next_in_service) {
 108                         unsigned int new_entity_class_idx =
 109                                 bfq_class_idx(new_entity);
 110                         struct bfq_service_tree *st =
 111                                 sd->service_tree + new_entity_class_idx;
 112 
 113                         change_without_lookup =
 114                                 (new_entity_class_idx ==
 115                                  bfq_class_idx(next_in_service)
 116                                  &&
 117                                  !bfq_gt(new_entity->start, st->vtime)
 118                                  &&
 119                                  bfq_gt(next_in_service->finish,
 120                                         new_entity->finish));
 121                 }
 122 
 123                 if (change_without_lookup)
 124                         next_in_service = new_entity;
 125         }
 126 
 127         if (!change_without_lookup) /* lookup needed */
 128                 next_in_service = bfq_lookup_next_entity(sd, expiration);
 129 
 130         if (next_in_service) {
 131                 bool new_budget_triggers_change =
 132                         bfq_update_parent_budget(next_in_service);
 133 
 134                 parent_sched_may_change = !sd->next_in_service ||
 135                         new_budget_triggers_change;
 136         }
 137 
 138         sd->next_in_service = next_in_service;
 139 
 140         if (!next_in_service)
 141                 return parent_sched_may_change;
 142 
 143         return parent_sched_may_change;
 144 }
 145 
 146 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 147 
 148 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
 149 {
 150         struct bfq_entity *group_entity = bfqq->entity.parent;
 151 
 152         if (!group_entity)
 153                 group_entity = &bfqq->bfqd->root_group->entity;
 154 
 155         return container_of(group_entity, struct bfq_group, entity);
 156 }
 157 
 158 /*
 159  * Returns true if this budget changes may let next_in_service->parent
 160  * become the next_in_service entity for its parent entity.
 161  */
 162 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
 163 {
 164         struct bfq_entity *bfqg_entity;
 165         struct bfq_group *bfqg;
 166         struct bfq_sched_data *group_sd;
 167         bool ret = false;
 168 
 169         group_sd = next_in_service->sched_data;
 170 
 171         bfqg = container_of(group_sd, struct bfq_group, sched_data);
 172         /*
 173          * bfq_group's my_entity field is not NULL only if the group
 174          * is not the root group. We must not touch the root entity
 175          * as it must never become an in-service entity.
 176          */
 177         bfqg_entity = bfqg->my_entity;
 178         if (bfqg_entity) {
 179                 if (bfqg_entity->budget > next_in_service->budget)
 180                         ret = true;
 181                 bfqg_entity->budget = next_in_service->budget;
 182         }
 183 
 184         return ret;
 185 }
 186 
 187 /*
 188  * This function tells whether entity stops being a candidate for next
 189  * service, according to the restrictive definition of the field
 190  * next_in_service. In particular, this function is invoked for an
 191  * entity that is about to be set in service.
 192  *
 193  * If entity is a queue, then the entity is no longer a candidate for
 194  * next service according to the that definition, because entity is
 195  * about to become the in-service queue. This function then returns
 196  * true if entity is a queue.
 197  *
 198  * In contrast, entity could still be a candidate for next service if
 199  * it is not a queue, and has more than one active child. In fact,
 200  * even if one of its children is about to be set in service, other
 201  * active children may still be the next to serve, for the parent
 202  * entity, even according to the above definition. As a consequence, a
 203  * non-queue entity is not a candidate for next-service only if it has
 204  * only one active child. And only if this condition holds, then this
 205  * function returns true for a non-queue entity.
 206  */
 207 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
 208 {
 209         struct bfq_group *bfqg;
 210 
 211         if (bfq_entity_to_bfqq(entity))
 212                 return true;
 213 
 214         bfqg = container_of(entity, struct bfq_group, entity);
 215 
 216         /*
 217          * The field active_entities does not always contain the
 218          * actual number of active children entities: it happens to
 219          * not account for the in-service entity in case the latter is
 220          * removed from its active tree (which may get done after
 221          * invoking the function bfq_no_longer_next_in_service in
 222          * bfq_get_next_queue). Fortunately, here, i.e., while
 223          * bfq_no_longer_next_in_service is not yet completed in
 224          * bfq_get_next_queue, bfq_active_extract has not yet been
 225          * invoked, and thus active_entities still coincides with the
 226          * actual number of active entities.
 227          */
 228         if (bfqg->active_entities == 1)
 229                 return true;
 230 
 231         return false;
 232 }
 233 
 234 #else /* CONFIG_BFQ_GROUP_IOSCHED */
 235 
 236 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
 237 {
 238         return bfqq->bfqd->root_group;
 239 }
 240 
 241 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
 242 {
 243         return false;
 244 }
 245 
 246 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
 247 {
 248         return true;
 249 }
 250 
 251 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
 252 
 253 /*
 254  * Shift for timestamp calculations.  This actually limits the maximum
 255  * service allowed in one timestamp delta (small shift values increase it),
 256  * the maximum total weight that can be used for the queues in the system
 257  * (big shift values increase it), and the period of virtual time
 258  * wraparounds.
 259  */
 260 #define WFQ_SERVICE_SHIFT       22
 261 
 262 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
 263 {
 264         struct bfq_queue *bfqq = NULL;
 265 
 266         if (!entity->my_sched_data)
 267                 bfqq = container_of(entity, struct bfq_queue, entity);
 268 
 269         return bfqq;
 270 }
 271 
 272 
 273 /**
 274  * bfq_delta - map service into the virtual time domain.
 275  * @service: amount of service.
 276  * @weight: scale factor (weight of an entity or weight sum).
 277  */
 278 static u64 bfq_delta(unsigned long service, unsigned long weight)
 279 {
 280         u64 d = (u64)service << WFQ_SERVICE_SHIFT;
 281 
 282         do_div(d, weight);
 283         return d;
 284 }
 285 
 286 /**
 287  * bfq_calc_finish - assign the finish time to an entity.
 288  * @entity: the entity to act upon.
 289  * @service: the service to be charged to the entity.
 290  */
 291 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
 292 {
 293         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 294 
 295         entity->finish = entity->start +
 296                 bfq_delta(service, entity->weight);
 297 
 298         if (bfqq) {
 299                 bfq_log_bfqq(bfqq->bfqd, bfqq,
 300                         "calc_finish: serv %lu, w %d",
 301                         service, entity->weight);
 302                 bfq_log_bfqq(bfqq->bfqd, bfqq,
 303                         "calc_finish: start %llu, finish %llu, delta %llu",
 304                         entity->start, entity->finish,
 305                         bfq_delta(service, entity->weight));
 306         }
 307 }
 308 
 309 /**
 310  * bfq_entity_of - get an entity from a node.
 311  * @node: the node field of the entity.
 312  *
 313  * Convert a node pointer to the relative entity.  This is used only
 314  * to simplify the logic of some functions and not as the generic
 315  * conversion mechanism because, e.g., in the tree walking functions,
 316  * the check for a %NULL value would be redundant.
 317  */
 318 struct bfq_entity *bfq_entity_of(struct rb_node *node)
 319 {
 320         struct bfq_entity *entity = NULL;
 321 
 322         if (node)
 323                 entity = rb_entry(node, struct bfq_entity, rb_node);
 324 
 325         return entity;
 326 }
 327 
 328 /**
 329  * bfq_extract - remove an entity from a tree.
 330  * @root: the tree root.
 331  * @entity: the entity to remove.
 332  */
 333 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
 334 {
 335         entity->tree = NULL;
 336         rb_erase(&entity->rb_node, root);
 337 }
 338 
 339 /**
 340  * bfq_idle_extract - extract an entity from the idle tree.
 341  * @st: the service tree of the owning @entity.
 342  * @entity: the entity being removed.
 343  */
 344 static void bfq_idle_extract(struct bfq_service_tree *st,
 345                              struct bfq_entity *entity)
 346 {
 347         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 348         struct rb_node *next;
 349 
 350         if (entity == st->first_idle) {
 351                 next = rb_next(&entity->rb_node);
 352                 st->first_idle = bfq_entity_of(next);
 353         }
 354 
 355         if (entity == st->last_idle) {
 356                 next = rb_prev(&entity->rb_node);
 357                 st->last_idle = bfq_entity_of(next);
 358         }
 359 
 360         bfq_extract(&st->idle, entity);
 361 
 362         if (bfqq)
 363                 list_del(&bfqq->bfqq_list);
 364 }
 365 
 366 /**
 367  * bfq_insert - generic tree insertion.
 368  * @root: tree root.
 369  * @entity: entity to insert.
 370  *
 371  * This is used for the idle and the active tree, since they are both
 372  * ordered by finish time.
 373  */
 374 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
 375 {
 376         struct bfq_entity *entry;
 377         struct rb_node **node = &root->rb_node;
 378         struct rb_node *parent = NULL;
 379 
 380         while (*node) {
 381                 parent = *node;
 382                 entry = rb_entry(parent, struct bfq_entity, rb_node);
 383 
 384                 if (bfq_gt(entry->finish, entity->finish))
 385                         node = &parent->rb_left;
 386                 else
 387                         node = &parent->rb_right;
 388         }
 389 
 390         rb_link_node(&entity->rb_node, parent, node);
 391         rb_insert_color(&entity->rb_node, root);
 392 
 393         entity->tree = root;
 394 }
 395 
 396 /**
 397  * bfq_update_min - update the min_start field of a entity.
 398  * @entity: the entity to update.
 399  * @node: one of its children.
 400  *
 401  * This function is called when @entity may store an invalid value for
 402  * min_start due to updates to the active tree.  The function  assumes
 403  * that the subtree rooted at @node (which may be its left or its right
 404  * child) has a valid min_start value.
 405  */
 406 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
 407 {
 408         struct bfq_entity *child;
 409 
 410         if (node) {
 411                 child = rb_entry(node, struct bfq_entity, rb_node);
 412                 if (bfq_gt(entity->min_start, child->min_start))
 413                         entity->min_start = child->min_start;
 414         }
 415 }
 416 
 417 /**
 418  * bfq_update_active_node - recalculate min_start.
 419  * @node: the node to update.
 420  *
 421  * @node may have changed position or one of its children may have moved,
 422  * this function updates its min_start value.  The left and right subtrees
 423  * are assumed to hold a correct min_start value.
 424  */
 425 static void bfq_update_active_node(struct rb_node *node)
 426 {
 427         struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
 428 
 429         entity->min_start = entity->start;
 430         bfq_update_min(entity, node->rb_right);
 431         bfq_update_min(entity, node->rb_left);
 432 }
 433 
 434 /**
 435  * bfq_update_active_tree - update min_start for the whole active tree.
 436  * @node: the starting node.
 437  *
 438  * @node must be the deepest modified node after an update.  This function
 439  * updates its min_start using the values held by its children, assuming
 440  * that they did not change, and then updates all the nodes that may have
 441  * changed in the path to the root.  The only nodes that may have changed
 442  * are the ones in the path or their siblings.
 443  */
 444 static void bfq_update_active_tree(struct rb_node *node)
 445 {
 446         struct rb_node *parent;
 447 
 448 up:
 449         bfq_update_active_node(node);
 450 
 451         parent = rb_parent(node);
 452         if (!parent)
 453                 return;
 454 
 455         if (node == parent->rb_left && parent->rb_right)
 456                 bfq_update_active_node(parent->rb_right);
 457         else if (parent->rb_left)
 458                 bfq_update_active_node(parent->rb_left);
 459 
 460         node = parent;
 461         goto up;
 462 }
 463 
 464 /**
 465  * bfq_active_insert - insert an entity in the active tree of its
 466  *                     group/device.
 467  * @st: the service tree of the entity.
 468  * @entity: the entity being inserted.
 469  *
 470  * The active tree is ordered by finish time, but an extra key is kept
 471  * per each node, containing the minimum value for the start times of
 472  * its children (and the node itself), so it's possible to search for
 473  * the eligible node with the lowest finish time in logarithmic time.
 474  */
 475 static void bfq_active_insert(struct bfq_service_tree *st,
 476                               struct bfq_entity *entity)
 477 {
 478         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 479         struct rb_node *node = &entity->rb_node;
 480 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 481         struct bfq_sched_data *sd = NULL;
 482         struct bfq_group *bfqg = NULL;
 483         struct bfq_data *bfqd = NULL;
 484 #endif
 485 
 486         bfq_insert(&st->active, entity);
 487 
 488         if (node->rb_left)
 489                 node = node->rb_left;
 490         else if (node->rb_right)
 491                 node = node->rb_right;
 492 
 493         bfq_update_active_tree(node);
 494 
 495 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 496         sd = entity->sched_data;
 497         bfqg = container_of(sd, struct bfq_group, sched_data);
 498         bfqd = (struct bfq_data *)bfqg->bfqd;
 499 #endif
 500         if (bfqq)
 501                 list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
 502 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 503         if (bfqg != bfqd->root_group)
 504                 bfqg->active_entities++;
 505 #endif
 506 }
 507 
 508 /**
 509  * bfq_ioprio_to_weight - calc a weight from an ioprio.
 510  * @ioprio: the ioprio value to convert.
 511  */
 512 unsigned short bfq_ioprio_to_weight(int ioprio)
 513 {
 514         return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
 515 }
 516 
 517 /**
 518  * bfq_weight_to_ioprio - calc an ioprio from a weight.
 519  * @weight: the weight value to convert.
 520  *
 521  * To preserve as much as possible the old only-ioprio user interface,
 522  * 0 is used as an escape ioprio value for weights (numerically) equal or
 523  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
 524  */
 525 static unsigned short bfq_weight_to_ioprio(int weight)
 526 {
 527         return max_t(int, 0,
 528                      IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
 529 }
 530 
 531 static void bfq_get_entity(struct bfq_entity *entity)
 532 {
 533         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 534 
 535         if (bfqq) {
 536                 bfqq->ref++;
 537                 bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
 538                              bfqq, bfqq->ref);
 539         } else
 540                 bfqg_and_blkg_get(container_of(entity, struct bfq_group,
 541                                                entity));
 542 }
 543 
 544 /**
 545  * bfq_find_deepest - find the deepest node that an extraction can modify.
 546  * @node: the node being removed.
 547  *
 548  * Do the first step of an extraction in an rb tree, looking for the
 549  * node that will replace @node, and returning the deepest node that
 550  * the following modifications to the tree can touch.  If @node is the
 551  * last node in the tree return %NULL.
 552  */
 553 static struct rb_node *bfq_find_deepest(struct rb_node *node)
 554 {
 555         struct rb_node *deepest;
 556 
 557         if (!node->rb_right && !node->rb_left)
 558                 deepest = rb_parent(node);
 559         else if (!node->rb_right)
 560                 deepest = node->rb_left;
 561         else if (!node->rb_left)
 562                 deepest = node->rb_right;
 563         else {
 564                 deepest = rb_next(node);
 565                 if (deepest->rb_right)
 566                         deepest = deepest->rb_right;
 567                 else if (rb_parent(deepest) != node)
 568                         deepest = rb_parent(deepest);
 569         }
 570 
 571         return deepest;
 572 }
 573 
 574 /**
 575  * bfq_active_extract - remove an entity from the active tree.
 576  * @st: the service_tree containing the tree.
 577  * @entity: the entity being removed.
 578  */
 579 static void bfq_active_extract(struct bfq_service_tree *st,
 580                                struct bfq_entity *entity)
 581 {
 582         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 583         struct rb_node *node;
 584 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 585         struct bfq_sched_data *sd = NULL;
 586         struct bfq_group *bfqg = NULL;
 587         struct bfq_data *bfqd = NULL;
 588 #endif
 589 
 590         node = bfq_find_deepest(&entity->rb_node);
 591         bfq_extract(&st->active, entity);
 592 
 593         if (node)
 594                 bfq_update_active_tree(node);
 595 
 596 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 597         sd = entity->sched_data;
 598         bfqg = container_of(sd, struct bfq_group, sched_data);
 599         bfqd = (struct bfq_data *)bfqg->bfqd;
 600 #endif
 601         if (bfqq)
 602                 list_del(&bfqq->bfqq_list);
 603 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 604         if (bfqg != bfqd->root_group)
 605                 bfqg->active_entities--;
 606 #endif
 607 }
 608 
 609 /**
 610  * bfq_idle_insert - insert an entity into the idle tree.
 611  * @st: the service tree containing the tree.
 612  * @entity: the entity to insert.
 613  */
 614 static void bfq_idle_insert(struct bfq_service_tree *st,
 615                             struct bfq_entity *entity)
 616 {
 617         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 618         struct bfq_entity *first_idle = st->first_idle;
 619         struct bfq_entity *last_idle = st->last_idle;
 620 
 621         if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
 622                 st->first_idle = entity;
 623         if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
 624                 st->last_idle = entity;
 625 
 626         bfq_insert(&st->idle, entity);
 627 
 628         if (bfqq)
 629                 list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
 630 }
 631 
 632 /**
 633  * bfq_forget_entity - do not consider entity any longer for scheduling
 634  * @st: the service tree.
 635  * @entity: the entity being removed.
 636  * @is_in_service: true if entity is currently the in-service entity.
 637  *
 638  * Forget everything about @entity. In addition, if entity represents
 639  * a queue, and the latter is not in service, then release the service
 640  * reference to the queue (the one taken through bfq_get_entity). In
 641  * fact, in this case, there is really no more service reference to
 642  * the queue, as the latter is also outside any service tree. If,
 643  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
 644  * will take care of putting the reference when the queue finally
 645  * stops being served.
 646  */
 647 static void bfq_forget_entity(struct bfq_service_tree *st,
 648                               struct bfq_entity *entity,
 649                               bool is_in_service)
 650 {
 651         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 652 
 653         entity->on_st = false;
 654         st->wsum -= entity->weight;
 655         if (is_in_service)
 656                 return;
 657 
 658         if (bfqq)
 659                 bfq_put_queue(bfqq);
 660         else
 661                 bfqg_and_blkg_put(container_of(entity, struct bfq_group,
 662                                                entity));
 663 }
 664 
 665 /**
 666  * bfq_put_idle_entity - release the idle tree ref of an entity.
 667  * @st: service tree for the entity.
 668  * @entity: the entity being released.
 669  */
 670 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
 671 {
 672         bfq_idle_extract(st, entity);
 673         bfq_forget_entity(st, entity,
 674                           entity == entity->sched_data->in_service_entity);
 675 }
 676 
 677 /**
 678  * bfq_forget_idle - update the idle tree if necessary.
 679  * @st: the service tree to act upon.
 680  *
 681  * To preserve the global O(log N) complexity we only remove one entry here;
 682  * as the idle tree will not grow indefinitely this can be done safely.
 683  */
 684 static void bfq_forget_idle(struct bfq_service_tree *st)
 685 {
 686         struct bfq_entity *first_idle = st->first_idle;
 687         struct bfq_entity *last_idle = st->last_idle;
 688 
 689         if (RB_EMPTY_ROOT(&st->active) && last_idle &&
 690             !bfq_gt(last_idle->finish, st->vtime)) {
 691                 /*
 692                  * Forget the whole idle tree, increasing the vtime past
 693                  * the last finish time of idle entities.
 694                  */
 695                 st->vtime = last_idle->finish;
 696         }
 697 
 698         if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
 699                 bfq_put_idle_entity(st, first_idle);
 700 }
 701 
 702 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
 703 {
 704         struct bfq_sched_data *sched_data = entity->sched_data;
 705         unsigned int idx = bfq_class_idx(entity);
 706 
 707         return sched_data->service_tree + idx;
 708 }
 709 
 710 /*
 711  * Update weight and priority of entity. If update_class_too is true,
 712  * then update the ioprio_class of entity too.
 713  *
 714  * The reason why the update of ioprio_class is controlled through the
 715  * last parameter is as follows. Changing the ioprio class of an
 716  * entity implies changing the destination service trees for that
 717  * entity. If such a change occurred when the entity is already on one
 718  * of the service trees for its previous class, then the state of the
 719  * entity would become more complex: none of the new possible service
 720  * trees for the entity, according to bfq_entity_service_tree(), would
 721  * match any of the possible service trees on which the entity
 722  * is. Complex operations involving these trees, such as entity
 723  * activations and deactivations, should take into account this
 724  * additional complexity.  To avoid this issue, this function is
 725  * invoked with update_class_too unset in the points in the code where
 726  * entity may happen to be on some tree.
 727  */
 728 struct bfq_service_tree *
 729 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
 730                                 struct bfq_entity *entity,
 731                                 bool update_class_too)
 732 {
 733         struct bfq_service_tree *new_st = old_st;
 734 
 735         if (entity->prio_changed) {
 736                 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 737                 unsigned int prev_weight, new_weight;
 738                 struct bfq_data *bfqd = NULL;
 739                 struct rb_root_cached *root;
 740 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 741                 struct bfq_sched_data *sd;
 742                 struct bfq_group *bfqg;
 743 #endif
 744 
 745                 if (bfqq)
 746                         bfqd = bfqq->bfqd;
 747 #ifdef CONFIG_BFQ_GROUP_IOSCHED
 748                 else {
 749                         sd = entity->my_sched_data;
 750                         bfqg = container_of(sd, struct bfq_group, sched_data);
 751                         bfqd = (struct bfq_data *)bfqg->bfqd;
 752                 }
 753 #endif
 754 
 755                 /* Matches the smp_wmb() in bfq_group_set_weight. */
 756                 smp_rmb();
 757                 old_st->wsum -= entity->weight;
 758 
 759                 if (entity->new_weight != entity->orig_weight) {
 760                         if (entity->new_weight < BFQ_MIN_WEIGHT ||
 761                             entity->new_weight > BFQ_MAX_WEIGHT) {
 762                                 pr_crit("update_weight_prio: new_weight %d\n",
 763                                         entity->new_weight);
 764                                 if (entity->new_weight < BFQ_MIN_WEIGHT)
 765                                         entity->new_weight = BFQ_MIN_WEIGHT;
 766                                 else
 767                                         entity->new_weight = BFQ_MAX_WEIGHT;
 768                         }
 769                         entity->orig_weight = entity->new_weight;
 770                         if (bfqq)
 771                                 bfqq->ioprio =
 772                                   bfq_weight_to_ioprio(entity->orig_weight);
 773                 }
 774 
 775                 if (bfqq && update_class_too)
 776                         bfqq->ioprio_class = bfqq->new_ioprio_class;
 777 
 778                 /*
 779                  * Reset prio_changed only if the ioprio_class change
 780                  * is not pending any longer.
 781                  */
 782                 if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
 783                         entity->prio_changed = 0;
 784 
 785                 /*
 786                  * NOTE: here we may be changing the weight too early,
 787                  * this will cause unfairness.  The correct approach
 788                  * would have required additional complexity to defer
 789                  * weight changes to the proper time instants (i.e.,
 790                  * when entity->finish <= old_st->vtime).
 791                  */
 792                 new_st = bfq_entity_service_tree(entity);
 793 
 794                 prev_weight = entity->weight;
 795                 new_weight = entity->orig_weight *
 796                              (bfqq ? bfqq->wr_coeff : 1);
 797                 /*
 798                  * If the weight of the entity changes, and the entity is a
 799                  * queue, remove the entity from its old weight counter (if
 800                  * there is a counter associated with the entity).
 801                  */
 802                 if (prev_weight != new_weight && bfqq) {
 803                         root = &bfqd->queue_weights_tree;
 804                         __bfq_weights_tree_remove(bfqd, bfqq, root);
 805                 }
 806                 entity->weight = new_weight;
 807                 /*
 808                  * Add the entity, if it is not a weight-raised queue,
 809                  * to the counter associated with its new weight.
 810                  */
 811                 if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
 812                         /* If we get here, root has been initialized. */
 813                         bfq_weights_tree_add(bfqd, bfqq, root);
 814                 }
 815 
 816                 new_st->wsum += entity->weight;
 817 
 818                 if (new_st != old_st)
 819                         entity->start = new_st->vtime;
 820         }
 821 
 822         return new_st;
 823 }
 824 
 825 /**
 826  * bfq_bfqq_served - update the scheduler status after selection for
 827  *                   service.
 828  * @bfqq: the queue being served.
 829  * @served: bytes to transfer.
 830  *
 831  * NOTE: this can be optimized, as the timestamps of upper level entities
 832  * are synchronized every time a new bfqq is selected for service.  By now,
 833  * we keep it to better check consistency.
 834  */
 835 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
 836 {
 837         struct bfq_entity *entity = &bfqq->entity;
 838         struct bfq_service_tree *st;
 839 
 840         if (!bfqq->service_from_backlogged)
 841                 bfqq->first_IO_time = jiffies;
 842 
 843         if (bfqq->wr_coeff > 1)
 844                 bfqq->service_from_wr += served;
 845 
 846         bfqq->service_from_backlogged += served;
 847         for_each_entity(entity) {
 848                 st = bfq_entity_service_tree(entity);
 849 
 850                 entity->service += served;
 851 
 852                 st->vtime += bfq_delta(served, st->wsum);
 853                 bfq_forget_idle(st);
 854         }
 855         bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
 856 }
 857 
 858 /**
 859  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
 860  *                        of the time interval during which bfqq has been in
 861  *                        service.
 862  * @bfqd: the device
 863  * @bfqq: the queue that needs a service update.
 864  * @time_ms: the amount of time during which the queue has received service
 865  *
 866  * If a queue does not consume its budget fast enough, then providing
 867  * the queue with service fairness may impair throughput, more or less
 868  * severely. For this reason, queues that consume their budget slowly
 869  * are provided with time fairness instead of service fairness. This
 870  * goal is achieved through the BFQ scheduling engine, even if such an
 871  * engine works in the service, and not in the time domain. The trick
 872  * is charging these queues with an inflated amount of service, equal
 873  * to the amount of service that they would have received during their
 874  * service slot if they had been fast, i.e., if their requests had
 875  * been dispatched at a rate equal to the estimated peak rate.
 876  *
 877  * It is worth noting that time fairness can cause important
 878  * distortions in terms of bandwidth distribution, on devices with
 879  * internal queueing. The reason is that I/O requests dispatched
 880  * during the service slot of a queue may be served after that service
 881  * slot is finished, and may have a total processing time loosely
 882  * correlated with the duration of the service slot. This is
 883  * especially true for short service slots.
 884  */
 885 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
 886                           unsigned long time_ms)
 887 {
 888         struct bfq_entity *entity = &bfqq->entity;
 889         unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
 890         unsigned long bounded_time_ms = min(time_ms, timeout_ms);
 891         int serv_to_charge_for_time =
 892                 (bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
 893         int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
 894 
 895         /* Increase budget to avoid inconsistencies */
 896         if (tot_serv_to_charge > entity->budget)
 897                 entity->budget = tot_serv_to_charge;
 898 
 899         bfq_bfqq_served(bfqq,
 900                         max_t(int, 0, tot_serv_to_charge - entity->service));
 901 }
 902 
 903 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
 904                                         struct bfq_service_tree *st,
 905                                         bool backshifted)
 906 {
 907         struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
 908 
 909         /*
 910          * When this function is invoked, entity is not in any service
 911          * tree, then it is safe to invoke next function with the last
 912          * parameter set (see the comments on the function).
 913          */
 914         st = __bfq_entity_update_weight_prio(st, entity, true);
 915         bfq_calc_finish(entity, entity->budget);
 916 
 917         /*
 918          * If some queues enjoy backshifting for a while, then their
 919          * (virtual) finish timestamps may happen to become lower and
 920          * lower than the system virtual time.  In particular, if
 921          * these queues often happen to be idle for short time
 922          * periods, and during such time periods other queues with
 923          * higher timestamps happen to be busy, then the backshifted
 924          * timestamps of the former queues can become much lower than
 925          * the system virtual time. In fact, to serve the queues with
 926          * higher timestamps while the ones with lower timestamps are
 927          * idle, the system virtual time may be pushed-up to much
 928          * higher values than the finish timestamps of the idle
 929          * queues. As a consequence, the finish timestamps of all new
 930          * or newly activated queues may end up being much larger than
 931          * those of lucky queues with backshifted timestamps. The
 932          * latter queues may then monopolize the device for a lot of
 933          * time. This would simply break service guarantees.
 934          *
 935          * To reduce this problem, push up a little bit the
 936          * backshifted timestamps of the queue associated with this
 937          * entity (only a queue can happen to have the backshifted
 938          * flag set): just enough to let the finish timestamp of the
 939          * queue be equal to the current value of the system virtual
 940          * time. This may introduce a little unfairness among queues
 941          * with backshifted timestamps, but it does not break
 942          * worst-case fairness guarantees.
 943          *
 944          * As a special case, if bfqq is weight-raised, push up
 945          * timestamps much less, to keep very low the probability that
 946          * this push up causes the backshifted finish timestamps of
 947          * weight-raised queues to become higher than the backshifted
 948          * finish timestamps of non weight-raised queues.
 949          */
 950         if (backshifted && bfq_gt(st->vtime, entity->finish)) {
 951                 unsigned long delta = st->vtime - entity->finish;
 952 
 953                 if (bfqq)
 954                         delta /= bfqq->wr_coeff;
 955 
 956                 entity->start += delta;
 957                 entity->finish += delta;
 958         }
 959 
 960         bfq_active_insert(st, entity);
 961 }
 962 
 963 /**
 964  * __bfq_activate_entity - handle activation of entity.
 965  * @entity: the entity being activated.
 966  * @non_blocking_wait_rq: true if entity was waiting for a request
 967  *
 968  * Called for a 'true' activation, i.e., if entity is not active and
 969  * one of its children receives a new request.
 970  *
 971  * Basically, this function updates the timestamps of entity and
 972  * inserts entity into its active tree, after possibly extracting it
 973  * from its idle tree.
 974  */
 975 static void __bfq_activate_entity(struct bfq_entity *entity,
 976                                   bool non_blocking_wait_rq)
 977 {
 978         struct bfq_service_tree *st = bfq_entity_service_tree(entity);
 979         bool backshifted = false;
 980         unsigned long long min_vstart;
 981 
 982         /* See comments on bfq_fqq_update_budg_for_activation */
 983         if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
 984                 backshifted = true;
 985                 min_vstart = entity->finish;
 986         } else
 987                 min_vstart = st->vtime;
 988 
 989         if (entity->tree == &st->idle) {
 990                 /*
 991                  * Must be on the idle tree, bfq_idle_extract() will
 992                  * check for that.
 993                  */
 994                 bfq_idle_extract(st, entity);
 995                 entity->start = bfq_gt(min_vstart, entity->finish) ?
 996                         min_vstart : entity->finish;
 997         } else {
 998                 /*
 999                  * The finish time of the entity may be invalid, and
1000                  * it is in the past for sure, otherwise the queue
1001                  * would have been on the idle tree.
1002                  */
1003                 entity->start = min_vstart;
1004                 st->wsum += entity->weight;
1005                 /*
1006                  * entity is about to be inserted into a service tree,
1007                  * and then set in service: get a reference to make
1008                  * sure entity does not disappear until it is no
1009                  * longer in service or scheduled for service.
1010                  */
1011                 bfq_get_entity(entity);
1012 
1013                 entity->on_st = true;
1014         }
1015 
1016 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1017         if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1018                 struct bfq_group *bfqg =
1019                         container_of(entity, struct bfq_group, entity);
1020                 struct bfq_data *bfqd = bfqg->bfqd;
1021 
1022                 if (!entity->in_groups_with_pending_reqs) {
1023                         entity->in_groups_with_pending_reqs = true;
1024                         bfqd->num_groups_with_pending_reqs++;
1025                 }
1026         }
1027 #endif
1028 
1029         bfq_update_fin_time_enqueue(entity, st, backshifted);
1030 }
1031 
1032 /**
1033  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1034  * @entity: the entity being requeued or repositioned.
1035  *
1036  * Requeueing is needed if this entity stops being served, which
1037  * happens if a leaf descendant entity has expired. On the other hand,
1038  * repositioning is needed if the next_inservice_entity for the child
1039  * entity has changed. See the comments inside the function for
1040  * details.
1041  *
1042  * Basically, this function: 1) removes entity from its active tree if
1043  * present there, 2) updates the timestamps of entity and 3) inserts
1044  * entity back into its active tree (in the new, right position for
1045  * the new values of the timestamps).
1046  */
1047 static void __bfq_requeue_entity(struct bfq_entity *entity)
1048 {
1049         struct bfq_sched_data *sd = entity->sched_data;
1050         struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1051 
1052         if (entity == sd->in_service_entity) {
1053                 /*
1054                  * We are requeueing the current in-service entity,
1055                  * which may have to be done for one of the following
1056                  * reasons:
1057                  * - entity represents the in-service queue, and the
1058                  *   in-service queue is being requeued after an
1059                  *   expiration;
1060                  * - entity represents a group, and its budget has
1061                  *   changed because one of its child entities has
1062                  *   just been either activated or requeued for some
1063                  *   reason; the timestamps of the entity need then to
1064                  *   be updated, and the entity needs to be enqueued
1065                  *   or repositioned accordingly.
1066                  *
1067                  * In particular, before requeueing, the start time of
1068                  * the entity must be moved forward to account for the
1069                  * service that the entity has received while in
1070                  * service. This is done by the next instructions. The
1071                  * finish time will then be updated according to this
1072                  * new value of the start time, and to the budget of
1073                  * the entity.
1074                  */
1075                 bfq_calc_finish(entity, entity->service);
1076                 entity->start = entity->finish;
1077                 /*
1078                  * In addition, if the entity had more than one child
1079                  * when set in service, then it was not extracted from
1080                  * the active tree. This implies that the position of
1081                  * the entity in the active tree may need to be
1082                  * changed now, because we have just updated the start
1083                  * time of the entity, and we will update its finish
1084                  * time in a moment (the requeueing is then, more
1085                  * precisely, a repositioning in this case). To
1086                  * implement this repositioning, we: 1) dequeue the
1087                  * entity here, 2) update the finish time and requeue
1088                  * the entity according to the new timestamps below.
1089                  */
1090                 if (entity->tree)
1091                         bfq_active_extract(st, entity);
1092         } else { /* The entity is already active, and not in service */
1093                 /*
1094                  * In this case, this function gets called only if the
1095                  * next_in_service entity below this entity has
1096                  * changed, and this change has caused the budget of
1097                  * this entity to change, which, finally implies that
1098                  * the finish time of this entity must be
1099                  * updated. Such an update may cause the scheduling,
1100                  * i.e., the position in the active tree, of this
1101                  * entity to change. We handle this change by: 1)
1102                  * dequeueing the entity here, 2) updating the finish
1103                  * time and requeueing the entity according to the new
1104                  * timestamps below. This is the same approach as the
1105                  * non-extracted-entity sub-case above.
1106                  */
1107                 bfq_active_extract(st, entity);
1108         }
1109 
1110         bfq_update_fin_time_enqueue(entity, st, false);
1111 }
1112 
1113 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1114                                           struct bfq_sched_data *sd,
1115                                           bool non_blocking_wait_rq)
1116 {
1117         struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1118 
1119         if (sd->in_service_entity == entity || entity->tree == &st->active)
1120                  /*
1121                   * in service or already queued on the active tree,
1122                   * requeue or reposition
1123                   */
1124                 __bfq_requeue_entity(entity);
1125         else
1126                 /*
1127                  * Not in service and not queued on its active tree:
1128                  * the activity is idle and this is a true activation.
1129                  */
1130                 __bfq_activate_entity(entity, non_blocking_wait_rq);
1131 }
1132 
1133 
1134 /**
1135  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1136  *                               bfq_queue, and activate, requeue or reposition
1137  *                               all ancestors for which such an update becomes
1138  *                               necessary.
1139  * @entity: the entity to activate.
1140  * @non_blocking_wait_rq: true if this entity was waiting for a request
1141  * @requeue: true if this is a requeue, which implies that bfqq is
1142  *           being expired; thus ALL its ancestors stop being served and must
1143  *           therefore be requeued
1144  * @expiration: true if this function is being invoked in the expiration path
1145  *             of the in-service queue
1146  */
1147 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1148                                         bool non_blocking_wait_rq,
1149                                         bool requeue, bool expiration)
1150 {
1151         struct bfq_sched_data *sd;
1152 
1153         for_each_entity(entity) {
1154                 sd = entity->sched_data;
1155                 __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1156 
1157                 if (!bfq_update_next_in_service(sd, entity, expiration) &&
1158                     !requeue)
1159                         break;
1160         }
1161 }
1162 
1163 /**
1164  * __bfq_deactivate_entity - update sched_data and service trees for
1165  * entity, so as to represent entity as inactive
1166  * @entity: the entity being deactivated.
1167  * @ins_into_idle_tree: if false, the entity will not be put into the
1168  *                      idle tree.
1169  *
1170  * If necessary and allowed, puts entity into the idle tree. NOTE:
1171  * entity may be on no tree if in service.
1172  */
1173 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1174 {
1175         struct bfq_sched_data *sd = entity->sched_data;
1176         struct bfq_service_tree *st;
1177         bool is_in_service;
1178 
1179         if (!entity->on_st) /* entity never activated, or already inactive */
1180                 return false;
1181 
1182         /*
1183          * If we get here, then entity is active, which implies that
1184          * bfq_group_set_parent has already been invoked for the group
1185          * represented by entity. Therefore, the field
1186          * entity->sched_data has been set, and we can safely use it.
1187          */
1188         st = bfq_entity_service_tree(entity);
1189         is_in_service = entity == sd->in_service_entity;
1190 
1191         bfq_calc_finish(entity, entity->service);
1192 
1193         if (is_in_service)
1194                 sd->in_service_entity = NULL;
1195         else
1196                 /*
1197                  * Non in-service entity: nobody will take care of
1198                  * resetting its service counter on expiration. Do it
1199                  * now.
1200                  */
1201                 entity->service = 0;
1202 
1203         if (entity->tree == &st->active)
1204                 bfq_active_extract(st, entity);
1205         else if (!is_in_service && entity->tree == &st->idle)
1206                 bfq_idle_extract(st, entity);
1207 
1208         if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1209                 bfq_forget_entity(st, entity, is_in_service);
1210         else
1211                 bfq_idle_insert(st, entity);
1212 
1213         return true;
1214 }
1215 
1216 /**
1217  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1218  * @entity: the entity to deactivate.
1219  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1220  * @expiration: true if this function is being invoked in the expiration path
1221  *             of the in-service queue
1222  */
1223 static void bfq_deactivate_entity(struct bfq_entity *entity,
1224                                   bool ins_into_idle_tree,
1225                                   bool expiration)
1226 {
1227         struct bfq_sched_data *sd;
1228         struct bfq_entity *parent = NULL;
1229 
1230         for_each_entity_safe(entity, parent) {
1231                 sd = entity->sched_data;
1232 
1233                 if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1234                         /*
1235                          * entity is not in any tree any more, so
1236                          * this deactivation is a no-op, and there is
1237                          * nothing to change for upper-level entities
1238                          * (in case of expiration, this can never
1239                          * happen).
1240                          */
1241                         return;
1242                 }
1243 
1244                 if (sd->next_in_service == entity)
1245                         /*
1246                          * entity was the next_in_service entity,
1247                          * then, since entity has just been
1248                          * deactivated, a new one must be found.
1249                          */
1250                         bfq_update_next_in_service(sd, NULL, expiration);
1251 
1252                 if (sd->next_in_service || sd->in_service_entity) {
1253                         /*
1254                          * The parent entity is still active, because
1255                          * either next_in_service or in_service_entity
1256                          * is not NULL. So, no further upwards
1257                          * deactivation must be performed.  Yet,
1258                          * next_in_service has changed. Then the
1259                          * schedule does need to be updated upwards.
1260                          *
1261                          * NOTE If in_service_entity is not NULL, then
1262                          * next_in_service may happen to be NULL,
1263                          * although the parent entity is evidently
1264                          * active. This happens if 1) the entity
1265                          * pointed by in_service_entity is the only
1266                          * active entity in the parent entity, and 2)
1267                          * according to the definition of
1268                          * next_in_service, the in_service_entity
1269                          * cannot be considered as
1270                          * next_in_service. See the comments on the
1271                          * definition of next_in_service for details.
1272                          */
1273                         break;
1274                 }
1275 
1276                 /*
1277                  * If we get here, then the parent is no more
1278                  * backlogged and we need to propagate the
1279                  * deactivation upwards. Thus let the loop go on.
1280                  */
1281 
1282                 /*
1283                  * Also let parent be queued into the idle tree on
1284                  * deactivation, to preserve service guarantees, and
1285                  * assuming that who invoked this function does not
1286                  * need parent entities too to be removed completely.
1287                  */
1288                 ins_into_idle_tree = true;
1289         }
1290 
1291         /*
1292          * If the deactivation loop is fully executed, then there are
1293          * no more entities to touch and next loop is not executed at
1294          * all. Otherwise, requeue remaining entities if they are
1295          * about to stop receiving service, or reposition them if this
1296          * is not the case.
1297          */
1298         entity = parent;
1299         for_each_entity(entity) {
1300                 /*
1301                  * Invoke __bfq_requeue_entity on entity, even if
1302                  * already active, to requeue/reposition it in the
1303                  * active tree (because sd->next_in_service has
1304                  * changed)
1305                  */
1306                 __bfq_requeue_entity(entity);
1307 
1308                 sd = entity->sched_data;
1309                 if (!bfq_update_next_in_service(sd, entity, expiration) &&
1310                     !expiration)
1311                         /*
1312                          * next_in_service unchanged or not causing
1313                          * any change in entity->parent->sd, and no
1314                          * requeueing needed for expiration: stop
1315                          * here.
1316                          */
1317                         break;
1318         }
1319 }
1320 
1321 /**
1322  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1323  *                       if needed, to have at least one entity eligible.
1324  * @st: the service tree to act upon.
1325  *
1326  * Assumes that st is not empty.
1327  */
1328 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1329 {
1330         struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1331 
1332         if (bfq_gt(root_entity->min_start, st->vtime))
1333                 return root_entity->min_start;
1334 
1335         return st->vtime;
1336 }
1337 
1338 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1339 {
1340         if (new_value > st->vtime) {
1341                 st->vtime = new_value;
1342                 bfq_forget_idle(st);
1343         }
1344 }
1345 
1346 /**
1347  * bfq_first_active_entity - find the eligible entity with
1348  *                           the smallest finish time
1349  * @st: the service tree to select from.
1350  * @vtime: the system virtual to use as a reference for eligibility
1351  *
1352  * This function searches the first schedulable entity, starting from the
1353  * root of the tree and going on the left every time on this side there is
1354  * a subtree with at least one eligible (start <= vtime) entity. The path on
1355  * the right is followed only if a) the left subtree contains no eligible
1356  * entities and b) no eligible entity has been found yet.
1357  */
1358 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1359                                                   u64 vtime)
1360 {
1361         struct bfq_entity *entry, *first = NULL;
1362         struct rb_node *node = st->active.rb_node;
1363 
1364         while (node) {
1365                 entry = rb_entry(node, struct bfq_entity, rb_node);
1366 left:
1367                 if (!bfq_gt(entry->start, vtime))
1368                         first = entry;
1369 
1370                 if (node->rb_left) {
1371                         entry = rb_entry(node->rb_left,
1372                                          struct bfq_entity, rb_node);
1373                         if (!bfq_gt(entry->min_start, vtime)) {
1374                                 node = node->rb_left;
1375                                 goto left;
1376                         }
1377                 }
1378                 if (first)
1379                         break;
1380                 node = node->rb_right;
1381         }
1382 
1383         return first;
1384 }
1385 
1386 /**
1387  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1388  * @st: the service tree.
1389  *
1390  * If there is no in-service entity for the sched_data st belongs to,
1391  * then return the entity that will be set in service if:
1392  * 1) the parent entity this st belongs to is set in service;
1393  * 2) no entity belonging to such parent entity undergoes a state change
1394  * that would influence the timestamps of the entity (e.g., becomes idle,
1395  * becomes backlogged, changes its budget, ...).
1396  *
1397  * In this first case, update the virtual time in @st too (see the
1398  * comments on this update inside the function).
1399  *
1400  * In contrast, if there is an in-service entity, then return the
1401  * entity that would be set in service if not only the above
1402  * conditions, but also the next one held true: the currently
1403  * in-service entity, on expiration,
1404  * 1) gets a finish time equal to the current one, or
1405  * 2) is not eligible any more, or
1406  * 3) is idle.
1407  */
1408 static struct bfq_entity *
1409 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1410 {
1411         struct bfq_entity *entity;
1412         u64 new_vtime;
1413 
1414         if (RB_EMPTY_ROOT(&st->active))
1415                 return NULL;
1416 
1417         /*
1418          * Get the value of the system virtual time for which at
1419          * least one entity is eligible.
1420          */
1421         new_vtime = bfq_calc_vtime_jump(st);
1422 
1423         /*
1424          * If there is no in-service entity for the sched_data this
1425          * active tree belongs to, then push the system virtual time
1426          * up to the value that guarantees that at least one entity is
1427          * eligible. If, instead, there is an in-service entity, then
1428          * do not make any such update, because there is already an
1429          * eligible entity, namely the in-service one (even if the
1430          * entity is not on st, because it was extracted when set in
1431          * service).
1432          */
1433         if (!in_service)
1434                 bfq_update_vtime(st, new_vtime);
1435 
1436         entity = bfq_first_active_entity(st, new_vtime);
1437 
1438         return entity;
1439 }
1440 
1441 /**
1442  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1443  * @sd: the sched_data.
1444  * @expiration: true if we are on the expiration path of the in-service queue
1445  *
1446  * This function is invoked when there has been a change in the trees
1447  * for sd, and we need to know what is the new next entity to serve
1448  * after this change.
1449  */
1450 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1451                                                  bool expiration)
1452 {
1453         struct bfq_service_tree *st = sd->service_tree;
1454         struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1455         struct bfq_entity *entity = NULL;
1456         int class_idx = 0;
1457 
1458         /*
1459          * Choose from idle class, if needed to guarantee a minimum
1460          * bandwidth to this class (and if there is some active entity
1461          * in idle class). This should also mitigate
1462          * priority-inversion problems in case a low priority task is
1463          * holding file system resources.
1464          */
1465         if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1466                                    BFQ_CL_IDLE_TIMEOUT)) {
1467                 if (!RB_EMPTY_ROOT(&idle_class_st->active))
1468                         class_idx = BFQ_IOPRIO_CLASSES - 1;
1469                 /* About to be served if backlogged, or not yet backlogged */
1470                 sd->bfq_class_idle_last_service = jiffies;
1471         }
1472 
1473         /*
1474          * Find the next entity to serve for the highest-priority
1475          * class, unless the idle class needs to be served.
1476          */
1477         for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1478                 /*
1479                  * If expiration is true, then bfq_lookup_next_entity
1480                  * is being invoked as a part of the expiration path
1481                  * of the in-service queue. In this case, even if
1482                  * sd->in_service_entity is not NULL,
1483                  * sd->in_service_entity at this point is actually not
1484                  * in service any more, and, if needed, has already
1485                  * been properly queued or requeued into the right
1486                  * tree. The reason why sd->in_service_entity is still
1487                  * not NULL here, even if expiration is true, is that
1488                  * sd->in_service_entity is reset as a last step in the
1489                  * expiration path. So, if expiration is true, tell
1490                  * __bfq_lookup_next_entity that there is no
1491                  * sd->in_service_entity.
1492                  */
1493                 entity = __bfq_lookup_next_entity(st + class_idx,
1494                                                   sd->in_service_entity &&
1495                                                   !expiration);
1496 
1497                 if (entity)
1498                         break;
1499         }
1500 
1501         if (!entity)
1502                 return NULL;
1503 
1504         return entity;
1505 }
1506 
1507 bool next_queue_may_preempt(struct bfq_data *bfqd)
1508 {
1509         struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1510 
1511         return sd->next_in_service != sd->in_service_entity;
1512 }
1513 
1514 /*
1515  * Get next queue for service.
1516  */
1517 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1518 {
1519         struct bfq_entity *entity = NULL;
1520         struct bfq_sched_data *sd;
1521         struct bfq_queue *bfqq;
1522 
1523         if (bfq_tot_busy_queues(bfqd) == 0)
1524                 return NULL;
1525 
1526         /*
1527          * Traverse the path from the root to the leaf entity to
1528          * serve. Set in service all the entities visited along the
1529          * way.
1530          */
1531         sd = &bfqd->root_group->sched_data;
1532         for (; sd ; sd = entity->my_sched_data) {
1533                 /*
1534                  * WARNING. We are about to set the in-service entity
1535                  * to sd->next_in_service, i.e., to the (cached) value
1536                  * returned by bfq_lookup_next_entity(sd) the last
1537                  * time it was invoked, i.e., the last time when the
1538                  * service order in sd changed as a consequence of the
1539                  * activation or deactivation of an entity. In this
1540                  * respect, if we execute bfq_lookup_next_entity(sd)
1541                  * in this very moment, it may, although with low
1542                  * probability, yield a different entity than that
1543                  * pointed to by sd->next_in_service. This rare event
1544                  * happens in case there was no CLASS_IDLE entity to
1545                  * serve for sd when bfq_lookup_next_entity(sd) was
1546                  * invoked for the last time, while there is now one
1547                  * such entity.
1548                  *
1549                  * If the above event happens, then the scheduling of
1550                  * such entity in CLASS_IDLE is postponed until the
1551                  * service of the sd->next_in_service entity
1552                  * finishes. In fact, when the latter is expired,
1553                  * bfq_lookup_next_entity(sd) gets called again,
1554                  * exactly to update sd->next_in_service.
1555                  */
1556 
1557                 /* Make next_in_service entity become in_service_entity */
1558                 entity = sd->next_in_service;
1559                 sd->in_service_entity = entity;
1560 
1561                 /*
1562                  * If entity is no longer a candidate for next
1563                  * service, then it must be extracted from its active
1564                  * tree, so as to make sure that it won't be
1565                  * considered when computing next_in_service. See the
1566                  * comments on the function
1567                  * bfq_no_longer_next_in_service() for details.
1568                  */
1569                 if (bfq_no_longer_next_in_service(entity))
1570                         bfq_active_extract(bfq_entity_service_tree(entity),
1571                                            entity);
1572 
1573                 /*
1574                  * Even if entity is not to be extracted according to
1575                  * the above check, a descendant entity may get
1576                  * extracted in one of the next iterations of this
1577                  * loop. Such an event could cause a change in
1578                  * next_in_service for the level of the descendant
1579                  * entity, and thus possibly back to this level.
1580                  *
1581                  * However, we cannot perform the resulting needed
1582                  * update of next_in_service for this level before the
1583                  * end of the whole loop, because, to know which is
1584                  * the correct next-to-serve candidate entity for each
1585                  * level, we need first to find the leaf entity to set
1586                  * in service. In fact, only after we know which is
1587                  * the next-to-serve leaf entity, we can discover
1588                  * whether the parent entity of the leaf entity
1589                  * becomes the next-to-serve, and so on.
1590                  */
1591         }
1592 
1593         bfqq = bfq_entity_to_bfqq(entity);
1594 
1595         /*
1596          * We can finally update all next-to-serve entities along the
1597          * path from the leaf entity just set in service to the root.
1598          */
1599         for_each_entity(entity) {
1600                 struct bfq_sched_data *sd = entity->sched_data;
1601 
1602                 if (!bfq_update_next_in_service(sd, NULL, false))
1603                         break;
1604         }
1605 
1606         return bfqq;
1607 }
1608 
1609 /* returns true if the in-service queue gets freed */
1610 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1611 {
1612         struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1613         struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1614         struct bfq_entity *entity = in_serv_entity;
1615 
1616         bfq_clear_bfqq_wait_request(in_serv_bfqq);
1617         hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1618         bfqd->in_service_queue = NULL;
1619 
1620         /*
1621          * When this function is called, all in-service entities have
1622          * been properly deactivated or requeued, so we can safely
1623          * execute the final step: reset in_service_entity along the
1624          * path from entity to the root.
1625          */
1626         for_each_entity(entity)
1627                 entity->sched_data->in_service_entity = NULL;
1628 
1629         /*
1630          * in_serv_entity is no longer in service, so, if it is in no
1631          * service tree either, then release the service reference to
1632          * the queue it represents (taken with bfq_get_entity).
1633          */
1634         if (!in_serv_entity->on_st) {
1635                 /*
1636                  * If no process is referencing in_serv_bfqq any
1637                  * longer, then the service reference may be the only
1638                  * reference to the queue. If this is the case, then
1639                  * bfqq gets freed here.
1640                  */
1641                 int ref = in_serv_bfqq->ref;
1642                 bfq_put_queue(in_serv_bfqq);
1643                 if (ref == 1)
1644                         return true;
1645         }
1646 
1647         return false;
1648 }
1649 
1650 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1651                          bool ins_into_idle_tree, bool expiration)
1652 {
1653         struct bfq_entity *entity = &bfqq->entity;
1654 
1655         bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1656 }
1657 
1658 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1659 {
1660         struct bfq_entity *entity = &bfqq->entity;
1661 
1662         bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1663                                     false, false);
1664         bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1665 }
1666 
1667 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1668                       bool expiration)
1669 {
1670         struct bfq_entity *entity = &bfqq->entity;
1671 
1672         bfq_activate_requeue_entity(entity, false,
1673                                     bfqq == bfqd->in_service_queue, expiration);
1674 }
1675 
1676 /*
1677  * Called when the bfqq no longer has requests pending, remove it from
1678  * the service tree. As a special case, it can be invoked during an
1679  * expiration.
1680  */
1681 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1682                        bool expiration)
1683 {
1684         bfq_log_bfqq(bfqd, bfqq, "del from busy");
1685 
1686         bfq_clear_bfqq_busy(bfqq);
1687 
1688         bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1689 
1690         if (bfqq->wr_coeff > 1)
1691                 bfqd->wr_busy_queues--;
1692 
1693         bfqg_stats_update_dequeue(bfqq_group(bfqq));
1694 
1695         bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1696 
1697         if (!bfqq->dispatched)
1698                 bfq_weights_tree_remove(bfqd, bfqq);
1699 }
1700 
1701 /*
1702  * Called when an inactive queue receives a new request.
1703  */
1704 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1705 {
1706         bfq_log_bfqq(bfqd, bfqq, "add to busy");
1707 
1708         bfq_activate_bfqq(bfqd, bfqq);
1709 
1710         bfq_mark_bfqq_busy(bfqq);
1711         bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1712 
1713         if (!bfqq->dispatched)
1714                 if (bfqq->wr_coeff == 1)
1715                         bfq_weights_tree_add(bfqd, bfqq,
1716                                              &bfqd->queue_weights_tree);
1717 
1718         if (bfqq->wr_coeff > 1)
1719                 bfqd->wr_busy_queues++;
1720 }

/* [<][>][^][v][top][bottom][index][help] */