root/block/partitions/aix.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. last_lba
  2. read_lba
  3. alloc_pvd
  4. alloc_lvn
  5. aix_partition

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *  fs/partitions/aix.c
   4  *
   5  *  Copyright (C) 2012-2013 Philippe De Muyter <phdm@macqel.be>
   6  */
   7 
   8 #include "check.h"
   9 #include "aix.h"
  10 
  11 struct lvm_rec {
  12         char lvm_id[4]; /* "_LVM" */
  13         char reserved4[16];
  14         __be32 lvmarea_len;
  15         __be32 vgda_len;
  16         __be32 vgda_psn[2];
  17         char reserved36[10];
  18         __be16 pp_size; /* log2(pp_size) */
  19         char reserved46[12];
  20         __be16 version;
  21         };
  22 
  23 struct vgda {
  24         __be32 secs;
  25         __be32 usec;
  26         char reserved8[16];
  27         __be16 numlvs;
  28         __be16 maxlvs;
  29         __be16 pp_size;
  30         __be16 numpvs;
  31         __be16 total_vgdas;
  32         __be16 vgda_size;
  33         };
  34 
  35 struct lvd {
  36         __be16 lv_ix;
  37         __be16 res2;
  38         __be16 res4;
  39         __be16 maxsize;
  40         __be16 lv_state;
  41         __be16 mirror;
  42         __be16 mirror_policy;
  43         __be16 num_lps;
  44         __be16 res10[8];
  45         };
  46 
  47 struct lvname {
  48         char name[64];
  49         };
  50 
  51 struct ppe {
  52         __be16 lv_ix;
  53         unsigned short res2;
  54         unsigned short res4;
  55         __be16 lp_ix;
  56         unsigned short res8[12];
  57         };
  58 
  59 struct pvd {
  60         char reserved0[16];
  61         __be16 pp_count;
  62         char reserved18[2];
  63         __be32 psn_part1;
  64         char reserved24[8];
  65         struct ppe ppe[1016];
  66         };
  67 
  68 #define LVM_MAXLVS 256
  69 
  70 /**
  71  * last_lba(): return number of last logical block of device
  72  * @bdev: block device
  73  *
  74  * Description: Returns last LBA value on success, 0 on error.
  75  * This is stored (by sd and ide-geometry) in
  76  *  the part[0] entry for this disk, and is the number of
  77  *  physical sectors available on the disk.
  78  */
  79 static u64 last_lba(struct block_device *bdev)
  80 {
  81         if (!bdev || !bdev->bd_inode)
  82                 return 0;
  83         return (bdev->bd_inode->i_size >> 9) - 1ULL;
  84 }
  85 
  86 /**
  87  * read_lba(): Read bytes from disk, starting at given LBA
  88  * @state
  89  * @lba
  90  * @buffer
  91  * @count
  92  *
  93  * Description:  Reads @count bytes from @state->bdev into @buffer.
  94  * Returns number of bytes read on success, 0 on error.
  95  */
  96 static size_t read_lba(struct parsed_partitions *state, u64 lba, u8 *buffer,
  97                         size_t count)
  98 {
  99         size_t totalreadcount = 0;
 100 
 101         if (!buffer || lba + count / 512 > last_lba(state->bdev))
 102                 return 0;
 103 
 104         while (count) {
 105                 int copied = 512;
 106                 Sector sect;
 107                 unsigned char *data = read_part_sector(state, lba++, &sect);
 108                 if (!data)
 109                         break;
 110                 if (copied > count)
 111                         copied = count;
 112                 memcpy(buffer, data, copied);
 113                 put_dev_sector(sect);
 114                 buffer += copied;
 115                 totalreadcount += copied;
 116                 count -= copied;
 117         }
 118         return totalreadcount;
 119 }
 120 
 121 /**
 122  * alloc_pvd(): reads physical volume descriptor
 123  * @state
 124  * @lba
 125  *
 126  * Description: Returns pvd on success,  NULL on error.
 127  * Allocates space for pvd and fill it with disk blocks at @lba
 128  * Notes: remember to free pvd when you're done!
 129  */
 130 static struct pvd *alloc_pvd(struct parsed_partitions *state, u32 lba)
 131 {
 132         size_t count = sizeof(struct pvd);
 133         struct pvd *p;
 134 
 135         p = kmalloc(count, GFP_KERNEL);
 136         if (!p)
 137                 return NULL;
 138 
 139         if (read_lba(state, lba, (u8 *) p, count) < count) {
 140                 kfree(p);
 141                 return NULL;
 142         }
 143         return p;
 144 }
 145 
 146 /**
 147  * alloc_lvn(): reads logical volume names
 148  * @state
 149  * @lba
 150  *
 151  * Description: Returns lvn on success,  NULL on error.
 152  * Allocates space for lvn and fill it with disk blocks at @lba
 153  * Notes: remember to free lvn when you're done!
 154  */
 155 static struct lvname *alloc_lvn(struct parsed_partitions *state, u32 lba)
 156 {
 157         size_t count = sizeof(struct lvname) * LVM_MAXLVS;
 158         struct lvname *p;
 159 
 160         p = kmalloc(count, GFP_KERNEL);
 161         if (!p)
 162                 return NULL;
 163 
 164         if (read_lba(state, lba, (u8 *) p, count) < count) {
 165                 kfree(p);
 166                 return NULL;
 167         }
 168         return p;
 169 }
 170 
 171 int aix_partition(struct parsed_partitions *state)
 172 {
 173         int ret = 0;
 174         Sector sect;
 175         unsigned char *d;
 176         u32 pp_bytes_size;
 177         u32 pp_blocks_size = 0;
 178         u32 vgda_sector = 0;
 179         u32 vgda_len = 0;
 180         int numlvs = 0;
 181         struct pvd *pvd = NULL;
 182         struct lv_info {
 183                 unsigned short pps_per_lv;
 184                 unsigned short pps_found;
 185                 unsigned char lv_is_contiguous;
 186         } *lvip;
 187         struct lvname *n = NULL;
 188 
 189         d = read_part_sector(state, 7, &sect);
 190         if (d) {
 191                 struct lvm_rec *p = (struct lvm_rec *)d;
 192                 u16 lvm_version = be16_to_cpu(p->version);
 193                 char tmp[64];
 194 
 195                 if (lvm_version == 1) {
 196                         int pp_size_log2 = be16_to_cpu(p->pp_size);
 197 
 198                         pp_bytes_size = 1 << pp_size_log2;
 199                         pp_blocks_size = pp_bytes_size / 512;
 200                         snprintf(tmp, sizeof(tmp),
 201                                 " AIX LVM header version %u found\n",
 202                                 lvm_version);
 203                         vgda_len = be32_to_cpu(p->vgda_len);
 204                         vgda_sector = be32_to_cpu(p->vgda_psn[0]);
 205                 } else {
 206                         snprintf(tmp, sizeof(tmp),
 207                                 " unsupported AIX LVM version %d found\n",
 208                                 lvm_version);
 209                 }
 210                 strlcat(state->pp_buf, tmp, PAGE_SIZE);
 211                 put_dev_sector(sect);
 212         }
 213         if (vgda_sector && (d = read_part_sector(state, vgda_sector, &sect))) {
 214                 struct vgda *p = (struct vgda *)d;
 215 
 216                 numlvs = be16_to_cpu(p->numlvs);
 217                 put_dev_sector(sect);
 218         }
 219         lvip = kcalloc(state->limit, sizeof(struct lv_info), GFP_KERNEL);
 220         if (!lvip)
 221                 return 0;
 222         if (numlvs && (d = read_part_sector(state, vgda_sector + 1, &sect))) {
 223                 struct lvd *p = (struct lvd *)d;
 224                 int i;
 225 
 226                 n = alloc_lvn(state, vgda_sector + vgda_len - 33);
 227                 if (n) {
 228                         int foundlvs = 0;
 229 
 230                         for (i = 0; foundlvs < numlvs && i < state->limit; i += 1) {
 231                                 lvip[i].pps_per_lv = be16_to_cpu(p[i].num_lps);
 232                                 if (lvip[i].pps_per_lv)
 233                                         foundlvs += 1;
 234                         }
 235                         /* pvd loops depend on n[].name and lvip[].pps_per_lv */
 236                         pvd = alloc_pvd(state, vgda_sector + 17);
 237                 }
 238                 put_dev_sector(sect);
 239         }
 240         if (pvd) {
 241                 int numpps = be16_to_cpu(pvd->pp_count);
 242                 int psn_part1 = be32_to_cpu(pvd->psn_part1);
 243                 int i;
 244                 int cur_lv_ix = -1;
 245                 int next_lp_ix = 1;
 246                 int lp_ix;
 247 
 248                 for (i = 0; i < numpps; i += 1) {
 249                         struct ppe *p = pvd->ppe + i;
 250                         unsigned int lv_ix;
 251 
 252                         lp_ix = be16_to_cpu(p->lp_ix);
 253                         if (!lp_ix) {
 254                                 next_lp_ix = 1;
 255                                 continue;
 256                         }
 257                         lv_ix = be16_to_cpu(p->lv_ix) - 1;
 258                         if (lv_ix >= state->limit) {
 259                                 cur_lv_ix = -1;
 260                                 continue;
 261                         }
 262                         lvip[lv_ix].pps_found += 1;
 263                         if (lp_ix == 1) {
 264                                 cur_lv_ix = lv_ix;
 265                                 next_lp_ix = 1;
 266                         } else if (lv_ix != cur_lv_ix || lp_ix != next_lp_ix) {
 267                                 next_lp_ix = 1;
 268                                 continue;
 269                         }
 270                         if (lp_ix == lvip[lv_ix].pps_per_lv) {
 271                                 char tmp[70];
 272 
 273                                 put_partition(state, lv_ix + 1,
 274                                   (i + 1 - lp_ix) * pp_blocks_size + psn_part1,
 275                                   lvip[lv_ix].pps_per_lv * pp_blocks_size);
 276                                 snprintf(tmp, sizeof(tmp), " <%s>\n",
 277                                          n[lv_ix].name);
 278                                 strlcat(state->pp_buf, tmp, PAGE_SIZE);
 279                                 lvip[lv_ix].lv_is_contiguous = 1;
 280                                 ret = 1;
 281                                 next_lp_ix = 1;
 282                         } else
 283                                 next_lp_ix += 1;
 284                 }
 285                 for (i = 0; i < state->limit; i += 1)
 286                         if (lvip[i].pps_found && !lvip[i].lv_is_contiguous) {
 287                                 char tmp[sizeof(n[i].name) + 1]; // null char
 288 
 289                                 snprintf(tmp, sizeof(tmp), "%s", n[i].name);
 290                                 pr_warn("partition %s (%u pp's found) is "
 291                                         "not contiguous\n",
 292                                         tmp, lvip[i].pps_found);
 293                         }
 294                 kfree(pvd);
 295         }
 296         kfree(n);
 297         kfree(lvip);
 298         return ret;
 299 }

/* [<][>][^][v][top][bottom][index][help] */