root/kernel/trace/trace_hwlat.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. trace_hwlat_sample
  2. trace_hwlat_callback
  3. get_sample
  4. move_to_next_cpu
  5. kthread_fn
  6. start_kthread
  7. stop_kthread
  8. hwlat_read
  9. hwlat_width_write
  10. hwlat_window_write
  11. init_tracefs
  12. hwlat_tracer_start
  13. hwlat_tracer_stop
  14. hwlat_tracer_init
  15. hwlat_tracer_reset
  16. init_hwlat_tracer

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * trace_hwlatdetect.c - A simple Hardware Latency detector.
   4  *
   5  * Use this tracer to detect large system latencies induced by the behavior of
   6  * certain underlying system hardware or firmware, independent of Linux itself.
   7  * The code was developed originally to detect the presence of SMIs on Intel
   8  * and AMD systems, although there is no dependency upon x86 herein.
   9  *
  10  * The classical example usage of this tracer is in detecting the presence of
  11  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
  12  * somewhat special form of hardware interrupt spawned from earlier CPU debug
  13  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
  14  * LPC (or other device) to generate a special interrupt under certain
  15  * circumstances, for example, upon expiration of a special SMI timer device,
  16  * due to certain external thermal readings, on certain I/O address accesses,
  17  * and other situations. An SMI hits a special CPU pin, triggers a special
  18  * SMI mode (complete with special memory map), and the OS is unaware.
  19  *
  20  * Although certain hardware-inducing latencies are necessary (for example,
  21  * a modern system often requires an SMI handler for correct thermal control
  22  * and remote management) they can wreak havoc upon any OS-level performance
  23  * guarantees toward low-latency, especially when the OS is not even made
  24  * aware of the presence of these interrupts. For this reason, we need a
  25  * somewhat brute force mechanism to detect these interrupts. In this case,
  26  * we do it by hogging all of the CPU(s) for configurable timer intervals,
  27  * sampling the built-in CPU timer, looking for discontiguous readings.
  28  *
  29  * WARNING: This implementation necessarily introduces latencies. Therefore,
  30  *          you should NEVER use this tracer while running in a production
  31  *          environment requiring any kind of low-latency performance
  32  *          guarantee(s).
  33  *
  34  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
  35  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
  36  *
  37  * Includes useful feedback from Clark Williams <clark@redhat.com>
  38  *
  39  */
  40 #include <linux/kthread.h>
  41 #include <linux/tracefs.h>
  42 #include <linux/uaccess.h>
  43 #include <linux/cpumask.h>
  44 #include <linux/delay.h>
  45 #include <linux/sched/clock.h>
  46 #include "trace.h"
  47 
  48 static struct trace_array       *hwlat_trace;
  49 
  50 #define U64STR_SIZE             22                      /* 20 digits max */
  51 
  52 #define BANNER                  "hwlat_detector: "
  53 #define DEFAULT_SAMPLE_WINDOW   1000000                 /* 1s */
  54 #define DEFAULT_SAMPLE_WIDTH    500000                  /* 0.5s */
  55 #define DEFAULT_LAT_THRESHOLD   10                      /* 10us */
  56 
  57 /* sampling thread*/
  58 static struct task_struct *hwlat_kthread;
  59 
  60 static struct dentry *hwlat_sample_width;       /* sample width us */
  61 static struct dentry *hwlat_sample_window;      /* sample window us */
  62 
  63 /* Save the previous tracing_thresh value */
  64 static unsigned long save_tracing_thresh;
  65 
  66 /* NMI timestamp counters */
  67 static u64 nmi_ts_start;
  68 static u64 nmi_total_ts;
  69 static int nmi_count;
  70 static int nmi_cpu;
  71 
  72 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
  73 bool trace_hwlat_callback_enabled;
  74 
  75 /* If the user changed threshold, remember it */
  76 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
  77 
  78 /* Individual latency samples are stored here when detected. */
  79 struct hwlat_sample {
  80         u64                     seqnum;         /* unique sequence */
  81         u64                     duration;       /* delta */
  82         u64                     outer_duration; /* delta (outer loop) */
  83         u64                     nmi_total_ts;   /* Total time spent in NMIs */
  84         struct timespec64       timestamp;      /* wall time */
  85         int                     nmi_count;      /* # NMIs during this sample */
  86 };
  87 
  88 /* keep the global state somewhere. */
  89 static struct hwlat_data {
  90 
  91         struct mutex lock;              /* protect changes */
  92 
  93         u64     count;                  /* total since reset */
  94 
  95         u64     sample_window;          /* total sampling window (on+off) */
  96         u64     sample_width;           /* active sampling portion of window */
  97 
  98 } hwlat_data = {
  99         .sample_window          = DEFAULT_SAMPLE_WINDOW,
 100         .sample_width           = DEFAULT_SAMPLE_WIDTH,
 101 };
 102 
 103 static void trace_hwlat_sample(struct hwlat_sample *sample)
 104 {
 105         struct trace_array *tr = hwlat_trace;
 106         struct trace_event_call *call = &event_hwlat;
 107         struct ring_buffer *buffer = tr->trace_buffer.buffer;
 108         struct ring_buffer_event *event;
 109         struct hwlat_entry *entry;
 110         unsigned long flags;
 111         int pc;
 112 
 113         pc = preempt_count();
 114         local_save_flags(flags);
 115 
 116         event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
 117                                           flags, pc);
 118         if (!event)
 119                 return;
 120         entry   = ring_buffer_event_data(event);
 121         entry->seqnum                   = sample->seqnum;
 122         entry->duration                 = sample->duration;
 123         entry->outer_duration           = sample->outer_duration;
 124         entry->timestamp                = sample->timestamp;
 125         entry->nmi_total_ts             = sample->nmi_total_ts;
 126         entry->nmi_count                = sample->nmi_count;
 127 
 128         if (!call_filter_check_discard(call, entry, buffer, event))
 129                 trace_buffer_unlock_commit_nostack(buffer, event);
 130 }
 131 
 132 /* Macros to encapsulate the time capturing infrastructure */
 133 #define time_type       u64
 134 #define time_get()      trace_clock_local()
 135 #define time_to_us(x)   div_u64(x, 1000)
 136 #define time_sub(a, b)  ((a) - (b))
 137 #define init_time(a, b) (a = b)
 138 #define time_u64(a)     a
 139 
 140 void trace_hwlat_callback(bool enter)
 141 {
 142         if (smp_processor_id() != nmi_cpu)
 143                 return;
 144 
 145         /*
 146          * Currently trace_clock_local() calls sched_clock() and the
 147          * generic version is not NMI safe.
 148          */
 149         if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
 150                 if (enter)
 151                         nmi_ts_start = time_get();
 152                 else
 153                         nmi_total_ts += time_get() - nmi_ts_start;
 154         }
 155 
 156         if (enter)
 157                 nmi_count++;
 158 }
 159 
 160 /**
 161  * get_sample - sample the CPU TSC and look for likely hardware latencies
 162  *
 163  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
 164  * hardware-induced latency. Called with interrupts disabled and with
 165  * hwlat_data.lock held.
 166  */
 167 static int get_sample(void)
 168 {
 169         struct trace_array *tr = hwlat_trace;
 170         time_type start, t1, t2, last_t2;
 171         s64 diff, total, last_total = 0;
 172         u64 sample = 0;
 173         u64 thresh = tracing_thresh;
 174         u64 outer_sample = 0;
 175         int ret = -1;
 176 
 177         do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
 178 
 179         nmi_cpu = smp_processor_id();
 180         nmi_total_ts = 0;
 181         nmi_count = 0;
 182         /* Make sure NMIs see this first */
 183         barrier();
 184 
 185         trace_hwlat_callback_enabled = true;
 186 
 187         init_time(last_t2, 0);
 188         start = time_get(); /* start timestamp */
 189 
 190         do {
 191 
 192                 t1 = time_get();        /* we'll look for a discontinuity */
 193                 t2 = time_get();
 194 
 195                 if (time_u64(last_t2)) {
 196                         /* Check the delta from outer loop (t2 to next t1) */
 197                         diff = time_to_us(time_sub(t1, last_t2));
 198                         /* This shouldn't happen */
 199                         if (diff < 0) {
 200                                 pr_err(BANNER "time running backwards\n");
 201                                 goto out;
 202                         }
 203                         if (diff > outer_sample)
 204                                 outer_sample = diff;
 205                 }
 206                 last_t2 = t2;
 207 
 208                 total = time_to_us(time_sub(t2, start)); /* sample width */
 209 
 210                 /* Check for possible overflows */
 211                 if (total < last_total) {
 212                         pr_err("Time total overflowed\n");
 213                         break;
 214                 }
 215                 last_total = total;
 216 
 217                 /* This checks the inner loop (t1 to t2) */
 218                 diff = time_to_us(time_sub(t2, t1));     /* current diff */
 219 
 220                 /* This shouldn't happen */
 221                 if (diff < 0) {
 222                         pr_err(BANNER "time running backwards\n");
 223                         goto out;
 224                 }
 225 
 226                 if (diff > sample)
 227                         sample = diff; /* only want highest value */
 228 
 229         } while (total <= hwlat_data.sample_width);
 230 
 231         barrier(); /* finish the above in the view for NMIs */
 232         trace_hwlat_callback_enabled = false;
 233         barrier(); /* Make sure nmi_total_ts is no longer updated */
 234 
 235         ret = 0;
 236 
 237         /* If we exceed the threshold value, we have found a hardware latency */
 238         if (sample > thresh || outer_sample > thresh) {
 239                 struct hwlat_sample s;
 240 
 241                 ret = 1;
 242 
 243                 /* We read in microseconds */
 244                 if (nmi_total_ts)
 245                         do_div(nmi_total_ts, NSEC_PER_USEC);
 246 
 247                 hwlat_data.count++;
 248                 s.seqnum = hwlat_data.count;
 249                 s.duration = sample;
 250                 s.outer_duration = outer_sample;
 251                 ktime_get_real_ts64(&s.timestamp);
 252                 s.nmi_total_ts = nmi_total_ts;
 253                 s.nmi_count = nmi_count;
 254                 trace_hwlat_sample(&s);
 255 
 256                 /* Keep a running maximum ever recorded hardware latency */
 257                 if (sample > tr->max_latency)
 258                         tr->max_latency = sample;
 259                 if (outer_sample > tr->max_latency)
 260                         tr->max_latency = outer_sample;
 261         }
 262 
 263 out:
 264         return ret;
 265 }
 266 
 267 static struct cpumask save_cpumask;
 268 static bool disable_migrate;
 269 
 270 static void move_to_next_cpu(void)
 271 {
 272         struct cpumask *current_mask = &save_cpumask;
 273         int next_cpu;
 274 
 275         if (disable_migrate)
 276                 return;
 277         /*
 278          * If for some reason the user modifies the CPU affinity
 279          * of this thread, than stop migrating for the duration
 280          * of the current test.
 281          */
 282         if (!cpumask_equal(current_mask, current->cpus_ptr))
 283                 goto disable;
 284 
 285         get_online_cpus();
 286         cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
 287         next_cpu = cpumask_next(smp_processor_id(), current_mask);
 288         put_online_cpus();
 289 
 290         if (next_cpu >= nr_cpu_ids)
 291                 next_cpu = cpumask_first(current_mask);
 292 
 293         if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
 294                 goto disable;
 295 
 296         cpumask_clear(current_mask);
 297         cpumask_set_cpu(next_cpu, current_mask);
 298 
 299         sched_setaffinity(0, current_mask);
 300         return;
 301 
 302  disable:
 303         disable_migrate = true;
 304 }
 305 
 306 /*
 307  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
 308  *
 309  * Used to periodically sample the CPU TSC via a call to get_sample. We
 310  * disable interrupts, which does (intentionally) introduce latency since we
 311  * need to ensure nothing else might be running (and thus preempting).
 312  * Obviously this should never be used in production environments.
 313  *
 314  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
 315  */
 316 static int kthread_fn(void *data)
 317 {
 318         u64 interval;
 319 
 320         while (!kthread_should_stop()) {
 321 
 322                 move_to_next_cpu();
 323 
 324                 local_irq_disable();
 325                 get_sample();
 326                 local_irq_enable();
 327 
 328                 mutex_lock(&hwlat_data.lock);
 329                 interval = hwlat_data.sample_window - hwlat_data.sample_width;
 330                 mutex_unlock(&hwlat_data.lock);
 331 
 332                 do_div(interval, USEC_PER_MSEC); /* modifies interval value */
 333 
 334                 /* Always sleep for at least 1ms */
 335                 if (interval < 1)
 336                         interval = 1;
 337 
 338                 if (msleep_interruptible(interval))
 339                         break;
 340         }
 341 
 342         return 0;
 343 }
 344 
 345 /**
 346  * start_kthread - Kick off the hardware latency sampling/detector kthread
 347  *
 348  * This starts the kernel thread that will sit and sample the CPU timestamp
 349  * counter (TSC or similar) and look for potential hardware latencies.
 350  */
 351 static int start_kthread(struct trace_array *tr)
 352 {
 353         struct cpumask *current_mask = &save_cpumask;
 354         struct task_struct *kthread;
 355         int next_cpu;
 356 
 357         if (WARN_ON(hwlat_kthread))
 358                 return 0;
 359 
 360         /* Just pick the first CPU on first iteration */
 361         current_mask = &save_cpumask;
 362         get_online_cpus();
 363         cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
 364         put_online_cpus();
 365         next_cpu = cpumask_first(current_mask);
 366 
 367         kthread = kthread_create(kthread_fn, NULL, "hwlatd");
 368         if (IS_ERR(kthread)) {
 369                 pr_err(BANNER "could not start sampling thread\n");
 370                 return -ENOMEM;
 371         }
 372 
 373         cpumask_clear(current_mask);
 374         cpumask_set_cpu(next_cpu, current_mask);
 375         sched_setaffinity(kthread->pid, current_mask);
 376 
 377         hwlat_kthread = kthread;
 378         wake_up_process(kthread);
 379 
 380         return 0;
 381 }
 382 
 383 /**
 384  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
 385  *
 386  * This kicks the running hardware latency sampling/detector kernel thread and
 387  * tells it to stop sampling now. Use this on unload and at system shutdown.
 388  */
 389 static void stop_kthread(void)
 390 {
 391         if (!hwlat_kthread)
 392                 return;
 393         kthread_stop(hwlat_kthread);
 394         hwlat_kthread = NULL;
 395 }
 396 
 397 /*
 398  * hwlat_read - Wrapper read function for reading both window and width
 399  * @filp: The active open file structure
 400  * @ubuf: The userspace provided buffer to read value into
 401  * @cnt: The maximum number of bytes to read
 402  * @ppos: The current "file" position
 403  *
 404  * This function provides a generic read implementation for the global state
 405  * "hwlat_data" structure filesystem entries.
 406  */
 407 static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
 408                           size_t cnt, loff_t *ppos)
 409 {
 410         char buf[U64STR_SIZE];
 411         u64 *entry = filp->private_data;
 412         u64 val;
 413         int len;
 414 
 415         if (!entry)
 416                 return -EFAULT;
 417 
 418         if (cnt > sizeof(buf))
 419                 cnt = sizeof(buf);
 420 
 421         val = *entry;
 422 
 423         len = snprintf(buf, sizeof(buf), "%llu\n", val);
 424 
 425         return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
 426 }
 427 
 428 /**
 429  * hwlat_width_write - Write function for "width" entry
 430  * @filp: The active open file structure
 431  * @ubuf: The user buffer that contains the value to write
 432  * @cnt: The maximum number of bytes to write to "file"
 433  * @ppos: The current position in @file
 434  *
 435  * This function provides a write implementation for the "width" interface
 436  * to the hardware latency detector. It can be used to configure
 437  * for how many us of the total window us we will actively sample for any
 438  * hardware-induced latency periods. Obviously, it is not possible to
 439  * sample constantly and have the system respond to a sample reader, or,
 440  * worse, without having the system appear to have gone out to lunch. It
 441  * is enforced that width is less that the total window size.
 442  */
 443 static ssize_t
 444 hwlat_width_write(struct file *filp, const char __user *ubuf,
 445                   size_t cnt, loff_t *ppos)
 446 {
 447         u64 val;
 448         int err;
 449 
 450         err = kstrtoull_from_user(ubuf, cnt, 10, &val);
 451         if (err)
 452                 return err;
 453 
 454         mutex_lock(&hwlat_data.lock);
 455         if (val < hwlat_data.sample_window)
 456                 hwlat_data.sample_width = val;
 457         else
 458                 err = -EINVAL;
 459         mutex_unlock(&hwlat_data.lock);
 460 
 461         if (err)
 462                 return err;
 463 
 464         return cnt;
 465 }
 466 
 467 /**
 468  * hwlat_window_write - Write function for "window" entry
 469  * @filp: The active open file structure
 470  * @ubuf: The user buffer that contains the value to write
 471  * @cnt: The maximum number of bytes to write to "file"
 472  * @ppos: The current position in @file
 473  *
 474  * This function provides a write implementation for the "window" interface
 475  * to the hardware latency detetector. The window is the total time
 476  * in us that will be considered one sample period. Conceptually, windows
 477  * occur back-to-back and contain a sample width period during which
 478  * actual sampling occurs. Can be used to write a new total window size. It
 479  * is enfoced that any value written must be greater than the sample width
 480  * size, or an error results.
 481  */
 482 static ssize_t
 483 hwlat_window_write(struct file *filp, const char __user *ubuf,
 484                    size_t cnt, loff_t *ppos)
 485 {
 486         u64 val;
 487         int err;
 488 
 489         err = kstrtoull_from_user(ubuf, cnt, 10, &val);
 490         if (err)
 491                 return err;
 492 
 493         mutex_lock(&hwlat_data.lock);
 494         if (hwlat_data.sample_width < val)
 495                 hwlat_data.sample_window = val;
 496         else
 497                 err = -EINVAL;
 498         mutex_unlock(&hwlat_data.lock);
 499 
 500         if (err)
 501                 return err;
 502 
 503         return cnt;
 504 }
 505 
 506 static const struct file_operations width_fops = {
 507         .open           = tracing_open_generic,
 508         .read           = hwlat_read,
 509         .write          = hwlat_width_write,
 510 };
 511 
 512 static const struct file_operations window_fops = {
 513         .open           = tracing_open_generic,
 514         .read           = hwlat_read,
 515         .write          = hwlat_window_write,
 516 };
 517 
 518 /**
 519  * init_tracefs - A function to initialize the tracefs interface files
 520  *
 521  * This function creates entries in tracefs for "hwlat_detector".
 522  * It creates the hwlat_detector directory in the tracing directory,
 523  * and within that directory is the count, width and window files to
 524  * change and view those values.
 525  */
 526 static int init_tracefs(void)
 527 {
 528         struct dentry *d_tracer;
 529         struct dentry *top_dir;
 530 
 531         d_tracer = tracing_init_dentry();
 532         if (IS_ERR(d_tracer))
 533                 return -ENOMEM;
 534 
 535         top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
 536         if (!top_dir)
 537                 return -ENOMEM;
 538 
 539         hwlat_sample_window = tracefs_create_file("window", 0640,
 540                                                   top_dir,
 541                                                   &hwlat_data.sample_window,
 542                                                   &window_fops);
 543         if (!hwlat_sample_window)
 544                 goto err;
 545 
 546         hwlat_sample_width = tracefs_create_file("width", 0644,
 547                                                  top_dir,
 548                                                  &hwlat_data.sample_width,
 549                                                  &width_fops);
 550         if (!hwlat_sample_width)
 551                 goto err;
 552 
 553         return 0;
 554 
 555  err:
 556         tracefs_remove_recursive(top_dir);
 557         return -ENOMEM;
 558 }
 559 
 560 static void hwlat_tracer_start(struct trace_array *tr)
 561 {
 562         int err;
 563 
 564         err = start_kthread(tr);
 565         if (err)
 566                 pr_err(BANNER "Cannot start hwlat kthread\n");
 567 }
 568 
 569 static void hwlat_tracer_stop(struct trace_array *tr)
 570 {
 571         stop_kthread();
 572 }
 573 
 574 static bool hwlat_busy;
 575 
 576 static int hwlat_tracer_init(struct trace_array *tr)
 577 {
 578         /* Only allow one instance to enable this */
 579         if (hwlat_busy)
 580                 return -EBUSY;
 581 
 582         hwlat_trace = tr;
 583 
 584         disable_migrate = false;
 585         hwlat_data.count = 0;
 586         tr->max_latency = 0;
 587         save_tracing_thresh = tracing_thresh;
 588 
 589         /* tracing_thresh is in nsecs, we speak in usecs */
 590         if (!tracing_thresh)
 591                 tracing_thresh = last_tracing_thresh;
 592 
 593         if (tracer_tracing_is_on(tr))
 594                 hwlat_tracer_start(tr);
 595 
 596         hwlat_busy = true;
 597 
 598         return 0;
 599 }
 600 
 601 static void hwlat_tracer_reset(struct trace_array *tr)
 602 {
 603         stop_kthread();
 604 
 605         /* the tracing threshold is static between runs */
 606         last_tracing_thresh = tracing_thresh;
 607 
 608         tracing_thresh = save_tracing_thresh;
 609         hwlat_busy = false;
 610 }
 611 
 612 static struct tracer hwlat_tracer __read_mostly =
 613 {
 614         .name           = "hwlat",
 615         .init           = hwlat_tracer_init,
 616         .reset          = hwlat_tracer_reset,
 617         .start          = hwlat_tracer_start,
 618         .stop           = hwlat_tracer_stop,
 619         .allow_instances = true,
 620 };
 621 
 622 __init static int init_hwlat_tracer(void)
 623 {
 624         int ret;
 625 
 626         mutex_init(&hwlat_data.lock);
 627 
 628         ret = register_tracer(&hwlat_tracer);
 629         if (ret)
 630                 return ret;
 631 
 632         init_tracefs();
 633 
 634         return 0;
 635 }
 636 late_initcall(init_hwlat_tracer);

/* [<][>][^][v][top][bottom][index][help] */